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Abstract

Machine unlearning (MU), which seeks to erase the influence of specific unwanted1

data from already-trained models, is becoming increasingly vital in model editing,2

particularly to comply with evolving data regulations like the “right to be forgotten”.3

Conventional approaches are predominantly model-based, typically requiring re-4

training or fine-tuning the model’s weights to meet unlearning requirements. In this5

work, we approach the MU problem from an input perturbation-based perspective,6

where the model weights remain intact throughout the unlearning process. We7

demonstrate the existence of a proactive input-based unlearning strategy, referred8

to forget vector, which can be generated as an input-agnostic data perturbation and9

remains as effective as model-based approximate unlearning approaches. We also10

explore forget vector arithmetic, whereby multiple class-specific forget vectors11

can be combined through simple operations (e.g., linear combinations) to generate12

new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets13

across classes. Extensive experiments validate the effectiveness and adaptability of14

the forget vector, showcasing its competitive performance relative to state-of-the-art15

model-based methods while achieving superior parameter efficiency.16

1 Introduction17

To prevent unauthorized use of personal or sensitive data after training and comply with legislation18

such as the “right to be forgotten” [1], machine unlearning (MU) has garnered increasing attention as19

a solution to various challenges in vision tasks [2–5]. In essence, it initiates a reverse learning process20

to erase the impact of unwanted data (e.g., specific data points, classes, or knowledge) from an21

already-trained model, while still preserving its utility for information not targeted by an unlearning22

request. Based on the guarantees provided for data removal from already-trained models, existing MU23

methods can be broadly categorized into two approaches: exact unlearning [6–8] and approximate24

unlearning [9–15]. The former guarantees the complete and verifiable removal of targeted data,25

typically achieved by retraining the model from scratch with the data to be forgotten excluded from26

the training set, a process we refer to as Retrain. However, due to the high computational overhead,27

research has increasingly focused on approximate unlearning methods, which seek to achieve efficient28

unlearning without requiring full retraining.29

Approximate unlearning strikes a balance between computational efficiency and effective data30

removal, making it practical for many real-world applications. Most existing approximate unlearning31

techniques are model-based, updating the model’s weights within a limited number of training32

iterations to eliminate the influence of specific unwanted data, thus avoiding a full retraining process.33

Representative methods in this category include fine-tuning approaches [4, 16], gradient ascent34

techniques [10, 17], and influence function-based methods [18, 2].35

Although the model-based unlearning methods have made significant strides, they often overlook36

the data-based dimension and its potential impact on MU. For instance, it remains unclear whether37

current MU approaches generalize effectively to “shifted” forget data. Additionally, the possibility38
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of a data-based MU design that operates without updating model parameters has yet to be explored.39

Therefore, we ask:40

(Q) Can we explore data influence in MU and harness data-based operations to fulfill MU?
41
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Figure 1: A schematic illustration comparing our proposed data-
based MU method (termed the “forget vector”), which achieves
unlearning objectives (i.e., forgetting “dog” and remembering
“bird” in this example) by operating directly on input data with-
out altering model parameters, against traditional model update-
based unlearning methods. � indicates that the forget data is
successfully unlearned, while � means that the retain data is cor-
rectly recognized, or the forget data is not successfully unlearned.
The “original model” refers to the model without unlearning ap-
plied, and “SCRUB” [19] is an existing representative unlearning
method that updates model weights.

To address (Q), we study MU from a42

fresh data-based viewpoint: forget vec-43

tor, a universal input data perturbation44

designed to promote unlearning effec-45

tively; See the schematic overview in46

Fig. 1. Before developing the forget vec-47

tor, we explore the rationale for how48

data perturbations complement current49

model-based MU approaches, as evi-50

denced by these methods’ generaliza-51

tion to common data shifts, including52

Gaussian noise and adversarial pertur-53

bations [20, 21]. To design the for-54

get vector, we draw inspiration from re-55

cent input prompting techniques for vi-56

sion models, known as visual prompting57

[22–24] or model reprogramming [25–58

27], used in transfer learning and model59

adaptation. These prompting methods60

learn input perturbations to enable a61

fixed model to perform well on new62

tasks, effectively guiding the model to execute tasks it wasn’t originally trained for. From this63

perspective, our research on the forget vector also explores whether it is possible to append a trainable64

“prompt” to the input to guide an already-trained neural network in unlearning specific data. The65

proposed forget vector allows the unlearner to modify user inputs targeted for deletion, offering66

a flexible and efficient approach to unlearning while potentially achieving significant parameter67

efficiency. We summarize our contributions below.68

• We investigate the impact of forget data shifts on image classifiers post-unlearning, revealing that69

unlearning demonstrates resilience against these shifts (to some extent) while generalization remains70

more vulnerable.71

• Building on the complementary role of data shifts in MU, we propose a proactive, input-agnostic72

data perturbation strategy termed the forget vector, optimized specifically to facilitate unlearning.73

• We demonstrate the effectiveness of forget vector arithmetic by using precomputed class-wise74

forget vectors to generate new vectors that effectively eliminate the influence of specific data subsets75

in image classification models, e.g., in the scenario of random data forgetting.76

• We conduct extensive experiments on MU for image classification, providing both quantitative and77

qualitative analyses to demonstrate the competitiveness of the forget vector compared to model-based78

MU methods.79

2 Related Work80

MU in Vision. Machine unlearning (MU) in vision has gained significant attention due to the81

increasing need for privacy preservation, copyright protection, and ethical data removal in machine82

learning models. Recent studies [28–33, 19, 34–37] in this area have primarily focused on two main83

applications: image classification and image generation.84

In image classification, MU methods have explored various ways to erase certain classes or images85

from models [10, 17, 2, 18, 37, 38]. Specifically, fine-tuning-based methods update the model86

incrementally on a modified dataset without the unwanted data points [4, 16]. Gradient ascent-based87

approaches attempt to reverse the impact of unwanted data by applying gradient ascent to model88

parameters [10, 17]. Influence-based unlearning techniques estimate and negate the effect of specific89

data points on model predictions and parameters to achieve unlearning [2, 18]. Another line of90

research explores the relationship between MU and model pruning, suggesting that model sparsity91
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can help to bridge the gap between approximate and exact unlearning, reducing the need for complex92

parameter updates [37, 38].93

For image generation, MU techniques [5, 30, 36] have been proposed to prevent models from94

generating unwanted or harmful content while retaining high-quality outputs. For example, weight95

saliency methods guide MU by identifying and selectively altering model parameters to eliminate96

specific content generation [5]. Beyond vision, MU has been applied to other domains, with notable97

efforts in natural language processing [39–42], graph-based data [43, 6], and time-series data [44].98

However, most existing MU methods are model-based, requiring updates to model parameters and99

consequently incurring high computational costs.100

Input-based Model Adaptation. This approach aims to modify or repurpose pre-trained models101

for new tasks or specific objectives without the need for full retraining. It is particularly beneficial for102

reducing computational costs and leveraging existing knowledge within models. Key techniques in103

model adaptation include: Visual prompting [45–49] maintains the pre-trained model’s parameters104

fixed and adapts the input to enable the model to perform different tasks. For example, introducing105

trainable parameters in the input space while keeping the model backbone frozen can achieve106

comparable results with reduced computational overhead. Model reprogramming [50, 25, 51, 52]107

involves keeping a pre-trained model unchanged while modifying its inputs to adapt the model for108

new tasks. For example, adversarial perturbations can be applied to inputs at test time, allowing the109

model to perform a specific task dictated by the perturbations, even if that task was not originally110

intended for the model. Feature-based domain adaptation [53, 54] applies transformations or mapping111

techniques to the input data, aligning the feature distributions between the source and target domains112

while keeping the model unchanged.113

3 Preliminaries on MU and Problem Statement114

In this section, we introduce the fundamentals of machine unlearning (MU), including its formulation,115

commonly-used methods, evaluation metrics, and motivate our focus: a data-based forget vector116

design for achieving MU.117

Formulation of MU. In this work, we focus on the problem of MU for image classification. Let118

D = {xi, yi}Ni=1 represent a training set with N examples, where xi denotes the ith image data, and119

yi denotes its corresponding class label. Following the classic MU setting [2, 55, 19, 5], we introduce120

a forget set Df ⊆ D, which specifies the training samples targeted for unlearning. Accordingly,121

the complement of Df is the retain set, i.e., Dr = D \ Df . The goal of MU is to efficiently and122

effectively eliminate the influence of Df on an already-trained model θo, so that the performance123

of the post-unlearning model closely approximates that of a model retrained from scratch on Dr124

(i.e., excluding the impact of Df from scratch). Therefore, such a retraining method (referred to125

as Retrain) is typically considered as the gold standard of MU [10, 56]. However, since Retrain is126

computationally intensive, most popular MU approaches instead address an unlearning optimization127

problem using the forget and retain sets to update the model parameters θ, starting from the originally128

pre-trained model θo. This yields the following optimization problem for MU:129

minimize
θ

ℓMU(θ;Df ,Dr), (1)

with the initialization θ = θo. In (1), ℓMU represents an appropriate unlearning loss function that130

may depend on Df and/or Dr, as will be detailed when introducing specific unlearning methods. In131

the context of MU for image classification [2, 5], the specification of the forget set Df leads to two132

unlearning scenarios: class-wise forgetting, where Df consists of a subset focused on a specific image133

class targeted for unlearning, and random data forgetting, where Df is a randomly selected subset of134

images across all classes.135

Model-based MU Methods and Evaluation. The formulation in (1) represents the predominant136

MU solution in the literature, focusing on modifying model weights and/or architectural components137

to achieve the unlearning objective.138

In what follows, we introduce several representative MU approaches that serve as approximations to139

Retrain. (a) Fine-tuning (FT) [4]: This approach treats the MU problem as a continual learning task,140

defining the unlearning objective ℓMU as a training objective that fine-tunes θo over Dr to induce141

catastrophic forgetting of Df . (b) Random labeling (RL) [2]: This approach specifies the unlearning142

objective ℓMU by assigning random labels or features to the data in Df , thereby enforcing model143

forgetting. (c) Gradient ascent (GA) [10]: This approach employs the negative of the FT loss to144
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reverse the training impact associated with the data in Df . (d) Localization-informed unlearning145

[56, 5]: This method identifies a subset of model weights critical to the unlearning task (e.g., through146

model sparsity [56] or gradient saliency [5]) and incorporates this weight localization as a prior to147

solve the unlearning problem in (1).148

Given an unlearned model (denoted as θu) after solving (1), unlearning performance is evaluated in149

two main areas: unlearning effectiveness, which measures whether the target data/information has150

been successfully removed, and utility retention, which assesses whether unlearning has preserved151

the model’s classification ability on unaffected data. Following the evaluation pipeline in [56],152

unlearning effectiveness is quantified by two metrics: unlearning accuracy (UA), defined as 1−the153

model’s accuracy on Df (higher UA indicates better unlearning), and membership inference attack154

performance on Df , termed MIA-Efficacy, where higher prediction accuracy on non-training samples155

indicates better unlearning (see Appendix A). Utility retention is measured by retain accuracy (RA),156

reflecting the model’s accuracy on Dr, and testing accuracy (TA), which is the accuracy on the157

original test set. Notably, TA is assessed on the entire original test set, except in the case of class-wise158

forgetting, where test samples from the forgotten class are excluded from evaluation.159

Data-based MU Design: The Forget Vector Problem. While previous MU methods can be unified160

within the framework of (1) by varying the unlearning loss ℓMU and weight localization priors, recent161

advancements in input data-based model adaptation, such as visual prompting [57, 23] and model162

reprogramming [27, 25], suggest an alternative approach to MU. This strategy inspires us to design163

data-based prompting (implemented through universal input perturbations) to achieve unlearning164

without modifying the model itself. We refer to this input perturbation vector, designed specifically165

for MU, as the forget vector. To be more specific, let δ represent the data-agnostic input perturbations166

to be designed. The problem of constructing a forget vector for MU can be formulated as167

minimize
δ

ℓMU(δ;θo,Df ,Dr), (2)

where δ is the perturbation variable, applied linearly to the forget and retain samples as x′ := x+ δ168

for x ∈ Df and Dr, similar to visual prompting [57] and adversarial examples [21]. In practice, since169

the model remains unchanged, the unlearner can compute the forget vector based on the forget request170

(forget set) and append it to model inputs to process user-initiated unlearning requests. In this work,171

we do not consider counter-unlearning adversaries that intentionally negate the effect of the forget172

vector. We will detail the unlearning objective function required for designing the forget vector in our173

later method sections.174

Based on (2), we are motivated to explore two research questions: (Q1) How do “perturbations”175

applied to forget data affect unlearning performance? (Q2) How can we effectively design the forget176

vector δ to solve problem (2)? These two questions are interconnected: the answer to (Q1) offers a177

sensitivity analysis of MU to data shifts within the forget set, guiding how the specific shift induced178

by the forget vector can be optimized for effective unlearning in (Q2). Therefore, the following179

Secs. 4-5 address (Q1) and (Q2) in sequence. For (Q1), the next section analyzes performance through180

an evaluation lens on a given unlearned model, using data perturbations applied via standard data181

augmentation operations or adversarial perturbations.182

4 Generalization of MU to Forget Data Shifts183

Before designing the forget vector as formulated in (2), we examine the sensitivity of existing model-184

based unlearning approaches to external perturbations applied to forget data. Such a perturbation-185

based or out-of-distribution (OOD) generalization analysis of MU has not been explored in the186

literature. Our rationale is that if conventional MU approaches demonstrate robustness to these187

external forget data perturbations post unlearning, then enhancing MU with a forget vector could188

become a seamless process, as a proactive design of such a vector would likely yield effective results.189

Post-unlearning Forget Data Perturbations. Given an unlearned model (θu) after solving (1), we190

examine two types of shifts in forget data: standard data corruptions used in the evaluation of OOD191

generalization [58, 20] and worst-case perturbations generated by adversarial attacks [21, 59].192

(a) Data Corruptions. Following the OOD generalization evaluation approach in image classification193

[58, 20], we consider data corruptions from four main categories: noise, blur, weather, and digital.194

Each type of corruption includes five levels of severity, with higher levels representing increased noise195

intensity. Among these, we select zero-mean Gaussian noise (GN) and Elastic transformations (ET)196

as the primary corruption types to evaluate MU robustness against shifts in forget data. Our rationale197
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Figure 2: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method
Retrain vs. the (pre-unlearning) original model performance (Origin), evaluated on both benign evaluation sets
(Benign) and perturbed sets, which include (1) Gaussian noise (GN) with a standard deviation of 0.08 (termed
GN1), (2) GN with a standard deviation of 0.2 (termed GN2), (3) Elastic transformation (ET) with parameters
(488, 170.8, 24.4) regarding intensity, smoothing, and offset (termed ET1), (4) ET with parameters (488, 19.52,
48.8) (termed ET2), and (5) adversarial perturbations from a 7-step PGD attack with strength ϵ = 8/255. The
unlearning performance metrics are reported as (a) TA (testing accuracy), (b) RA (retain accuracy), (c) UA
(unlearning accuracy), and (d) MIA-Efficacy, as defined in Sec. 3. The average performance is reported over 10
independent trials, where each trial focuses on forgetting one specific class from CIFAR-10. Shaded regions
indicate the performance variance.
is that Gaussian noise yields small pixel-wise perturbations (similar to adversarial perturbations198

introduced later) and Elastic transformations stretch or contract small image regions.199

(b) Adversarial perturbations. An adversarial image is a benign image altered with carefully crafted,200

pixel-wise perturbations designed to mislead a classifier. In this work, we use the ϵ-constrained201

ℓ∞ norm-based K-step projected gradient descent (PGD) attack [21, 59] to generate adversarial202

examples via iterative projected gradient updates. The parameter ϵ > 0 defines the radius of the ℓ∞203

norm of the perturbations, controlling their strength. And K represents the number of PGD steps.204

Generalization of MU to Forget Data Perturbations. Next, we apply the above data shift opera-205

tions to the MU evaluation sets–namely, the forget, retain, and testing sets–and assess the unlearning206

performance of an unlearned model. Fig. 2 displays the performance of the gold standard unlearning207

method, Retrain, against Gaussian noise at test time with standard deviations of 0.08 and 0.2 [20],208

and two types of Elastic transformations with parameters (488, 170.8, 24.4) and (488, 19.52, 48.8)209

regarding intensity, smoothing and offset for moderate and high-intensity distortions [20], as well as210

a 7-step PGD attack with perturbation strength ϵ = 8/255 [21]. To ensure the feasibility of Retrain,211

we conduct the image classification task using ResNet-18 on the CIFAR-10 dataset.212

As shown in Fig. 2-(a) and (b), model utility, measured by RA (retain accuracy) and TA (testing213

accuracy), decreases when external perturbations are applied to the evaluation sets compared to214

its original performance without perturbations. This is expected due to the generalization loss215

when evaluated on new, shifted data. More interestingly, Fig. 2-(c) and (d) show that unlearning216

effectiveness of Retrain, measured by UA (unlearning accuracy) and MIA-Efficacy, remains stable217

despite the presence of these perturbations on the forget set. This is because perturbations degrade218

prediction performance across evaluation sets, including the forget set. This is further evidenced219

by the increase in UA and MIA-Efficacy for the original model (without unlearning) when exposed220

to data perturbations. The above indicates that a reduction in prediction performance on the forget221

set could translate into enhanced unlearning effectiveness on that set. In Appendix B, we provide222

additional evaluations of other approximate unlearning methods, including FT, RL, and GA, showing223

consistent performance.224

The results above demonstrate that unlearning effectiveness is inherently preserved under external225

perturbations at no additional cost. However, balancing this with utility retention in the presence of226

perturbations remains challenging and desirable. Therefore, we need to carefully address the forget227

vector problem (2) to develop an input-based MU solution that enhances unlearning effectiveness228

without compromising model utility.229

5 Optimization for Forget Vectors230

In this section, we first propose an unlearning objective function, ℓMU, tailored for the forget vector231

design in (2), inspired by the untargeted C&W attack [60]. We then introduce a novel paradigm232

called compositional unlearning, facilitated by forget vector arithmetic.233

Unlearning Objective Design of Forget Vectors. Our design aims for the forget vector variable234

(δ), when applied to the forget set (Df ), to drive the given model’s predictions (θo) away from the235

correct labels. Conversely, when applied to the retain set (Dr), the forget vector should minimally236
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affect correct predictions. The first forget objective aligns with adversarial attack design, aiming to237

mislead the model’s predictions in the presence of the perturbation δ. The second retain objective238

acts as a utility regularization, suppressing the unlearning effect of the perturbation when applied to239

data samples not targeted for unlearning (retain samples).240

To implement the forget objective (denoted by ℓf ), we draw inspiration from the C&W untargeted241

attack loss [60]. This is given by a margin loss, designed to remain actively minimizing when the top242

prediction matches the correct label, ensuring that optimization continues until predictions are shifted243

to an incorrect label, thereby achieving unlearning. This can be cast as244

ℓf(δ;θo,Df) = E(x,y)∈Df
max{fθo,y(x+ δ)− max

k: k ̸=y
fθo,k(x+ δ),−τ}, (3)

where (x, y) ∈ Df denotes a forget sample with y being the prediction label of x, x+δ is the perturbed245

sample, fk,θo
(x) denotes the prediction logit (before softmax) of the model θo for class k under the246

input x, and τ ≥ 0 is a margin threshold that controls the unlearning strength. The rationale behind (3)247

is that minimizing it ensures convergence to the negative margin fy(x+ δ)−maxk ̸=y fk(x+ δ) →248

−τ ≤ 0. Thus, the forget vector δ enforces unlearning on θ for x by making the incorrect prediction249

(k ̸= y) have a higher confidence than the original correct prediction y. On the other hand, once the250

margin becomes negative (indicating that the prediction label has been flipped), the forget objective251

ℓf automatically terminates, allowing a balance with the retain objective, which will be introduced252

later. In our experiments, we find that the forget objective is robust to variations in the nonnegative253

margin parameter τ (see Appendix C). A larger τ value imposes a stricter unlearning requirement by254

increasing the logit distance from the correct label. For example, we set τ = 1 in our experiments.255

Next, we regularize the forget objective (3) with the retain objective, defined as the cross-entropy loss256

(ℓCE) over the retain set Dr, along with the ℓ2 norm of δ to ensure minimal perturbation required to257

achieve both the forget and retain objectives. This yields the full unlearning objective in (2):258

ℓMU(δ;θo,Df ,Dr) = ℓf(δ;θo,Df) + λ1ℓCE(δ;θo,Dr) + λ2∥δ∥22, (4)

where λ1 > 0 and λ2 > 0 are the regularization parameters, and ℓCE(δ;θo,Dr) denotes the CE loss259

of the model θo over the perturbed retain set {(x+ δ, y)}(x,y)∈Dr
. Integrating (4) into (3), we can260

then apply stochastic gradient descent (SGD) [61] to optimize the forget vector variable δ.261

Compositional Unlearning via Forget Vector Arithmetic. A forget vector defines an unlearning262

direction in the input space to guide the unlearning process. We explore whether a new unlearning263

direction can be efficiently constructed by interpolating from existing precomputed forget vectors,264

such as class-wise forget vectors obtained by solving (4) with Df defined as each class’s training265

set. This approach is analogous to the concept of task vectors in weight space for model editing [62].266

However, to the best of our knowledge, input-based task vector arithmetic has not yet been explored267

in the literature. If forget vectors can be modified and combined using arithmetic operations, such as268

negation and addition, we can dynamically adjust a model’s unlearning behavior without re-solving269

the optimization problem (4) or any other model-based unlearning problem in (1). We refer to this270

new unlearning paradigm as compositional unlearning, where precomputed class-wise forget vectors271

can be efficiently combined to generate a new forget vector for each deletion request in the context of272

random data forgetting.273

Let δk denote the forget vector used for unlearning data points of class k. Given the set of forget274

vectors {δk}Kk=1 for all K classes, we obtain these vectors by solving (4) with Df defined as each275

class’s training set, respectively. The forget vector for compositional unlearning is given by276

δ(w) :=

K∑
k=1

(wkδk), (5)

where w = [w1, . . . wK ]K are the linear combination coefficients to be optimized, which determine277

the forget vector arithmetic. To determine w, we can minimize (4) with the optimization restricted to278

the coefficients w. Instead of penalizing the ℓ2 norm of the forget vector, we penalize the ℓ2 norm of279

w to prevent excessive pixel perturbation. This modifies (4) to the problem minw ℓf(δ(w);θo,Df)+280

λ1ℓCE(δ(w);θo,Dr) + λ2∥w∥22. As will be shown later, random data forgetting can be achieved281

through class-wise forget vector arithmetic (5) by applying the compositional scheme defined by the282

coefficients w.283

To illustrate the effectiveness of forget vector arithmetic, Fig. 3 shows preliminary results of combining284

two class-wise forget vectors (δ1 and δ2) using a simple scheme δ(w) = w1δ1+w2δ2 on (CIFAR-10,285
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ResNet-18), when forgetting a randomly selected 10% of training points from class “automobile”286

and class “bird” refering to w1 and w2. Rather than optimizing w, we adjust w1 and w2 from287

−0.2 to 0.2 to observe how the performance gap relative to Retrain varies. This evaluation includes288

the UA (unlearning accuracy) gap on the selected forget data, the RA (retain accuracy) gap on289

the remaining data, and the average gap across these two metrics. As expected, Fig. 3-(a) and (b)290

shows a trade-off among these two metrics, where weight configurations that achieve a low UA291

gap may result in a higher RA gap, and vice versa. Additionally, Fig. 3-(c) shows that moderate292
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Figure 3: The performance gap relative to Retrain for class-wise forget
vector arithmetic (based on classes “automobile” and “bird”) across different
combination coefficients w1 and w2, when unlearning a randomly selected
10% of training points from these two classes of CIFAR-10. Each cell
displays the gap (%) relative to Retrain at a specific weight combination,
where a lower value indicates a closer performance to Retrain given a metric.
A green star (★) denotes the selected weight combination scheme (w1 and
w2) that achieves the smallest performance gap relative to Retrain, averaged
over both UA Gap and RA Gap.

weight values of w1 and w2293

(−0.1 ≤ w1 ≤ 0.1 and294

−0.1 ≤ w2 ≤ 0.1 ) tent to295

yield a more balanced average296

performance, maintaining rel-297

atively low gaps across two298

metrics. A favored weight-299

ing scheme can be identified300

at w1 = −0.1 and w2 = 0.1301

as marked by the green star302

(★), validating the feasibil-303

ity of arbitrary random data304

forgetting using our proposed305

compositional unlearning via306

the forget vector arithmetic307

approach.308

6 Experiments309

6.1 Experiment Setups310

Datasets and Models. We focus on MU for image classification, using two datasets: CIFAR-10 [63]311

and ImageNet-10, a 10-class subset of the original ImageNet [64], for ease of implementation of312

Retrain (exact unlearning) over ImageNet images as [65, 66]. For these tasks, we use three well-313

trained image classifiers: ResNet-18 [67] for CIFAR-10, VGG-16 [68] and ViT-[69] for ImageNet.314

Unlearning Baselines and Evaluations. In the context of MU for image classification, we consider315

two scenarios: class-wise forgetting and data-wise forgetting. In class-wise forgetting, training data316

from an image class are designated for unlearning, while in random data forgetting, a subset of317

all-class training points is randomly selected as the forget set, with a specified forget ratio of 10%. To318

demonstrate the effectiveness of our proposal, we consider 8 MU baseline methods, including ① FT319

[4], ② RL [2], ③ GA [10], ④ NegGrad+ [55], ⑤ SalUn [5], ⑥ SCRUB [19], ⑦ Class-F [70], and ⑧320

SSD [71], where Class-F is only designed for class-wise forgetting.321

As described in Sec. 3, unlearning effectiveness is measured using UA (unlearning accuracy) and322

MIA-Efficacy, while model utility post-unlearning is assessed by RA (retain accuracy) and TA (testing323

accuracy); For all metrics, being closer to Retrain indicates better performance. It is also worth noting324

that all existing model-based MU baseline methods ①-⑧ are evaluated on non-perturbed evaluation325

sets. However, when using our proposed data-based forget vector solution, we need to apply the326

forget vector to the evaluation sets (including the forget set, retain set, and testing set) in order to327

assess unlearning effectiveness and utility retention. This evaluation remains fair, as it aligns with the328

same objective of forgetting targeted data. The key distinction is that the forget vector operates at the329

input level, whereas model-based MU baselines achieve unlearning by modifying model weights.330

To quantify the performance gap with Retrain, we compare each unlearning baseline and our proposal331

against this exact unlearning method across all metrics. We report an averaged assessment, termed332

Averaging (Avg.) Gap. Unless specified otherwise, all the main experiments (whether class-wise or333

random data forgetting) are conducted over 10 random trials, with mean performance reported.334

Implementation Details of Our Proposal. To solve the forget vector problem (2) with the proposed335

unlearning objective in (4), we set the retain loss regularization parameter λ1 as follows: 3 for CIFAR-336

10, 5 for ImageNet-10 with VGG-16, and 7 for ImageNet-10 with ViT in class-wise forgetting. For337

random data forgetting, we set λ1 to 1. The ℓ2-norm regularization parameter is set to λ2 = 1. These338

hyperparameters are determined through a grid search over the range [0, 10]. To optimize (2), we use339

stochastic gradient descent (SGD) [61] with a momentum factor of 0.9 and an exponential learning340
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Table 1: Performance overview of various MU methods for image classification under two unlearning scenarios
on CIFAR-10 using ResNet-18 and ImageNet-10 using ViT. Since Class-F [70] is specifically designed for
class-wise forgetting, its results do not apply to random data forgetting scenarios (n/a). Other results are reported
in the format a±b, where a is the mean and b denotes standard deviation b over 10 independent trials. The
performance gap against Retrain is indicated in (•), where a lower value is better. ↑ (or ↓) indicates that a higher
(or lower) value is better. The best performance for each metric is highlighted in green , while the second-best
performance is highlighted in red .

MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓ UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓
Class-wise Forgetting, CIFAR-10, ResNet-18 Random Data Forgetting, CIFAR-10, ResNet-18

Retrain 100.00±0.00(0.00) 100.00±0.00(0.00) 99.91±0.03(0.00) 94.92±0.15(0.00) 0.00 5.50±0.16(0.00) 11.57±0.47(0.00) 99.88±0.05(0.00) 94.24±0.19(0.00) 0.00

FT [4] 5.27±0.73(94.73) 51.49±5.07(48.51) 100.0±0.0(0.09) 95.03±0.07(0.11) 35.86 0.03±0.03(5.47) 0.75±0.09(10.82) 99.98±0.02(0.10) 94.45±0.14(0.21) 4.15
RL [2] 18.87±7.34(81.13) 98.94±0.79(1.06) 99.98±0.0(0.07) 94.51±0.12(0.41) 20.67 0.52±0.24(4.98) 3.13±0.55(8.44) 99.85±0.07(0.03) 93.88±0.20(0.36) 3.45

GA [10] 71.45±0.35(28.55) 81.7±0.22(18.30) 98.62±0.04(1.29) 92.34±0.02(2.58) 12.68 1.56±3.08(3.94) 2.88±3.44(8.69) 98.67±2.74(1.21) 92.84±2.59(1.40) 3.81
NegGrad+ [55] 91.78±14.66(8.22) 95.81±7.28(4.19) 98.35±1.22(1.56) 92.62±1.34(2.30) 4.07 0.97±1.08(4.53) 2.74±2.16(8.83) 99.42±0.87(0.46) 93.38±1.13(0.86) 3.67

SalUn [5] 96.35±2.14(3.65) 98.64±0.03(1.36) 98.75±0.18(1.16) 92.34±1.54(2.58) 2.19 1.73±0.25(3.77) 6.25±1.21(5.32) 99.24±0.09(0.64) 91.03±0.14(3.21) 3.23
SCRUB [19] 93.45±2.33(6.55) 96.38±1.72(3.62) 99.95±0.0(0.04) 94.56±0.07(0.36) 2.64 0.61±0.31(4.89) 3.69±0.54(7.88) 99.76±0.18(0.12) 93.91±0.19(0.33) 3.31
Class-F [70] 90.18±1.20(9.82) 86.15±2.67(13.85) 91.25±0.05(8.66) 85.45±0.19(9.47) 10.45 n/a n/a n/a n/a n/a

SSD [71] 96.05±0.45(3.95) 98.00±0.00(2.00) 97.77±0.20(2.14) 92.23±0.58(2.69) 2.70 5.54±0.00(0.04) 7.80±0.00(3.77) 94.86±0.00(5.02) 88.28±0.00(5.96) 3.70
Ours 97.88±0.27(2.12) 99.60±0.15(0.40) 97.25±0.24(2.66) 90.90±0.32(4.02) 2.30 2.61±0.49(2.89) 8.26±1.17(3.00) 97.33±0.47(2.55) 90.97±0.38(3.27) 2.92

Class-wise Forgetting, ImageNet-10, ViT Random Data Forgetting, ImageNet-10, ViT

Retrain 100±0.00(0.00) 100.00±0.00(0.00) 99.97±0.03(0.00) 99.85±0.01(0.00) 0.00 1.41±0.06(0.00) 93.57±0.00(0.00) 99.07±0.01(0.00) 99.27±0.01(0.00) 0.00

FT [4] 42.79±7.51(57.21) 40.78±10.68(59.22) 99.96±0.01(0.01) 99.61±0.10(0.24) 29.17 1.38±0.16(0.03) 96.40±0.31(2.83) 99.60±0.09(0.53) 99.10±0.30(0.17) 0.89
RL [2] 88.15±1.62(11.85) 96.50±1.50(3.50) 99.93±0.02(0.04) 99.89±0.11(0.04) 3.84 2.62±0.80(1.21) 93.75±0.52(0.18) 98.38±0.18(0.69) 95.05±0.26(4.20) 1.57

GA [10] 28.05±7.05(71.95) 58.73±5.83(41.27) 99.97±0.01(0.00) 99.70±0.10(0.15) 28.34 0.82±0.16(0.59) 96.77±1.10(3.20) 99.60±0.09(0.53) 99.53±0.09(0.26) 1.15
NegGrad+ [55] 10.90±2.87(89.10) 79.30±4.58(20.70) 99.98±0.00(0.01) 99.78±0.00(0.07) 27.46 1.97±0.72(0.56) 95.48±1.67(1.91) 98.09±0.94(0.98) 98.08±0.75(1.19) 1.16

SalUn [5] 93.27±1.50(6.73) 94.00±1.00(6.00) 98.22±0.75(1.75) 98.00±0.00(1.85) 4.08 0.67±0.19(0.74) 95.80±0.0(2.23) 99.65±0.07(0.58) 98.27±0.09(0.00) 1.14
SCRUB [19] 99.10±0.20(0.90) 95.67±1.77(4.33) 98.90±0.10(1.07) 99.33±0.31(0.52) 1.71 0.85±0.24(0.56) 95.90±0.95(2.33) 99.58±0.23(0.51) 99.20±0.14(0.07) 0.87
Class-F [70] 28.62±7.85(71.38) 55.10±2.30(44.90) 77.50±1.62(22.47) 75.22±0.56(24.63) 40.85 n/a n/a n/a n/a n/a

SSD [71] 90.35±1.65(9.65) 60.15±1.85(39.85) 98.43±0.55(1.54) 98.33±0.56(1.52) 13.14 1.12±0.04(0.29) 94.15±0.35(0.58) 98.97±0.00(0.10) 99.40±0.00(0.13) 0.28
Ours 95.92±0.27(4.08) 99.40±0.14(0.60) 99.13±0.04(0.84) 99.26±0.28(0.59) 1.53 1.08±0.39(0.33) 91.40±1.30(2.17) 98.97±0.35(0.10) 99.10±0.50(0.17) 0.69

rate scheduler, decaying at a rate of 0.9 per iteration. Additionally, the batch size is set to 256, with a341

maximum of 40 optimization iterations for both two datasets. To solve the compositional unlearning342

problem (5), we use a similar setup, setting both λ1 and λ2 to 1.343

6.2 Experiment Results344

Overview Performance of Forget Vector. In Tab. 1, we compare the performance of our forget345

vector approach with other model-based MU methods across the metrics: UA, RA, TA, MIA-Efficacy,346

and Avg. Gap vs. Retrain. We highlight two key observations below. First, in terms of unlearning347

effectiveness (UA and MIA-Efficacy), the data perturbation-based forget vector demonstrates highly348

competitive performance compared to model update-based MU baselines, mostly ranking among349

the top two methods with the smallest performance gap relative to Retrain (as evidenced by Avg.350

Gap). The advantage of the forget vector is particularly evident in MIA-Efficacy, where it usually351

achieves the closest results to Retrain. Second, in terms of model utility post-unlearning (RA and352

TA), the forget vector generally leads to a larger performance drop than other methods. This is not353

surprising, as the forget vector is achieved through data perturbations. However, considering the354

gain in unlearning effectiveness, the Avg. Gap with Retrain shows that the forget vector remains355

competitive, ranking among the top two unlearning methods. Third, unlearning methods (including356

Retrain) do not exhibit the same level of distinctiveness in random data forgetting as it does in357

class-wise forgetting. This is because in random data forgetting, the retain data could have sufficiently358

represented the distribution of the forget data, making it more challenging for MIA to distinguish359

forgotten samples from retained ones. Besides, the corresponding results of various MU methods on360

ImageNet-10 using VGG-16 can be found in Appendix D.361

Table 2: UA (%) of forget vector when transferred
to unseen forget sets curated under 3 scenarios on
(CIFAR-10, ResNet-18). The results are presented in
the same format as Table 1.

MU Method
D′

f (Class-wise)
from testing set

D′
f (Random Data)

perturbed by GN1
D′

f (Random Data)
perturbed by ET1

Retrain 100.00±0.00(0.00) 64.73±3.36(0.00) 81.43±0.28(0.00)

FT [4] 21.44±1.11(78.56) 56.75±1.40(7.98) 81.79±0.18(0.36)
RL [2] 27.90±5.70(72.10) 61.84±2.45(2.89) 81.15±0.20(0.28)

GA [10] 73.95±0.60(26.05) 55.20±2.59(9.53) 82.17±0.76(1.28)
NegGrad+ [55] 93.86±10.93(6.14) 57.81±1.76(6.92) 81.73±0.65(0.30)

SalUn [5] 97.55±1.37(2.45) 73.15±4.25(8.42) 80.27±3.56(1.16)
SCRUB [19] 93.65±2.65(6.35) 61.95±0.86(1.85) 81.18±0.62(0.25)
Class-F [70] 89.14±5.13(10.66) n/a n/a

SSD [71] 98.70±0.03(1.30) 80.34±0.01(15.91) 84.70±0.02(3.27)
Ours 98.26±0.35(1.74) 78.32±1.03(13.59) 85.03±0.91(3.60)

Transferability of Forget Vector to Unseen For-362

get Data. Conventionally, unlearning effective-363

ness is typically measured on the original forget364

set (Df ). However, with the data perturbation-365

based forget vector, it is also interesting to inves-366

tigate its unlearning transferability when applied367

to a new, previously unseen forget set (denoted as368

Df
′) that share similarities with Df and are equally369

appropriate for unlearning. In the context of class-370

wise forgetting, we consider D′
f using the testing371

data from the class targeted for unlearning, where372

unlearning performance should align closely with373

Retrain since the test-time data to forget share the same distribution with the training set. In the374

context of data forgetting, we obtain D′
f by applying the data corruption operation GN1 and ET1 used375

in Fig. 2 to perturb Df (last two columns of Tab. 2), where Retrain is no longer the gold standard as376

training data distribution excludes these shifts, allowing higher UA for better unlearning. As observed377
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in Tab. 2, the unlearning performance of the forget vector remains effective when evaluated on D′
f .378

Among the model update-based unlearning baselines, current SOTA methods such as SCRUB [19],379

SalUn [5] and SSD [71] also demonstrate generalization to D′
f , compared to simpler MU methods380

like FT, RL, and GA, which show lower transferability.381

Compositional Unlearning by Class-wise Forget Vectors. Next, we demonstrate the effectiveness382

of compositional unlearning via forget vector arithmetic (termed CU-FV). Given pre-computed383

class-wise forget vectors, we apply their linear combination as defined in (5) to achieve random384

Table 3: Compositional unlearning on CIFAR-10 and ImageNet-
10 for random data forgetting, where FV represents the original
setting of forget vector that is directly learned based on a targeted
forget set, and CU-FV denotes compositional unlearning achieved
via pre-learned class-wise forget vector arithmetic. The results are
presented in the same format as Table 1.

Module MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓

CIFAR-10
ResNet-18

Retrain 5.50±0.16(0.00) 11.57±0.47(0.00) 94.24±0.19(0.00) 99.88±0.05(0.00) 0.00
FV 2.61±0.49(2.89) 8.26±1.17(3.00) 90.97±0.38(3.27) 97.33±0.47(2.55) 2.92

CU-FV 5.36±0.60(0.14) 9.76±0.91(1.81) 88.60±0.59(5.64) 94.93±0.64(4.95) 3.16

ImageNet-10
VGG-16

Retrain 4.05±0.45(0.00) 6.60±1.07(0.00) 96.33±0.38(0.00) 99.48±0.07(0.00) 0.00
FV 2.27±0.50(1.78) 6.13±1.40(0.47) 95.82±0.48(0.51) 98.29±0.32(1.19) 0.99

CU-FV 2.27±1.18(1.78) 4.95±1.86(1.65) 91.41±1.25(4.92) 97.93±1.09(1.55) 2.47

ImageNet-10
ViT

Retrain 1.41±0.06(0.00) 99.07±0.01(0.00) 93.57±0.00(0.00) 99.27±0.01(0.00) 0.00
FV 1.08±0.39(0.33) 98.97±0.35(0.10) 91.40±1.30(2.17) 99.10±0.50(0.17) 0.69

CU-FV 1.62±0.05(0.21) 98.55±0.14(0.52) 92.09±0.25(1.48) 98.50±0.01(0.77) 0.75

data forgetting. Tab. 3 compares the385

performance of CU-FV with Retrain386

(the exact unlearning method) and the387

direct forget vector approach (FV) ap-388

plied to the targeted forget set. Interest-389

ingly, we observe that CU-FV achieves390

the overall performance comparable to391

FV, as indicated by similar Avg. Gap392

values. Unlike FV, CU-FV optimizes393

only the class-wise coefficients in (5),394

resulting in a much smaller optimiza-395

tion space than FV. However, from UA396

and MIA-Efficacy metrics, we find that397

unlearning effectiveness is easier to maintain since unlearning typically targets a smaller subset of398

data points. In contrast, model utility (RA and TA) may decline more with CU-FV than with FV.399

Forget Image Original Model RetrainSCRUB Forget Vector

Figure 4: Gradient-based saliency map visualized via Grad-
CAM for different MU methods against forget images. The
highlighted areas (marked in red) indicate regions most influ-
ential to model prediction, and the red cross mark (é) indi-
cates that corresponding methods effectively unlearn the input
forget images, while the check (Ë) signifies the opposite.

Assessing Forget Vector via An Input400

Saliency Lens. In Fig. 4, we explore the401

impact of the forget vector on unlearn-402

ing and utility retention through input403

saliency map, using Grad-CAM (Gradient-404

weighted Class Activation Mapping) [72].405

Using Grad-CAM, we visualize the salient406

pixels (i.e., regions most influential to407

model prediction) for forget images un-408

der different unlearning scenarios: (1) the409

original model (without unlearning), (2)410

Retrain, (3) SCRUB-based unlearning, and411

(4) forget vector-based unlearning. In the412

first three scenarios, we obtain the input413

saliency maps on raw forget images with-414

out the addition of the forget vector, while in the last scenario, the input saliency is applied to images415

perturbed by the forget vector. As seen in fig. 4 the forget vector and Retrain effectively unlearn416

the target input images, evident from the significant shifts in saliency regions compared to those in417

the original model. In contrast, the MU baseline SCRUB shows minimal saliency shifts, failing to418

adequately forget the target data in the last row. More visualization results on both forget and retain419

images can be found in Appendix G.420

Ablation Studies. In Appendix E, we provide additional ablation studies on the sensitivity of the421

unlearning-retaining regularization parameter λ1 in (4). Moreover, we perform the efficiency analysis422

of forget vector calculation with those of other model-based unlearning methods in Appendix F.423

7 Conclusion and Limitations424

In this paper, we introduce a novel, data-based approach to machine unlearning (MU) in image425

classification, termed the forget vector. Unlike traditional model-based MU methods that require426

retraining or fine-tuning model weights, our approach shows that input-agnostic data perturbations427

can effectively achieve unlearning objectives. Our method demonstrates competitive performance428

relative to model-based approximate unlearning techniques. Furthermore, we showcase the potential429

of compositional unlearning: new forget vectors for unseen tasks, such as unlearning arbitrary subsets430

across classes, can be generated through simple arithmetic operations, like linear combinations of431

class-specific forget vectors. Extensive experiments confirm the effectiveness and adaptability of432

our optimized forget vector. Moreover, broader impacts and limitations discussion can be found in433

Appendix H.434
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Appendix624

A Details of MIA Implementation625

To evaluate the effectiveness of the unlearning process, MIA is implemented following [56] using626

a prediction confidence-based attack method [73], which comprises a training phase and a testing627

phase in its computation. Specifically, a balanced dataset is first formed by sampling data points from628

retain set Dr and test set Dt, ensuring the distinction from the forget set Df . Then, a MIA predictor629

is trained utilizing such balanced dataset. Thereafter, MIA-Efficacy can be calculated by applying630

the trained MIA predictor to the unlearned model θu on the forget set Df . Essentially, the goal is to631

determine how many samples in Df can be accurately identified as non-training data with respect to632

θu by the MIA model. Formally, MIA-Efficacy is defined as follows,633

MIA-Efficacy = Ntn/|Df |, (6)

where Ntn represents the total number of true negative samples in the forget set Df predicted by the634

trained MIA model, i.e., the number of forgetting samples classified as non-training examples.635

B Generalization of MU to Forget Data Shifts636
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Figure A1: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method FT,
RL and GA, evaluated on both benign evaluation sets (Benign) and perturbed sets, which include (1) Gaussian
noise (GN) with a standard deviation of 0.08 (termed GN1), (2) GN with a standard deviation of 0.2 (termed
GN2), (3) Elastic transformation (ET) with parameters (488, 170.8, 24.4) regarding intensity, smoothing, and
offset (termed ET1), (4) ET with parameters (488, 19.52, 48.8) (termed ET2), and (5) adversarial perturbations
from a 7-step PGD attack with strength ϵ = 8/255. The unlearning performance metrics are reported as (a) TA
(testing accuracy), (b) RA (retain accuracy), (c) UA (unlearning accuracy), and (d) MIA-Efficacy, as defined in
Sec.3 of main paper. The average performance is reported over 10 independent trials, where each trial focuses
on forgetting one specific class from CIFAR-10. Shaded regions indicate the performance variance.

In Fig. A1, we provide additional evaluations of other approximate unlearning methods, including637

FT, RL, and GA against Gaussian noise at test time with standard deviations of 0.08 and 0.2 [20],638

and two types of Elastic transformations with parameters (488, 170.8, 24.4) and (488, 19.52, 48.8)639

regarding intensity, smoothing and offset for moderate and high-intensity distortions [20], as well640

as a 7-step PGD attack with perturbation strength ϵ = 8/255 [21]. The experiments are conducted641

on the CIFAR-10 dataset using ResNet-18 for the image classification task. As can be seen, the642

experimental results presented in Fig. A1 are consistent with the findings in Sec.4 of the main643

paper, further reinforcing the validity of our conclusions. Specifically, as shown in Fig. A1-(a) and644

(b), model utility, measured by RA (retain accuracy) and TA (testing accuracy), decreases when645

external perturbations are applied to the evaluation sets compared to its original performance without646

perturbations. Meanwhile, Fig. A1-(c) and (d) show that unlearning effectiveness measured by UA647

(unlearning accuracy) and MIA-Efficacy, remains stable despite the presence of these perturbations648

on the forget set.649

C Parameter Sensitivity Analysis: Prediction Margin τ in Forget Vector Loss650

In Fig. A2, we provide the sensitivity analysis of τ on two datasets regarding two forgetting scenarios:651

class-wise forgetting and random data forgetting, where we varied τ from 0.0 to 2.2 with a step of652

0.2. As can be seen, the forget objective is robust to variations in the nonnegative margin parameter653

τ . When τ is set to 1, the performance across four metrics achieves an optimal tradeoff. Therefore,654

we choose τ = 1 for our experiments.655
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(a) CIFAR-10
Class-wise Forgetting

(b) CIFAR-10
Random Data Forgetting

(b) ImageNet-10
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(d) ImageNet-10
Random Data Forgetting

Figure A2: Sensitivity analysis of the nonnegative margin parameter τ for image classification under two
unlearning scenarios on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning
performance metrics are reported as (a) TA (testing accuracy, blue curve), (b) RA (retain accuracy, orange curve),
(c) UA (unlearning accuracy, red curve), and (d) MIA-Efficacy (green curve), (e) the average (Avg.) performance
across TA, RA, UA, and MIA-Efficacy (purple curve). For class-wise forgetting scenario, the performance is
averaged over 10 independent trials, with each trial focusing on forgetting one specific class from the dataset.
Similarly, for random-data forgetting scenario, the performance is reported across 10 independent trials, where
each trial targets the forgetting of a random subset of the dataset. The shaded regions represent the variance in
performance across trials.

D Performance on ImageNet-10 using VGG-16656

Table A1: Performance overview of various MU methods for image classification under two unlearning scenarios
on ImageNet-10 using VGG-16. Since Class-F [70] is specifically designed for class-wise forgetting, its results
do not apply to random data forgetting scenarios (n/a). Other results are reported in the format a±b, where a is
the mean and b denotes standard deviation b over 10 independent trials. The performance gap against Retrain is
indicated in (•), where a lower value is better. ↑ (or ↓) indicates that a higher (or lower) value is better. The best
performance for each metric is highlighted in green , while the second-best performance is highlighted in red .

MU Method UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓ UA↑ MIA-Efficacy↑ RA↑ TA↑ Avg.Gap↓
Class-wise Forgetting, ImageNet-10, VGG-16 Random Data Forgetting, ImageNet-10, VGG-16

Retrain 100.00±0.00(0.00) 100.00±0.00(0.00) 99.66±0.16(0.00) 97.11±0.82(0.00) 0.00 4.05±0.45(0.00) 6.60±1.07(0.00) 99.48±0.07(0.00) 96.33±0.38(0.00) 0.00

FT [4] 39.66±4.73(60.34) 55.76±7.26(44.24) 99.78±0.03(0.13) 97.27±0.35(2.35) 26.77 1.35±0.32(2.70) 4.67±1.61(1.93) 99.36±0.28(0.12) 96.54±0.59(0.21) 1.24
RL [2] 76.58±11.64(23.42) 46.04±33.71(53.96) 99.28±0.20(0.63) 96.91±0.55(1.99) 20.00 2.96±0.42(1.09) 12.85±4.25(6.25) 99.19±0.16(0.29) 95.50±0.90(0.83) 2.12

GA [10] 46.61±6.11(53.39) 49.15±9.36(50.85) 99.35±0.11(0.56) 95.60±0.22(0.68) 26.37 0.18±0.04(3.87) 2.97±1.51(3.63) 99.86±0.01(0.38) 97.47±0.09(1.14) 2.23
NegGrad+ [55] 49.56±34.87(50.44) 64.27±27.33(35.73) 99.08±1.18(0.58) 96.47±1.25(0.64) 21.84 0.60±0.44(3.45) 3.90±2.22(2.70) 99.68±0.28(0.20) 97.12±0.45(0.79) 1.79

SalUn [5] 95.13±1.79(4.87) 97.24±0.17(2.76) 96.33±0.25(3.33) 96.18±1.10(0.93) 2.97 1.15±0.40(2.90) 3.56±1.12(3.04) 98.97±1.56(0.51) 95.42±2.10(0.91) 1.84
SCRUB [19] 99.12±0.14(0.88) 98.01±0.51(1.99) 99.75±0.03(0.09) 97.24±0.16(0.13) 0.77 0.18±0.08(3.87) 2.80±1.33(3.80) 99.88±0.03(0.40) 97.36±0.15(1.03) 2.28
Class-F [70] 71.19±3.50(28.81) 63.57±4.07(36.43) 61.55±4.25(38.11) 59.40±4.59(37.71) 35.27 n/a n/a n/a n/a n/a

SSD [71] 91.50±0.96(8.50) 91.30±8.70(8.70) 99.48±0.18(0.18) 97.00±0.11(0.11) 4.38 0.88±0.04(3.17) 5.35±0.45(1.25) 99.36±0.15(0.12) 96.40±0.40(0.07) 1.15
Ours 87.23±6.55(12.77) 91.41±5.90(8.59) 94.77±1.16(5.14) 94.04±1.29(0.88) 6.85 2.27±0.50(1.78) 6.13±1.40(0.47) 98.29±0.32(1.19) 95.82±0.48(0.51) 0.99

In Tab. A1, we provide additional performance overview of different MU methods under two un-657

learning scenarios on ImageNet-10 using VGG-16. Considering the gain in unlearning effectiveness,658

the Avg. Gap with Retrain shows that the forget vector remains competitive, except for class-wise659

forgetting on (ImageNet-10, VGG-16). In this case, SCRUB achieves the best performance, as it660

leverages model distillation [74], a technique well-suited for class-wise forgetting.661
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Figure A3: Sensitivity analysis of the nonnegative hyper-parameters λ1 (ranging from 1 to 5 with an interval of
1) and λ2 (ranging from 0 to 4 with an interval of 1) for image classification under two unlearning scenarios
on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning performance is
reported using the average (avg.) performance across UA, RA, TA, and MIA-Efficacy, with a green star (★)
marking the chosen parameter scheme (λ1 and λ2) in our experiments. The color bar on the right represents a
gradient scale from light to dark red, indicating the range of values (0 to 100%) in the heatmap. The integer
within each cell represents the performance (%) given a combination of λ1 and λ2.

To verify the impact of each key component in the optimization problem (4) of the main paper, we663

analyze the nonnegative trade-off parameters λ1 and λ2 in Fig. A3. As can be seen in Fig. A3-(a) and664
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(c), setting the retain loss regularization parameter λ1 to 3 for CIFAR-10 using ResNet-18 and 5 for665

ImageNet-10 using VGG-16 in class-wise forgetting, along with the ℓ2-norm regularization parameter666

λ2 = 1, enables our proposed method to achieve the highest average performance. Meanwhile, for667

the random data forgetting scenario, setting both λ1 and λ2 to 1 yields the best average performance668

for CIFAR-10 using ResNet-18 and ImageNet-10 using VGG-16.669

F Efficiency Analysis670

Table A2: The efficiency profile of different MU methods across two metrics for image classification under two
unlearning scenarios on CIFAR-10 (RestNet-18) and ImageNet-10 (VGG-16 and ViT). Results are reported in
terms of run-time efficiency (RTE) measured in minutes for the overall training phase and parameter efficiency
denoted by parameter number (Param.#) in Million (M), where a smaller value is favored for each metric.

MU Method
Class-wise Forgetting Random Data Forgetting

CIFAR-10, ResNet-18 ImageNet-10, VGG-16 ImageNet-10, ViT CIFAR-10, ResNet-18 ImageNet-10, VGG-16 ImageNet-10, ViT
RTE Param. # RTE Param. # RTE Param. # RTE Param. # RTE Param. # RTE Param. #

Retrain 81.30 11.17 118.89 15.31 301.98 85.81 103.71 11.17 116.10 15.31 290.60 85.81

FT [4] 4.56 11.17 2.99 15.31 15.40 85.81 2.28 11.17 2.95 15.31 14.47 85.81
RL [2] 5.61 11.17 3.58 15.31 33.00 85.81 4.75 11.17 3.59 15.31 32.84 85.81

GA [10] 1.16 11.17 0.30 15.31 2.10 85.81 1.15 11.17 0.31 15.31 3.10 85.81
NegGrad+ [55] 4.72 11.17 3.21 15.31 16.70 85.81 4.22 11.17 3.17 15.31 16.40 85.81

SalUn [5] 2.81 5.59 2.56 7.66 18.73 42.91 3.01 5.59 2.85 7.66 18.19 42.91
SCRUB [19] 1.23 11.17 1.62 15.31 33.45 85.81 1.53 11.17 1.55 15.31 22.27 85.81
Class-F [70] 1.21 11.17 2.10 15.31 2.86 85.81 n/a n/a n/a n/a n/a n/a

SSD [71] 1.20 11.17 2.10 15.31 2.21 85.81 1.15 11.17 2.00 15.31 2.22 85.81
Ours 2.37 0.03 6.15 0.15 4.80 0.15 6.15 0.03 6.50 0.15 8.58 0.15

To demonstrate the efficiency profile of various MU methods under different metrics, we compare671

the runtime costs of forget vector calculation with those of other model-based unlearning methods,672

and the total number of updated parameters in the training phase. Specifically, following [5], we use673

run-time efficiency (RTE) as an evaluation metric, which measures the computation time of applying674

an MU method in minutes. To ensure a fair comparison, we report the runtime of each approximate675

MU method within 10 epochs since the number of iterations varies across different MU methods.676

Additionally, inspired by [75], we compare the number of trainable parameter number (Param.#).677

Notably, all evaluations are performed in the same computational environment with an NVIDIA678

A6000 GPU, ensuring fair and reliable comparisons by maintaining a consistent batch size across all679

MU methods. The corresponding results can be found in Tab. A2, and we can draw the following680

observation: 1) By comparing the training time of model-based methods with our proposed approach681

using RTE within the same iterations, we observe that the forget vector method achieves competitive682

RTE compared to some efficient approximate model-based unlearning baselines and remains faster683

than retraining. Besides, it is worth noting that the forget vector method optimizes fewer parameters,684

owing to its input-level design and perturbation space is significantly lower-dimensional. This trade-685

off underscores the efficiency of our forget vector in handling parameter scaling. For instance, when686

comparing forgetting cases on ImageNet-10 using VGG-16 and ViT models, we find that as the687

parameter count increases from “15.31M” in VGG-16 to “85.81M” in ViT, the optimization time688

for most baseline methods increases significantly. In contrast, our method maintains a consistent689

efficiency level or even achieves a shorter runtime, highlighting a key advantage of our forget vector690

approach. 2) From a memory-efficient perspective in real-world application, existing model-based691

MU methods often necessitate a series of operations (e.g., fine-tuning) on the already-trained model692

for each forgetting request. This necessitates storing a separate model version for every request,693

leading to substantial storage overhead. In contrast, our approach optimizes an input-level universal694

perturbation, where only the “forget vector” associated with the data to be forgotten is stored with695

original model remains intact. Since each forget vector has the same dimensionality as the input696

image (e.g., 0.03M for CIFAR-10 and 0.15M for ImageNet) and is significantly smaller than the full697

model, our approach offers a considerable advantage in storage efficiency for practical applications.698

G Additional Visualization through An Input Saliency Lens699

In Figs. A4 and A5, we provide additional visualization results through input saliency map for700

different methods against forget images and retain images, respectively, using Grad-CAM (Gradient-701

weighted Class Activation Mapping) [72]. Consistent with the main paper, we highlight the salient702

pixels (i.e., regions most influential to model predictions) under four scenarios: (1) the original703

model (without unlearning), (2) Retrain, (3) SCRUB-based unlearning, and (4) forget vector-based704

unlearning. For the first three scenarios, saliency maps are generated on raw forget/retain images,705

whereas for the last scenario, they are applied to images perturbed by the forget vector.706
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Forget Image Original Model RetrainSCRUB Ours Forget Image Original Model RetrainSCRUB Ours

Figure A4: Gradient-based saliency map visualized via Grad-CAM for different MU methods against forget
images. The highlighted areas (marked in red) indicate regions most influential to model prediction, and the red
cross mark (é) indicates that corresponding methods effectively unlearn the input forget images.

Retain Image Original Model RetrainSCRUB Ours Retain Image Original Model RetrainSCRUB Ours

Figure A5: Gradient-based saliency map visualization using Grad-CAM for different MU methods against
retain images.

H Broader Impacts and limitations707

Broader impacts. Our study on the forget vector introduces a novel, data-driven machine unlearning708

approach that offers significant potential across various domains. ① Privacy Preservation and709

Regulatory Compliance: With increasing global regulations like GDPR mandating the right to be710

forgotten, our method enables effective unlearning of specific data points without requiring full model711

retraining, which is especially valuable for industries handling sensitive data, such as healthcare,712

17



finance, and personalized recommendation systems. By enabling compliant data removal with713

minimal computational overhead, our approach strengthens data privacy practices while maintaining714

model integrity. ② Adaptability Across Tasks: The compositional nature of forget vectors allows for715

the unlearning of previously unseen tasks by combining class-specific forget vectors. This adaptability716

extends the method’s applicability, where our method is able to respond more quickly when faced717

with new random unlearning tasks. ③ Efficiency in Unlearning and Model Storage: Unlike model-718

based MU approaches that require significant computational resources and model storage for each719

unlearning request, our method provides an energy-efficient alternative with less trainable parameters720

and low storage of optimized forget vector. This efficiency is particularly beneficial for organizations721

deploying large-scale AI models, where frequent updates or compliance-driven data deletions could722

otherwise be prohibitively expensive, contributing to the sustainability of AI development.723

Limitations. While our forget vector approach presents compelling advantages, it also comes with724

certain limitations that need to be addressed for broader adoption: ① Vulnerability to Adversarial725

Attacks: Since our method relies on input perturbations rather than direct model modifications,726

it may be vulnerable to white-box adversarial attacks where an attacker has access to the model727

and understands the forget vector mechanism. These adversaries could potentially reconstruct728

forgotten data or design countermeasures to bypass unlearning. Future work should focus on729

strengthening robustness against such attacks through adversarially hardened perturbation strategies.730

② Computational Cost of Compositional Unlearning: The generation of new forget vectors through731

compositional operations requires access to pre-trained class-wise forget vectors. In scenarios where732

these vectors are unavailable, applying our method at scale could introduce overhead. ③ Lack of733

Theoretical Guarantees: While empirical results demonstrate the effectiveness of our method, formal734

theoretical guarantees on its unlearning performance and robustness remain an open challenge. Future735

work should focus on establishing rigorous mathematical foundations for the forget vector framework.736

④ Generalization to Other Domains: Our current study focuses on image classification, and its737

applicability to other domains, such as natural language processing or image generation, remains738

to be explored. Investigating the feasibility of forget vectors in diverse machine learning tasks is an739

important direction for future research.740
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NeurIPS Paper Checklist741

1. Claims742

Question: Do the main claims made in the abstract and introduction accurately reflect the743

paper’s contributions and scope?744

Answer: [Yes]745

Justification: The abstract and introduction clearly outlines the key contributions, and746

appropriately limits its scope to machine unlearning task.747

Guidelines:748

• The answer NA means that the abstract and introduction do not include the claims749

made in the paper.750

• The abstract and/or introduction should clearly state the claims made, including the751

contributions made in the paper and important assumptions and limitations. A No or752

NA answer to this question will not be perceived well by the reviewers.753

• The claims made should match theoretical and experimental results, and reflect how754

much the results can be expected to generalize to other settings.755

• It is fine to include aspirational goals as motivation as long as it is clear that these goals756

are not attained by the paper.757

2. Limitations758

Question: Does the paper discuss the limitations of the work performed by the authors?759

Answer: [Yes]760

Justification: The limitations discussion that need to be addressed for broader adoption can761

be found in Appendix H.762

Guidelines:763

• The answer NA means that the paper has no limitation while the answer No means that764

the paper has limitations, but those are not discussed in the paper.765

• The authors are encouraged to create a separate "Limitations" section in their paper.766

• The paper should point out any strong assumptions and how robust the results are to767

violations of these assumptions (e.g., independence assumptions, noiseless settings,768

model well-specification, asymptotic approximations only holding locally). The authors769

should reflect on how these assumptions might be violated in practice and what the770

implications would be.771

• The authors should reflect on the scope of the claims made, e.g., if the approach was772

only tested on a few datasets or with a few runs. In general, empirical results often773

depend on implicit assumptions, which should be articulated.774

• The authors should reflect on the factors that influence the performance of the approach.775

For example, a facial recognition algorithm may perform poorly when image resolution776

is low or images are taken in low lighting. Or a speech-to-text system might not be777

used reliably to provide closed captions for online lectures because it fails to handle778

technical jargon.779

• The authors should discuss the computational efficiency of the proposed algorithms780

and how they scale with dataset size.781

• If applicable, the authors should discuss possible limitations of their approach to782

address problems of privacy and fairness.783

• While the authors might fear that complete honesty about limitations might be used by784

reviewers as grounds for rejection, a worse outcome might be that reviewers discover785

limitations that aren’t acknowledged in the paper. The authors should use their best786

judgment and recognize that individual actions in favor of transparency play an impor-787

tant role in developing norms that preserve the integrity of the community. Reviewers788

will be specifically instructed to not penalize honesty concerning limitations.789

3. Theory assumptions and proofs790

Question: For each theoretical result, does the paper provide the full set of assumptions and791

a complete (and correct) proof?792
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Answer: [Yes]793

Justification: The paper provides a complete set of assumptions and correct proofs for each794

theoretical result as detailed in sections 4 and 5.795

Guidelines:796

• The answer NA means that the paper does not include theoretical results.797

• All the theorems, formulas, and proofs in the paper should be numbered and cross-798

referenced.799

• All assumptions should be clearly stated or referenced in the statement of any theorems.800

• The proofs can either appear in the main paper or the supplemental material, but if801

they appear in the supplemental material, the authors are encouraged to provide a short802

proof sketch to provide intuition.803

• Inversely, any informal proof provided in the core of the paper should be complemented804

by formal proofs provided in appendix or supplemental material.805

• Theorems and Lemmas that the proof relies upon should be properly referenced.806

4. Experimental result reproducibility807

Question: Does the paper fully disclose all the information needed to reproduce the main ex-808

perimental results of the paper to the extent that it affects the main claims and/or conclusions809

of the paper (regardless of whether the code and data are provided or not)?810

Answer: [Yes]811

Justification: The paper includes comprehensive information and clear guidelines for re-812

producing the main experimental results, covering model training, parameter selection, and813

evaluation protocols, as outlined in sections 5 and 6.814

Guidelines:815

• The answer NA means that the paper does not include experiments.816

• If the paper includes experiments, a No answer to this question will not be perceived817

well by the reviewers: Making the paper reproducible is important, regardless of818

whether the code and data are provided or not.819

• If the contribution is a dataset and/or model, the authors should describe the steps taken820

to make their results reproducible or verifiable.821

• Depending on the contribution, reproducibility can be accomplished in various ways.822

For example, if the contribution is a novel architecture, describing the architecture fully823

might suffice, or if the contribution is a specific model and empirical evaluation, it may824

be necessary to either make it possible for others to replicate the model with the same825

dataset, or provide access to the model. In general. releasing code and data is often826

one good way to accomplish this, but reproducibility can also be provided via detailed827

instructions for how to replicate the results, access to a hosted model (e.g., in the case828

of a large language model), releasing of a model checkpoint, or other means that are829

appropriate to the research performed.830

• While NeurIPS does not require releasing code, the conference does require all submis-831

sions to provide some reasonable avenue for reproducibility, which may depend on the832

nature of the contribution. For example833

(a) If the contribution is primarily a new algorithm, the paper should make it clear how834

to reproduce that algorithm.835

(b) If the contribution is primarily a new model architecture, the paper should describe836

the architecture clearly and fully.837

(c) If the contribution is a new model (e.g., a large language model), then there should838

either be a way to access this model for reproducing the results or a way to reproduce839

the model (e.g., with an open-source dataset or instructions for how to construct840

the dataset).841

(d) We recognize that reproducibility may be tricky in some cases, in which case842

authors are welcome to describe the particular way they provide for reproducibility.843

In the case of closed-source models, it may be that access to the model is limited in844

some way (e.g., to registered users), but it should be possible for other researchers845

to have some path to reproducing or verifying the results.846
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5. Open access to data and code847

Question: Does the paper provide open access to the data and code, with sufficient instruc-848

tions to faithfully reproduce the main experimental results, as described in supplemental849

material?850

Answer: [Yes]851

Justification: The complete source code, along with detailed instructions for running the852

code and the required environment setup have been included in the supplementary material.853

The code is designed to work with publicly available datasets. For the ImageNet10 dataset,854

we have clearly listed the specific categories used in the supplementary material, ensuring855

the faithful reproduction of the main experimental results.856

Guidelines:857

• The answer NA means that paper does not include experiments requiring code.858

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/859

public/guides/CodeSubmissionPolicy) for more details.860

• While we encourage the release of code and data, we understand that this might not be861

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not862

including code, unless this is central to the contribution (e.g., for a new open-source863

benchmark).864

• The instructions should contain the exact command and environment needed to run to865

reproduce the results. See the NeurIPS code and data submission guidelines (https:866

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.867

• The authors should provide instructions on data access and preparation, including how868

to access the raw data, preprocessed data, intermediate data, and generated data, etc.869

• The authors should provide scripts to reproduce all experimental results for the new870

proposed method and baselines. If only a subset of experiments are reproducible, they871

should state which ones are omitted from the script and why.872

• At submission time, to preserve anonymity, the authors should release anonymized873

versions (if applicable).874

• Providing as much information as possible in supplemental material (appended to the875

paper) is recommended, but including URLs to data and code is permitted.876

6. Experimental setting/details877

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-878

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the879

results?880

Answer: [Yes]881

Justification: Comprehensive details regarding the training and test settings, including882

data splits, hyperparameter configurations, optimizer choices are included in section 6 and883

Appendix A, C, E, ensuring that the experimental setup is fully reproducible and the results884

are accurately interpretable.885

Guidelines:886

• The answer NA means that the paper does not include experiments.887

• The experimental setting should be presented in the core of the paper to a level of detail888

that is necessary to appreciate the results and make sense of them.889

• The full details can be provided either with the code, in appendix, or as supplemental890

material.891

7. Experiment statistical significance892

Question: Does the paper report error bars suitably and correctly defined or other appropriate893

information about the statistical significance of the experiments?894

Answer: [Yes]895

Justification: The paper accurately reports statistical significance by including the mean and896

standard deviation values computed from 10 independent trials for each method (e.g., Table897

1, Table 2, Table 3, and Figure 2). This approach provides a robust measure of performance898

variability, clearly reflecting the consistency and reliability of the experimental results.899
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Guidelines:900

• The answer NA means that the paper does not include experiments.901

• The authors should answer "Yes" if the results are accompanied by error bars, confi-902

dence intervals, or statistical significance tests, at least for the experiments that support903

the main claims of the paper.904

• The factors of variability that the error bars are capturing should be clearly stated (for905

example, train/test split, initialization, random drawing of some parameter, or overall906

run with given experimental conditions).907

• The method for calculating the error bars should be explained (closed form formula,908

call to a library function, bootstrap, etc.)909

• The assumptions made should be given (e.g., Normally distributed errors).910

• It should be clear whether the error bar is the standard deviation or the standard error911

of the mean.912

• It is OK to report 1-sigma error bars, but one should state it. The authors should913

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis914

of Normality of errors is not verified.915

• For asymmetric distributions, the authors should be careful not to show in tables or916

figures symmetric error bars that would yield results that are out of range (e.g. negative917

error rates).918

• If error bars are reported in tables or plots, The authors should explain in the text how919

they were calculated and reference the corresponding figures or tables in the text.920

8. Experiments compute resources921

Question: For each experiment, does the paper provide sufficient information on the com-922

puter resources (type of compute workers, memory, time of execution) needed to reproduce923

the experiments?924

Answer: [Yes]925

Justification: The paper provides detailed information on the computational resources re-926

quired for each experiment, including the runtime efficiency (RTE) in minutes and parameter927

numbers (Param. #) in millions, as presented in Table A2 in Appendix F.928

Guidelines:929

• The answer NA means that the paper does not include experiments.930

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,931

or cloud provider, including relevant memory and storage.932

• The paper should provide the amount of compute required for each of the individual933

experimental runs as well as estimate the total compute.934

• The paper should disclose whether the full research project required more compute935

than the experiments reported in the paper (e.g., preliminary or failed experiments that936

didn’t make it into the paper).937

9. Code of ethics938

Question: Does the research conducted in the paper conform, in every respect, with the939

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?940

Answer: [Yes]941

Justification: The research conducted in this paper fully complies with the NeurIPS Code of942

Ethics. The experiments use publicly available datasets, and all necessary measures have943

been taken to preserve participant privacy and data anonymity. No personal or sensitive944

information was used, and the study adheres to ethical standards for data handling and model945

evaluation.946

Guidelines:947

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.948

• If the authors answer No, they should explain the special circumstances that require a949

deviation from the Code of Ethics.950

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-951

eration due to laws or regulations in their jurisdiction).952
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10. Broader impacts953

Question: Does the paper discuss both potential positive societal impacts and negative954

societal impacts of the work performed?955

Answer: [Yes]956

Justification: The broader impacts of our work are discussed in detail in Appendix H,957

where we outline the potential positive impacts, including privacy preservation, regulatory958

compliance, adaptability across tasks, and efficiency in unlearning and model storage. These959

discussions highlight the societal benefits of our proposed approach, particularly in contexts960

requiring efficient and scalable machine unlearning.961

Guidelines:962

• The answer NA means that there is no societal impact of the work performed.963

• If the authors answer NA or No, they should explain why their work has no societal964

impact or why the paper does not address societal impact.965

• Examples of negative societal impacts include potential malicious or unintended uses966

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations967

(e.g., deployment of technologies that could make decisions that unfairly impact specific968

groups), privacy considerations, and security considerations.969

• The conference expects that many papers will be foundational research and not tied970

to particular applications, let alone deployments. However, if there is a direct path to971

any negative applications, the authors should point it out. For example, it is legitimate972

to point out that an improvement in the quality of generative models could be used to973

generate deepfakes for disinformation. On the other hand, it is not needed to point out974

that a generic algorithm for optimizing neural networks could enable people to train975

models that generate Deepfakes faster.976

• The authors should consider possible harms that could arise when the technology is977

being used as intended and functioning correctly, harms that could arise when the978

technology is being used as intended but gives incorrect results, and harms following979

from (intentional or unintentional) misuse of the technology.980

• If there are negative societal impacts, the authors could also discuss possible mitigation981

strategies (e.g., gated release of models, providing defenses in addition to attacks,982

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from983

feedback over time, improving the efficiency and accessibility of ML).984

11. Safeguards985

Question: Does the paper describe safeguards that have been put in place for responsible986

release of data or models that have a high risk for misuse (e.g., pretrained language models,987

image generators, or scraped datasets)?988

Answer: [Yes]989

Justification: The paper carefully considers the potential risks associated with model misuse990

and has implemented appropriate safeguards for responsible release. Specifically, the models991

used in this work are trained on publicly available datasets with clearly defined and ethically992

compliant usage licenses. Additionally, the paper explicitly addresses privacy concerns993

through the use of forget vectors, which ensure sensitive data can be effectively unlearned,994

reducing the risk of unintended data retention or misuse.995

Guidelines:996

• The answer NA means that the paper poses no such risks.997

• Released models that have a high risk for misuse or dual-use should be released with998

necessary safeguards to allow for controlled use of the model, for example by requiring999

that users adhere to usage guidelines or restrictions to access the model or implementing1000

safety filters.1001

• Datasets that have been scraped from the Internet could pose safety risks. The authors1002

should describe how they avoided releasing unsafe images.1003

• We recognize that providing effective safeguards is challenging, and many papers do1004

not require this, but we encourage authors to take this into account and make a best1005

faith effort.1006
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12. Licenses for existing assets1007

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1008

the paper, properly credited and are the license and terms of use explicitly mentioned and1009

properly respected?1010

Answer: [Yes]1011

Justification: Detailed citations are included in the main text and Appendix to ensure proper1012

acknowledgment of the original contributors. The license terms and conditions for these1013

assets adheres to the respective open-source licenses.1014

Guidelines:1015

• The answer NA means that the paper does not use existing assets.1016

• The authors should cite the original paper that produced the code package or dataset.1017

• The authors should state which version of the asset is used and, if possible, include a1018

URL.1019

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1020

• For scraped data from a particular source (e.g., website), the copyright and terms of1021

service of that source should be provided.1022

• If assets are released, the license, copyright information, and terms of use in the1023

package should be provided. For popular datasets, paperswithcode.com/datasets1024

has curated licenses for some datasets. Their licensing guide can help determine the1025

license of a dataset.1026

• For existing datasets that are re-packaged, both the original license and the license of1027

the derived asset (if it has changed) should be provided.1028

• If this information is not available online, the authors are encouraged to reach out to1029

the asset’s creators.1030

13. New assets1031

Question: Are new assets introduced in the paper well documented and is the documentation1032

provided alongside the assets?1033

Answer: [Yes]1034

Justification: The source code is well-documented in the supplementary materials, where1035

comprehensive instructions for usage are included to facilitate reproducibility.1036

Guidelines:1037

• The answer NA means that the paper does not release new assets.1038

• Researchers should communicate the details of the dataset/code/model as part of their1039

submissions via structured templates. This includes details about training, license,1040

limitations, etc.1041

• The paper should discuss whether and how consent was obtained from people whose1042

asset is used.1043

• At submission time, remember to anonymize your assets (if applicable). You can either1044

create an anonymized URL or include an anonymized zip file.1045

14. Crowdsourcing and research with human subjects1046

Question: For crowdsourcing experiments and research with human subjects, does the paper1047

include the full text of instructions given to participants and screenshots, if applicable, as1048

well as details about compensation (if any)?1049

Answer: [NA]1050

Justification: The paper does not involve crowdsourcing or research with human subjects. All1051

experiments are conducted using publicly available datasets and machine learning models,1052

without the need for human participant data.1053

Guidelines:1054

• The answer NA means that the paper does not involve crowdsourcing nor research with1055

human subjects.1056

24

paperswithcode.com/datasets


• Including this information in the supplemental material is fine, but if the main contribu-1057

tion of the paper involves human subjects, then as much detail as possible should be1058

included in the main paper.1059

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1060

or other labor should be paid at least the minimum wage in the country of the data1061

collector.1062

15. Institutional review board (IRB) approvals or equivalent for research with human1063

subjects1064

Question: Does the paper describe potential risks incurred by study participants, whether1065

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1066

approvals (or an equivalent approval/review based on the requirements of your country or1067

institution) were obtained?1068

Answer: [NA]1069

Justification: The paper does not involve research with human subjects and therefore1070

does not require Institutional Review Board (IRB) approval or equivalent ethical review.1071

All experiments were conducted using publicly available datasets without direct human1072

involvement.1073

Guidelines:1074

• The answer NA means that the paper does not involve crowdsourcing nor research with1075

human subjects.1076

• Depending on the country in which research is conducted, IRB approval (or equivalent)1077

may be required for any human subjects research. If you obtained IRB approval, you1078

should clearly state this in the paper.1079

• We recognize that the procedures for this may vary significantly between institutions1080

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1081

guidelines for their institution.1082

• For initial submissions, do not include any information that would break anonymity (if1083

applicable), such as the institution conducting the review.1084

16. Declaration of LLM usage1085

Question: Does the paper describe the usage of LLMs if it is an important, original, or1086

non-standard component of the core methods in this research? Note that if the LLM is used1087

only for writing, editing, or formatting purposes and does not impact the core methodology,1088

scientific rigorousness, or originality of the research, declaration is not required.1089

Answer: [NA]1090

Justification: The core methods and contributions of this paper do not involve the use of1091

large language models (LLMs) as an essential, original, or non-standard component.1092

Guidelines:1093

• The answer NA means that the core method development in this research does not1094

involve LLMs as any important, original, or non-standard components.1095

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1096

for what should or should not be described.1097
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