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Abstract

Machine unlearning (MU), which seeks to erase the influence of specific unwanted
data from already-trained models, is becoming increasingly vital in model editing,
particularly to comply with evolving data regulations like the “right to be forgotten”.
Conventional approaches are predominantly model-based, typically requiring re-
training or fine-tuning the model’s weights to meet unlearning requirements. In this
work, we approach the MU problem from an input perturbation-based perspective,
where the model weights remain intact throughout the unlearning process. We
demonstrate the existence of a proactive input-based unlearning strategy, referred
to forget vector, which can be generated as an input-agnostic data perturbation and
remains as effective as model-based approximate unlearning approaches. We also
explore forget vector arithmetic, whereby multiple class-specific forget vectors
can be combined through simple operations (e.g., linear combinations) to generate
new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets
across classes. Extensive experiments validate the effectiveness and adaptability of
the forget vector, showcasing its competitive performance relative to state-of-the-art
model-based methods while achieving superior parameter efficiency.

1 Introduction

To prevent unauthorized use of personal or sensitive data after training and comply with legislation
such as the “right to be forgotten” [1], machine unlearning (MU) has garnered increasing attention as
a solution to various challenges in vision tasks [2—5]. In essence, it initiates a reverse learning process
to erase the impact of unwanted data (e.g., specific data points, classes, or knowledge) from an
already-trained model, while still preserving its utility for information not targeted by an unlearning
request. Based on the guarantees provided for data removal from already-trained models, existing MU
methods can be broadly categorized into two approaches: exact unlearning [6—8] and approximate
unlearning [9-15]. The former guarantees the complete and verifiable removal of targeted data,
typically achieved by retraining the model from scratch with the data to be forgotten excluded from
the training set, a process we refer to as Retrain. However, due to the high computational overhead,
research has increasingly focused on approximate unlearning methods, which seek to achieve efficient
unlearning without requiring full retraining.

Approximate unlearning strikes a balance between computational efficiency and effective data
removal, making it practical for many real-world applications. Most existing approximate unlearning
techniques are model-based, updating the model’s weights within a limited number of training
iterations to eliminate the influence of specific unwanted data, thus avoiding a full retraining process.
Representative methods in this category include fine-tuning approaches [4, 16], gradient ascent
techniques [10, 17], and influence function-based methods [18, 2].

Although the model-based unlearning methods have made significant strides, they often overlook
the data-based dimension and its potential impact on MU. For instance, it remains unclear whether
current MU approaches generalize effectively to “shifted” forget data. Additionally, the possibility

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71

72
73

74
75
76

77
78
79

80

81
82
83
84

85
86
87
88
89
90
91

of a data-based MU design that operates without updating model parameters has yet to be explored.

Therefore, we ask:

[ (Q) Can we explore data influence in MU and harness data-based operations to fulfill MU? ]

To address (Q), we study MU from a
fresh data-based viewpoint: forget vec-
tor, a universal input data perturbation
designed to promote unlearning effec-
tively; See the schematic overview in
Fig. 1. Before developing the forget vec-
tor, we explore the rationale for how
data perturbations complement current
model-based MU approaches, as evi-
denced by these methods’ generaliza-
tion to common data shifts, including
Gaussian noise and adversarial pertur-
bations [20, 21]. To design the for-
get vector, we draw inspiration from re-
cent input prompting techniques for vi-
sion models, known as visual prompting
[22-24] or model reprogramming [25—
27], used in transfer learning and model
adaptation. These prompting methods
learn input perturbations to enable a
fixed model to perform well on new
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Figure 1: A schematic illustration comparing our proposed data-
based MU method (termed the “forget vector”), which achieves
unlearning objectives (i.e., forgetting “dog” and remembering
“bird” in this example) by operating directly on input data with-
out altering model parameters, against traditional model update-
based unlearning methods. @ indicates that the forget data is
successfully unlearned, while € means that the retain data is cor-
rectly recognized, or the forget data is not successfully unlearned.
The “original model” refers to the model without unlearning ap-
plied, and “SCRUB” [19] is an existing representative unlearning
method that updates model weights.

tasks, effectively guiding the model to execute tasks it wasn’t originally trained for. From this
perspective, our research on the forget vector also explores whether it is possible to append a trainable

“prompt” to the input to guide an already-trained neural network in unlearning specific data. The

proposed forget vector allows the unlearner to modify user inputs targeted for deletion, offering
a flexible and efficient approach to unlearning while potentially achieving significant parameter
efficiency. We summarize our contributions below.

e We investigate the impact of forget data shifts on image classifiers post-unlearning, revealing that
unlearning demonstrates resilience against these shifts (to some extent) while generalization remains
more vulnerable.

e Building on the complementary role of data shifts in MU, we propose a proactive, input-agnostic
data perturbation strategy termed the forget vector, optimized specifically to facilitate unlearning.

e We demonstrate the effectiveness of forget vector arithmetic by using precomputed class-wise
forget vectors to generate new vectors that effectively eliminate the influence of specific data subsets
in image classification models, e.g., in the scenario of random data forgetting.

e We conduct extensive experiments on MU for image classification, providing both quantitative and
qualitative analyses to demonstrate the competitiveness of the forget vector compared to model-based
MU methods.

2 Related Work

MU in Vision. Machine unlearning (MU) in vision has gained significant attention due to the
increasing need for privacy preservation, copyright protection, and ethical data removal in machine
learning models. Recent studies [28-33, 19, 34—37] in this area have primarily focused on two main
applications: image classification and image generation.

In image classification, MU methods have explored various ways to erase certain classes or images
from models [10, 17, 2, 18, 37, 38]. Specifically, fine-tuning-based methods update the model
incrementally on a modified dataset without the unwanted data points [4, 16]. Gradient ascent-based
approaches attempt to reverse the impact of unwanted data by applying gradient ascent to model
parameters [10, 17]. Influence-based unlearning techniques estimate and negate the effect of specific
data points on model predictions and parameters to achieve unlearning [2, 18]. Another line of
research explores the relationship between MU and model pruning, suggesting that model sparsity
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can help to bridge the gap between approximate and exact unlearning, reducing the need for complex
parameter updates [37, 38].

For image generation, MU techniques [5, 30, 36] have been proposed to prevent models from
generating unwanted or harmful content while retaining high-quality outputs. For example, weight
saliency methods guide MU by identifying and selectively altering model parameters to eliminate
specific content generation [5]. Beyond vision, MU has been applied to other domains, with notable
efforts in natural language processing [39—42], graph-based data [43, 6], and time-series data [44].
However, most existing MU methods are model-based, requiring updates to model parameters and
consequently incurring high computational costs.

Input-based Model Adaptation. This approach aims to modify or repurpose pre-trained models
for new tasks or specific objectives without the need for full retraining. It is particularly beneficial for
reducing computational costs and leveraging existing knowledge within models. Key techniques in
model adaptation include: Visual prompting [45-49] maintains the pre-trained model’s parameters
fixed and adapts the input to enable the model to perform different tasks. For example, introducing
trainable parameters in the input space while keeping the model backbone frozen can achieve
comparable results with reduced computational overhead. Model reprogramming [50, 25, 51, 52]
involves keeping a pre-trained model unchanged while modifying its inputs to adapt the model for
new tasks. For example, adversarial perturbations can be applied to inputs at test time, allowing the
model to perform a specific task dictated by the perturbations, even if that task was not originally
intended for the model. Feature-based domain adaptation [53, 54] applies transformations or mapping
techniques to the input data, aligning the feature distributions between the source and target domains
while keeping the model unchanged.

3 Preliminaries on MU and Problem Statement

In this section, we introduce the fundamentals of machine unlearning (MU), including its formulation,
commonly-used methods, evaluation metrics, and motivate our focus: a data-based forget vector
design for achieving MU.

Formulation of MU. In this work, we focus on the problem of MU for image classification. Let
D = {x;,y; })¥, represent a training set with N examples, where x; denotes the ith image data, and
1y; denotes its corresponding class label. Following the classic MU setting [2, 55, 19, 5], we introduce
a forget set Dy C D, which specifies the training samples targeted for unlearning. Accordingly,
the complement of Dr is the retain set, i.e., D, = D\ Dt. The goal of MU is to efficiently and
effectively eliminate the influence of D; on an already-trained model 6,, so that the performance
of the post-unlearning model closely approximates that of a model retrained from scratch on D,
(i.e., excluding the impact of D¢ from scratch). Therefore, such a retraining method (referred to
as Retrain) is typically considered as the gold standard of MU [10, 56]. However, since Retrain is
computationally intensive, most popular MU approaches instead address an unlearning optimization
problem using the forget and retain sets to update the model parameters 0, starting from the originally
pre-trained model 8. This yields the following optimization problem for MU:

miniomize o (0; Dy, Dy), (D

with the initialization @ = 6,. In (1), /)y represents an appropriate unlearning loss function that
may depend on D and/or D;, as will be detailed when introducing specific unlearning methods. In
the context of MU for image classification [2, 5], the specification of the forget set Dy leads to two
unlearning scenarios: class-wise forgetting, where D; consists of a subset focused on a specific image
class targeted for unlearning, and random data forgetting, where Dy is a randomly selected subset of
images across all classes.

Model-based MU Methods and Evaluation. The formulation in (1) represents the predominant
MU solution in the literature, focusing on modifying model weights and/or architectural components
to achieve the unlearning objective.

In what follows, we introduce several representative MU approaches that serve as approximations to
Retrain. (a) Fine-tuning (FT) [4]: This approach treats the MU problem as a continual learning task,
defining the unlearning objective /[y as a training objective that fine-tunes 8, over D, to induce
catastrophic forgetting of Ds. (b) Random labeling (RL) [2]: This approach specifies the unlearning
objective /)y by assigning random labels or features to the data in D, thereby enforcing model
forgetting. (c) Gradient ascent (GA) [10]: This approach employs the negative of the FT loss to
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reverse the training impact associated with the data in D¢. (d) Localization-informed unlearning
[56, 5]: This method identifies a subset of model weights critical to the unlearning task (e.g., through
model sparsity [56] or gradient saliency [5]) and incorporates this weight localization as a prior to
solve the unlearning problem in (1).

Given an unlearned model (denoted as 6,,) after solving (1), unlearning performance is evaluated in
two main areas: unlearning effectiveness, which measures whether the target data/information has
been successfully removed, and utility retention, which assesses whether unlearning has preserved
the model’s classification ability on unaffected data. Following the evaluation pipeline in [56],
unlearning effectiveness is quantified by two metrics: unlearning accuracy (UA), defined as 1—the
model’s accuracy on D¢ (higher UA indicates better unlearning), and membership inference attack
performance on Dy, termed MIA-Efficacy, where higher prediction accuracy on non-training samples
indicates better unlearning (see Appendix A). Utility retention is measured by retain accuracy (RA),
reflecting the model’s accuracy on D,, and testing accuracy (TA), which is the accuracy on the
original test set. Notably, TA is assessed on the entire original test set, except in the case of class-wise
forgetting, where test samples from the forgotten class are excluded from evaluation.

Data-based MU Design: The Forget Vector Problem. While previous MU methods can be unified
within the framework of (1) by varying the unlearning loss ¢\ and weight localization priors, recent
advancements in input data-based model adaptation, such as visual prompting [57, 23] and model
reprogramming [27, 25], suggest an alternative approach to MU. This strategy inspires us to design
data-based prompting (implemented through universal input perturbations) to achieve unlearning
without modifying the model itself. We refer to this input perturbation vector, designed specifically
for MU, as the forget vector. To be more specific, let  represent the data-agnostic input perturbations
to be designed. The problem of constructing a forget vector for MU can be formulated as

rnini&mize o (0500, Ds, Dr), )

where § is the perturbation variable, applied linearly to the forget and retain samples as x’ := x + &
for x € D¢ and D, similar to visual prompting [57] and adversarial examples [21]. In practice, since
the model remains unchanged, the unlearner can compute the forget vector based on the forget request
(forget set) and append it to model inputs to process user-initiated unlearning requests. In this work,
we do not consider counter-unlearning adversaries that intentionally negate the effect of the forget
vector. We will detail the unlearning objective function required for designing the forget vector in our
later method sections.

Based on (2), we are motivated to explore two research questions: (Q1) How do “perturbations”
applied to forget data affect unlearning performance? (Q2) How can we effectively design the forget
vector 9 to solve problem (2)? These two questions are interconnected: the answer to (Q1) offers a
sensitivity analysis of MU to data shifts within the forget set, guiding how the specific shift induced
by the forget vector can be optimized for effective unlearning in (Q2). Therefore, the following
Secs. 4-5 address (Q1) and (Q2) in sequence. For (Q1), the next section analyzes performance through
an evaluation lens on a given unlearned model, using data perturbations applied via standard data
augmentation operations or adversarial perturbations.

4 Generalization of MU to Forget Data Shifts

Before designing the forget vector as formulated in (2), we examine the sensitivity of existing model-
based unlearning approaches to external perturbations applied to forget data. Such a perturbation-
based or out-of-distribution (OOD) generalization analysis of MU has not been explored in the
literature. Our rationale is that if conventional MU approaches demonstrate robustness to these
external forget data perturbations post unlearning, then enhancing MU with a forget vector could
become a seamless process, as a proactive design of such a vector would likely yield effective results.

Post-unlearning Forget Data Perturbations. Given an unlearned model (8,,) after solving (1), we
examine two types of shifts in forget data: standard data corruptions used in the evaluation of OOD
generalization [58, 20] and worst-case perturbations generated by adversarial attacks [21, 59].

(a) Data Corruptions. Following the OOD generalization evaluation approach in image classification
[58, 20], we consider data corruptions from four main categories: noise, blur, weather, and digital.
Each type of corruption includes five levels of severity, with higher levels representing increased noise
intensity. Among these, we select zero-mean Gaussian noise (GN) and Elastic transformations (ET)
as the primary corruption types to evaluate MU robustness against shifts in forget data. Our rationale
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Figure 2: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method
Retrain vs. the (pre-unlearning) original model performance (Origin), evaluated on both benign evaluation sets
(Benign) and perturbed sets, which include (1) Gaussian noise (GN) with a standard deviation of 0.08 (termed
GN1), (2) GN with a standard deviation of 0.2 (termed GN2), (3) Elastic transformation (ET) with parameters
(488, 170.8, 24.4) regarding intensity, smoothing, and offset (termed ET1), (4) ET with parameters (488, 19.52,
48.8) (termed ET2), and (5) adversarial perturbations from a 7-step PGD attack with strength e = 8/255. The
unlearning performance metrics are reported as (a) TA (testing accuracy), (b) RA (retain accuracy), (c¢) UA
(unlearning accuracy), and (d) MIA-Efficacy, as defined in Sec. 3. The average performance is reported over 10
independent trials, where each trial focuses on forgetting one specific class from CIFAR-10. Shaded regions
indicate the performance variance.

is that Gaussian noise yields small pixel-wise perturbations (similar to adversarial perturbations
introduced later) and Elastic transformations stretch or contract small image regions.

(b) Adversarial perturbations. An adversarial image is a benign image altered with carefully crafted,
pixel-wise perturbations designed to mislead a classifier. In this work, we use the e-constrained
{+, norm-based K-step projected gradient descent (PGD) attack [21, 59] to generate adversarial
examples via iterative projected gradient updates. The parameter ¢ > 0 defines the radius of the £,
norm of the perturbations, controlling their strength. And K represents the number of PGD steps.

Generalization of MU to Forget Data Perturbations. Next, we apply the above data shift opera-
tions to the MU evaluation sets—namely, the forget, retain, and testing sets—and assess the unlearning
performance of an unlearned model. Fig. 2 displays the performance of the gold standard unlearning
method, Retrain, against Gaussian noise at test time with standard deviations of 0.08 and 0.2 [20],
and two types of Elastic transformations with parameters (488, 170.8, 24.4) and (488,19.52, 48.8)
regarding intensity, smoothing and offset for moderate and high-intensity distortions [20], as well as
a 7-step PGD attack with perturbation strength ¢ = 8/255 [21]. To ensure the feasibility of Retrain,
we conduct the image classification task using ResNet-18 on the CIFAR-10 dataset.

As shown in Fig. 2-(a) and (b), model utility, measured by RA (retain accuracy) and TA (testing
accuracy), decreases when external perturbations are applied to the evaluation sets compared to
its original performance without perturbations. This is expected due to the generalization loss
when evaluated on new, shifted data. More interestingly, Fig.2-(c) and (d) show that unlearning
effectiveness of Retrain, measured by UA (unlearning accuracy) and MIA-Efficacy, remains stable
despite the presence of these perturbations on the forget set. This is because perturbations degrade
prediction performance across evaluation sets, including the forget set. This is further evidenced
by the increase in UA and MIA-Efficacy for the original model (without unlearning) when exposed
to data perturbations. The above indicates that a reduction in prediction performance on the forget
set could translate into enhanced unlearning effectiveness on that set. In Appendix B, we provide
additional evaluations of other approximate unlearning methods, including FT, RL, and GA, showing
consistent performance.

The results above demonstrate that unlearning effectiveness is inherently preserved under external
perturbations at no additional cost. However, balancing this with utility retention in the presence of
perturbations remains challenging and desirable. Therefore, we need to carefully address the forget
vector problem (2) to develop an input-based MU solution that enhances unlearning effectiveness
without compromising model utility.

5 Optimization for Forget Vectors

In this section, we first propose an unlearning objective function, /)y, tailored for the forget vector
design in (2), inspired by the untargeted C&W attack [60]. We then introduce a novel paradigm
called compositional unlearning, facilitated by forget vector arithmetic.

Unlearning Objective Design of Forget Vectors. Our design aims for the forget vector variable
(8), when applied to the forget set (D), to drive the given model’s predictions (6,) away from the
correct labels. Conversely, when applied to the retain set (D, ), the forget vector should minimally
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affect correct predictions. The first forget objective aligns with adversarial attack design, aiming to
mislead the model’s predictions in the presence of the perturbation d. The second retain objective
acts as a utility regularization, suppressing the unlearning effect of the perturbation when applied to
data samples not targeted for unlearning (retain samples).

To implement the forget objective (denoted by ¢;), we draw inspiration from the C&W untargeted
attack loss [60]. This is given by a margin loss, designed to remain actively minimizing when the top
prediction matches the correct label, ensuring that optimization continues until predictions are shifted
to an incorrect label, thereby achieving unlearning. This can be cast as

£:(8; 00, Dr) = E(x,y)ep, max{fo,y(x + &) — max foo,k(x+9),—7}, 3)

where (x,y) € D denotes a forget sample with y being the prediction label of x, x+4 is the perturbed
sample, fi g, (x) denotes the prediction logit (before softmax) of the model 8, for class k under the
input x, and 7 > 0 is a margin threshold that controls the unlearning strength. The rationale behind (3)
is that minimizing it ensures convergence to the negative margin f, (x + 8) — maxg, fr(x +0) —
—7 < 0. Thus, the forget vector d enforces unlearning on € for x by making the incorrect prediction
(k # y) have a higher confidence than the original correct prediction y. On the other hand, once the
margin becomes negative (indicating that the prediction label has been flipped), the forget objective
{¢ automatically terminates, allowing a balance with the retain objective, which will be introduced
later. In our experiments, we find that the forget objective is robust to variations in the nonnegative
margin parameter 7 (see Appendix C). A larger 7 value imposes a stricter unlearning requirement by
increasing the logit distance from the correct label. For example, we set 7 = 1 in our experiments.

Next, we regularize the forget objective (3) with the retain objective, defined as the cross-entropy loss
(£cg) over the retain set D,, along with the /5 norm of § to ensure minimal perturbation required to
achieve both the forget and retain objectives. This yields the full unlearning objective in (2):

0nmu (8300, D5, Dr) = €5(8; 00, D) + A1lor(8; 00, Dr) + X263, )

where \; > 0 and Ay > 0 are the regularization parameters, and {cg(3; 0, D,) denotes the CE loss
of the model 8,, over the perturbed retain set {(x + 4, y)}(xﬂy)epr. Integrating (4) into (3), we can
then apply stochastic gradient descent (SGD) [61] to optimize the forget vector variable 4.

Compositional Unlearning via Forget Vector Arithmetic. A forget vector defines an unlearning
direction in the input space to guide the unlearning process. We explore whether a new unlearning
direction can be efficiently constructed by interpolating from existing precomputed forget vectors,
such as class-wise forget vectors obtained by solving (4) with D¢ defined as each class’s training
set. This approach is analogous to the concept of task vectors in weight space for model editing [62].
However, to the best of our knowledge, input-based task vector arithmetic has not yet been explored
in the literature. If forget vectors can be modified and combined using arithmetic operations, such as
negation and addition, we can dynamically adjust a model’s unlearning behavior without re-solving
the optimization problem (4) or any other model-based unlearning problem in (1). We refer to this
new unlearning paradigm as compositional unlearning, where precomputed class-wise forget vectors
can be efficiently combined to generate a new forget vector for each deletion request in the context of
random data forgetting.

Let 6;, denote the forget vector used for unlearning data points of class k. Given the set of forget
vectors {ék}szl for all K classes, we obtain these vectors by solving (4) with Dy defined as each
class’s training set, respectively. The forget vector for compositional unlearning is given by

8(w) = (wiby), )
k=1

where w = [w1, ... wg]¥ are the linear combination coefficients to be optimized, which determine

the forget vector arithmetic. To determine w, we can minimize (4) with the optimization restricted to
the coefficients w. Instead of penalizing the ¢5 norm of the forget vector, we penalize the {5 norm of
w to prevent excessive pixel perturbation. This modifies (4) to the problem miny, ¢¢(§(w);80,, Df) +
MLlce(6(W); 00, D;) + A2||w||3. As will be shown later, random data forgetting can be achieved
through class-wise forget vector arithmetic (5) by applying the compositional scheme defined by the
coefficients w.

To illustrate the effectiveness of forget vector arithmetic, Fig. 3 shows preliminary results of combining
two class-wise forget vectors (d; and d2) using a simple scheme § (w) = w81 + w202 on (CIFAR-10,
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ResNet-18), when forgetting a randomly selected 10% of training points from class “automobile”
and class “bird” refering to w; and wo. Rather than optimizing w, we adjust w; and wy from
—0.2 to 0.2 to observe how the performance gap relative to Retrain varies. This evaluation includes
the UA (unlearning accuracy) gap on the selected forget data, the RA (retain accuracy) gap on
the remaining data, and the average gap across these two metrics. As expected, Fig. 3-(a) and (b)
shows a trade-off among these two metrics, where weight configurations that achieve a low UA
gap may result in a higher RA gap, and vice versa. Additionally, Fig. 3-(c) shows that moderate

weight values of w; and ws 02 0 0 : 0
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ing scheme can be identified _, . . .
at w1 — —0.1 and wo = 0.1 Figure 3: The performance gap relative to Retrain for class-wise forget
1= -0 2 = 0.

vector arithmetic (based on classes “automobile” and “bird”) across different
as markc?d by the green star combination coefficients w1 and w2, when unlearning a randomly selected
g*)’ vallqatmg the feasibil- gq, of training points from these two classes of CIFAR-10. Each cell
ity of arbitrary random data displays the gap (%) relative to Retrain at a specific weight combination,
forgetting using our proposed where a lower value indicates a closer performance to Retrain given a metric.
compositional unlearning via A green star (%) denotes the selected weight combination scheme (w; and
the forget vector arithmetic ws) that achieves the smallest performance gap relative to Retrain, averaged
approach. over both UA Gap and RA Gap.

6 Experiments
6.1 Experiment Setups

Datasets and Models. We focus on MU for image classification, using two datasets: CIFAR-10 [63]
and ImageNet-10, a 10-class subset of the original ImageNet [64], for ease of implementation of
Retrain (exact unlearning) over ImageNet images as [65, 66]. For these tasks, we use three well-
trained image classifiers: ResNet-18 [67] for CIFAR-10, VGG-16 [68] and ViT-[69] for ImageNet.

Unlearning Baselines and Evaluations. In the context of MU for image classification, we consider
two scenarios: class-wise forgetting and data-wise forgetting. In class-wise forgetting, training data
from an image class are designated for unlearning, while in random data forgetting, a subset of
all-class training points is randomly selected as the forget set, with a specified forget ratio of 10%. To
demonstrate the effectiveness of our proposal, we consider 8 MU baseline methods, including @ FT
[4], @ RL [2], ® GA [10], @ NegGrad+ [55], ® SalUn [5], ® SCRUB [19], @ Class-F [70], and
SSD [71], where Class-F is only designed for class-wise forgetting.

As described in Sec. 3, unlearning effectiveness is measured using UA (unlearning accuracy) and
MIA-Efficacy, while model utility post-unlearning is assessed by RA (retain accuracy) and TA (testing
accuracy); For all metrics, being closer to Retrain indicates better performance. It is also worth noting
that all existing model-based MU baseline methods @-® are evaluated on non-perturbed evaluation
sets. However, when using our proposed data-based forget vector solution, we need to apply the
forget vector to the evaluation sets (including the forget set, retain set, and testing set) in order to
assess unlearning effectiveness and utility retention. This evaluation remains fair, as it aligns with the
same objective of forgetting targeted data. The key distinction is that the forget vector operates at the
input level, whereas model-based MU baselines achieve unlearning by modifying model weights.

To quantify the performance gap with Retrain, we compare each unlearning baseline and our proposal
against this exact unlearning method across all metrics. We report an averaged assessment, termed
Averaging (Avg.) Gap. Unless specified otherwise, all the main experiments (whether class-wise or
random data forgetting) are conducted over 10 random trials, with mean performance reported.

Implementation Details of Our Proposal. To solve the forget vector problem (2) with the proposed
unlearning objective in (4), we set the retain loss regularization parameter A\; as follows: 3 for CIFAR-
10, 5 for ImageNet-10 with VGG-16, and 7 for ImageNet-10 with ViT in class-wise forgetting. For
random data forgetting, we set A1 to 1. The ¢5-norm regularization parameter is set to Ay = 1. These
hyperparameters are determined through a grid search over the range [0, 10]. To optimize (2), we use
stochastic gradient descent (SGD) [61] with a momentum factor of 0.9 and an exponential learning
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Table 1: Performance overview of various MU methods for image classification under two unlearning scenarios
on CIFAR-10 using ResNet-18 and ImageNet-10 using ViT. Since Class-F [70] is specifically designed for
class-wise forgetting, its results do not apply to random data forgetting scenarios (n/a). Other results are reported
in the format a4, where a is the mean and b denotes standard deviation b over 10 independent trials. The
performance gap against Retrain is indicated in (o), where a lower value is better. 1 (or |) indicates that a higher
(or lower) value is better. The best performance for each metric is highlighted in jgI€eny, while the second-best
performance is highlighted in [Fedy.

MU Method | UAT MIA-Efficacy? RAT TAT Avg.Gap| UAT MIA-Efficacy! RAT TAT Avg.Gap|
Class-wise Forgetting, CIFAR-10, ResNet-18 | Random Data Forgetting, CIFAR-10, ResNet-18
Retrain ‘ 100.00+0.00(0.00) 100.000.00(0.00)  99.9110.03(0.00)  94.924¢.15(0.00)  0.00 ‘ 5.5020.16(0.00)  11.5710.47(0.00)  99.8820.05(0.00)  94.241¢.19(0.00) 0.00
FT[4] | 5.272073(94.73) 51.49.4507(48.51) 100.040,0(0.09) [OSOSEGGROMD] 35.86 | 0.03.0.03(5.47) PEGNORD] 415
RL [2] 18.8747.34(81.13) 94.5140.12(0.41)  20.67 | 0.521024(4.98)  3.1340.55 ) 93.8840.20(0.36)  3.45
GA[10] | 71.4550.35(28.55) 81.710.22(18.30) 98.6210.04(1.29) 92.3410.02(2.58) 12.68 | 1.56:305(3.94)  2.8845 44(8. 98 21) 92.844950(1.40)  3.81
NegGrad+ [55]] 91.78 £14.66(8.22)  95.8117.08(4.19)  98.3541.22(1.56)  92.6241.34(2.30)  4.07 0.9741.08(4.53) 99.42.40.87(0.46)  93.3841.13(0.86) 3.67
SalUn [5] |96B5E5RAGH5) 98.64.10.03(1.36) 98.7510.18(1.16) 923411 .54(2.58) [N2HEON | 1.7310.25(3.77) 99.24.40.00(0.64)  91.0340.14(3.21)
SCRUB [19] | 93.45.45.33(6.55) 96.3811.72(3.62) [IO0NOSEGHOODN WESEIGGOBEN  2.64 | 0.61.0.4:(4.89) 99.76.0.15(0.12) [O3OIEGHGOB)]  3.31
Class-F [70] | 90.1841.20(9.82) 86.154267(13.85) 91.2540.05(8.66) 85.4540.10(9.47)  10.45 n/a n/a n/a n/a
SSD [71] 96.054+0.45(3.95)  98.00+0.00(2.00)  97.77+0.20(2.14)  92.234058(2.69)  2.70 94.86+£0.00(5.02)  88.2840.00(5.96)  3.70
Ours (OSSN IOIBORGHEMOEO 97.25.0.24(2.66) 90.9040.32(4.02) 97.3320.47(2.55)  90.9740.35(3.27)
Class-wise Forgetting, ImageNet-10, ViT | Random Data Forgetting, ImageNet-10, ViT
Retrain ‘ 10040.00(0.00)  100.0020.00(0.00)  99.9740.03(0.00)  99.85.40.01(0.00)  0.00 ‘ 1.4140.06(0.00)  93.5740.00(0.00)  99.070.01(0.00)  99.27.44.01(0.00)

FT[4]  |42.7¢ 21) 40.78.410.65(59.22) POVOGEGHIOODI 99.6110.10(0.24)  29.17 | NEBSEGHEOWBN 96.40.0.51(2.83)  99.6020.00(0.53)  99.10.
85) IOBIB0EEEEHBON 99.93..0.05(0.04) 3.84 | 2.62:050(1.21) [OBUBEGEBOMEN 98.38.0.15(0.69) 95.0:
27) DIOTEGONOO0I 99.70.0.10(0.15)  28.34 | 0.8240,16(0.59 0.40.09(0.53)
10) 55(20.70) [99:98£6,60(0:01)1 27.46 | 1.97.0.72( )
73)  94.0041.00(6.00)  98.2240.75(1.75)  98.00.19.00(1.85) 4.08 0.674.0.19(
SCRUB [19] 95.6741.77(4.33)  98.9040.10(1.07) 9.33 .10, .52)
Class-F [70] |28.624785(71.38) 55.1042 30/ 0) 77.50+1.62(22.47) T! 6: 40.85 n/a

X n/:
SSD [71] 90.3541.65(9.65) 60.1541.85(39.85) 98.4340.55(1.54)  98. .5 13.14 99.40. (0.13)
Ours |JO592.155CH0R)] FOOHOEGOMON 99,13 0.0,(0.51) 99,261 050(0.59) [HEBEN Wm_ 99.1040.20(0.17)
rate scheduler, decaying at a rate of 0.9 per iteration. Additionally, the batch size is set to 256, with a
maximum of 40 optimization iterations for both two datasets. To solve the compositional unlearning
problem (5), we use a similar setup, setting both A; and A5 to 1.

0.85.40.24(0.56)

6.2 Experiment Results

Overview Performance of Forget Vector. In Tab. I, we compare the performance of our forget
vector approach with other model-based MU methods across the metrics: UA, RA, TA, MIA-Efficacy,
and Avg. Gap vs. Retrain. We highlight two key observations below. First, in terms of unlearning
effectiveness (UA and MIA-Efficacy), the data perturbation-based forget vector demonstrates highly
competitive performance compared to model update-based MU baselines, mostly ranking among
the top two methods with the smallest performance gap relative to Retrain (as evidenced by Avg.
Gap). The advantage of the forget vector is particularly evident in MIA-Efficacy, where it usually
achieves the closest results to Retrain. Second, in terms of model utility post-unlearning (RA and
TA), the forget vector generally leads to a larger performance drop than other methods. This is not
surprising, as the forget vector is achieved through data perturbations. However, considering the
gain in unlearning effectiveness, the Avg. Gap with Retrain shows that the forget vector remains
competitive, ranking among the top two unlearning methods. Third, unlearning methods (including
Retrain) do not exhibit the same level of distinctiveness in random data forgetting as it does in
class-wise forgetting. This is because in random data forgetting, the retain data could have sufficiently
represented the distribution of the forget data, making it more challenging for MIA to distinguish
forgotten samples from retained ones. Besides, the corresponding results of various MU methods on
ImageNet-10 using VGG-16 can be found in Appendix D.

Transferability of Forget Vector to Unseen For- Table 2: UA (%) of forget vector when transferred
get Data. Conventionally, unlearning effective- to unseen forget sets curated under 3 scenarios on
ness is typically measured on the original forget (CIFAR-10, ResNet-18). The results are presented in
set (Dr). However, with the data perturbation- the same format as Table 1.

based forget vector, it is also interesting to inves-  yy meod ‘ D} (Class-wise) | Dj (Random Data) | D, (Random Data)
. . 1 . f b . lt h 1 d from testing set perturbed by GN1 perturbed by ET1
tlgate ltS un e?rnlng trans erabil y when app 1€ Retrain ‘ 100.00-0.00(0.00) ‘ 64.73.+3.36(0.00) ‘ 81.434.0.25(0.00)
to a new, previously unseen forget set (denoted as FT@] | 20440, 1,(7856) | 56.5e1.10(7.98) | 81.7920.15(0.36)
7 . .. . RL [2] 27.90 (72.10) 61.84 .19 45(2.89) 81.15 (0.28)
Dy’) that share similarities with Dy and are equally GATIO] | 73051000(26.05) | 55201309053 | 8217-070(1.28)

1 1 _ NegGrad+ [55] | 93.86410.93(6.14) 57.8141.76(6.92) 81.73 (0.30)
appropriate for unlearning. In the context of class SalUn (5] | 9755018 (245) | T3150iam(842) | 8027.ss0(1 16)

wise forgetting, we consider Dj using Fhe testing ~ SCRUB o1 | a3GhsanlCan) | O1L9:0(159) | BL18:002(0.25)
data from the class targeted for unlearning, where SSDI71] | 98.70:005(130) | 80.30500:(15.91) | 84.70:0,02(3.27)

. . . Ours 98.2610.35(1.74) 78.3241.03(13.59) 85.0340.91(3.60)
unlearning performance should align closely with
Retrain since the test-time data to forget share the same distribution with the training set. In the
context of data forgetting, we obtain Dj by applying the data corruption operation GN1 and ET1 used
in Fig. 2 to perturb D; (last two columns of Tab. 2), where Retrain is no longer the gold standard as

training data distribution excludes these shifts, allowing higher UA for better unlearning. As observed
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in Tab. 2, the unlearning performance of the forget vector remains effective when evaluated on Dj.
Among the model update-based unlearning baselines, current SOTA methods such as SCRUB [19],
SalUn [5] and SSD [71] also demonstrate generalization to Df, compared to simpler MU methods
like FT, RL, and GA, which show lower transferability.

Compositional Unlearning by Class-wise Forget Vectors. Next, we demonstrate the effectiveness
of compositional unlearning via forget vector arithmetic (termed CU-FV). Given pre-computed
class-wise forget vectors, we apply their linear combination as defined in (5) to achieve random

data forgetting. Tab.3 compares tl}e Table 3: Compositional unlearning on CIFAR-10 and ImageNet-
performance of C_U'FV with Retrain 1 for random data forgetting, where FV represents the original
(the exact unlearning method) and the  getting of forget vector that is directly learned based on a targeted
direct forget vector approach (FV) ap- forget set, and CU-FV denotes compositional unlearning achieved
plied to the targeted forget set. Interest- via pre-learned class-wise forget vector arithmetic. The results are
ingly, we observe that CU-FV achieves presented in the same format as Table 1.

the overall performance comparable to Modile |MUMethod|  UAT | MIABfficacy] | RAT | TAl  |AvaGapl
3 ] 1 ] Retrain 5.5040.16(0.00) |11.5740.47(0.00)| 94.24 14.19(0.00) | 99.88. 5(0.00)| 0.00
FV’ as lndlcated by SImllar Avg' Gap CIFAR-10 FV Z.gl:: i;(ZSO) 8.2)6;0;(3.[)()) 9[),9712 ;l;:(fi.ZT) 97.331337(2.55) 2.92

values. Unlike FV, CU-FV optimizes ResNet18 | RV | 5.36.10.60(0.14) | 9.7620.01 (L.81) | 88.6010.50(5.64) | 90403 10,64(1.95)| 3.16

. . . Retrain | 4.052.45(0.00) | 6.6011.07(0.00) | 96.3310.35(0.00) [99.481,67(0.00)| 0.00
only the class-wise coefficients in (5), I"“\'”;%;gel‘ém FV 22710 a0(L78) | 61311 40(047) |95.82,10.10(0.51) [ 98.20 - 0.30(1.19) | 0.99
resulting in a much smaller optimiza. > CU-FV | 22741 15(1.78) | 4.9541 56(1.65) | 914141 25(4.92) | 97.93 11 09(1.55) | 2.47
) g han FV. L fp N N0 Retrain | 1.414.06(0-00) | 99.07:0.01(0.00) [ 93.5710.00(0.00) [99.271,01(0.00)| 0.00

! FV | 1.0820.30(0.33) |98.972.35(0.10) | 91.40; 50(2.17) | 99.1040.50(0.17) | 0.69
tion space than FV. However, from U. vit CUFV | 16240 0m(021) | 9855 -0.14(0.52) | 92,010 30(148) | 98501 000 (0.77) | 0.75

and MIA-Efficacy metrics, we find that
unlearning effectiveness is easier to maintain since unlearning typically targets a smaller subset of
data points. In contrast, model utility (RA and TA) may decline more with CU-FV than with FV.

AsseSSing Forget Ve(:tor Via An IHPUt Forget Image  Original Model SCRUB Retrain Forget Vector
Saliency Lens. In Fig. 4, we explore the
impact of the forget vector on unlearn-
ing and utility retention through input
saliency map, using Grad-CAM (Gradient-
weighted Class Activation Mapping) [72].
Using Grad-CAM, we visualize the salient
pixels (i.e., regions most influential to
model prediction) for forget images un-
der different unlearning scenarios: (1) the Figure 4: Gradient-based saliency map visualized via Grad-
original model (without unlearning), (2) CAM for different MU methods against forget images. The
Retrain, (3) SCRUB-based unlearning, and highlighted areas (marked in red) indicate regions most influ-
(4) forget vector-based unlearning. In the ential to model prediction, and the red cross mark (%) indi-
first three scenarios, we obtain the input cates tl}at correspopding methods effef:ti\{ely unlearn the. input
saliency maps on raw forget images with- forget images, while the check (v) signifies the opposite.
out the addition of the forget vector, while in the last scenario, the input saliency is applied to images
perturbed by the forget vector. As seen in fig. 4 the forget vector and Retrain effectively unlearn
the target input images, evident from the significant shifts in saliency regions compared to those in
the original model. In contrast, the MU baseline SCRUB shows minimal saliency shifts, failing to
adequately forget the target data in the last row. More visualization results on both forget and retain
images can be found in Appendix G.

Ablation Studies. In Appendix E, we provide additional ablation studies on the sensitivity of the
unlearning-retaining regularization parameter A; in (4). Moreover, we perform the efficiency analysis
of forget vector calculation with those of other model-based unlearning methods in Appendix F.

7 Conclusion and Limitations

In this paper, we introduce a novel, data-based approach to machine unlearning (MU) in image
classification, termed the forget vector. Unlike traditional model-based MU methods that require
retraining or fine-tuning model weights, our approach shows that input-agnostic data perturbations
can effectively achieve unlearning objectives. Our method demonstrates competitive performance
relative to model-based approximate unlearning techniques. Furthermore, we showcase the potential
of compositional unlearning: new forget vectors for unseen tasks, such as unlearning arbitrary subsets
across classes, can be generated through simple arithmetic operations, like linear combinations of
class-specific forget vectors. Extensive experiments confirm the effectiveness and adaptability of
our optimized forget vector. Moreover, broader impacts and limitations discussion can be found in
Appendix H.
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Appendix

A Details of MIA Implementation

To evaluate the effectiveness of the unlearning process, MIA is implemented following [56] using
a prediction confidence-based attack method [73], which comprises a training phase and a testing
phase in its computation. Specifically, a balanced dataset is first formed by sampling data points from
retain set D, and test set Dy, ensuring the distinction from the forget set Ds. Then, a MIA predictor
is trained utilizing such balanced dataset. Thereafter, MIA-Efficacy can be calculated by applying
the trained MIA predictor to the unlearned model 8, on the forget set D;. Essentially, the goal is to
determine how many samples in Dy can be accurately identified as non-training data with respect to
6, by the MIA model. Formally, MIA-Efficacy is defined as follows,

MIA-Efficacy = Ny /|Dsl, 6)

where Ny, represents the total number of true negative samples in the forget set D¢ predicted by the
trained MIA model, i.e., the number of forgetting samples classified as non-training examples.

B Generalization of MU to Forget Data Shifts

100 FT 100 —— e
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Figure A1: The performance of class-wise forgetting on (ResNet-18, CIFAR-10) using the unlearning method FT,
RL and GA, evaluated on both benign evaluation sets (Benign) and perturbed sets, which include (1) Gaussian
noise (GN) with a standard deviation of 0.08 (termed GN1), (2) GN with a standard deviation of 0.2 (termed
GN2), (3) Elastic transformation (ET) with parameters (488, 170.8, 24.4) regarding intensity, smoothing, and
offset (termed ET1), (4) ET with parameters (488, 19.52, 48.8) (termed ET2), and (5) adversarial perturbations
from a 7-step PGD attack with strength ¢ = 8/255. The unlearning performance metrics are reported as (a) TA
(testing accuracy), (b) RA (retain accuracy), (c) UA (unlearning accuracy), and (d) MIA-Efficacy, as defined in
Sec.3 of main paper. The average performance is reported over 10 independent trials, where each trial focuses
on forgetting one specific class from CIFAR-10. Shaded regions indicate the performance variance.

In Fig. A1, we provide additional evaluations of other approximate unlearning methods, including
FT, RL, and GA against Gaussian noise at test time with standard deviations of 0.08 and 0.2 [20],
and two types of Elastic transformations with parameters (488, 170.8, 24.4) and (488,19.52, 48.8)
regarding intensity, smoothing and offset for moderate and high-intensity distortions [20], as well
as a 7-step PGD attack with perturbation strength ¢ = 8/255 [21]. The experiments are conducted
on the CIFAR-10 dataset using ResNet-18 for the image classification task. As can be seen, the
experimental results presented in Fig. Al are consistent with the findings in Sec.4 of the main
paper, further reinforcing the validity of our conclusions. Specifically, as shown in Fig. A1-(a) and
(b), model utility, measured by RA (retain accuracy) and TA (testing accuracy), decreases when
external perturbations are applied to the evaluation sets compared to its original performance without
perturbations. Meanwhile, Fig. A1-(c) and (d) show that unlearning effectiveness measured by UA
(unlearning accuracy) and MIA-Efficacy, remains stable despite the presence of these perturbations
on the forget set.

C Parameter Sensitivity Analysis: Prediction Margin 7 in Forget Vector Loss

In Fig. A2, we provide the sensitivity analysis of 7 on two datasets regarding two forgetting scenarios:
class-wise forgetting and random data forgetting, where we varied 7 from 0.0 to 2.2 with a step of
0.2. As can be seen, the forget objective is robust to variations in the nonnegative margin parameter
7. When 7 is set to 1, the performance across four metrics achieves an optimal tradeoff. Therefore,
we choose 7 = 1 for our experiments.
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Figure A2: Sensitivity analysis of the nonnegative margin parameter 7 for image classification under two
unlearning scenarios on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning
performance metrics are reported as (a) TA (testing accuracy, blue curve), (b) RA (retain accuracy, orange curve),
(c) UA (unlearning accuracy, red curve), and (d) MIA-Efficacy (green curve), (e) the average (Avg.) performance
across TA, RA, UA, and MIA-Efficacy (purple curve). For class-wise forgetting scenario, the performance is
averaged over 10 independent trials, with each trial focusing on forgetting one specific class from the dataset.
Similarly, for random-data forgetting scenario, the performance is reported across 10 independent trials, where
each trial targets the forgetting of a random subset of the dataset. The shaded regions represent the variance in
performance across trials.

D Performance on ImageNet-10 using VGG-16

Table A1l: Performance overview of various MU methods for image classification under two unlearning scenarios
on ImageNet-10 using VGG-16. Since Class-F [70] is specifically designed for class-wise forgetting, its results
do not apply to random data forgetting scenarios (n/a). Other results are reported in the format a5, where a is
the mean and b denotes standard deviation b over 10 independent trials. The performance gap against Retrain is
indicated in (e), where a lower value is better. 1 (or |) indicates that a higher (or lower) value is better. The best
performance for each metric is highlighted in jg€eny, while the second-best performance is highlighted in @
MU Method | UAT MIA-Efficacy? RA?T TAT Avg.Gapl| UA?T MIA-Efficacy RA?T TAT Avg.Gap|
Class-wise Forgetting, ImageNet-10, VGG-16 Random Data Forgetting, ImageNet-10, VGG-16
Retrain | 100.0040.00(0.00) 100.000.00(0.00)  99.6640.16(0.00)  97.1140.82(0.00)  0.00 | 4.0540.45(0.00)  6.6041.07(0.00)  99.4820.07(0.00) 96.3310.38(0.00)  0.00

FT[4]  |39.662173(6 55.76,47.20(44.21) ODMBEGROAR] 7. 27i030(2 35)  26.77 | 1.3510.52(2.70) 4671151(1 ) 99.361028(0.12) 96.541059(0.21)  1.24

RL 2] 9)  20.00 125(6.25)  99.192016(0.29)  95.504000(0.83)  2.12

GA[10] 26.37 | 0.1840.04(387) 2. 99.8620.01(0.38)  97.4T40.00(1.14)  2.23

NegGrad+ [551|49.5611.87(50.44) 64.27 17 53(35.73) 99.0841.15(0.58) 21.84 | 0.6020.44(3.45)  3.9042.02(2.70) [OIGSEGBEORON 97.12.0.45(0.79)  1.79
SalUn [5]  |MO5MIBETRGCST MOTRALGREI6)] 96.330.25(3.33) L1550.40(2.90)  3.5641.12(3.04)  98.974156(0.51) 95.4242,0(0.91)  1.84
SCRUB [19] |F992SGH(USS)] 98 0IGEII09N

Class-F [70] | 71195 50(28.81) 63.5714.07(36.43) 61.55.425(38.11) 59404 50(37.71)

0.1840.08(3.87)  2.8041.33(3.80)  99.88:0.03(0.-40)  97.36.4015(1.03)  2.28
n/a

Lorr
35.27

n/a n/a n/a
SSDITI] | 91.501005(5.30) 91.30-470(8.70) 9915 TGO 435 | 0.58.00:.17) 199:3620,15(012)" 964050 10(0.07)]
Ours | 87.231655012.77) 91AL1500(3.59) 947751 16(5.14) 94044, 2(0.588) 685 |NR2TEGEH0ETSIN 98.2940.32(1.19)  95.82.0.45(0.51)

n/a

In Tab. A1, we provide additional performance overview of different MU methods under two un-
learning scenarios on ImageNet-10 using VGG-16. Considering the gain in unlearning effectiveness,
the Avg. Gap with Retrain shows that the forget vector remains competitive, except for class-wise
forgetting on (ImageNet-10, VGG-16). In this case, SCRUB achieves the best performance, as it
leverages model distillation [74], a technique well-suited for class-wise forgetting.

E Component Analysis: \; and )\,

CIFAR-10, ResNet-18 CIFAR-10, ResNet-18 ImageNet-10, VGG-16

@ Class-wise Forgetting ®) Random Data Forgetting © Class-wise Forgetting
Figure A3: Sensitivity analysis of the nonnegative hyper-parameters A; (ranging from 1 to 5 with an interval of
1) and A2 (ranging from O to 4 with an interval of 1) for image classification under two unlearning scenarios
on CIFAR-10 and ImageNet-10 using ResNet-18 and VGG-16, respectively. The unlearning performance is
reported using the average (avg.) performance across UA, RA, TA, and MIA-Efficacy, with a green star (%)
marking the chosen parameter scheme (A1 and A2) in our experiments. The color bar on the right represents a
gradient scale from light to dark red, indicating the range of values (0 to 100%) in the heatmap. The integer
within each cell represents the performance (%) given a combination of A\; and A».

ImageNet-10, VGG-16
Random Data Forgetting

(d)

To verify the impact of each key component in the optimization problem (4) of the main paper, we
analyze the nonnegative trade-off parameters \; and A, in Fig. A3. As can be seen in Fig. A3-(a) and
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(c), setting the retain loss regularization parameter \; to 3 for CIFAR-10 using ResNet-18 and 5 for
ImageNet-10 using VGG-16 in class-wise forgetting, along with the {5-norm regularization parameter
A2 = 1, enables our proposed method to achieve the highest average performance. Meanwhile, for
the random data forgetting scenario, setting both A; and A5 to 1 yields the best average performance
for CIFAR-10 using ResNet-18 and ImageNet-10 using VGG-16.

F Efficiency Analysis

Table A2: The efficiency profile of different MU methods across two metrics for image classification under two
unlearning scenarios on CIFAR-10 (RestNet-18) and ImageNet-10 (VGG-16 and ViT). Results are reported in
terms of run-time efficiency (RTE) measured in minutes for the overall training phase and parameter efficiency
denoted by parameter number (Param.#) in Million (M), where a smaller value is favored for each metric.

Class-wise Forgetting Data Forgetting

MU Method CIFAR-10, ResNet-18 [ TmageNet-10, VGG-16 |  TmageNet-10, ViT CIFAR-10, ResNet-18 [ TmageNet-10, VGG-16 | TmageNet-10, VIT
RTE Param. # | RTE Param. # | RTE Param. # RTE Param. # | RTE Param. # | RTE Param. #
Retrain ‘ 81.30 11.17 ‘ 118.89 15.31 ‘ 301.98 85.81 ‘ 103.71 1117 ‘ 116.10 15.31 ‘ 290.60 85.81
FT [4] 4.56 11.17 2.99 15.31 15.40 85.81 2.28 1117 2.95 15.31 14.47 85.81
RL [2] 5.61 11.17 3.58 15.31 33.00 85.81 4.75 1117 3.59 15.31 32.84 85.81
GA[10] 1.16 11.17 0.30 15.31 2.10 85.81 1.15 11.17 0.31 15.31 3.10 85.81
NegGrad+ [55] 4.72 11.17 3.21 15.31 16.70 85.81 4.22 11.17 3.17 15.31 16.40 85.81
SalUn [5] 2.81 5.59 2.56 7.66 18.73 42.91 3.01 5.59 2.85 7.66 18.19 42.91
SCRUB [19] 1.23 11.17 1.62 15.31 33.45 85.81 1.53 1117 1.55 15.31 22.27 85.81
Class-F [70] 1.21 11.17 2.10 15.31 2.86 85.81 n/a n/a n/a n/a n/a n/a
SSD [71] 1.20 11.17 2.10 15.31 2.21 85.81 1.15 11.17 2.00 15.31 222 85.81
Ours 2.37 0.03 6.15 0.15 4.80 0.15 6.15 0.03 6.50 0.15 8.58 0.15

To demonstrate the efficiency profile of various MU methods under different metrics, we compare
the runtime costs of forget vector calculation with those of other model-based unlearning methods,
and the total number of updated parameters in the training phase. Specifically, following [5], we use
run-time efficiency (RTE) as an evaluation metric, which measures the computation time of applying
an MU method in minutes. To ensure a fair comparison, we report the runtime of each approximate
MU method within 10 epochs since the number of iterations varies across different MU methods.
Additionally, inspired by [75], we compare the number of trainable parameter number (Param.#).
Notably, all evaluations are performed in the same computational environment with an NVIDIA
A6000 GPU, ensuring fair and reliable comparisons by maintaining a consistent batch size across all
MU methods. The corresponding results can be found in Tab. A2, and we can draw the following
observation: 1) By comparing the training time of model-based methods with our proposed approach
using RTE within the same iterations, we observe that the forget vector method achieves competitive
RTE compared to some efficient approximate model-based unlearning baselines and remains faster
than retraining. Besides, it is worth noting that the forget vector method optimizes fewer parameters,
owing to its input-level design and perturbation space is significantly lower-dimensional. This trade-
off underscores the efficiency of our forget vector in handling parameter scaling. For instance, when
comparing forgetting cases on ImageNet-10 using VGG-16 and ViT models, we find that as the
parameter count increases from “15.31M” in VGG-16 to “85.81M” in ViT, the optimization time
for most baseline methods increases significantly. In contrast, our method maintains a consistent
efficiency level or even achieves a shorter runtime, highlighting a key advantage of our forget vector
approach. 2) From a memory-efficient perspective in real-world application, existing model-based
MU methods often necessitate a series of operations (e.g., fine-tuning) on the already-trained model
for each forgetting request. This necessitates storing a separate model version for every request,
leading to substantial storage overhead. In contrast, our approach optimizes an input-level universal
perturbation, where only the “forget vector” associated with the data to be forgotten is stored with
original model remains intact. Since each forget vector has the same dimensionality as the input
image (e.g., 0.03M for CIFAR-10 and 0.15M for ImageNet) and is significantly smaller than the full
model, our approach offers a considerable advantage in storage efficiency for practical applications.

G Additional Visualization through An Input Saliency Lens

In Figs. A4 and A5, we provide additional visualization results through input saliency map for
different methods against forget images and retain images, respectively, using Grad-CAM (Gradient-
weighted Class Activation Mapping) [72]. Consistent with the main paper, we highlight the salient
pixels (i.e., regions most influential to model predictions) under four scenarios: (1) the original
model (without unlearning), (2) Retrain, (3) SCRUB-based unlearning, and (4) forget vector-based
unlearning. For the first three scenarios, saliency maps are generated on raw forget/retain images,
whereas for the last scenario, they are applied to images perturbed by the forget vector.
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Flgure A4: Gradient-based saliency map visualized via Gra -CAM for different MU methods against forget
images. The highlighted areas (marked in red) indicate regions most influential to model prediction, and the red
cross mark (%) indicates that corresponding methods effectively unlearn the input forget images.

Retain Image Original Model SCRUB Retrain Ours Retain Image  Original Model SCRUB Retrain Ours
. o~

Figure AS: Gradient-based saliency map visualization using Grad-CAM for different MU methods against
retain images.

H Broader Impacts and limitations

Broader impacts. Our study on the forget vector introduces a novel, data-driven machine unlearning
approach that offers significant potential across various domains. @ Privacy Preservation and
Regulatory Compliance: With increasing global regulations like GDPR mandating the right to be
forgotten, our method enables effective unlearning of specific data points without requiring full model
retraining, which is especially valuable for industries handling sensitive data, such as healthcare,
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finance, and personalized recommendation systems. By enabling compliant data removal with
minimal computational overhead, our approach strengthens data privacy practices while maintaining
model integrity. @ Adaptability Across Tasks: The compositional nature of forget vectors allows for
the unlearning of previously unseen tasks by combining class-specific forget vectors. This adaptability
extends the method’s applicability, where our method is able to respond more quickly when faced
with new random unlearning tasks. @ Efficiency in Unlearning and Model Storage: Unlike model-
based MU approaches that require significant computational resources and model storage for each
unlearning request, our method provides an energy-efficient alternative with less trainable parameters
and low storage of optimized forget vector. This efficiency is particularly beneficial for organizations
deploying large-scale Al models, where frequent updates or compliance-driven data deletions could
otherwise be prohibitively expensive, contributing to the sustainability of Al development.

Limitations. While our forget vector approach presents compelling advantages, it also comes with
certain limitations that need to be addressed for broader adoption: @ Vulnerability to Adversarial
Attacks: Since our method relies on input perturbations rather than direct model modifications,
it may be vulnerable to white-box adversarial attacks where an attacker has access to the model
and understands the forget vector mechanism. These adversaries could potentially reconstruct
forgotten data or design countermeasures to bypass unlearning. Future work should focus on
strengthening robustness against such attacks through adversarially hardened perturbation strategies.
@ Computational Cost of Compositional Unlearning: The generation of new forget vectors through
compositional operations requires access to pre-trained class-wise forget vectors. In scenarios where
these vectors are unavailable, applying our method at scale could introduce overhead. @ Lack of
Theoretical Guarantees: While empirical results demonstrate the effectiveness of our method, formal
theoretical guarantees on its unlearning performance and robustness remain an open challenge. Future
work should focus on establishing rigorous mathematical foundations for the forget vector framework.
@ Generalization to Other Domains: Our current study focuses on image classification, and its
applicability to other domains, such as natural language processing or image generation, remains
to be explored. Investigating the feasibility of forget vectors in diverse machine learning tasks is an
important direction for future research.

18



741

742

743
744

745

746
747

748

749
750
751
752

754
755
756
757

759

760

761
762

763

764
765

766

767
768
769
770
771
772
773
774

775
776
777
778
779
780
781
782
783

784

786
787
788
789

790

791
792

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outlines the key contributions, and
appropriately limits its scope to machine unlearning task.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations discussion that need to be addressed for broader adoption can
be found in Appendix H.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides a complete set of assumptions and correct proofs for each
theoretical result as detailed in sections 4 and 5.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes comprehensive information and clear guidelines for re-
producing the main experimental results, covering model training, parameter selection, and
evaluation protocols, as outlined in sections 5 and 6.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The complete source code, along with detailed instructions for running the
code and the required environment setup have been included in the supplementary material.
The code is designed to work with publicly available datasets. For the ImageNet10 dataset,
we have clearly listed the specific categories used in the supplementary material, ensuring
the faithful reproduction of the main experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Comprehensive details regarding the training and test settings, including
data splits, hyperparameter configurations, optimizer choices are included in section 6 and
Appendix A, C, E, ensuring that the experimental setup is fully reproducible and the results
are accurately interpretable.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper accurately reports statistical significance by including the mean and
standard deviation values computed from 10 independent trials for each method (e.g., Table
1, Table 2, Table 3, and Figure 2). This approach provides a robust measure of performance
variability, clearly reflecting the consistency and reliability of the experimental results.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the computational resources re-
quired for each experiment, including the runtime efficiency (RTE) in minutes and parameter
numbers (Param. #) in millions, as presented in Table A2 in Appendix F.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics. The experiments use publicly available datasets, and all necessary measures have
been taken to preserve participant privacy and data anonymity. No personal or sensitive
information was used, and the study adheres to ethical standards for data handling and model
evaluation.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of our work are discussed in detail in Appendix H,
where we outline the potential positive impacts, including privacy preservation, regulatory
compliance, adaptability across tasks, and efficiency in unlearning and model storage. These
discussions highlight the societal benefits of our proposed approach, particularly in contexts
requiring efficient and scalable machine unlearning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper carefully considers the potential risks associated with model misuse
and has implemented appropriate safeguards for responsible release. Specifically, the models
used in this work are trained on publicly available datasets with clearly defined and ethically
compliant usage licenses. Additionally, the paper explicitly addresses privacy concerns
through the use of forget vectors, which ensure sensitive data can be effectively unlearned,
reducing the risk of unintended data retention or misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Detailed citations are included in the main text and Appendix to ensure proper

acknowledgment of the original contributors. The license terms and conditions for these
assets adheres to the respective open-source licenses.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The source code is well-documented in the supplementary materials, where
comprehensive instructions for usage are included to facilitate reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. All
experiments are conducted using publicly available datasets and machine learning models,
without the need for human participant data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects and therefore
does not require Institutional Review Board (IRB) approval or equivalent ethical review.
All experiments were conducted using publicly available datasets without direct human
involvement.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods and contributions of this paper do not involve the use of
large language models (LLMs) as an essential, original, or non-standard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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