
Structure-Aware Corpus Construction and User-Perception-Aligned
Metrics for Large-Language-Model Code Completion

Anonymous ACL submission

Abstract001

Code completion technology based on large002
language model has significantly improved the003
development efficiency of programmers. How-004
ever, in practical applications, there remains005
a gap between current commonly used code006
completion evaluation metrics and users’ ac-007
tual perception. To address this issue, we pro-008
pose two evaluation metrics for code comple-009
tion tasks—LCP and ROUGE-LCP, from the010
perspective of probabilistic modeling. Fur-011
thermore, to tackle the lack of effective struc-012
tural semantic modeling and cross-module de-013
pendency information in LLMs for repository-014
level code completion scenarios, we propose a015
data processing method based on a Structure-016
Preserving and Semantically-Reordered Code017
Graph (SPSR-Graph). Through theoreti-018
cal analysis and experimental validation, we019
demonstrate the superiority of the proposed020
evaluation metrics in terms of user perception021
consistency, as well as the effectiveness of the022
data processing method in enhancing model023
performance.024

1 Introduction025

In recent years, the capabilities of large language026

model (LLM) in code understanding and genera-027

tion have made remarkable progress, greatly driv-028

ing transformations in the software development029

field. Code assistants such as GitHub Copilot030

(GitHub, 2021) and Cursor (Cursor, 2023) have en-031

abled efficient handling of "on-the-fly completion"032

tasks like single-line and in-line code completions,033

significantly boosting development efficiency (Tak-034

erngsaksiri et al., 2024; Qi et al., 2024).035

Currently, LLMs perform well in code comple-036

tion task with contextual information. Despite their037

excellent performance on synthetic datasets, only038

a few models have been successfully applied to039

real-world products. In our practical application of040

XXX-Code-Copilot (a private-domain code assis-041

tant for communication), we encountered similar042

issues, primarily attributed to the following two 043

factors: 044

1. A discrepancy between model capabilities 045

and users’ actual perception, reflecting the limi- 046

tations of current evaluation metrics in capturing 047

user experience (Liu et al., 2024a; Wu et al., 2024; 048

Van Dam et al., 2024); 049

2. Existing LLMs typically rely on simple token 050

sequence-based training methods, focusing on lo- 051

cal associations between tokens, while failing to 052

effectively capture the intrinsic structure and cross- 053

file, cross-module dependencies of code (Shi et al., 054

2023; Liu et al., 2024b). 055

These issues significantly limit the practical ap- 056

plication value of code models in complex indus- 057

trial environments. 058

To address the first issue, some researches have 059

attempted to screen suitable evaluation metrics by 060

incorporating user perception data and explore the 061

relationship between evaluation metrics and user 062

behavior (Aye et al., 2021; Bibaev et al., 2022; van 063

Dam et al., 2023). However, in practical scenarios, 064

the design of evaluation metrics needs to balance 065

LLM characteristics with user perception to bet- 066

ter guide model training. Therefore, how to de- 067

sign effective evaluation metrics has become a key 068

challenge in evaluating LLMs’ code completion 069

capabilities. 070

Inspired by this, we propose two evaluation 071

metrics for "on-the-fly completion" tasks: LCP 072

(Longest Common Prefix) and ROUGE-LCP. We 073

first theoretically analyze the relationship between 074

these metrics and the probability distributions of 075

model outputs; subsequently, based on XXX-Code- 076

Copilot’s data logging system, we conduct quali- 077

tative and quantitative analyses of over ten thou- 078

sand user completion behaviors within two months, 079

validating the consistency between the proposed 080

metrics and user adoption behavior. 081

Regarding the second issue, existing researches 082

enhance models’ structural awareness by construct- 083

1

ing training corpora using abstract syntax trees084

(ASTs) (Gong et al., 2024; Jiang et al., 2025).085

However, these methods are limited to local struc-086

tures within single files, lacking effective percep-087

tion of global cross-file dependencies. Other re-088

searches adopt Retrieval-Augmented Generation089

(RAG) methods to explicitly retrieve dependent090

code snippets for target code fragments, enhanc-091

ing the model’s completion capabilities (Liu et al.,092

2024b), but fail to fully consider context and model093

affinity. How to perform repository-level code094

structure modeling and enhance models’ percep-095

tion of cross-file, cross-module code structures and096

semantic dependencies has become an urgent prob-097

lem to be solved.098

To this end, we propose a repository-level code099

corpus processing framework. First, we design100

an AST-based semantic unit segmentation method,101

enhancing the semantic structural integrity of pre-102

training corpora through structural consistency103

checks and multi-scale granularity control. Sub-104

sequently, we construct a Structure-Preserving105

and Semantically-Reordered Code Graph (SPSR-106

Graph), explicitly modeling function-level call re-107

lationships and struct reference paths across files,108

thereby significantly improving the model’s under-109

standing of repository-level code. Experimental110

results show that our proposed method performs111

exceptionally well in the communication domain’s112

"on-the-fly completion" task, significantly improv-113

ing the quality and generalization ability of code114

completion in cross-file, cross-module scenarios.115

In summary, the main contributions of this paper116

are as follows:117

• We propose two evaluation metrics for "on-118

the-fly completion" tasks—LCP and ROUGE-119

LCP. Through theoretical derivation and em-120

pirical analysis, we demonstrate the consis-121

tency of the proposed metrics with user per-122

ception.123

• We propose a data processing method based124

on the Structure-Preserving and Semantically-125

Reordered Code Graph for constructing model126

training corpora, significantly enhancing the127

model’s perception and utilization of cross-128

file, cross-module code structures and seman-129

tic dependencies. The effectiveness and su-130

periority of the method are validated in the131

communication domain’s "on-the-fly comple-132

tion" task.133

2 Related Work 134

2.1 Evaluation Metrics for Code Completion 135

Tasks 136

Currently, many evaluation metrics are used for 137

code completion tasks. Common metrics include 138

Exact Match (EM), Unit Testing (UT), Edit Sim- 139

ilarity (ES), BLEU, ROUGE-L, and ROUGE-N 140

(Zhuo et al., 2024; Ding et al., 2023; Wang et al., 141

2024; Izadi et al., 2024; Yang et al., 2024; Austin 142

et al., 2021). Although unit testing is considered 143

the gold standard for code tasks, its high production 144

cost makes it impractical for large-scale use. For 145

code completion tasks, researchers tend to use EM 146

and ROUGE-L due to the availability of context 147

and ground truth (Li et al., 2025; Jiang et al., 2025; 148

Izadi et al., 2024). However, in our practice, we 149

find that EM and ROUGE-L still fall short in cap- 150

turing user perception for "on-the-fly completion" 151

tasks. 152

2.2 Repository-Level Code Completion 153

Repository-level code completion scenarios often 154

require long-context inputs spanning multiple files 155

and modules, inevitably introducing redundant in- 156

formation and reducing generation quality (Shi 157

et al., 2023). To address this, CoCoMIC (Ding 158

et al., 2024) and RepoFusion (Shrivastava et al., 159

2023) enhance models’ context-awareness through 160

long-context fine-tuning of LLMs. To further re- 161

duce contextual redundancy, CodeT5 (Wang et al., 162

2021) and PLBART (Ahmad et al., 2021) construct 163

hard-structured code corpora using abstract syntax 164

trees (ASTs); AST-T5 (Gong et al., 2024) further 165

constructs soft-structured code corpora with high 166

model affinity using ASTs, improving the model’s 167

perception capabilities. GraphCoder (Liu et al., 168

2024b) introduces control flow graphs to build 169

Code Context Graphs and injects context through 170

Retrieval-Augmented Generation (RAG), improv- 171

ing the model’s accuracy in repository-level code 172

completion tasks. 173

However, existing models still suffer from insuf- 174

ficient structural awareness when handling long- 175

context inputs spanning multiple files and modules. 176

3 Method 177

3.1 User Behavior Analysis 178

Definition of Adoption: Developers accept the 179

code suggestions provided by Copilot and directly 180

apply them to the project, either as-is or after modi- 181

2

fication. Here, we consider each press of the "Tab"182

key by the user as one adoption.183

Definition of Adoption Rate: (Number of184

adopted code suggestions / Total number of code185

suggestions generated by Copilot during develop-186

ment) * 100%187

User Behavior Analysis: From a practical per-188

spective, in code completion scenarios, the higher189

the similarity between the model’s output and the190

reference answer, the more likely users are to adopt191

it. However, considering the left-to-right code edit-192

ing habits of users, they often pay special attention193

to whether the model’s output starts correctly from194

the first character. Even if only part of the output195

is correct, users may still adopt it and manually196

modify the result.197

Therefore, we can reasonably infer that the198

longer the longest common prefix (LCP) between199

the model’s output and the reference answer, the200

higher the user adoption rate.201

This observation suggests that traditional metrics202

such as Exact Match (EM) or ROUGE-L may203

not fully reflect the model’s performance in real-204

world usage scenarios. Instead, metrics focusing205

on continuous prefix matching better align with206

user expectations and interaction patterns.207

To address this issue, we propose two new evalu-208

ation metrics that better align with user perception:209

- Longest Common Prefix (LCP);210

- A variant of ROUGE-L —— ROUGE-LCP.211

Next, we will analyze the theoretical foundation212

of these proposed metrics based on the probabilis-213

tic modeling mechanism of large language models214

(LLMs) and establish their probability distribution215

models to explain the relationship between these216

metrics and user adoption behavior.217

3.2 Design of LCP and ROUGE-LCP Metrics218

Longest Common Prefix (LCP): The Longest219

Common Prefix (LCP(S, R)) is defined as the max-220

imum number of consecutive characters that match221

between the model’s output S and the reference222

text R, starting from the beginning.223

This metric emphasizes continuity starting from224

the first character, which is a critical feature in225

interactive code writing and editing. Unlike LCS-226

based metrics that allow non-contiguous matches,227

LCP aligns more closely with real user experiences.228

Based on the probability formula for LLM out-229

puts, we can model the correctness probability of230

the first n characters of the model’s output, i.e.,231

derive the probability distribution of LCP.232

Let n represent the number of consecutive 233

correct characters before the first incorrect posi- 234

tion. Let the model’s output sequence be S = 235

s1, s2, ..., sT , and the reference sequence (i.e., the 236

actual code) be R = r1, r2, ..., rT . In other words, 237

n = k means the first k characters are correct (i.e., 238

s1 = r1, ..., sk = rk), while the (k + 1)-th charac- 239

ter is the first error (i.e., sk+1 ̸= rk+1). 240

The probability of n = k is modeled as: 241

P (n = k) = P (LCP (S,R) = k) =(
k∏

t=1

P (st = rt | s1 = r1, . . . , st−1 = rt−1)

)
· (1− P (sk+1 = rk+1 | s1 = r1, . . . , sk = rk))

242

This is a long-tail distribution, reflecting the in- 243

creasing difficulty of maintaining correctness over 244

longer sequences. 245

This metric correlates well with user adoption 246

rates and better reflects the model’s actual capabili- 247

ties in code completion. Moreover, the probability 248

distribution of this metric aligns with the correct- 249

ness distribution of the model’s output, making it 250

compatible with loss functions and providing clear 251

guidance for model training. Unlike LCS-based 252

metrics that allow non-contiguous matches, our 253

definition emphasizes continuity starting from the 254

first character — a key aspect of interactive code 255

writing and editing. 256
ROUGE-LCP: Inspired by the normalization con- 257
cept of ROUGE-L, we further propose a normal- 258
ized evaluation metric based on LCP, defined as 259
follows: 260

ROUGE-LCP(S,R) =
LCP(S,R)

|R| 261

This metric divides the LCP value by the length 262

of the reference sequence |R|, enabling fair com- 263

parisons across samples of different lengths. Since 264

LCP strongly correlates with user adoption behav- 265

ior, we have reason to believe that ROUGE-LCP 266

can also effectively reflect the practicality of model 267

outputs in interactive scenarios. Experimental re- 268

sults also validate this hypothesis. To further under- 269

stand the statistical properties of ROUGE-LCP and 270

establish a mathematical connection with Exact 271

Match (EM), we introduce an auxiliary parame- 272

ter |Sext|, representing the length of the portion of 273

the model’s output that extends beyond the refer- 274

ence sequence when LCP(S,R) = |R|. Based on 275

this, we can model the probability distribution of 276

ROUGE-LCP as a mixed distribution, as follows: 277

3

Preprocessing Filtering Cleaning Deduplication

AST-Based	Semantic	FIM	Cut

Semantic	Subtree
Extraction

Completion
Check

Node	Extraction Relation	Extraction

F1

F2S1

...

SPSR-Graph

Processing	pipeline	of	Raw	Code	Data

AST	Datebase

Pre-training

F

F

S

C

M

M1

C1

Function-level...

Code	Graph

Struct-level

SFT Evaluation	Queue Evaluation	Metrics Best	model Users

EM

LCP

BLUE

Copilot

Raw	Code Traing	Code	Corpus

Model	Training	&	Copilot	Integration

AST
FIM

Normal
			FIM

No Yes

Traing	Code	Corpus AST	Parser

F

F

S

C

M

Function

Struct

Class

Macro	

Figure 1: Overview of the proposed framework. The framework includes three stages: corpus preprocessing, AST
structural segmentation, and structure-aware graph construction, transitioning from local semantic preservation to
global dependency modeling to systematically construct structure-aware code completion corpora.

P (Rouge-LCP(S,R)) =

P

(
LCP(S,R)

|R|

)
, if LCP(R,S) < |R|;

P (EM(S,R)), if LCP(R,S) = |R| and S = R;

P

(
LCP(S,R) + |Sext|

|R|

)
,

if LCP(R,S) = |R| and S ̸= R;

278

According to the Central Limit Theorem, the279

length of the reference text |R| typically follows an280

approximately Gaussian distribution in real-world281

settings. This formula reveals the dual nature of282

ROUGE-LCP:283

When the output prefix does not fully match the284

reference text, the metric value is less than 1, cor-285

responding to partially correct cases; When the286

output prefix fully matches the reference text, the287

metric value is 1, and the output may continue gen-288

erating additional content (i.e., |Sext| > 0), which289

should also be included in the evaluation scope.290

Thus, the distribution of ROUGE-LCP can291

be viewed as the superposition of two sub-292

distributions:293

Partial Match Component: Captures the model’s294

ability to generate partially correct prefixes;295

Exact Match Component: Measures the model’s296

ability to not only generate correct prefixes but also297

continue producing useful content beyond that.298

This modeling approach allows us to analyze the299

model’s performance at different stages within a300

unified framework and provides a theoretical basis301

for further exploring its relationship with user adop-302

tion behavior. In subsequent experiments, we will303

separately analyze the correlation between these 304

two components and user adoption rates. 305

3.3 Repository-Level Code Corpus Processing 306

Framework 307

In this section, we describe in detail the corpus 308

preprocessing pipeline, AST-based semantic seg- 309

mentation, and the construction process of the code 310

knowledge graph. Corpus preprocessing aims to 311

improve the quality of training corpora by reduc- 312

ing noise and irrelevant information; AST-based se- 313

mantic segmentation ensures the integrity of seman- 314

tic units and prevents semantic disruption; while 315

the code knowledge graph focuses on further con- 316

structing and enhancing the relationships between 317

semantic units, thereby improving the model’s 318

global and cross-library semantic understanding 319

capabilities. 320

To ensure that the generated knowledge graph 321

corpora are of high quality, we have established a 322

systematic preprocessing workflow, including key 323

steps such as data filtering, data cleaning, and dedu- 324

plication. Specific filtering rules, cleaning meth- 325

ods, and deduplication processes are detailed in 326

Appx.A. 327

3.3.1 Syntax-Aware Semantic Unit Extraction 328

via AST 329

To enhance the structural awareness of pretrain- 330

ing corpora, we propose an AST-based semantic 331

segmentation method as an alternative to tradi- 332

tional random or sliding-window masking strate- 333

gies based on tokens. This method uses seman- 334

tically closed subtrees in the AST as segmenta- 335

4

tion units, ensuring the structural integrity and con-336

textual continuity of the masked units. Specifi-337

cally, the method includes the following four steps:338

First, tools like Tree-sitter are used to parse the339

source code and extract semantically complete AST340

subtrees, such as function bodies and conditional341

branches. Second, a subtree is randomly sampled342

as the masking target, replaced with a placeholder,343

and concatenated with its preceding and succeeding344

contexts to form the training input. Third, struc-345

tural integrity checks are performed to ensure that346

the masking operation does not disrupt the syntac-347

tic parsability of the remaining code. Finally, a348

granularity control parameter θ is introduced to ad-349

just the size of the subtrees, supporting multi-scale350

structural modeling. This method can be completed351

in linear complexity and is suitable for large-scale352

code corpus construction. For the formal modeling,353

algorithm, and comparative analysis with greedy354

segmentation, please refer to Appx.B.355

3.3.2 Structure-Preserving and356

Semantically-Reordered Code Graph357

After AST-based semantic unit extraction, segmen-358

tation, and completeness verification, we build a359

Structure-Preserving and Semantically-Reordered360

Code Graph (SPSR-Graph) to generate training361

corpora that maintain global call consistency. The362

construction proceeds in two stages: (1) semantic-363

unit extraction, where we parse the vertical-domain364

codebase to obtain self-contained units such as365

functions, structs, and classes; and (2) semantic-366

relationship graphing, where we connect these367

units with directed edges that encode calls, refer-368

ences, and inclusions. Traversing this graph along369

call paths allows us to reorder source code into370

contextually aligned sequences, enriching the struc-371

tural depth of the corpus and enabling repository-372

level, cross-library context modeling.373

To further extend the structural depth of training374

corpora and enhance cross-library context mod-375

eling, we propose organizing semantic units into376

structured graphs, constructing a semantic depen-377

dency graph named SPSR-Graph. The graph con-378

struction process is divided into two stages: se-379

mantic unit extraction and semantic relationship380

graphing. The SPSR-Graph construction process381

consists of two stages:382

The first stage is element extraction. We use383

an AST parser to parse the entire codebase and384

extract all top-level semantic units νi ∈ ν, such385

as function bodies, structs, and class definitions.386

Each νi is semantically complete and stored in a 387

structured database for subsequent calls. 388

The second stage is relationship extraction and 389

graph construction. We represent the code graph 390

as Γ = (V, ϵ), where V is the set of nodes, i.e., 391

the extracted semantic units; ϵ ⊆ V × V is the set 392

of directed edges. If there is a call relationship 393

νi → νj , we define the edge (νi, νj) ∈ ϵ. Edge 394

types can support, but are not limited to: direct 395

function calls (Direct Call), member references 396

(Member Reference), type dependencies (Type Us- 397

age), macro or template expansions (Macro Expan- 398

sion), and file inclusions (Include Dependency). To 399

preserve contextual integrity, graph construction 400

supports node attribute enhancement (e.g., defini- 401

tion location, module affiliation, syntax type labels) 402

and edge type annotations, further enhancing the 403

graph’s semantic capacity. 404
On the directed graph Γ, we use directed BFS to 405

search for all paths P with depth d ≤ D: 406

P = {pk = (νk1 , νk2 , ..., νkm) | νki ∈ V, m ≤ D} 407

Path selection supports multiple strategies: for- 408
ward call expansion (Forward Call Expansion), 409
field access chain expansion (Field Access Expan- 410
sion), and header inclusion prioritization (Header 411
Inclusion). Each path pk is mapped to the following 412
training sample: 413

Sample(pk) = νk1 ⊕ νk2 ⊕ . . .⊕ νkm 414

where ⊕ denotes structure-aware concatenation. 415
To enhance the model’s cross-file structural mod- 416

eling capability, we insert file path information and 417
structural comments during concatenation: 418

νki 7→ /* file: path/to/file */⊕ code 419

The following algorithm explicitly shows the train- 420

ing sample construction process for SPSR-Graph. 421

First, the system constructs the graph structure us- 422

ing the extracted AST semantic units, where each 423

node represents a semantically complete code unit, 424

and edges represent call or reference relationships. 425

Then, breadth-first traversal (BFS) is used to enu- 426

merate all semantic paths with depth not exceeding 427

D. 428

During traversal, for each valid path in the graph, 429

the algorithm sequentially loads the source code 430

fragments corresponding to each node in the path 431

and embeds structural annotation information at 432

cross-file boundaries. Finally, the structured frag- 433

ments contained in the entire path are concatenated 434

in dependency order to form a training sample with 435

global semantic consistency, which is stored for 436

5

subsequent language model pretraining. Let the437

total number of nodes be n, the average outdegree438

be d, and the maximum path depth be D. Then, the439

complexity is: O(n+ nd+ n · dD ·m).440

This process preserves both syntactic structural441

integrity and contextual consistency while achiev-442

ing corpus reordering along call paths, enabling443

the model to explicitly encounter and model cross-444

function and cross-module structural dependencies445

during training.446

Algorithm 1: SPSR-Graph Generator
Input: AST-unit DB ASTDB; max depth D
Output: structure–aware sample set S

1 Γ← INITGRAPH() for each u ∈ ASTDB
Γ.addNode(u) for each
(u, v) ∈ CALLPAIRS(ASTDB) Γ.addEdge(u→v)
S ← ∅;

2 for each p ∈ BFSPaths(Γ, D)
s← CONCAT(Tag(u) | u ∈ p);

3 S ← S ∪ {s};
4 return S
5 Function BFSPaths(Γ, D)
6 return all directed paths of Γ with length ≤ D

(BFS)
7 Function Tag(u)
8 if CROSSFILE(u) then
9 return /* file: u.file */ ∥ code(u)

10 else
11 return code(u)

4 Experiments447

4.1 Experimental Setup448

This experiment uses Qwen2.5-7B-Coder as the449

base model (Hui et al., 2024), adopting a 28-layer450

Transformer architecture with a total of approxi-451

mately 7.6 billion parameters. The model is pre-452

trained on a 0.6B C/C++ code corpus from the453

communication domain and fine-tuned on approxi-454

mately 60,000 lines of code corpus from the same455

domain. The fine-tuning corpus includes fields456

such as context, the line to be completed, and457

similar code retrieved via RAG. Model training458

was conducted on a single server equipped with 8459

NVIDIA A100 80GB GPUs. We evaluated model460

performance using EM, LCP, and BLEU on user461

data.462

We collected on-the-fly completion data from463

March 3, 2025, to April 24, 2025, using data log-464

ging for evaluation and analysis. The data source465

is XXX-Code-Copilot. The logged information466

includes timestamps, trigger points, programming467

languages, model predictions, context, and refer-468

ence answers (i.e., the content confirmed by the 469

user pressing the Enter key). 470

During the data preprocessing stage, we filtered 471

out duplicate samples and data where the context 472

contradicted the reference answers, resulting in a 473

final dataset of 10,769 valid entries. Among these, 474

6,100 entries were from March 3 to March 31, and 475

4,669 entries were from April 1 to April 24. We 476

divided this data into three groups for analysis: the 477

first group covers March 3 to March 31; the second 478

group covers April 1 to April 24; the third group 479

spans the entire period. 480

4.2 LCP and ROUGE-LCP Distribution and 481

Correlation with Adoption Rate 482

We first analyze the distribution of LCP and its cor- 483

relation with the adoption rate in the three datasets. 484

As shown in Fig. 2, the distribution of LCP has 485

a clear long-tail property, which aligns well with 486

the probabilistic structure derived in our theoretical 487

modeling. Furthermore, we calculated the Pear- 488

son correlation coefficient (Pearson’s r) between 489

LCP and the adoption rate and found a significant 490

positive correlation. As shown in Table 1, across 491

all time periods, the r values were above 0.6, and 492

the P values were below 0.05, fully validating the 493

effectiveness of the LCP metric. 494

Additionally, when LCP = 1, the adoption rate 495

shows a local peak. This phenomenon can be at- 496

tributed to users often adopting punctuation marks 497

or syntactic structures such as ",",":",";" during 498

code completion. Although these elements carry 499

low information content, they still contribute to 500

improving coding efficiency. 501

Next, we analyze the relationship between 502

ROUGE-LCP counts, adoption counts, and adop- 503

tion rates. Specifically, when LCP(S,R) = |R|, 504

we split this scenario into two parts: the exact 505

match (EM = 1) component and the partial ex- 506

tension component represented by LCP(S,R)+|Sext|
|R| , 507

evaluating their respective relationships with user 508

adoption rates. 509

As shown in Fig. 3, the results indicate that the 510

distribution of ROUGE-LCP follows a mixed dis- 511

tribution, consistent with our expectations. As the 512

ROUGE-LCP value increases, the model’s adop- 513

tion rate generally rises, peaking at EM = 1. Even 514

when the model output exceeds the reference se- 515

quence length (i.e., |Sext| > 0), there is still a cer- 516

tain level of adoption rate, suggesting that users 517

tend to adopt and modify partially correct outputs. 518

More results can be found in Appx.D 519

6

Metric 0303-0331 0401-0424 0303-0424
r 0.9107 0.6952 0.8707
P 0.0000 0.0028 0.0000

Table 1: Pearson Correlation Analysis Between LCP
and Adoption Rate

Figure 2: LCP Distribution and Its Relationship with
Adoption Count and Adoption Rate

4.3 Comparison with General Metrics520

To improve statistical stability, we filtered out data521

points with fewer than 100 completions per day,522

as these samples had low adoption counts, which523

could lead to significant fluctuations in adoption524

rates. Subsequently, we calculated the correlations525

between LCP, LCS, ROUGE-LCP, ROUGE-L, EM,526

and adoption rate on a daily basis to verify the527

effectiveness of the proposed metrics in reflecting528

user perception.529

As shown in Fig. 4 and Table 2, by observing530

the correlation heatmap, we found that compared531

to commonly used code completion metrics, LCP532

showed the strongest correlation with the adop-533

tion rate, with r values generally exceeding 0.7534

and P values below 0.05; ROUGE-LCP followed535

closely. These results further validate that the pro-536

posed LCP and ROUGE-LCP metrics are better at537

capturing user intent and adoption behavior than538

general-purpose metrics. More results can be found539

in Appx.C

Metric 0303-0331 0401-0424 0303-0424
r P<0.05

LCP 0.7145 0.7862 0.7485 ✓
ROUGE-LCP 0.6224 0.7186 0.6867 ✓
LCS 0.5863 0.7184 0.6677 ✓
ROUGE-L 0.5729 0.6914 0.6498 ✓
EM 0.5917 0.7037 0.6464 ✓

Table 2: Pearson Correlation Analysis Between
Common Evaluation Metrics (LCS, LCP, ROUGE-L,
ROUGE-LCP, EM) and Adoption Rate

540

Figure 3: ROUGE-LCP Distribution and Its Relation-
ship with Adoption Count and Adoption Rate

4.4 Impact of Different Pretraining Corpus 541

Strategies 542

This section sets up four groups of pretraining 543

corpora for model pretraining, followed by fine- 544

tuning using the same fine-tuning corpus described 545

above, aiming to evaluate the impact of the pro- 546

posed structure-aware corpus processing strategy 547

on the "on-the-fly completion" task. 548

Pipeline: Applying a data filtering, cleaning, and 549

deduplication pipeline to the raw corpus; 550

AST: Applying AST-based semantic segmentation 551

on top of the pipeline-processed corpus; 552

KGF : Constructing function-level code graph cor- 553

pora based on AST-based semantic segmentation; 554

KGFS: Further introducing struct-level code 555

graph corpora. 556

C++ C

Corpus EM(%) LCP Blue EM(%) LCP Blue

Pipeline 16.54 5.2 29.33 17.31 5.1 29.21
+ AST 16.72 4.8 27.83 17.70 5.1 28.90
+ KGF 17.84 5.2 29.47 20.36 5.8 31.64
+ KGFS 18.55 5.2 29.73 20.51 5.7 31.79

Table 3: Performance comparison of different pretrain-
ing corpus strategies on the "on-the-fly completion" task

As shown in Table 3, first, replacing random 557

FIM with semantically complete AST-based seg- 558

mentation further improves EM, demonstrating the 559

benefit of consistent semantic unit boundaries in 560

enhancing the model’s perception of completion 561

scope. Although BLEU slightly decreases, LCP 562

remains stable, indicating that structural segmenta- 563

tion has no negative impact on prefix prediction. 564

Furthermore, the function-level code knowledge 565

graph brings significant improvements, especially 566

in C, where EM increases by 2.66% and BLEU 567

7

Figure 4: Daily Metric and Adoption Rate Distributions, Heatmap of Correlation Between Evaluation Metrics and
Adoption Rate. R-L refers to ROUGE-L, R-LCP refers to ROUGE-LCP, and AR refers to Adoption Rate.

by 2.74 compared to AST alone. This suggests568

that after semantic reordering at the graph level,569

real cross-library information can be introduced,570

enabling the model to better capture global con-571

textual relationships. Finally, adding struct-level572

knowledge graphs brings additional gains, particu-573

larly in complex languages like C++, where edge574

augmentation helps model the cross-node impact575

of type information.576

In summary, the 3-stage evolution strat-577

egy—from data cleaning, structure-aware seg-578

mentation, to graph-based semantic reordering-579

improves the structural integrity and dependency580

consistency of the corpus, yielding consistent gains581

across multiple language tasks. The dual improve-582

ment in EM and BLEU, coupled with the steady583

growth in LCP, validates the practical effectiveness584

of structure-aware training samples.585

4.5 Impact of Code Knowledge Graph586

Breadth587

In this section, we explore the impact of graph588

traversal breadth on model performance. Since589

this task focuses on single-line or inline comple-590

tion, which typically involves only local context,591

deep dependency modeling is unnecessary; thus,592

the traversal depth is fixed at 1. Considering the593

average dependency count of 3–5 in codebases594

and the model’s maximum input length, we se-595

lect k = 3, 4, 5, 6, 7 as the maximum breadth limit596

during graph construction.597

As shown in Figure 5, the breadth of the knowl-598

edge graph has a non-monotonic impact on model599

completion performance: when the breadth in-600

creases from 3 to 4, all metrics for both C and C++601

improve significantly, reaching their peak; how-602

ever, further increasing the breadth to 5–7 results603

in a slight decline or stabilization in performance.604

When the graph breadth becomes too large, it may605

introduce irrelevant context, distracting the model’s606

breadth-3 breadth-4 breadth-5 breadth-6 breadth-7
Graph Breadth Level

0

5

10

15

20

25

30

35

Ev
al

ua
ti

on
 M

et
ri

cs

Impact of Graph Breadth on Code Completion Performance
C EM
C LCP
C BLEU

C++ EM
C++ LCP
C++ BLEU

Figure 5: Impact of code knowledge graph breadth on
code completion performance

attention and reducing completion accuracy; 607

Additionally, compared to C++, C shows greater 608

sensitivity to changes in graph breadth, indicating 609

that dependencies between functions in C are more 610

concentrated, benefiting less from hints beyond the 611

local scope. In contrast, C++’s more complex struc- 612

ture makes it less sensitive to edge expansion, re- 613

flecting its stronger adaptability to type references. 614

5 Conclusion 615

This paper proposes two evaluation metrics for the 616

"on-the-fly completion" task: LCP and ROUGE- 617

LCP. We theoretically analyze the relationship be- 618

tween these metrics and the model training objec- 619

tives. Based on real user behavior data, we compare 620

these metrics with other general evaluation metrics 621

and validate the effectiveness of the proposed met- 622

rics in measuring user adoption rates. Additionally, 623

we proposes a data processing method based on a 624

Structure-Preserving and Semantically-Reordered 625

Code Graph. Experimental validation demonstrates 626

that this method significantly enhances the model’s 627

ability to perceive code structure and semantic 628

dependencies, thereby effectively improving the 629

model’s performance in practical tasks. 630

8

6 Limitations631

This paper focuses only on on-the-fly completion632

tasks and provides theoretical analysis and empiri-633

cal validation for the proposed metrics. The current634

metrics in terms of model affinity are applicable635

only to autoregressive generative models, and their636

adaptability to other types of models remains to637

be further studied. The results indicate that when638

deploying large language models in real-world pro-639

duction environments, it is essential to design evalu-640

ation metrics tailored to the model’s characteristics641

and business scenarios, in order to more accurately642

assess the model’s practical performance and user643

experience.644

References645

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,646
and Kai-Wei Chang. 2021. Unified pre-training for647
program understanding and generation. In Proceed-648
ings of the 2021 Conference of the North American649
Chapter of the Association for Computational Lin-650
guistics: Human Language Technologies, NAACL-651
HLT 2021, Online, June 6-11, 2021, pages 2655–652
2668. Association for Computational Linguistics.653

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten654
Bosma, Henryk Michalewski, David Dohan, Ellen655
Jiang, Carrie Cai, Michael Terry, Quoc Le, and656
Charles Sutton. 2021. Program synthesis with large657
language models. Preprint, arXiv:2108.07732.658

Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021.659
Learning autocompletion from real-world datasets.660
In Proceedings of the 43rd International Conference661
on Software Engineering: Software Engineering in662
Practice, ICSE-SEIP ’21, page 131–139. IEEE Press.663

Vitaliy Bibaev, Alexey Kalina, Vadim Lomshakov,664
Yaroslav Golubev, Alexander Bezzubov, Nikita Po-665
varov, and Timofey Bryksin. 2022. All you need666
is logs: improving code completion by learning667
from anonymous ide usage logs. In Proceedings668
of the 30th ACM Joint European Software Engineer-669
ing Conference and Symposium on the Foundations670
of Software Engineering, ESEC/FSE 2022, page671
1269–1279, New York, NY, USA. Association for672
Computing Machinery.673

Cursor. 2023. https://www.cursor.com.674

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han-675
tian Ding, Ming Tan, Nihal Jain, Murali Krishna676
Ramanathan, Ramesh Nallapati, Parminder Bhatia,677
Dan Roth, and Bing Xiang. 2023. Crosscodeeval:678
A diverse and multilingual benchmark for cross-file679
code completion. In Thirty-seventh Conference on680
Neural Information Processing Systems Datasets and681
Benchmarks Track.682

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Mu- 683
rali Krishna Ramanathan, Ramesh Nallapati, Par- 684
minder Bhatia, Dan Roth, and Bing Xiang. 2024. 685
Cocomic: Code completion by jointly modeling in- 686
file and cross-file context. In Proceedings of the 687
2024 Joint International Conference on Computa- 688
tional Linguistics, Language Resources and Evalua- 689
tion, LREC/COLING 2024, 20-25 May, 2024, Torino, 690
Italy, pages 3433–3445. ELRA and ICCL. 691

GitHub. 2021. https://github.com/features/copilot. 692

Linyuan Gong, Mostafa Elhoushi, and Alvin Cheung. 693
2024. AST-T5: structure-aware pretraining for code 694
generation and understanding. In Forty-first Interna- 695
tional Conference on Machine Learning, ICML 2024, 696
Vienna, Austria, July 21-27, 2024. OpenReview.net. 697

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 698
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 699
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, 700
Yichang Zhang, An Yang, Rui Men, Fei Huang, 701
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 oth- 702
ers. 2024. Qwen2.5-coder technical report. Preprint, 703
arXiv:2409.12186. 704

Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc 705
Otten, Razvan Mihai Popescu, and Arie Van Deursen. 706
2024. Language models for code completion: A prac- 707
tical evaluation. In Proceedings of the IEEE/ACM 708
46th International Conference on Software Engineer- 709
ing, ICSE ’24, New York, NY, USA. Association for 710
Computing Machinery. 711

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, 712
Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han, Wei 713
Ning, Gen Wang, Yihong Dong, Kechi Zhang, and 714
Ge Li. 2025. aixcoder-7b: A lightweight and ef- 715
fective large language model for code processing. 716
Preprint, arXiv:2410.13187. 717

Jia Li, Hao Zhu, Huanyu Liu, Xianjie Shi, He Zong, 718
Yihong Dong, Kechi Zhang, Siyuan Jiang, Zhi Jin, 719
and Ge Li. 2025. aixcoder-7b-v2: Training llms to 720
fully utilize the long context in repository-level code 721
completion. Preprint, arXiv:2503.15301. 722

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, 723
and Yiling Lou. 2024a. Stall+: Boosting llm-based 724
repository-level code completion with static analysis. 725
arXiv preprint arXiv:2406.10018. 726

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, 727
Haiyan Zhao, Zhi Jin, and Qianxiang Wang. 2024b. 728
Graphcoder: Enhancing repository-level code com- 729
pletion via code context graph-based retrieval and 730
language model. CoRR, abs/2406.07003. 731

Mengnan Qi, Yufan Huang, Yongqiang Yao, Maoquan 732
Wang, Bin Gu, and Neel Sundaresan. 2024. Is next to- 733
ken prediction sufficient for gpt? exploration on code 734
logic comprehension. Preprint, arXiv:2404.08885. 735

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan 736
Scales, David Dohan, Ed H. Chi, Nathanael Schärli, 737
and Denny Zhou. 2023. Large language models can 738

9

https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1109/ICSE-SEIP52600.2021.00022
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://www.cursor.com
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://github.com/features/copilot
https://openreview.net/forum?id=cBWVJh5Fvf
https://openreview.net/forum?id=cBWVJh5Fvf
https://openreview.net/forum?id=cBWVJh5Fvf
https://arxiv.org/abs/2409.12186
https://doi.org/10.1145/3597503.3639138
https://doi.org/10.1145/3597503.3639138
https://doi.org/10.1145/3597503.3639138
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html

be easily distracted by irrelevant context. In Interna-739
tional Conference on Machine Learning, ICML 2023,740
23-29 July 2023, Honolulu, Hawaii, USA, volume741
202 of Proceedings of Machine Learning Research,742
pages 31210–31227. PMLR.743

Disha Shrivastava, Denis Kocetkov, Harm de Vries,744
Dzmitry Bahdanau, and Torsten Scholak. 2023. Re-745
pofusion: Training code models to understand your746
repository. CoRR, abs/2306.10998.747

Wannita Takerngsaksiri, Chakkrit Tantithamthavorn,748
and Yuan-Fang Li. 2024. Syntax-aware on-the-fly749
code completion. Inf. Softw. Technol., 165(C).750

Tim van Dam, Maliheh Izadi, and Arie van Deursen.751
2023. Enriching source code with contextual data752
for code completion models: An empirical study. In753
2023 IEEE/ACM 20th International Conference on754
Mining Software Repositories (MSR), pages 170–182.755

Tim Van Dam, Frank Van der Heijden, Philippe756
De Bekker, Berend Nieuwschepen, Marc Otten, and757
Maliheh Izadi. 2024. Investigating the performance758
of language models for completing code in functional759
programming languages: a haskell case study. In Pro-760
ceedings of the 2024 IEEE/ACM First International761
Conference on AI Foundation Models and Software762
Engineering, pages 91–102.763

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,764
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024.765
Rlcoder: Reinforcement learning for repository-level766
code completion. Preprint, arXiv:2407.19487.767

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven768
C. H. Hoi. 2021. Codet5: Identifier-aware unified769
pre-trained encoder-decoder models for code under-770
standing and generation. In Proceedings of the 2021771
Conference on Empirical Methods in Natural Lan-772
guage Processing, EMNLP 2021, Virtual Event /773
Punta Cana, Dominican Republic, 7-11 November,774
2021, pages 8696–8708. Association for Computa-775
tional Linguistics.776

Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu777
Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming778
Guan, Cuiyun Gao, and 1 others. 2024. Repomas-779
tereval: Evaluating code completion via real-world780
repositories. arXiv preprint arXiv:2408.03519.781

Jian Yang, Jiaxi Yang, Ke Jin, Yibo Miao, Lei Zhang,782
Liqun Yang, Zeyu Cui, Yichang Zhang, Binyuan783
Hui, and Junyang Lin. 2024. Evaluating and784
aligning codellms on human preference. Preprint,785
arXiv:2412.05210.786

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,787
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani788
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and789
1 others. 2024. Bigcodebench: Benchmarking code790
generation with diverse function calls and complex791
instructions. arXiv preprint arXiv:2406.15877.792

A Corpus Preprocessing Details 793

This appendix supplements the detailed implemen- 794

tation of the corpus preprocessing pipeline de- 795

scribed in the methodology section of the main 796

text, including data filtering, data cleaning, and 797

deduplication. 798

A.1 Data Filtering 799

The data filtering stage aims to remove code sam- 800

ples that do not meet training standards. The spe- 801

cific rules include: 802

Line Length Threshold Filtering: Remove 803

code samples where any line length falls outside the 804

specified range to avoid abnormal or excessively 805

short code. 806

Average Line Length Filtering: Remove sam- 807

ples with an average line length exceeding the 808

threshold to ensure balanced code structure. 809

Character Validity Ratio Filtering: Discard 810

samples with a low proportion of alphanumeric 811

characters to exclude non-programmatic text. 812

Total Character Count Filtering: Delete files 813

with a total character count below the minimum 814

threshold to prevent fragmented code from entering 815

the training set. 816

File Type Filtering: Explicitly exclude non- 817

target language files (e.g., XML, HTML) to ensure 818

the purity and specificity of the training corpus. 819

A.2 Data Cleaning 820

To improve corpus consistency and semantic valid- 821

ity, we introduce the following cleaning strategies: 822

Code Formatting Standardization: Use auto- 823

mated formatting tools to unify code style, enhanc- 824

ing consistency and parsability. 825

Comment and Whitespace Cleanup: Remove 826

invalid comments, redundant spaces, and blank 827

lines to minimize interference and avoid negative 828

impacts on the model. 829

A.3 Data Deduplication 830

To prevent duplicate code samples from affecting 831

training efficiency and model generalization, we 832

adopt a two-stage deduplication strategy: 833

Exact Deduplication: Compute the SHA256 834

hash value for each code sample and remove com- 835

pletely identical samples. 836

Fuzzy Deduplication: Use the MinHash algo- 837

rithm to detect structural and semantic similarity 838

between samples, further removing highly redun- 839

dant code fragments. This strategy not only reduces 840

10

https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1109/MSR59073.2023.00035
https://doi.org/10.1109/MSR59073.2023.00035
https://doi.org/10.1109/MSR59073.2023.00035
https://arxiv.org/abs/2407.19487
https://arxiv.org/abs/2407.19487
https://arxiv.org/abs/2407.19487
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://arxiv.org/abs/2412.05210
https://arxiv.org/abs/2412.05210
https://arxiv.org/abs/2412.05210

redundant data but also effectively preserves corpus841

diversity.842

B Syntax-Aware Semantic Unit843

Extraction via AST844

This appendix supplements the complete imple-845

mentation and theoretical analysis details of the846

AST-based structure-aware segmentation method847

described in the methodology section of the main848

text. Specifically, it includes: AST syntax model-849

ing and semantic unit definition, pseudocode im-850

plementation of the AST semantic segmentation851

algorithm, and a theoretical analysis of traditional852

greedy segmentation.853

Fill-in-the-Middle (FIM) is a widely used pre-854

training strategy for code completion tasks, where855

the core idea is to mask code segments and let the856

model predict the masked content. However, tradi-857

tional FIM samples are often based on token-level858

greedy segmentation, such as fixed-step sequential859

partitioning or random cutting. While this approach860

is simple to implement, it can easily disrupt seman-861

tic structures in programs, such as functions, condi-862

tional branches, and loop bodies, thus limiting the863

model’s ability to model structural information. To864

address this, we propose an Abstract Syntax Tree865

(AST)-based semantic-aware segmentation method866

to enhance the consistency and integrity of struc-867

tural units in training samples.868

B.1 AST Modeling and Semantic Unit869

Definition870

An abstract syntax tree is a structured representa-871

tion of source code in terms of syntax. Formally,872

we represent an AST as an ordered tree T = (V,E).873

Here, V = {vi}ni=1 is the set of nodes represent-874

ing syntactic units such as keywords, expressions,875

and statement blocks; E ⊆ V × V is the set of876

edges, with each edge (vi, vj) indicating that vj is877

a syntactic child node of vi, forming a hierarchical878

structure recursively expanded from parent nodes879

based on grammar rules. Each node vi has a label880

ti:881

label(vi) = ti, ti ∈ T882

where T is the set of non-terminal symbols defined883

by the language, such as FunctionDefinition.884

Given a node vi ∈ V , we define the AST subtree885

rooted at vi as Ts(vi) ⊂ T . This subtree contains886

all child nodes reachable from vi via the set of887

syntactic edges E. We refer to Ts(vi) as a "seman-888

tically complete unit," as it forms a closed, inde-889

pendently modelable structural fragment in terms 890

of both syntax and semantics, such as a function 891

body or control flow block. 892

B.2 Overview of AST Semantic Segmentation 893

Method 894

We propose a structure-aware training sample con- 895

struction method based on abstract syntax trees, 896

aiming to replace the traditional FIM sample gener- 897

ation strategy based on linear token segmentation. 898

This method follows four key steps: 899

1. Semantic Unit Extraction: Using syntax 900

parsing tools like Tree-sitter, extract seman- 901

tically closed AST subtrees from the source 902

code. Each subtree Ts(vi) represents a struc- 903

turally modelable code unit (e.g., function def- 904

inition, conditional branch, or loop body) with 905

complete syntactic boundaries and internal se- 906

mantic consistency. 907

2. Structure-Consistent Mask Construction: 908

Randomly sample a semantic unit S = Ts(vi) 909

from the candidate subtrees, constructing the 910

input as: 911

Input = P1 <mask> P2, Target = S 912

where P1 and P2 are the preceding and suc- 913

ceeding contexts of the subtree in the original 914

source code, respectively. This design ensures 915

that the generated training samples remain 916

consistent with real-world code structures. 917

3. Semantic Completeness Verification: After 918

each masking operation, verify whether the 919

remaining AST still constitutes a syntactically 920

valid tree. If the masking disrupts the closure 921

of the AST (e.g., breaking control statements 922

or expression blocks), discard the candidate 923

subtree to ensure the structural correctness of 924

the training samples. 925

4. Structural Granularity Control Mecha- 926

nism: Introduce a masking granularity control 927

parameter θ to adjust the size of the masked 928

subtree (e.g., number of tokens or nodes). By 929

sampling θ ∈ [θmin, θmax], this method sup- 930

ports multi-scale semantic modeling, rang- 931

ing from micro-level expression masking to 932

macro-level function masking. 933

This method can be formalized as the following 934

algorithm. We first parse the source code to con- 935

struct the corresponding abstract syntax tree (AST), 936

11

then traverse its structural semantic units. Under937

the constraints of granularity and structural com-938

pleteness, we construct standard Fill-in-the-Middle939

training samples for each candidate subtree. The940

complete process is as follows:

Algorithm 2: AST Semantic FIM Cut
Input: Code file C; threshold θ
Output: A set of structure-aligned FIM

training samples
1 AST ← Parse(C);
2 Nodes←

ExtractSemanticSubtrees(AST);
3 Masked← ∅;
4 for each Ts ∈ Nodes if Size(Ts) ≤ θ and

IsComplete(AST \ Ts) then
5 (P1, P2)← ContextAround(Ts);
6 Sample← {“input” :

P1 + ⟨MASK⟩+ P2, “target” : Ts};
7 Masked.append(Sample);

8 return Masked

941
We use depth-first traversal (DFS) to extract sub-942

trees from the abstract syntax tree, with a time943

complexity of O(|V |). The completeness check of944

the masked region can also be completed in linear945

time, with the same complexity of O(|V |). There-946

fore, the overall segmentation process incurs linear947

overhead during the preprocessing stage, making it948

suitable for large-scale code pretraining tasks.949

B.3 Theoretical Analysis: Greedy950

Segmentation vs. Structural Disruption951

In traditional FIM task construction, samples are952

often generated using a greedy segmentation strat-953

egy, which divides the original code sequence into954

segments of fixed token window length ℓ. Assum-955

ing a function body contains L total tokens, it will956

be divided into k = ⌈L/ℓ⌉ segments.957

Since greedy segmentation does not perceive958

any syntactic structure, its segmentation boundaries959

may fall within semantic units such as function bod-960

ies, conditional statements, or loop bodies, causing961

semantic fragmentation. We define the structural962

preservation rate (the probability that a semantic963

unit remains unbroken) as:964

Rs =
1

k
965

while the remaining k−1 segments are structurally966

disrupted, with a proportion of 1 − 1
k . As k in-967

creases, the structural disruption rate rises sharply,968

especially when dealing with large functions or 969

deeply nested structures, significantly interfering 970

with the model’s ability to model program struc- 971

tures. 972

In contrast, AST-based semantic segmentation 973

uses syntactic structures as boundaries, ensuring 974

that segmentation units are complete semantic sub- 975

trees. This method theoretically guarantees that 976

no semantic structure is broken, with a structural 977

preservation rate of Rs = 1.0. Thus, in structural 978

modeling tasks, the AST segmentation strategy pro- 979

vides significantly stronger structural consistency 980

guarantees. 981

C LCP and ROUGE-LCP Distribution 982

and Correlation with Adoption Rate in 983

all time periods 984

Here, we present the LCP and ROUGE-LCP distri- 985

butions and their correlation with the adoption rate 986

for the periods from March 3 to March 31, April 987

1, and April 24. As shown in Fig. 6 and Fig. 7. 988

The three datasets consistently exhibit the same 989

characteristics: the distribution of LCP shows a sig- 990

nificant long-tail property, which aligns well with 991

the probability structure derived in our theoretical 992

modeling. From the figures, it can be observed 993

that there is a significant positive correlation be- 994

tween LCP and the adoption rate. Additionally, 995

when LCP equals 1, the adoption rates of all three 996

datasets show a local peak. Next, we examine the 997

relationship between the count, adoption frequency, 998

and adoption rate of ROUGE-LCP across the three 999

time periods. The results indicate that the distribu- 1000

tion of ROUGE-LCP exhibits a mixed distribution, 1001

consistent with our expectations. As the ROUGE- 1002

LCP value increases, the model’s adoption rate 1003

generally rises and reaches its highest point when 1004

EM = 1. 1005

D LCP and ROUGE-LCP Comparison 1006

with General Metrics in all time 1007

periods 1008

Here, we also present the Daily Metric and Adop- 1009

tion Rate Distributions, as well as the Heatmap of 1010

Correlation Between Evaluation Metrics and Adop- 1011

tion Rate for the periods from March 3 to March 31, 1012

April 1, and April 24. As shown in Fig. 8 We calcu- 1013

late the correlations between LCP, LCS, ROUGE- 1014

LCP, ROUGE-L, EM, and the adoption rate on a 1015

daily granularity to verify the effectiveness of the 1016

proposed metrics in reflecting user perception. 1017

12

Figure 6: LCP Distribution and Its Relationship with Adoption Count and Adoption Rate

Figure 7: ROUGE-LCP Distribution and Its Relationship with Adoption Count and Adoption Rate

By observing the correlation heatmaps, we find1018

that compared to commonly used code completion1019

metrics, LCP shows the strongest correlation with1020

the adoption rate across all time periods, with r1021

values generally exceeding 0.7 and p-values all1022

below 0.05; ROUGE-LCP ranks second. These1023

results further validate that the proposed LCP and1024

ROUGE-LCP metrics outperform general metrics1025

in capturing user intent and adoption behavior.1026

13

Figure 8: Daily Metric and Adoption Rate Distributions, Heatmap of Correlation Between Evaluation Metrics and
Adoption Rate. R-L refers to ROUGE-L, R-LCP refers to ROUGE-LCP, and AR refers to Adoption Rate.

14

	Introduction
	Related Work
	Evaluation Metrics for Code Completion Tasks
	Repository-Level Code Completion

	Method
	User Behavior Analysis
	Design of LCP and ROUGE-LCP Metrics
	Repository-Level Code Corpus Processing Framework
	Syntax-Aware Semantic Unit Extraction via AST
	Structure-Preserving and Semantically-Reordered Code Graph

	Experiments
	Experimental Setup
	LCP and ROUGE-LCP Distribution and Correlation with Adoption Rate
	Comparison with General Metrics
	Impact of Different Pretraining Corpus Strategies
	Impact of Code Knowledge Graph Breadth

	Conclusion
	Limitations
	Corpus Preprocessing Details
	Data Filtering
	Data Cleaning
	Data Deduplication

	Syntax-Aware Semantic Unit Extraction via AST
	AST Modeling and Semantic Unit Definition
	Overview of AST Semantic Segmentation Method
	Theoretical Analysis: Greedy Segmentation vs. Structural Disruption

	LCP and ROUGE-LCP Distribution and Correlation with Adoption Rate in all time periods
	LCP and ROUGE-LCP Comparison with General Metrics in all time periods

