Structure-Aware Corpus Construction and User-Perception-Aligned
Metrics for Large-Language-Model Code Completion

Anonymous ACL submission

Abstract

Code completion technology based on large
language model has significantly improved the
development efficiency of programmers. How-
ever, in practical applications, there remains
a gap between current commonly used code
completion evaluation metrics and users’ ac-
tual perception. To address this issue, we pro-
pose two evaluation metrics for code comple-
tion tasks—LCP and ROUGE-LCP, from the
perspective of probabilistic modeling. Fur-
thermore, to tackle the lack of effective struc-
tural semantic modeling and cross-module de-
pendency information in LLMs for repository-
level code completion scenarios, we propose a
data processing method based on a Structure-
Preserving and Semantically-Reordered Code
Graph (SPSR-Graph). Through theoreti-
cal analysis and experimental validation, we
demonstrate the superiority of the proposed
evaluation metrics in terms of user perception
consistency, as well as the effectiveness of the
data processing method in enhancing model
performance.

1 Introduction

In recent years, the capabilities of large language
model (LLM) in code understanding and genera-
tion have made remarkable progress, greatly driv-
ing transformations in the software development
field. Code assistants such as GitHub Copilot
(GitHub, 2021) and Cursor (Cursor, 2023) have en-
abled efficient handling of "on-the-fly completion"
tasks like single-line and in-line code completions,
significantly boosting development efficiency (Tak-
erngsaksiri et al., 2024; Qi et al., 2024).
Currently, LLMs perform well in code comple-
tion task with contextual information. Despite their
excellent performance on synthetic datasets, only
a few models have been successfully applied to
real-world products. In our practical application of
XXX-Code-Copilot (a private-domain code assis-
tant for communication), we encountered similar

issues, primarily attributed to the following two
factors:

1. A discrepancy between model capabilities
and users’ actual perception, reflecting the limi-
tations of current evaluation metrics in capturing
user experience (Liu et al., 2024a; Wu et al., 2024;
Van Dam et al., 2024);

2. Existing LLMs typically rely on simple token
sequence-based training methods, focusing on lo-
cal associations between tokens, while failing to
effectively capture the intrinsic structure and cross-
file, cross-module dependencies of code (Shi et al.,
2023; Liu et al., 2024b).

These issues significantly limit the practical ap-
plication value of code models in complex indus-
trial environments.

To address the first issue, some researches have
attempted to screen suitable evaluation metrics by
incorporating user perception data and explore the
relationship between evaluation metrics and user
behavior (Aye et al., 2021; Bibaev et al., 2022; van
Dam et al., 2023). However, in practical scenarios,
the design of evaluation metrics needs to balance
LLM characteristics with user perception to bet-
ter guide model training. Therefore, how to de-
sign effective evaluation metrics has become a key
challenge in evaluating LLMs’ code completion
capabilities.

Inspired by this, we propose two evaluation
metrics for "on-the-fly completion" tasks: LCP
(Longest Common Prefix) and ROUGE-LCP. We
first theoretically analyze the relationship between
these metrics and the probability distributions of
model outputs; subsequently, based on XXX-Code-
Copilot’s data logging system, we conduct quali-
tative and quantitative analyses of over ten thou-
sand user completion behaviors within two months,
validating the consistency between the proposed
metrics and user adoption behavior.

Regarding the second issue, existing researches
enhance models’ structural awareness by construct-

ing training corpora using abstract syntax trees
(ASTs) (Gong et al., 2024; Jiang et al., 2025).
However, these methods are limited to local struc-
tures within single files, lacking effective percep-
tion of global cross-file dependencies. Other re-
searches adopt Retrieval-Augmented Generation
(RAG) methods to explicitly retrieve dependent
code snippets for target code fragments, enhanc-
ing the model’s completion capabilities (Liu et al.,
2024b), but fail to fully consider context and model
affinity. How to perform repository-level code
structure modeling and enhance models’ percep-
tion of cross-file, cross-module code structures and
semantic dependencies has become an urgent prob-
lem to be solved.

To this end, we propose a repository-level code
corpus processing framework. First, we design
an AST-based semantic unit segmentation method,
enhancing the semantic structural integrity of pre-
training corpora through structural consistency
checks and multi-scale granularity control. Sub-
sequently, we construct a Structure-Preserving
and Semantically-Reordered Code Graph (SPSR-
Graph), explicitly modeling function-level call re-
lationships and struct reference paths across files,
thereby significantly improving the model’s under-
standing of repository-level code. Experimental
results show that our proposed method performs
exceptionally well in the communication domain’s
"on-the-fly completion" task, significantly improv-
ing the quality and generalization ability of code
completion in cross-file, cross-module scenarios.

In summary, the main contributions of this paper
are as follows:

* We propose two evaluation metrics for "on-
the-fly completion" tasks—LCP and ROUGE-
LCP. Through theoretical derivation and em-
pirical analysis, we demonstrate the consis-
tency of the proposed metrics with user per-
ception.

* We propose a data processing method based
on the Structure-Preserving and Semantically-
Reordered Code Graph for constructing model
training corpora, significantly enhancing the
model’s perception and utilization of cross-
file, cross-module code structures and seman-
tic dependencies. The effectiveness and su-
periority of the method are validated in the
communication domain’s "on-the-fly comple-
tion" task.

2 Related Work

2.1 Evaluation Metrics for Code Completion
Tasks

Currently, many evaluation metrics are used for
code completion tasks. Common metrics include
Exact Match (EM), Unit Testing (UT), Edit Sim-
ilarity (ES), BLEU, ROUGE-L, and ROUGE-N
(Zhuo et al., 2024; Ding et al., 2023; Wang et al.,
2024; Izadi et al., 2024; Yang et al., 2024; Austin
et al., 2021). Although unit testing is considered
the gold standard for code tasks, its high production
cost makes it impractical for large-scale use. For
code completion tasks, researchers tend to use EM
and ROUGE-L due to the availability of context
and ground truth (Li et al., 2025; Jiang et al., 2025;
Izadi et al., 2024). However, in our practice, we
find that EM and ROUGE-L still fall short in cap-
turing user perception for "on-the-fly completion"
tasks.

2.2 Repository-Level Code Completion

Repository-level code completion scenarios often
require long-context inputs spanning multiple files
and modules, inevitably introducing redundant in-
formation and reducing generation quality (Shi
et al., 2023). To address this, CoCoMIC (Ding
et al., 2024) and RepoFusion (Shrivastava et al.,
2023) enhance models’ context-awareness through
long-context fine-tuning of LLMs. To further re-
duce contextual redundancy, CodeT5 (Wang et al.,
2021) and PLBART (Ahmad et al., 2021) construct
hard-structured code corpora using abstract syntax
trees (ASTs); AST-TS (Gong et al., 2024) further
constructs soft-structured code corpora with high
model affinity using ASTs, improving the model’s
perception capabilities. GraphCoder (Liu et al.,
2024b) introduces control flow graphs to build
Code Context Graphs and injects context through
Retrieval-Augmented Generation (RAG), improv-
ing the model’s accuracy in repository-level code
completion tasks.

However, existing models still suffer from insuf-
ficient structural awareness when handling long-
context inputs spanning multiple files and modules.

3 Method

3.1 User Behavior Analysis

Definition of Adoption: Developers accept the
code suggestions provided by Copilot and directly
apply them to the project, either as-is or after modi-

fication. Here, we consider each press of the "Tab"
key by the user as one adoption.

Definition of Adoption Rate: (Number of
adopted code suggestions / Total number of code
suggestions generated by Copilot during develop-
ment) * 100%

User Behavior Analysis: From a practical per-
spective, in code completion scenarios, the higher
the similarity between the model’s output and the
reference answer, the more likely users are to adopt
it. However, considering the left-to-right code edit-
ing habits of users, they often pay special attention
to whether the model’s output starts correctly from
the first character. Even if only part of the output
is correct, users may still adopt it and manually
modify the result.

Therefore, we can reasonably infer that the
longer the longest common prefix (LCP) between
the model’s output and the reference answer, the
higher the user adoption rate.

This observation suggests that traditional metrics
such as Exact Match (EM) or ROUGE-L may
not fully reflect the model’s performance in real-
world usage scenarios. Instead, metrics focusing
on continuous prefix matching better align with
user expectations and interaction patterns.

To address this issue, we propose two new evalu-
ation metrics that better align with user perception:

- Longest Common Prefix (LCP);

- A variant of ROUGE-L —— ROUGE-LCP.

Next, we will analyze the theoretical foundation
of these proposed metrics based on the probabilis-
tic modeling mechanism of large language models
(LLMs) and establish their probability distribution
models to explain the relationship between these
metrics and user adoption behavior.

3.2 Design of LCP and ROUGE-LCP Metrics

Longest Common Prefix (LCP): The Longest
Common Prefix (LCP(S, R)) is defined as the max-
imum number of consecutive characters that match
between the model’s output S and the reference
text R, starting from the beginning.

This metric emphasizes continuity starting from
the first character, which is a critical feature in
interactive code writing and editing. Unlike LCS-
based metrics that allow non-contiguous matches,
LCP aligns more closely with real user experiences.

Based on the probability formula for LLM out-
puts, we can model the correctness probability of
the first n characters of the model’s output, i.e.,
derive the probability distribution of LCP.

Let n represent the number of consecutive
correct characters before the first incorrect posi-
tion. Let the model’s output sequence be S =
s1, 82, ..., ST, and the reference sequence (i.e., the
actual code) be R = rq, 79, ..., 7. In other words,
n = k means the first k£ characters are correct (i.e.,
$1 = ri,..., Sy = 1), while the (k + 1)-th charac-
ter is the first error (i.e., Sg1+1 7 T'k+1)-

The probability of n = k is modeled as:

P(n=k)=P(LCP(S,R) = k) =

k
<HP(st =ry|s1="r1,...,8-1 :rtl))

t=1
(1= P(Sk41=Tk41 | 81 =7T1,...,8 =Tk))

This is a long-tail distribution, reflecting the in-
creasing difficulty of maintaining correctness over
longer sequences.

This metric correlates well with user adoption
rates and better reflects the model’s actual capabili-
ties in code completion. Moreover, the probability
distribution of this metric aligns with the correct-
ness distribution of the model’s output, making it
compatible with loss functions and providing clear
guidance for model training. Unlike LCS-based
metrics that allow non-contiguous matches, our
definition emphasizes continuity starting from the
first character — a key aspect of interactive code
writing and editing.

ROUGE-LCP: Inspired by the normalization con-
cept of ROUGE-L, we further propose a normal-

ized evaluation metric based on LCP, defined as
follows:

ROUGE-LCP(S, R) = %

This metric divides the LCP value by the length
of the reference sequence |R|, enabling fair com-
parisons across samples of different lengths. Since
LCP strongly correlates with user adoption behav-
ior, we have reason to believe that ROUGE-LCP
can also effectively reflect the practicality of model
outputs in interactive scenarios. Experimental re-
sults also validate this hypothesis. To further under-
stand the statistical properties of ROUGE-LCP and
establish a mathematical connection with Exact
Match (EM), we introduce an auxiliary parame-
ter |Sext|, representing the length of the portion of
the model’s output that extends beyond the refer-
ence sequence when LCP(S, R) = |R|. Based on
this, we can model the probability distribution of
ROUGE-LCP as a mixed distribution, as follows:

Processing pipeline of Raw Code Data

W Preprocessing]—P[Filtering]—’[Cleaning]_’[Deduplication]_' s

Raw Code

Traing Code Corpus)

AST-Based Semantic FIM Cut

Semantic Subtree
Extraction

J_

Traing Code Corpus AST Parser

SPSR-Graph D
AST Datebase Node Extraction Relation Extraction Code Graph
NG} @ W
,fll — @ Function-level
>0 ’
AAE28[d-66

Struct-level
I

Completion
Check

. @ — Function I
i @ — Struct

. @ —» Class

E @ —» Macro

Normal
FIM

AST
FIM
J

Pre-training

Model Training & Copilot Integration

(&)
9 —»
S

Evaluation Queue Evaluation Metrics Best model

Y

B0 —

EM

e | —» @—pg_—p%

BLUE,

SFT Copilot Users)

Figure 1: Overview of the proposed framework. The framework includes three stages: corpus preprocessing, AST

structural segmentation, and structure-aware graph con

struction, transitioning from local semantic preservation to

global dependency modeling to systematically construct structure-aware code completion corpora.

P(Rouge-LCP(S, R)) =

P (%) , if LCP(R, S) < |R];

P(EM(S, R)), if LCP(R,S) = |R|and S = R;
p (LCP(S7 R) + | Sext]

R > ’

if LCP(R, S) = |R|and S # R;

According to the Central Limit Theorem, the
length of the reference text | R| typically follows an
approximately Gaussian distribution in real-world
settings. This formula reveals the dual nature of
ROUGE-LCP:

When the output prefix does not fully match the
reference text, the metric value is less than 1, cor-
responding to partially correct cases; When the
output prefix fully matches the reference text, the
metric value is 1, and the output may continue gen-
erating additional content (i.e., |Sex¢| > 0), which
should also be included in the evaluation scope.

Thus, the distribution of ROUGE-LCP can
be viewed as the superposition of two sub-
distributions:

Partial Match Component: Captures the model’s
ability to generate partially correct prefixes;
Exact Match Component: Measures the model’s
ability to not only generate correct prefixes but also
continue producing useful content beyond that.

This modeling approach allows us to analyze the
model’s performance at different stages within a
unified framework and provides a theoretical basis
for further exploring its relationship with user adop-
tion behavior. In subsequent experiments, we will

separately analyze the correlation between these
two components and user adoption rates.

3.3 Repository-Level Code Corpus Processing
Framework

In this section, we describe in detail the corpus
preprocessing pipeline, AST-based semantic seg-
mentation, and the construction process of the code
knowledge graph. Corpus preprocessing aims to
improve the quality of training corpora by reduc-
ing noise and irrelevant information; AST-based se-
mantic segmentation ensures the integrity of seman-
tic units and prevents semantic disruption; while
the code knowledge graph focuses on further con-
structing and enhancing the relationships between
semantic units, thereby improving the model’s
global and cross-library semantic understanding
capabilities.

To ensure that the generated knowledge graph
corpora are of high quality, we have established a
systematic preprocessing workflow, including key
steps such as data filtering, data cleaning, and dedu-
plication. Specific filtering rules, cleaning meth-
ods, and deduplication processes are detailed in
Appx.A.

3.3.1 Syntax-Aware Semantic Unit Extraction
via AST

To enhance the structural awareness of pretrain-
ing corpora, we propose an AST-based semantic
segmentation method as an alternative to tradi-
tional random or sliding-window masking strate-
gies based on tokens. This method uses seman-
tically closed subtrees in the AST as segmenta-

tion units, ensuring the structural integrity and con-
textual continuity of the masked units. Specifi-
cally, the method includes the following four steps:
First, tools like Tree-sitter are used to parse the
source code and extract semantically complete AST
subtrees, such as function bodies and conditional
branches. Second, a subtree is randomly sampled
as the masking target, replaced with a placeholder,
and concatenated with its preceding and succeeding
contexts to form the training input. Third, struc-
tural integrity checks are performed to ensure that
the masking operation does not disrupt the syntac-
tic parsability of the remaining code. Finally, a
granularity control parameter 6 is introduced to ad-
just the size of the subtrees, supporting multi-scale
structural modeling. This method can be completed
in linear complexity and is suitable for large-scale
code corpus construction. For the formal modeling,
algorithm, and comparative analysis with greedy
segmentation, please refer to Appx.B.

3.3.2 Structure-Preserving and
Semantically-Reordered Code Graph

After AST-based semantic unit extraction, segmen-
tation, and completeness verification, we build a
Structure-Preserving and Semantically-Reordered
Code Graph (SPSR-Graph) to generate training
corpora that maintain global call consistency. The
construction proceeds in two stages: (1) semantic-
unit extraction, where we parse the vertical-domain
codebase to obtain self-contained units such as
functions, structs, and classes; and (2) semantic-
relationship graphing, where we connect these
units with directed edges that encode calls, refer-
ences, and inclusions. Traversing this graph along
call paths allows us to reorder source code into
contextually aligned sequences, enriching the struc-
tural depth of the corpus and enabling repository-
level, cross-library context modeling.

To further extend the structural depth of training
corpora and enhance cross-library context mod-
eling, we propose organizing semantic units into
structured graphs, constructing a semantic depen-
dency graph named SPSR-Graph. The graph con-
struction process is divided into two stages: se-
mantic unit extraction and semantic relationship
graphing. The SPSR-Graph construction process
consists of two stages:

The first stage is element extraction. We use
an AST parser to parse the entire codebase and
extract all top-level semantic units v; € v, such
as function bodies, structs, and class definitions.

Each v; is semantically complete and stored in a
structured database for subsequent calls.

The second stage is relationship extraction and
graph construction. We represent the code graph
asT' = (V,¢), where V is the set of nodes, i.e.,
the extracted semantic units; ¢ C)V x V is the set
of directed edges. If there is a call relationship
v; — vj, we define the edge (v;,v;) € e. Edge
types can support, but are not limited to: direct
function calls (Direct Call), member references
(Member Reference), type dependencies (Type Us-
age), macro or template expansions (Macro Expan-
sion), and file inclusions (Include Dependency). To
preserve contextual integrity, graph construction
supports node attribute enhancement (e.g., defini-
tion location, module affiliation, syntax type labels)
and edge type annotations, further enhancing the

graph’s semantic capacity.
On the directed graph I', we use directed BFS to
search for all paths P with depth d < D:

7) = {pk = (Vklayk27"'7ykm) | Vi, € Vv m S D}

Path selection supports multiple strategies: for-
ward call expansion (Forward Call Expansion),
field access chain expansion (Field Access Expan-
sion), and header inclusion prioritization (Header
Inclusion). Each path py, is mapped to the following
training sample:

Sample(py) = Vi, DVky © ... D vy,

where @ denotes structure-aware concatenation.
To enhance the model’s cross-file structural mod-

eling capability, we insert file path information and

structural comments during concatenation:

v, — /* file: path/to/file */ @ code

The following algorithm explicitly shows the train-

ing sample construction process for SPSR-Graph.
First, the system constructs the graph structure us-
ing the extracted AST semantic units, where each
node represents a semantically complete code unit,
and edges represent call or reference relationships.
Then, breadth-first traversal (BFS) is used to enu-
merate all semantic paths with depth not exceeding
D.

During traversal, for each valid path in the graph,
the algorithm sequentially loads the source code
fragments corresponding to each node in the path
and embeds structural annotation information at
cross-file boundaries. Finally, the structured frag-
ments contained in the entire path are concatenated
in dependency order to form a training sample with
global semantic consistency, which is stored for

subsequent language model pretraining. Let the
total number of nodes be n, the average outdegree
be d, and the maximum path depth be D. Then, the
complexity is: O(n + nd +n - dP - m).

This process preserves both syntactic structural
integrity and contextual consistency while achiev-
ing corpus reordering along call paths, enabling
the model to explicitly encounter and model cross-
function and cross-module structural dependencies
during training.

Algorithm 1: SPSR-Graph Generator

Input: AST-unit DB ASTDB; max depth D
QOutput: structure—aware sample set S
1 I' < INITGRAPH() for each u € ASTDB
I'.addNode(u) for each
(u,v) € CALLPAIRS(ASTDB) I".addEdge(u—v)
S« 0
2 for each p € BFSPaths(T", D)
s < CONCAT(Tag(u) |[u€p);
3 S+ SU{sh
4 return S
5 Function BFSPaths(I', D)

6 return all directed paths of I" with length < D
(BFS)

=
= [

unction Tag(u)
8 if CROSSFILE(u) then
9 | return /x file: w.file */ || code(u)
10 else
11 L return code(u)

4 Experiments

4.1 Experimental Setup

This experiment uses Qwen2.5-7B-Coder as the
base model (Hui et al., 2024), adopting a 28-layer
Transformer architecture with a total of approxi-
mately 7.6 billion parameters. The model is pre-
trained on a 0.6B C/C++ code corpus from the
communication domain and fine-tuned on approxi-
mately 60,000 lines of code corpus from the same
domain. The fine-tuning corpus includes fields
such as context, the line to be completed, and
similar code retrieved via RAG. Model training
was conducted on a single server equipped with 8
NVIDIA A100 80GB GPUs. We evaluated model
performance using EM, LCP, and BLEU on user
data.

We collected on-the-fly completion data from
March 3, 2025, to April 24, 2025, using data log-
ging for evaluation and analysis. The data source
is XXX-Code-Copilot. The logged information
includes timestamps, trigger points, programming
languages, model predictions, context, and refer-

ence answers (i.e., the content confirmed by the
user pressing the Enter key).

During the data preprocessing stage, we filtered
out duplicate samples and data where the context
contradicted the reference answers, resulting in a
final dataset of 10,769 valid entries. Among these,
6,100 entries were from March 3 to March 31, and
4,669 entries were from April 1 to April 24. We
divided this data into three groups for analysis: the
first group covers March 3 to March 31; the second
group covers April 1 to April 24; the third group
spans the entire period.

4.2 LCP and ROUGE-LCP Distribution and
Correlation with Adoption Rate

We first analyze the distribution of LCP and its cor-
relation with the adoption rate in the three datasets.

As shown in Fig. 2, the distribution of LCP has
a clear long-tail property, which aligns well with
the probabilistic structure derived in our theoretical
modeling. Furthermore, we calculated the Pear-
son correlation coefficient (Pearson’s r) between
LCP and the adoption rate and found a significant
positive correlation. As shown in Table 1, across
all time periods, the r values were above 0.6, and
the P values were below 0.05, fully validating the
effectiveness of the LCP metric.

Additionally, when LCP = 1, the adoption rate
shows a local peak. This phenomenon can be at-
tributed to users often adopting punctuation marks
or syntactic structures such as ",",":",";" during
code completion. Although these elements carry
low information content, they still contribute to
improving coding efficiency.

Next, we analyze the relationship between
ROUGE-LCP counts, adoption counts, and adop-
tion rates. Specifically, when LCP(S, R) = |R],
we split this scenario into two parts: the exact
match (EM = 1) component and the partial ex-

. LCP(S,R)+|Sex|
tension component represented by T
evaluating their respective relationships with user
adoption rates.

As shown in Fig. 3, the results indicate that the
distribution of ROUGE-LCP follows a mixed dis-
tribution, consistent with our expectations. As the
ROUGE-LCP value increases, the model’s adop-
tion rate generally rises, peaking at EM = 1. Even
when the model output exceeds the reference se-
quence length (i.e., | Sext| > 0), there is still a cer-
tain level of adoption rate, suggesting that users
tend to adopt and modify partially correct outputs.
More results can be found in Appx.D

Metric 0303-0331 0401-0424 0303-0424
r 0.9107 0.6952 0.8707
P 0.0000 0.0028 0.0000

Table 1: Pearson Correlation Analysis Between LCP
and Adoption Rate

Metrics by LCP 0303-0424

—— Count
""""" Adoption Count

4000

B
o
o

Count
Adoption Count

2000

0 2 4 6 8 10 12 14
LCP

Adoption Rate by LCP 0303-0424

9
040 /
-
©
4 e
g 20 / \-/
5
S /\74,,/\
2o
0 2 4 6 8 10 12 14
LCP

Figure 2: LCP Distribution and Its Relationship with
Adoption Count and Adoption Rate

4.3 Comparison with General Metrics

To improve statistical stability, we filtered out data
points with fewer than 100 completions per day,
as these samples had low adoption counts, which
could lead to significant fluctuations in adoption
rates. Subsequently, we calculated the correlations
between LCP, LCS, ROUGE-LCP, ROUGE-L, EM,
and adoption rate on a daily basis to verify the
effectiveness of the proposed metrics in reflecting
user perception.

As shown in Fig. 4 and Table 2, by observing
the correlation heatmap, we found that compared
to commonly used code completion metrics, LCP
showed the strongest correlation with the adop-
tion rate, with r values generally exceeding 0.7
and P values below 0.05; ROUGE-LCP followed
closely. These results further validate that the pro-
posed LCP and ROUGE-LCP metrics are better at
capturing user intent and adoption behavior than
general-purpose metrics. More results can be found
in Appx.C

Metric 0303-0331 0401-0424 0303-0424
r P<0.05
LCP 0.7145 0.7862 0.7485 v
ROUGE-LCP 0.6224 0.7186 0.6867 v
LCS 0.5863 0.7184 0.6677 v
ROUGE-L 0.5729 0.6914 0.6498 v
EM 0.5917 0.7037 0.6464 v
Table 2: Pearson Correlation Analysis Between

Common Evaluation Metrics (LCS, LCP, ROUGE-L,
ROUGE-LCP, EM) and Adoption Rate

Metrics by ROUGE-LCP 0303-0424

ber

4000 +— Count. 20008
™ —=— Adoption Count 3
c c
=
82000 10008

2

s

T

ol—— 0o <
S N DA e 6 AR O O

IR G N A SN @7@9
Y o o o7 oF o7 o o' o o7 ¥ &Y
ROUGE-LCP
Adoption Rate by ROUGE-LCP 0303-0424

/N

_—

-3
=}

N
o

N
o
4

T

LSRN R S I RS P O
Q Q- Q- Q Qs Q Q Q- Q Q NSNS
ROUGE-LCP

Adoption Rate (%)

=)
N
|

N
’

Figure 3: ROUGE-LCP Distribution and Its Relation-
ship with Adoption Count and Adoption Rate

4.4 TImpact of Different Pretraining Corpus
Strategies

This section sets up four groups of pretraining
corpora for model pretraining, followed by fine-
tuning using the same fine-tuning corpus described
above, aiming to evaluate the impact of the pro-
posed structure-aware corpus processing strategy
on the "on-the-fly completion" task.

Pipeline: Applying a data filtering, cleaning, and
deduplication pipeline to the raw corpus;

AST: Applying AST-based semantic segmentation
on top of the pipeline-processed corpus;

K GF: Constructing function-level code graph cor-
pora based on AST-based semantic segmentation;

KGpFrg: Further introducing struct-level code
graph corpora.

C++ C
Corpus EM(%) LCP Blue EM(%) LCP Blue
Pipeline 16.54 52 29.33 17.31 5.1 29.21
+ AST 16.72 48 2783 17.70 5.1 28.90
+ KGp 17.84 52 2947 20.36 5.8 31.64
+ KGps 18.55 52 2973 20.51 5.7 31.79

Table 3: Performance comparison of different pretrain-
ing corpus strategies on the "on-the-fly completion” task

As shown in Table 3, first, replacing random
FIM with semantically complete AST-based seg-
mentation further improves EM, demonstrating the
benefit of consistent semantic unit boundaries in
enhancing the model’s perception of completion
scope. Although BLEU slightly decreases, LCP
remains stable, indicating that structural segmenta-
tion has no negative impact on prefix prediction.

Furthermore, the function-level code knowledge
graph brings significant improvements, especially
in C, where EM increases by 2.66% and BLEU

CP, LCS and Adoption Rate Over Time 0303-0424

ROUGE-L and Other Metrics 0303-0424

Correlation Heatmap 0303-0424 1.00

"
)

N

[- - [
°
o
N
°
Adoption Rate
Metric Value

LCP and LCS Metrics
)

0.2 /[f

o

>

ij“ —— R-L
[

-LCP LCP R-L LCS
=]
N
a

Figure 4: Daily Metric and Adoption Rate Distributions, Heatmap of Correlation Between Evaluation Metrics and
Adoption Rate. R-L refers to ROUGE-L, R-LCP refers to ROUGE-LCP, and AR refers to Adoption Rate.

by 2.74 compared to AST alone. This suggests
that after semantic reordering at the graph level,
real cross-library information can be introduced,
enabling the model to better capture global con-
textual relationships. Finally, adding struct-level
knowledge graphs brings additional gains, particu-
larly in complex languages like C++, where edge
augmentation helps model the cross-node impact
of type information.

In summary, the 3-stage evolution strat-
egy—from data cleaning, structure-aware seg-
mentation, to graph-based semantic reordering-
improves the structural integrity and dependency
consistency of the corpus, yielding consistent gains
across multiple language tasks. The dual improve-
ment in EM and BLEU, coupled with the steady
growth in LCP, validates the practical effectiveness
of structure-aware training samples.

4.5 Impact of Code Knowledge Graph
Breadth

In this section, we explore the impact of graph
traversal breadth on model performance. Since
this task focuses on single-line or inline comple-
tion, which typically involves only local context,
deep dependency modeling is unnecessary; thus,
the traversal depth is fixed at 1. Considering the
average dependency count of 3-5 in codebases
and the model’s maximum input length, we se-
lect k = 3,4,5,6,7 as the maximum breadth limit
during graph construction.

As shown in Figure 5, the breadth of the knowl-
edge graph has a non-monotonic impact on model
completion performance: when the breadth in-
creases from 3 to 4, all metrics for both C and C++
improve significantly, reaching their peak; how-
ever, further increasing the breadth to 5—7 results
in a slight decline or stabilization in performance.
When the graph breadth becomes too large, it may
introduce irrelevant context, distracting the model’s

Impact of Graph Breadth on Code Completion Performance

—e— CEM —#— C++ EM
35 CLCP -m- C++LCP
-e- CBLEU -m- C++BLEU

&
]

N
o

Evaluation Metrics
~N
o

-
«

-
o

5{ @====== === ==a

(]
breadth-3 breadth-4 breadth-5

Graph Breadth Level

breadth-6 breadth-7

Figure 5: Impact of code knowledge graph breadth on
code completion performance

attention and reducing completion accuracy;
Additionally, compared to C++, C shows greater
sensitivity to changes in graph breadth, indicating
that dependencies between functions in C are more
concentrated, benefiting less from hints beyond the
local scope. In contrast, C++’s more complex struc-
ture makes it less sensitive to edge expansion, re-
flecting its stronger adaptability to type references.

5 Conclusion

This paper proposes two evaluation metrics for the
"on-the-fly completion" task: LCP and ROUGE-
LCP. We theoretically analyze the relationship be-
tween these metrics and the model training objec-
tives. Based on real user behavior data, we compare
these metrics with other general evaluation metrics
and validate the effectiveness of the proposed met-
rics in measuring user adoption rates. Additionally,
we proposes a data processing method based on a
Structure-Preserving and Semantically-Reordered
Code Graph. Experimental validation demonstrates
that this method significantly enhances the model’s
ability to perceive code structure and semantic
dependencies, thereby effectively improving the
model’s performance in practical tasks.

6 Limitations

This paper focuses only on on-the-fly completion
tasks and provides theoretical analysis and empiri-
cal validation for the proposed metrics. The current
metrics in terms of model affinity are applicable
only to autoregressive generative models, and their
adaptability to other types of models remains to
be further studied. The results indicate that when
deploying large language models in real-world pro-
duction environments, it is essential to design evalu-
ation metrics tailored to the model’s characteristics
and business scenarios, in order to more accurately
assess the model’s practical performance and user
experience.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified pre-training for
program understanding and generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 2655—
2668. Association for Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021.
Learning autocompletion from real-world datasets.
In Proceedings of the 43rd International Conference
on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’21, page 131-139. IEEE Press.

Vitaliy Bibaev, Alexey Kalina, Vadim Lomshakov,
Yaroslav Golubev, Alexander Bezzubov, Nikita Po-
varov, and Timofey Bryksin. 2022. All you need
is logs: improving code completion by learning
from anonymous ide usage logs. In Proceedings
of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, page
1269-1279, New York, NY, USA. Association for
Computing Machinery.

Cursor. 2023. https://www.cursor.com.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han-
tian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia,
Dan Roth, and Bing Xiang. 2023. Crosscodeeval:
A diverse and multilingual benchmark for cross-file
code completion. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. 2024.
Cocomic: Code completion by jointly modeling in-
file and cross-file context. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,
Italy, pages 3433-3445. ELRA and ICCL.

GitHub. 2021. https://github.com/features/copilot.

Linyuan Gong, Mostafa Elhoushi, and Alvin Cheung.
2024. AST-T5: structure-aware pretraining for code
generation and understanding. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 oth-
ers. 2024. Qwen?2.5-coder technical report. Preprint,
arXiv:2409.12186.

Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc
Otten, Razvan Mihai Popescu, and Arie Van Deursen.
2024. Language models for code completion: A prac-
tical evaluation. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, ICSE *24, New York, NY, USA. Association for
Computing Machinery.

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu,
Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han, Wei
Ning, Gen Wang, Yihong Dong, Kechi Zhang, and
Ge Li. 2025. aixcoder-7b: A lightweight and ef-
fective large language model for code processing.
Preprint, arXiv:2410.13187.

Jia Li, Hao Zhu, Huanyu Liu, Xianjie Shi, He Zong,
Yihong Dong, Kechi Zhang, Siyuan Jiang, Zhi Jin,
and Ge Li. 2025. aixcoder-7b-v2: Training llms to
fully utilize the long context in repository-level code
completion. Preprint, arXiv:2503.15301.

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng,
and Yiling Lou. 2024a. Stall+: Boosting llm-based
repository-level code completion with static analysis.
arXiv preprint arXiv:2406.10018.

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang,
Haiyan Zhao, Zhi Jin, and Qianxiang Wang. 2024b.
Graphcoder: Enhancing repository-level code com-
pletion via code context graph-based retrieval and
language model. CoRR, abs/2406.07003.

Mengnan Qi, Yufan Huang, Yonggiang Yao, Maoquan
Wang, Bin Gu, and Neel Sundaresan. 2024. Is next to-
ken prediction sufficient for gpt? exploration on code
logic comprehension. Preprint, arXiv:2404.08885.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schirli,
and Denny Zhou. 2023. Large language models can

https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1109/ICSE-SEIP52600.2021.00022
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://doi.org/10.1145/3540250.3558968
https://www.cursor.com
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://arxiv.org/pdf/2310.11248.pdf
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://github.com/features/copilot
https://openreview.net/forum?id=cBWVJh5Fvf
https://openreview.net/forum?id=cBWVJh5Fvf
https://openreview.net/forum?id=cBWVJh5Fvf
https://arxiv.org/abs/2409.12186
https://doi.org/10.1145/3597503.3639138
https://doi.org/10.1145/3597503.3639138
https://doi.org/10.1145/3597503.3639138
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2410.13187
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://arxiv.org/abs/2503.15301
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html

be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 31210-31227. PMLR.

Disha Shrivastava, Denis Kocetkov, Harm de Vries,
Dzmitry Bahdanau, and Torsten Scholak. 2023. Re-
pofusion: Training code models to understand your
repository. CoRR, abs/2306.10998.

Wannita Takerngsaksiri, Chakkrit Tantithamthavorn,
and Yuan-Fang Li. 2024. Syntax-aware on-the-fly
code completion. Inf. Softw. Technol., 165(C).

Tim van Dam, Maliheh Izadi, and Arie van Deursen.
2023. Enriching source code with contextual data
for code completion models: An empirical study. In
2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR), pages 170-182.

Tim Van Dam, Frank Van der Heijden, Philippe
De Bekker, Berend Nieuwschepen, Marc Otten, and
Maliheh Izadi. 2024. Investigating the performance
of language models for completing code in functional
programming languages: a haskell case study. In Pro-
ceedings of the 2024 IEEE/ACM First International
Conference on Al Foundation Models and Software
Engineering, pages 91-102.

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024.
Rlcoder: Reinforcement learning for repository-level
code completion. Preprint, arXiv:2407.19487.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696—8708. Association for Computa-
tional Linguistics.

Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu
Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming
Guan, Cuiyun Gao, and 1 others. 2024. Repomas-
tereval: Evaluating code completion via real-world
repositories. arXiv preprint arXiv:2408.03519.

Jian Yang, Jiaxi Yang, Ke Jin, Yibo Miao, Lei Zhang,
Liqun Yang, Zeyu Cui, Yichang Zhang, Binyuan
Hui, and Junyang Lin. 2024. Evaluating and
aligning codellms on human preference. Preprint,
arXiv:2412.05210.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and
1 others. 2024. Bigcodebench: Benchmarking code
generation with diverse function calls and complex
instructions. arXiv preprint arXiv:2406.15877.

10

A Corpus Preprocessing Details

This appendix supplements the detailed implemen-
tation of the corpus preprocessing pipeline de-
scribed in the methodology section of the main
text, including data filtering, data cleaning, and
deduplication.

A.1 Data Filtering

The data filtering stage aims to remove code sam-
ples that do not meet training standards. The spe-
cific rules include:

Line Length Threshold Filtering: Remove
code samples where any line length falls outside the
specified range to avoid abnormal or excessively
short code.

Average Line Length Filtering: Remove sam-
ples with an average line length exceeding the
threshold to ensure balanced code structure.

Character Validity Ratio Filtering: Discard
samples with a low proportion of alphanumeric
characters to exclude non-programmatic text.

Total Character Count Filtering: Delete files
with a total character count below the minimum
threshold to prevent fragmented code from entering
the training set.

File Type Filtering: Explicitly exclude non-
target language files (e.g., XML, HTML) to ensure
the purity and specificity of the training corpus.

A.2 Data Cleaning

To improve corpus consistency and semantic valid-
ity, we introduce the following cleaning strategies:

Code Formatting Standardization: Use auto-
mated formatting tools to unify code style, enhanc-
ing consistency and parsability.

Comment and Whitespace Cleanup: Remove
invalid comments, redundant spaces, and blank
lines to minimize interference and avoid negative
impacts on the model.

A.3 Data Deduplication

To prevent duplicate code samples from affecting
training efficiency and model generalization, we
adopt a two-stage deduplication strategy:

Exact Deduplication: Compute the SHA256
hash value for each code sample and remove com-
pletely identical samples.

Fuzzy Deduplication: Use the MinHash algo-
rithm to detect structural and semantic similarity
between samples, further removing highly redun-
dant code fragments. This strategy not only reduces

https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1016/j.infsof.2023.107336
https://doi.org/10.1109/MSR59073.2023.00035
https://doi.org/10.1109/MSR59073.2023.00035
https://doi.org/10.1109/MSR59073.2023.00035
https://arxiv.org/abs/2407.19487
https://arxiv.org/abs/2407.19487
https://arxiv.org/abs/2407.19487
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://arxiv.org/abs/2412.05210
https://arxiv.org/abs/2412.05210
https://arxiv.org/abs/2412.05210

redundant data but also effectively preserves corpus
diversity.

B Syntax-Aware Semantic Unit
Extraction via AST

This appendix supplements the complete imple-
mentation and theoretical analysis details of the
AST-based structure-aware segmentation method
described in the methodology section of the main
text. Specifically, it includes: AST syntax model-
ing and semantic unit definition, pseudocode im-
plementation of the AST semantic segmentation
algorithm, and a theoretical analysis of traditional
greedy segmentation.

Fill-in-the-Middle (FIM) is a widely used pre-
training strategy for code completion tasks, where
the core idea is to mask code segments and let the
model predict the masked content. However, tradi-
tional FIM samples are often based on token-level
greedy segmentation, such as fixed-step sequential
partitioning or random cutting. While this approach
is simple to implement, it can easily disrupt seman-
tic structures in programs, such as functions, condi-
tional branches, and loop bodies, thus limiting the
model’s ability to model structural information. To
address this, we propose an Abstract Syntax Tree
(AST)-based semantic-aware segmentation method
to enhance the consistency and integrity of struc-
tural units in training samples.

B.1 AST Modeling and Semantic Unit
Definition

An abstract syntax tree is a structured representa-
tion of source code in terms of syntax. Formally,
we represent an AST as an ordered tree 7' = (V, E).
Here, V = {v;}]', is the set of nodes represent-
ing syntactic units such as keywords, expressions,
and statement blocks; £ C V x V is the set of
edges, with each edge (v;, v;) indicating that v; is
a syntactic child node of v;, forming a hierarchical
structure recursively expanded from parent nodes
based on grammar rules. Each node v; has a label
ti:

label(vi) =t;, t, €T

where 7 is the set of non-terminal symbols defined
by the language, such as FunctionDefinition.
Given a node v; € V, we define the AST subtree
rooted at v; as Ts(v;) C T'. This subtree contains
all child nodes reachable from v; via the set of
syntactic edges E. We refer to Ts(v;) as a "seman-
tically complete unit," as it forms a closed, inde-

pendently modelable structural fragment in terms
of both syntax and semantics, such as a function
body or control flow block.

B.2 Overview of AST Semantic Segmentation
Method

We propose a structure-aware training sample con-
struction method based on abstract syntax trees,
aiming to replace the traditional FIM sample gener-
ation strategy based on linear token segmentation.
This method follows four key steps:

1. Semantic Unit Extraction: Using syntax
parsing tools like Tree-sitter, extract seman-
tically closed AST subtrees from the source
code. Each subtree T(v;) represents a struc-
turally modelable code unit (e.g., function def-
inition, conditional branch, or loop body) with
complete syntactic boundaries and internal se-
mantic consistency.

2. Structure-Consistent Mask Construction:
Randomly sample a semantic unit S = T(v;)
from the candidate subtrees, constructing the
input as:

Input = P; <mask> P, Target= S

where P; and P, are the preceding and suc-
ceeding contexts of the subtree in the original
source code, respectively. This design ensures
that the generated training samples remain
consistent with real-world code structures.

3. Semantic Completeness Verification: After
each masking operation, verify whether the
remaining AST still constitutes a syntactically
valid tree. If the masking disrupts the closure
of the AST (e.g., breaking control statements
or expression blocks), discard the candidate
subtree to ensure the structural correctness of
the training samples.

4. Structural Granularity Control Mecha-
nism: Introduce a masking granularity control
parameter 6 to adjust the size of the masked
subtree (e.g., number of tokens or nodes). By
sampling € € [Omin, Omax], this method sup-
ports multi-scale semantic modeling, rang-
ing from micro-level expression masking to
macro-level function masking.

This method can be formalized as the following
algorithm. We first parse the source code to con-
struct the corresponding abstract syntax tree (AST),

then traverse its structural semantic units. Under
the constraints of granularity and structural com-
pleteness, we construct standard Fill-in-the-Middle
training samples for each candidate subtree. The
complete process is as follows:

Algorithm 2: AST Semantic FIM Cut
Input: Code file C; threshold 6
Output: A set of structure-aligned FIM
training samples
1 AST < Parse(C);
2 Nodes
ExtractSemanticSubtrees(AST);
Masked + 0;
for each T; € Nodes if Size(Ts) < 6 and
IsComplete(AST \ Ts) then

- W

5 (P1, Py) < ContextAround(75);
6 Sample < {“input” :
Py + (MASK) + Py, “target” : Ts};
7 Masked.append(Sample);
8 return Masked

We use depth-first traversal (DFS) to extract sub-
trees from the abstract syntax tree, with a time
complexity of O(|V]). The completeness check of
the masked region can also be completed in linear
time, with the same complexity of O(|V]). There-
fore, the overall segmentation process incurs linear
overhead during the preprocessing stage, making it
suitable for large-scale code pretraining tasks.

B.3 Theoretical Analysis: Greedy
Segmentation vs. Structural Disruption

In traditional FIM task construction, samples are
often generated using a greedy segmentation strat-
egy, which divides the original code sequence into
segments of fixed token window length ¢. Assum-
ing a function body contains L total tokens, it will
be divided into k = [L/{] segments.

Since greedy segmentation does not perceive
any syntactic structure, its segmentation boundaries
may fall within semantic units such as function bod-
ies, conditional statements, or loop bodies, causing
semantic fragmentation. We define the structural
preservation rate (the probability that a semantic
unit remains unbroken) as:

1

Rs = —

Tk
while the remaining k£ — 1 segments are structurally
disrupted, with a proportion of 1 — % As k in-

creases, the structural disruption rate rises sharply,

12

especially when dealing with large functions or
deeply nested structures, significantly interfering
with the model’s ability to model program struc-
tures.

In contrast, AST-based semantic segmentation
uses syntactic structures as boundaries, ensuring
that segmentation units are complete semantic sub-
trees. This method theoretically guarantees that
no semantic structure is broken, with a structural
preservation rate of Ry = 1.0. Thus, in structural
modeling tasks, the AST segmentation strategy pro-
vides significantly stronger structural consistency
guarantees.

C LCP and ROUGE-LCP Distribution
and Correlation with Adoption Rate in
all time periods

Here, we present the LCP and ROUGE-LCP distri-
butions and their correlation with the adoption rate
for the periods from March 3 to March 31, April
1, and April 24. As shown in Fig. 6 and Fig. 7.
The three datasets consistently exhibit the same
characteristics: the distribution of LCP shows a sig-
nificant long-tail property, which aligns well with
the probability structure derived in our theoretical
modeling. From the figures, it can be observed
that there is a significant positive correlation be-
tween LCP and the adoption rate. Additionally,
when LCP equals 1, the adoption rates of all three
datasets show a local peak. Next, we examine the
relationship between the count, adoption frequency,
and adoption rate of ROUGE-LCP across the three
time periods. The results indicate that the distribu-
tion of ROUGE-LCP exhibits a mixed distribution,
consistent with our expectations. As the ROUGE-
LCP value increases, the model’s adoption rate
generally rises and reaches its highest point when
EM=1.

D LCP and ROUGE-LCP Comparison
with General Metrics in all time
periods

Here, we also present the Daily Metric and Adop-
tion Rate Distributions, as well as the Heatmap of
Correlation Between Evaluation Metrics and Adop-
tion Rate for the periods from March 3 to March 31,
April 1, and April 24. As shown in Fig. 8 We calcu-
late the correlations between LCP, LCS, ROUGE-
LCP, ROUGE-L, EM, and the adoption rate on a
daily granularity to verify the effectiveness of the
proposed metrics in reflecting user perception.

Metrics by LCP 0303-0331

3000 300“ 3000 Metrics by LCP 0401-0424 300“
—— Count g —— Count g
2000 Adoption Count 2008 L2000f Adoption Count ,2008
5 c S c
3 s 3 8
Y1000 1008 Y 1000 1008
g g
,,,,,,,,,,,,,,,,,,,,, S —
0 8 12 14 0 0 12 14 0
LCP
- Adoption Rate by LCP 0303-0331 - Adoption Rate by LCP 0401-0424
2 X
"0 40 / 2 40
- -
© e ©
o o
§20 §20 //”
H H —
3 . $ —
7%) 2 6 5 10 12 14 09 2 7 6 8 10 12 14
LCP LCP
Figure 6: LCP Distribution and Its Relationship with Adoption Count and Adoption Rate
3000 Metrics by ROUGE-LCP 0303-0331 15005 3000 Metrics by ROUGE-LCP 0401-0424 1500 5
—— Count -g —— Count -E
w2000 —=— Adoption Count 10002 4 2000 —=— Adoption Count [1000 E:
3 c 3 =
S s 8]
V1000 500 § Y1000 500 5
-3 -3
] -]
k-] k-]
03 R R T S oS A S-S S NI VI 0 < SN IR TR SR~ SN S S-S SR NI VI \ o <
ESUEIG SIS LA S S N N S N S P S R S P SSHENG SHES SMN G DS S S S N R D YA
NN R N AN IR N \ff \,(f RSN PN NN NP N N
ROUGE-LCP ROUGE-LCP
- Adoption Rate by ROUGE-LCP 0303-0331 - Adoption Rate by ROUGE-LCP 0401-0424
s 60 $60
')]
© 40 © 40
-3 o«
5 s
220 /7 = 20
- -
s L s P .
q o T o
N N D N> e AR O ~ 9 Q LT R T "S- SN N S 1 N
7 07 97 0T 97 97 97 97 N N N o7 O 97 97 07 97 o 07 97 N & N
N ARNPN RN N AN I RN N \,‘5’ \,‘f NN AN AR AN AN '»% N‘?
ROUGE-LCP ROUGE-LCP

Figure 7: ROUGE-LCP Distribution and Its Relationship with Adoption Count and Adoption Rate

By observing the correlation heatmaps, we find
that compared to commonly used code completion
metrics, LCP shows the strongest correlation with
the adoption rate across all time periods, with r
values generally exceeding 0.7 and p-values all
below 0.05; ROUGE-LCP ranks second. These
results further validate that the proposed LCP and
ROUGE-LCP metrics outperform general metrics
in capturing user intent and adoption behavior.

13

LCP, LCS and Adoption Rate Over Time 0303-033 ROUGE-L and Other Metrics 0303-0331 Correlation Heatmap 0303-0331 1.00
0.26 -
18 jLCS 0.6 t 1 0.690.910.61[¥710.59
—ficp 0.24 = 0.75
gae| TIIAR 0.22 0.5 j40.69 1 0:760.92(16157 ENIEN
?,L", A g0
14 2 0.20% 3 -0.
E £ Soa g 0.910.76 1 0.76 0.71 [N
912 0185 3 a -0.00
T s}
° 2 5 £§0.610.920.76 1 0.620.62
510 °'15§ 203 z -0.25
o
0.14] -
Js 0.2 z 0.50
0.12
6 { : [30.590.570.710.620.59 1 -0.75
! i 0.10 0.1 < 1.00
[] 5 10 15 20 25] 5 10 15 20 25 o v & & < o
Day Day R NG Q_,v" &S
LCP, LCS and Adoption Rate Over Time 0401-0424 ROUGE-L and Other Metrics 0401-0424 Correlation Heatmap 0401-0424 1.00
16 n
1 0.720.990.790.780.72
0.30 06 S 0.75
n 14 -
kY 0.5 j0:72 1 0.790.990.940.69 TR
H 0.25¢
12] a -0.25
E € 504 [7§0.990.79 1 0.850.850.79 .
810 0205 3 N -0.00
T 2 Lo 20.790.990.85 1 0.940.72
€ g o o : --0.25
& 0153 = [-
o
S 0.2 §0-780.940.850.94 1 0.7 -0.50
0.10 075
a 0.1 }-30.720.690.790.72 0.7 1 -
[] 5 10 15 20] 5 10 15 20 '3 QR R & -1.00
~
Day Day Ve E e v

Figure 8: Daily Metric and Adoption Rate Distributions, Heatmap of Correlation Between Evaluation Metrics and
Adoption Rate. R-L refers to ROUGE-L, R-LCP refers to ROUGE-LCP, and AR refers to Adoption Rate.

14

	Introduction
	Related Work
	Evaluation Metrics for Code Completion Tasks
	Repository-Level Code Completion

	Method
	User Behavior Analysis
	Design of LCP and ROUGE-LCP Metrics
	Repository-Level Code Corpus Processing Framework
	Syntax-Aware Semantic Unit Extraction via AST
	Structure-Preserving and Semantically-Reordered Code Graph

	Experiments
	Experimental Setup
	LCP and ROUGE-LCP Distribution and Correlation with Adoption Rate
	Comparison with General Metrics
	Impact of Different Pretraining Corpus Strategies
	Impact of Code Knowledge Graph Breadth

	Conclusion
	Limitations
	Corpus Preprocessing Details
	Data Filtering
	Data Cleaning
	Data Deduplication

	Syntax-Aware Semantic Unit Extraction via AST
	AST Modeling and Semantic Unit Definition
	Overview of AST Semantic Segmentation Method
	Theoretical Analysis: Greedy Segmentation vs. Structural Disruption

	LCP and ROUGE-LCP Distribution and Correlation with Adoption Rate in all time periods
	LCP and ROUGE-LCP Comparison with General Metrics in all time periods

