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Abstract
A common practice in mini-batch neural net-
work training is to estimate global statistics using
exponential moving averages (EMA). However,
such methods can be sensitive to the EMA de-
cay parameter, which is typically set by hand. In
this paper, we introduce Adaptive Linear State
Estimation (ALiSE), an online method for adapt-
ing the parameters of a linear estimation model
such as an EMA. Our work establishes a con-
nection between parameter estimation methods
in deep learning, including ALiSE, and recursive
identification techniques in control theory. We
apply ALiSE to a range of deep learning scenar-
ios and show that it can learn sensible schedules
for the EMA decay parameter. Compared to the
naive EMA baseline, ALiSE leads to matching or
accelerated convergence during training.

1. Introduction
When training a neural network, the optimization update for
the network weights often requires an estimate of statistics
from noisy observations. The statistics may appear as part
of the optimization algorithm, or as part of the training
objective. For example, the Adam optimizer (Kingma &
Ba, 2014) requires estimating the first and second moments
of the gradient.

When the update direction is a nonlinear function of the
statistics, using noisy statistics estimates will introduce bias
in the update, which can lead to slower convergence. A
common practice is to instead estimate the statistics with an
exponential moving average (EMA), using a constant hand-
tuned decay parameter between 0 and 1. While using EMA
can eventually reduce the bias in the update, performance in
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the earlier stages of training may be sensitive to the value
of the decay parameter. A decay parameter that is too small
results in noisy estimates, while a decay parameter too close
to 1 is unable to track fast-changing statistics. Moreover,
the best choice of decay parameter likely changes over the
course of training, as the true statistics may evolve at dif-
ferent rates over time. This makes a constant, hand-tuned
decay parameter inadequate.

In this paper, we propose ALiSE (Adaptive Linear State
Estimation), a method for adapting the parameters of a
linear estimation model for statistics estimation in neural
network training. In particular, ALiSE can be used to adapt
the decay parameter in an EMA model. Our contributions
are summarized below:

1. We establish a connection between online parameter
estimation techniques in deep learning and recursive
identification. Specifically, we show that many of these
are examples of recursive prediction-error methods. A
unified view of online parameter estimation inspired by
recursive identification can provide insight into i) the
conditions necessary for these methods to perform well,
and ii) heuristics for tuning their hyperparameters.

2. We propose ALiSE, a direct application of the recursive
prediction-error framework to a linear state estimation
model. We apply ALiSE to various online statistics
estimation problems in deep learning. ALiSE can
recover sensible parameter schedules that match or
exceed performance of the best naive EMA baselines.

2. Background
Let f(wt, z) ∈ Rn be a function of an input data point
z and neural network weights w at time t. We use xt =
Ez[f(wt, z)] to denote the true time-varying statistics that
we would like to estimate. The true statistics xt is the ex-
pected value of f(wt, z) over the entire data distribution.
Since this paper takes a state estimation approach for esti-
mating the statistics, we refer to x as the “state”, even though
it may not contain enough information to predict the future
evolution of the system.
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2.1. Statistics estimation using EMA

Consider the following optimization update when training a
neural network:

wt+1 ← wt − αtg(wt,Bt, x̂t) (1)

where αt is the learning rate, and g(wt,Bt, x̂t) is a gradient-
like signal1 that is a function of the network weights wt, the
current mini-batch Bt, and an estimate of the statistics x̂t.
This is a common setup in machine learning. For example,
the Adam optimizer (Kingma & Ba, 2014) computes an
update in the form of (1), where the statistics vector xt
contains the first and second moments of the gradient. More
examples are provided in Section 6.

Though the true statistics xt involves an expectation over
the entire data distribution, in (1) we only have access to
the mini-batch sample of the data Bt. A naive approach is
to replace the expectation with the average over the mini-
batch data, denoted as x̂B

t . Assuming the mini-batch data is
sampled i.i.d. from the data distribution, x̂B

t is an unbiased
estimate of the true statistics xt:

E[x̂B
t ] = xt, where x̂B

t =
1

|Bt|
∑
z∈Bt

f(wt, z)

However, if g is a nonlinear function of xt, using the mini-
batch estimate will result in a biased gradient update, which
is undesirable for optimization:

E[g(wt,Bt, x̂
B
t )] ̸= g(wt,Bt,E[x̂B

t ]) = g(wt,Bt, xt)

A simple approach that can potentially reduce the bias is to
apply an exponential moving average (EMA) on the noisy
statistics estimates, where β ∈ [0, 1) is the decay parameter:

x̂t+1 = βx̂t + (1− β)yt,

For notational consistency with the system identification
literature, we use yt to denote a noisy observation of the
statistics (e.g. a mini-batch estimate x̂B

t ). At steady-state
(meaning x̂t and x̂t+1 have the same variance), EMA can
reduce the variance of the estimate x̂ by a factor of 1−β

1+β ,
assuming x̂t and yt are independent. However, away from
the steady-state (before training converges), the training
performance can be sensitive to the decay parameter. β
being too small leads to noisy estimates x̂t, which in turn
causes a larger amount of bias in the gradient update. β
being too close to 1 would cause a significant lag between
the estimate x̂t and the true statistics xt.

The optimal choice of β depends on how fast the statistics
evolves at a given time, which likely changes over the course
of training. This makes a hand-tuned, constant β value
inadequate. We need an estimation model whose parameters
are jointly updated with the state estimate, x̂.

1g(wt,Bt, xt) can be either the gradient itself, or some modifi-
cations of the gradient (e.g. with a different search direction).

2.2. Linear state estimation model

In this paper, we will consider a linear estimation model
of the state x̂, where A,B : Rd → Rn×n are matrices
parameterized by θ, and ŷ is the prediction:2

x̂t+1 = A(θ)x̂t +B(θ)yt (2a)
ŷt = x̂t (2b)

Note that an EMA with scalar decay coefficient β is a special
case of (2) with d = 1, A(β) = βI , and B(β) = (1− β)I .

3. Connection to recursive identification
In this section, we give an overview of recursive prediction-
error methods (RPEM) and discuss a unified view of online
parameter estimation methods inspired by RPEM.

3.1. System identification

The goal of system identification is to infer a model of inter-
acting variables and signals from observations. A mapping
of datasets of observations to parameter space is referred
to as an identification method (Ljung, 1998). There are
two classes of identification methods: batch (offline), and
recursive (online). Batch methods store the entire sequence
of observations up to time t and use it to estimate the true
(unknown) model parameter θ. In recursive identification,
the estimate of θ at time t is computed only from the pre-
vious estimate and a fixed-size state. Due to their modest
memory requirements, recursive identification methods are
well-suited to online parameter estimation in deep learning.

3.2. Recursive prediction-error methods

Define et(ŷ) to be a non-negative scalar measure of the
prediction error ŷ at time t, and θ̂ to be an estimate of
the true (unknown) estimation model parameter. Recur-
sive prediction-error methods (RPEM) are a family of ap-
proaches to recursive identification that aim to choose θ̂ to
minimize these errors aggregated up to and including the
current time t. This is formalized by the following objective:

Vt(θ) =

t∑
k=0

(

t∏
i=k+1

λi)ek(ŷk) (3)

where λt ∈ [0, 1], called the forget factor, controls how
much we decay past errors at time t. For the linear state
estimation model in (2), a common choice for et in the
recursive identification literature is the quadratic objective:
et(ŷt) = 1

2ε
⊤
t Λ

−1εt, where εt := y∗t − ŷt is called the

2A more general version of (2b) would be ŷt = H(θ)x̂t, with
y, ŷ ∈ Rm and H(θ) ∈ Rm×n. In this paper, we consider first
order models with H = I only, and include (2b) for notational
consistency.
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innovation, y∗t is the target value for the prediction ŷt, and
Λ ∈ Rn×n is positive-definite.

3.3. Derivation of the RPEM update

In this section, we derive the RPEM update for the parameter
estimate θ̂ for a linear state estimation model as in (2), and
a general error measure et.

Define the Jacobian ψt(θ) =
∂ŷt
∂θ

(θ) and ψt := ψt(θ̂t−1).

Given an estimate θ̂t−1 and observation yt, we seek to com-
pute a new estimate θ̂t using a fixed-size state. To do so,
RPEM makes the following assumptions:

1. Optimality on past observations: V ′
t−1(θ̂t−1) = 0, i.e.,

the previous model estimate θ̂t−1 was optimal for the
objective Vt−1.

2. Slow-moving parameters: To compute the Jacobian
ψt exactly would incur a memory cost that grows
proportional to t, since a prediction ŷt depends on
θ through the entire history of observations up to
time t. Instead, we will compute ψt recursively us-
ing only ψt−1. In effect, this is making the assumption
that ψt−1(θ̂t−2) ≈ ψt−1(θ̂t−1), which holds for slow-
moving parameters, i.e., when θ̂t−1 ≈ θ̂t−2.

By the first assumption, V ′
t (θ̂t−1) = ψt∇ŷet(ŷt). Applying

Newton’s method to solve V ′
t (θ̂t) = 0 gives the update:

θ̂t = θ̂t−1 − V ′′
t (θ̂t−1)

−1ψt∇ŷet(ŷt) (4)

Let Rt = γtV
′′
t (θ̂t−1) with γt = (

∑t
k=0(

∏t
i=k+1 λi))

−1

as a normalizing constant. Then, the general form of an
RPEM update for θ̂ applied to the model (2) is:

ŷt = x̂t (5a)

ψt =
∂

∂x̂

[
A(θ̂t−1)x̂t−1

]∣∣
x̂=x̂t−1

ψt−1

+
∂

∂θ

[
A(θ)x̂t−1 +B(θ)yt−1

]∣∣
θ=θ̂t−1

(5b)

θ̂t = θ̂t−1 − γtR−1
t ψt∇ŷet(ŷt) (5c)

x̂t+1 = A(θ̂t)x̂t +B(θ̂t)yt (5d)

A UNIFYING FRAMEWORK

These equations provide a framework for jointly estimating
the state xt and model parameters θt of a linear state model
in an online fashion. A realization of this framework is fully
specified by choices of: the state model A(θ) and B(θ),
the Jacobian estimate ψt(θ), the prediction error et(ŷ), the
preconditionerRt (estimate of the Hessian), and the learning
rate γt. There are a number of options for estimating the
preconditioner and Jacobian, which we discuss below.

3.4. Gauss-Newton algorithm with forget factor

For a general objective, setting the preconditioner Rt = I
for all t recovers traditional gradient descent on the objective
with step size γt. Setting Rt to be the exact Hessian recov-
ers Newton’s method, which is known to perform better
than gradient descent (Ljung, 1998). However, computing
the exact Hessian may be infeasible. Assuming quadratic
errors et(ŷt) = 1

2ε
⊤
t Λ

−1εt that are decayed over time as in
(3), an alternative is to use the Gauss-Newton algorithm to
recursively estimate the preconditioner.

Define P̄t := γtR
−1
t where γt is the normalizing constant

for the forget factors, γt = (
∑t

k=0(
∏t

i=k+1 λi))
−1. The

Gauss-Newton update with forget factor λt corresponds to
the following update for P̄t (see Appendix A for details):

P̄t = P̄t−1(λtI + ψtΛ
−1ψ⊤

t P̄t−1)
−1.

The forget factor λ controls the trade-off between the ability
to maintain stable estimates at steady state, and the ability
to fit time-varying θ. A good heuristic for setting λt is the
Bounded Gain Forget (BGF) method (Slotine et al., 1991):

λt = λmax(1−
∥P̄∥
k0

).

λmax < 1 is the maximum forget factor value, and is usually
set to be close to 1. k0 is the upper bound for ∥P̄∥, and is
usually set to a large constant. (See Appendix A for details.)

Using the preconditioner P̄ removes the need to choose
a learning rate sequence γt, instead using a forget factor
parameterization. In this case, it can be shown that the
effective learning rate γt is given by:

γt = γt−1/(λt + γt−1).

Moreover, if θ is a scalar, such as an EMA decay parameter,
P̄t can be interpreted as an adaptive scalar learning rate for
the update of θ̂.

3.5. Discounted Jacobian

A variation on the Jacobian computation in (5b) is the
discounted Jacobian, where µt ∈ [0, 1] is a hyperparameter:

ψt = µt
∂

∂x̂

[
A(θ̂t−1)x̂t−1

]∣∣
x̂=x̂t−1

ψt−1

+
∂

∂θ

[
A(θ)x̂t−1 +B(θ)yt−1

]∣∣
θ=θ̂t−1

(6)

Choosing µ = 0 corresponds to truncating the computation
graph to ignore the dependency that past states had on the
model parameter θ. Although this would make the Jacobian
computation biased, it is more computationally efficient.
On the other hand, choosing µ = 1 leads to more accurate
Jacobian approximations near steady-state (when θ̂ does not
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change much), but may have poor transient performance
due to bad initial values of ψ. Ljung & Söderström (1983)
suggests a simple trick to improve the transient performance,
by setting µt to exponentially approach 1:

µt = 1− νt, t = 0, 1, 2, . . . , typically ν ≈ 0.99 (7)

When a non-zero µ is used, storing the Jacobian ψt incurs
an additional memory cost proportional to n × d. This
makes RPEM particularly well-suited for hyperparameter
optimization, where d, the number of hyperparameters being
adapted, is typically small.

4. ALiSE
In this section, we introduce ALiSE (Algorithm 1) for jointly
estimating statistics x̂ and model parameters θ (such an an
EMA decay parameter) in a neural network training context.
ALiSE is a direct result of applying the RPEM framework
from Section 3 to a linear state estimation model in (2),
where:

• An incoming observation yt is the noisy statistic x̂B
t

computed on a batch B.

• The prediction error is a quadratic objective et(ŷt) =
1
2ε

⊤
t Λ̂

−1
t εt where the target value y∗t in the innovation

εt is computed using another estimate of the statistic.

• The Jacobian ψ is estimated using a discount factor
µt ∈ [0, 1] as in (6).

• The preconditioner Rt and learning rate γt are com-
puted using the Bounded Gain Forget (BGF) method
(Section 3.4).

Below we discuss the choices of prediction error and Jaco-
bian estimate used in ALiSE in more detail.

4.1. The objective

ALiSE uses the prediction error function et(ŷt) =
1
2ε

⊤
t Λ̂

−1
t εt where εt = y∗t − ŷt. The estimate at time t

is ŷt = x̂B
t . To determine y∗t , we use an unbiased estimate

of the statistic computed on another batch B′, i.e. y∗t = x̂B
′

t .

Choosing Λ̂t = I leads to minimizing the norm of the inno-
vation. Ljung (1998) shows that, assuming the innovations
εt are i.i.d with zero mean, choosing Λ̂t to be the covariance
matrix of the innovations εt is optimal in the sense that the
variance of the estimator θ̂t is minimized.

Since it is hard to determine the covariance matrix a pri-
ori, we can initialize it to the identity and estimate it on-
line (Ljung & Söderström, 1983):

Λ̂t = Λ̂t−1 + γt(εtε
⊤
t − Λ̂t−1).

However, keeping track of a full n×nmatrix can be compu-
tationally infeasible in practice. Instead, we use the follow-
ing approximation for Λ̂, only storing its diagonal entries:

Λ̂t = Λ̂t−1 + γt(diag(εtε
⊤
t )− Λ̂t−1) (8)

4.2. Detached Jacobian

It is important to note that ALiSE estimates statistics in a
way that is detached from the neural network optimization.
In theory, an estimate x̂t depends on previous estimates
through both the state estimation model, and the neural
network weights. In Figure 1, this corresponds to the two
different paths that connect x̂t−1 to x̂t. However, ALiSE ig-
nores the path through the neural network weights wt−1.
This is a simplifying assumption that allows us to reduce
the first term in the Jacobian (5b) as below:

ψt+1 = µtA(θ̂t−1)ψt +
∂

∂θ

[
A(θ)x̂t +B(θ)yt

]∣∣
θ=θ̂t

Algorithm 1 ALiSE
Given (at time t): forget factor λt, learning rate γt, obser-
vations yt, y∗t , discount µt, Jacobian estimate ψt.
εt = y∗t − yt
Λ̂t = Λ̂t−1 + γt(diag(εtε

⊤
t )− Λ̂t−1)

P̄t = P̄t−1(λtI + ψtΛ̂
−1
t ψ⊤

t P̄t−1)
−1

θ̂t = θ̂t−1 − P̄tψtΛ̂
−1
t εt

x̂t+1 = A(θ̂t)x̂t +B(θ̂t)yt
ŷt+1 = x̂t+1

ψt+1 = µtA(θ̂t)ψt +
∂
∂θ

[
A(θ)x̂t +B(θ)yt

]∣∣
θ=θ̂t

return ŷt+1

5. Related works
System identification There is a long history of research
in online state estimation with unknown model parame-
ters. The field was referred to by Åström & Eykhoff (1971)
as “a fiddler’s paradise”, because the literature had once
been diverse and scattered. Examples include the recur-
sive least squares method (Plackett, 1950), variants of the
ARMA model (Box et al., 2015) common in time-series
forecasting, Bayesian (nonlinear) filtering methods such
as the (extended) Kalman Filter (Kalman, 1960), and, in
control theory, methods such as Model Reference Adaptive
Control (MRAC) (Åström & Wittenmark, 2013).

Ljung & Söderström (1983) states that: “There is only one
recursive identification method. It contains some design
variables to be chosen by the user.” In this spirit, our work
presents a unified view of recursive approaches to online pa-
rameter estimation in deep learning. ALiSE , our proposed
approach for linear state estimation, draws upon a subset
of methods known as recursive prediction-error methods
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Figure 1. The computation graph of ALiSE applied to neural network optimization. L̃t denotes the network training objective.

(Ljung, 1998), with some modifications to suit deep learning
applications. Specifically, we use a diagonal approximation
for the quadratic objective weights (8) to reduce the memory
and computation cost (see Section 4.1). For learning rate se-
lection (gain scheduling), we use the Bounded Gain Forget
(BGF) method from Slotine et al. (1991). For estimating
the Jacobian (6), we apply a discounting mechanism similar
to Donini et al. (2020). Similar discounting strategies such
as TD(λ) (Sutton & Barto, 2018) and generalized advan-
tage estimation (Schulman et al., 2016) have been used in
reinforcement learning.

Learning rate scheduling The recursive computation of
the Jacobian in RPEM has previously been applied in several
machine learning contexts, often referred to as forward-
mode differentiation. Hypergradient descent (HD) (Baydin
et al., 2018), Stochastic Meta-Descent (SMD) (Schraudolph,
1999), MARTHE (Donini et al., 2020), and Sutton (1992) all
use forward-mode differentiation to compute the Jacobian
of network weights with respect to a learning rate parameter,
and use it for online adaptation of the learning rate. Table
1 shows how many of these online parameter estimation
methods can be explicitly cast as recursive prediction-error
methods with particular model and design choices.

Real-time recurrent learning Forward-mode differentia-
tion is also used in real-time recurrent learning (RTRL),
a classical algorithm to train recurrent neural networks
(Williams & Zipser, 1989).3 More recently, Im et al. (2021)

3In fact, applying the extended Kalman filter (closely related
to RPEM, see discussion in Ljung & Söderström (1983)) jointly
on the hidden state and parameter is equivalent to natural gradient

Table 1. RPEM interpretation of various online parameter estima-
tion methods in deep learning

MARTHE SMD HD RTRL

θ LR α LR α LR α Weights w
x̂ Weights w Weights w Weights w RNN state
y g(·) g(·) g(·) RNN input
A, B I , −αI I , −αI I , −αI -
e Val. loss Train. loss Train. loss Train. loss
ψ µ ∈ (0, 1) µ = 1 µ = 0 µ = 1

draw an explicit connection between training an RNN using
RTRL, and online hyperparameter optimization (OHO). In
their OHO framework, the state being jointly adapted with
the hyperparameters are the neural network weights. In
contrast, ALiSE is used for statistics estimation and goes
beyond OHO by borrowing several design choices from the
recursive identification literature.

6. Experiments
6.1. Estimating the second moment in Adam optimizer

The Adam optimizer (Kingma & Ba, 2014) requires esti-
mation of the second moment of the gradient from noisy
gradient samples. In particular, the Adam update is scaled
by the square root of the exponential moving average (EMA)
of squared past gradients. Although the Adam optimizer
with its default configuration (β1 = 0.9, β2 = 0.999) has
been successful in many practical applications, Reddi et al.
(2018) point out that the EMA with constant decay parame-

on top of RTRL (Ollivier, 2018).
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ter can cause non-convergence to the optimal solution even
in some convex optimization settings. We investigate two
settings where training does not converge using the default
configuration, but converges when we use ALiSE to auto-
matically adapt β2.

6.1.1. SYNTHETIC EXAMPLE

Consider the following simple synthetic example in Reddi
et al. (2018):

Online: ft(x) =

{
1010x, t mod 101 = 1

−10x, otherwise

Stochastic: ft(x) =

{
1010x, with probability 1

101

−10x, otherwise

The optimal solution is x = −1. However, an Adam opti-
mizer with β1 = 0.9 and β2 = 0.99 converges to a highly
sub-optimal solution x = +1. This is because the large
gradient (1010 in this case) is sparse enough that for the
given β2 value (0.99), it is unable to move x in the correct
direction. The same effect happens in both the online and
stochastic settings (Figure 2).

We apply ALiSE to this synthetic example, with β1 = 0.9
and β2 initialized to 0.99. As shown in Figure 2, when
ALiSE is applied, the optimizer avoids the sub-optimal solu-
tion x = +1 in both the online and stochastic settings. The
β2 schedules found by ALiSE are shown in Appendix B.1.

6.1.2. LEARNING WORD EMBEDDINGS

Another scenario where the default Adam optimizer may
fail to converge is when learning word embeddings. As the
gradient signal for learning the embedding for each word is
sparse, we require the optimizer to have “long-term memory”
of past gradients. We experiment with a simple Word2Vec
continuous bag-of-words architecture (Mikolov et al., 2013),
trained on the “news” genre of the Brown corpus (Francis &
Kucera, 1979). As shown in Figure 3, when using learning
rate 0.001, Adam with the default configuration β1 = 0.9,
β2 = 0.999 fails to converge. On the other hand, ALiSE is
able to find a schedule for β2 such that training converges.

6.2. Solving the Schrödinger equation for a 2D hydrogen
atom using the Spectral Inference Network

The Spectral Inference Network (SpIN) (Pfau et al., 2018) is
a framework for learning eigenfunctions of linear operators
by stochastic optimization. Let uw(x) ∈ RK be the features
parameterized by network parametersw, with which we aim
to recover the top K eigenfunctions of a symmetric kernel
k. Define the (kernel-weighted) feature covariance as Σ :=
Ex[uw(x)uw(x)

⊤] and Π := Ex,x′ [k(x,x′)uw(x)uw(x
′)],

and let L be the Cholesky decomposition of Σ. SpIN

learns ordered eigenfunctions by performing gradient as-
cent, where the gradient 4 is given by:

Gradient = E[JΠ(L−⊤diag(L)−1)] (9)

− E[JΣ(L−⊤triu(L−1ΠL−⊤diag(L)−1))],

where triu and diag returns the upper triangular and di-
agonal of a matrix, respectively. JΠ(·), JΣ(·) are linear
operators that denote left-multiplication of the Jacobian of
Π and Σ with respect to w.

Note that (9) is a nonlinear function of Σ and JΣ, which are
themselves expectations. During training, we only have ac-
cess to empirical estimates Σ̂ and ĴΣ from samples. Naively
plugging them into (9) will result in a biased gradient. Pfau
et al. (2018) addressed this issue by using the exponential
averaged statistics Σ̄t and J̄Σt

in (9) instead of Σ and JΣ:[
Σ̄t

J̄Σt

]
= β

[
Σ̄t−1

J̄Σt−1

]
+ (1− β)

[
Σ̂t

ĴΣt

]
. (10)

The performance of SpIN is quite sensitive to the value
of β, which is hand-set by the authors to a constant value.
We show that by replacing the EMA with ALiSE, we can
accelerate the convergence of SpIN without the need to
manually tune β. We consider an experiment in Pfau et al.
(2018), where SpIN is used to solve the Schrödinger equa-
tion of a 2-dimensional hydrogen atom. In particular, we use
SpIN to train a neural network to approximate the wavefunc-
tions Ψ(x), which are solutions of the time-independent
Schrödinger equation:

EΨ(x) =
−ℏ
2m
∇2Ψ(x) + V (x)Ψ(x). (11)

We use the same setup in Pfau et al. (2018), including set-
ting ℏ

2m to 1 and choosing the potential V (x) = 1
|x| . The

Schrödinger equation for the 2D hydrogen atom can be
solved analytically (Yang et al., 1991), allowing us to evalu-
ate the neural network approximations.

We define the following metric dalign:

1

K

K∑
i=1

(
1−

Ψ̂⊤
w,iΦEn(i)

(Φ⊤
En(i)

ΦEn(i)
)−1Φ⊤

En(i)
Ψ̂w,i

∥Ψ̂w,i∥22

)
(12)

dalign measures how aligned the learned eigenfunctions are
to the analytical solutions (the definition is similar to the
axis-alignment distance in Bao et al. 2020). Ψ̂w,i is the
learned approximation of the ith eigenfunction. n(i) is
the principal quantum number (which determines the en-
ergy level En) corresponding to the eigenfunction index i.
ΦEn(i)

:=
[
ΨEn(i),1 . . .ΨEn(i),2n−1

]
is a concatenation

4The “gradient” is modified and not the actual gradient of a
loss function. See Pfau et al. (2018) for details.
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Figure 2. A synthetic example where the Adam baseline does not converge to the optimal solution. Left and centre: online setting. Right:
stochastic setting. The configuration µ = exp refers to the exponentially decaying schedule in (7)
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Figure 3. Word2Vec continuous bag-of-words trained on the “news”
genre of the Brown corpus.

of the analytical solutions at energy level n(i). Intuitively,
dalign is the average of the squared sine angles between the
first K learned wavefunctions and the vector spaces span-
ning all the analytical solutions at the same energy level.
All the wavefunctions in (12) are evaluated on a 128× 128
grid (same as in Pfau et al. (2018)).

We experiment with 4 different configurations of ALiSE that
are combinations of: constrained sum / unconstrained sum,
and µ = 0 / µ = exp, where exp refers to the exponentially
decaying schedule in (7). In the constrained sum configura-
tion, a single decay parameter β is used. For unconstrained
sum, we adapt two decay coefficients jointly and do not con-
strain them to sum to 1. We also run 4 EMA baselines with
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Figure 4. Learning the first 9 eigenfunctions of the Schrödinger
equation of a 2D hydrogen atom using SpIN. For experiments that
use ALiSE, labeled as BGF (Bounded Gain Forget), solid lines
correspond to constrained-sum cases (A(θ̂) + B(θ̂) = 1), and
dashed lines correspond to the unconstrained cases.

GT

BGF

β = 0.9

Figure 5. Visualization of the ground truth and learned eigenfunc-
tions.

β ∈ {0, 0.9, 0.99, 0.999}. As shown in Figure 4, ALiSE re-
sults in faster learning of the eigenfunctions than the base-
lines, regardless of configuration. Figure 5 visualizes the
ground truth and the some of the learned eigenfunctions of
the 2D hydrogen atom.

6.3. Learning fair representations

As a last experiment, we consider a classic algorithm for
fairness in machine learning: Learning Fair Representations
(LFR) (Zemel et al., 2013). LFR achieves fair classifica-
tions by mapping each data point in the input space to a new
representation space. The new representation obfuscates
the sensitive information of the input data, while retain-
ing as much other information as possible to enable good
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classification performance.

Let S denote the binary random variable that contains the
sensitive information. Let x ∈ RD be a feature vector that
represents an individual, and {XT , yT } denote the training
set that contains inputs and binary labels. Let X+

T , X
−
T ⊂

XT be the subset of training data that correspond to S =
1 and S = 0 respectively. Let m ∈ RK be the latent
representation for input x, and vk ∈ RD be prototype (linear
decoder) for the kth dimension.

The LFR loss is a weighted sum of three terms: the
cross-entropy classification loss LCE, the reconstruction
loss from the intermediate representations Lrecon =∑

x(i)∈XT
∥x(i) −

∑K
k=1m

(i)
k vk∥22, and a regularization

term LR (to encourage statistical parity — a fairness metric)
defined as:

LR =
K∑

k=1

∣∣∣∣ 1

|X+
T |

N∑
i=1

x(i)∈X+
T

m
(i)
k −

1

|X−
T |

N∑
i=1

x(i)∈X−
T

m
(i)
k

∣∣∣∣.
(13)

Note that when training with minibatches, we do not have
access to the global statistics (highlighted in blue) in (13),
and have to resort to online estimates. Also, as the regular-
ization is ℓ1, a noisy estimate of the statistics would result
in biased gradient.
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Figure 6. Training loss (evaluated on the whole training set) and
the β0 schedule of LFR on the Adult dataset.

We conduct experiments on the Adult dataset from the UCI
repository (Dua & Graff, 2017). The target is to predict
whether an individual has income over $50K. The sensi-
tive feature is gender. We fix the weight coefficients for
the loss terms LCE, Lrecon and LR to be 1.0, 0.01 and 0.1
respectively. We train LFR end-to-end, with an additional
normalization for the prototypes to accelerate training. We
use a batch size of 1 to demonstrate the necessity of online
statistics estimation. We compare ALiSE (BGF, constrained
/ unconstrained sum) to naive EMA baselines (decay param-
eter 0.9, 0.99, 0.999 and 0.9999). As shown in Figure 6,
regardless of θ̂ initialization, ALiSE is able to find a param-
eter schedule that matches the performance of the best naive
EMA baselines.

7. Conclusion
Estimating statistics from noisy observations when training
a neural network can lead to slower convergence. In this
work, we propose ALiSE, an approach to online statistics
estimation for neural network training that draws on tech-
niques from recursive identification. Our work establishes
an explicit connection between recursive prediction-error
methods and online parameter estimation in deep learning.
We believe this connection is useful as it allows us to borrow
design choices from the recursive identification literature,
as ALiSE does. Moreover, when the number of parameters
being adapted is small, the additional memory requirement
of these recursive methods is modest, making them well-
suited for hyperparameter optimization in deep learning.
We show that ALiSE is able to learn sensible schedules for
an EMA decay parameter in many applications, leading to
matching or accelerated convergence during training. We
hope this work will inspire further applications of recursive
identification in deep learning.
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A. Details of the Gauss-Newton algorithm with forget factor
We use a recursive approximation (denoted as R) of the Gauss-Newton Hessian E[ψΛ−1ψ⊤]:

Rt = Rt−1 + γt(ψtΛ̂
−1
t ψ⊤

t −Rt−1). (14)

The preconditioning matrix is Pt = R−1
t . Using the forget factor parameterization and defining P̄ := γP = γR−1, it can

be shown that (14) corresponds to the following recursive update for P̄ :

P̄t =
(
P̄t−1 − P̄t−1ψt(ψ

⊤
t P̄t−1ψt + λtΛ̂t)

−1ψ⊤
t P̄t−1

)
/λt = P̄t−1(λtI + ψtΛ̂

−1
t ψ⊤

t P̄t−1)
−1 (15)

The forget factor λ controls the trade-off between the steady-state state estimation performance and the ability to fit
time-varying θ. If ∀t, λt = 1, the algorithm never “forgets” past observations, P̄ will approach 0 over time, and θ̂ will
eventually stop changing. This is undesirable if the optimal θ is time-varying. On the other hand, having a fixed λt = λ < 1
will cause ∥P̄∥ → ∞ if the second term inside the parenthesis in (15) is sufficiently small. In order to fit a time-varying θ
without causing instability, we use the Bounded Gain Forget (as it keeps ∥P̄∥ bounded (Slotine et al., 1991)) for choosing
the forget factor:

λt = λmax(1−
∥P̄∥
k0

).

B. Additional experiment details
B.1. Synthetic example in estimating the second moment in Adam optimizer
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Figure 7. The β2 schedules found by ALiSE (BGF), when applied on the synthetic example where the baseline Adam optimizer does not
converge to the optimal solution. Left: online setting. Right: stochastic setting.


