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ABSTRACT

Recently, large-scale deep-learning models and datasets have shifted the devel-
opment of medical image analysis with robust and generalizable representations.
In this context, self-supervised learning has emerged as a valuable tool, offer-
ing the advantage of advancing deep learning without the need for costly anno-
tations while facilitating downstream tasks with limited sample sizes. However,
this feature has been few investigated in brain network analysis, and most ex-
isting self-supervised learning approaches yield only comparable performances
with those achieved without self-supervised learning. In this study, we introduce
an efficient self-supervised representation learning approach known as Bootstrap
Time-Invariant Latent (BTIL), aiming at capturing time-invariant representations
of brain networks derived from resting-state fMRIs for the diagnosis of brain dis-
orders. We randomly dropped some timepoints in the functional signals and sub-
sequently derived two augmented pseudo-functional connectivity (pFC) as posi-
tive pairs. Our BTIL consists of an online network and a target network, where
each network encodes one augmented pFC. The time-invariant representations are
obtained by bringing the latent embeddings of the two networks closer. Addition-
ally, we employ Mask-ROI Modeling (MRM) with both classification and recon-
struction heads for relating intra-network dependencies and enhancing regional
specificity. Linear evaluations on three downstream classifications demonstrate
the superiority of BTIL for brain disorder diagnosis with more than 2% improve-
ments compared with the state-of-the-art works.

1 INTRODUCTION

Functional neuroimaging, e.g. functional Magnetic Resonance Imaging (fMRI), using the blood-
oxygenlevel-dependent (BOLD) effect has received considerable attention in the past decades and
has become a powerful tool in neuroscience Sato et al. (2006); Bullmore & Sporns (2009); Racine
et al. (2005). This paradigm offers a unique opportunity to map the neural substrates of cognition
in-vivo. One crucial outcome is the functional brain networks. These networks are established
through pairwise correlations between the BOLD signal time series extracted from various regions
of interest (ROIs). Recently, they have recently represented an indispensable foundation for neuro-
science studies by characterizing the complex relationship between brain dysfunctions and pheno-
types Bargmann & Marder (2013); Buckner et al. (2013). Gaining a deeper understanding of the
communication between brain regions is both from the perspective of understanding how our brain
facilitates higher-order cognition and also to provide insight into how brain disorders arise.

In recent years, deep learning approaches have significantly influenced the field of brain functional
network analysis. These approaches encompass various techniques, ranging from convolutional
neural networks (CNN) Kawahara et al. (2017); Huang et al. (2017; 2020), graph neural networks
(GNN) Zhao et al. (2022); Li et al. (2021); Yang et al. (2023a), to Transformer networks Kan et al.
(2022b); Zhu et al. (2022). Many of these studies involve constructing brain networks by calculating
the Pearson correlation between regional activation time series over the full scan duration, which is
referred to as static functional connectivity (sFC). Another approach is to build brain networks using
shorter sliding windows, known as dynamic functional connectivity (dFC). Sequential modeling
with dFC on shorter sliding windows provides additional dynamic activation information compared
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Figure 1: Illustration of our study behind time-invariant representation learning.

to models using sFC. However, when applied to resting-state fMRIs, these studies achieve only
comparable or sometimes even lower performance than those using sFC, particularly in the context
of brain disease diagnosis Kim et al. (2021); Kan et al. (2022a); Azevedo et al. (2022); Bedel et al.
(2023). One main reason for this is that these models incorporate more redundant features while
working with limited data samples. Previous studies have suggested that dFC can preserve similar
topological properties to sFC Allen et al. (2014); Sakoğlu et al. (2010); Hindriks et al. (2016) with a
proper sliding setting. Based on these observations, we hypothesize that demographic factors such
as age, sex, and diagnosis are not highly sensitive to the duration of time in resting-state fMRIs.
Consequently, the main challenge in diagnosing brain disorders lies in how to extract time-invariant
disease-specific representations underlying neuroimages.

To achieve this, in this study, we introduce a self-supervised learning scheme to uncover time-
invariant latent representations for brain disorder diagnosis. As is shown in Figure 1, we randomly
drop some timepoints of the whole BOLD signals and derive new views of brain networks as positive
pairs, termed pseudo functional connectivity (pFC). These positive pairs can be viewed as a data
augmentation of sFC. We extract the latent representations of these pFCs by a Transformer encoder
and a projection, and supervise the network to bring the representations of different pFCs closer. In
this manner, the latent embeddings tend to be time-invariant and disease-specific. The framework
is represented as Bootstrap Time-Invariant Latent (BTIL), which is constructed in a self-supervised
learning manner, inspired by previous works Grill et al. (2020); Richemond et al. (2020). Compared
with most contrastive learning methods Chen et al. (2020a;b); He et al. (2020), BTIL is trained
without using negative pairs, instead bootstrapping the representations by learning from an online
network and a target network. Starting from a pFC, BTIL trains its online network to predict the
target network’s representation of another pFC. Moreover, we implement the Masked ROI Modeling
(MRM) with both ROI classification and feature reconstruction heads into the online network. This
inclusion helps relate intra-network dependencies and enhances local specificity for classification
tasks. The regional distinguishing capability is particularly valuable when dealing with disorders
exhibiting significant intra-class variations, especially in cases of psychological disorders like autism
spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD).

We access the representations on three real-world datasets including ABIDE, ADHD-200, and
REST-MDD. These evaluations involve the diagnosis of ASD, ADHD, and Major Depression Dis-
order (MDD) from healthy controls (HC). It’s worth noting that diagnosing these three psychiatric
disorders is particularly challenging due to the substantial intra-class variations among patients. In
our downstream linear evaluations, which entail training a linear classifier on the frozen represen-
tations, BTIL consistently outperforms the current state of the art by more than 2% across all three
datasets. In summary, our study is structured around addressing three research questions (RQ):

• RQ1: Are time-invariant representations reasonable for disease diagnosis?

• RQ2: How powerful is BTIL in diagnosing multiple types of brain disorders?

• RQ3: How do different parameter settings, such as model size and mask ratio, impact the
framework?
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To address RQ1, we examined the time-invariant characteristics of BOLD signals and assessed var-
ious ways for augmenting brain networks in Section 4.2. In Section 4.3, we present our findings on
the superior classification performance across the three public datasets, addressing RQ2. For RQ3,
we conduct a sensitivity analysis and ablation studies, which are detailed in Section 4.4. Finally,
in Section 5, we discuss the potential limitations of our framework and outline directions for future
research and model development.

2 RELATED WORKS

Brain Connectome Studies. Significant advancements have been made over the past decade in
the application of neuroimaging techniques to uncover alterations in brain networks associated with
various brain disorders. Convolutional neural networks (CNN) are firstly proposed to facilitate end-
to-end disease identification with promising performances and have been widely applied for ana-
lyzing connectome patterns such as BrainNetCNN Kawahara et al. (2017) and Deep Convolutional
Auto-Encoder Huang et al. (2017). In addition to CNNs, graph neural networks (GNNs) have gained
prominence. GNNs have the capacity to capture information about neighboring structures within the
brain. BrainGNN, for instance, introduced ROI-aware graph convolutional layers and ROI-selection
pooling layers to predict neurological biomarkers at both the group and individual levels Li et al.
(2021). Another approach, proposed by Ktena et al. (2018), involved learning a graph similarity
metric using a siamese graph convolutional neural network. Xing et al. (2019) introduced a dynamic
spectral graph convolution network, which constructed connectivity patterns from time-varying cor-
relations in fMRI signals. In a similar vein, Zhao et al. (2022) trained a dynamic graph network by
learning from sparse connections among brain regions calculated dynamically from graph features.
More recently, the Transformer architecture has garnered considerable attention due to its excep-
tional performance in graph representation learning. However, most existing Transformer-based
networks Ying et al. (2021); Kreuzer et al. (2021); Dwivedi & Bresson (2020) have achieved only
limited success in brain network analysis. To address this limitation, BrainNetTransformer Kan
et al. (2022b) was introduced to harness the potential of Transformer-based models for enhanced
brain network analysis.

Self-supervised Learning. Self-supervised learning paradigms have delivered promising results in
computer vision He et al. (2020); Chen et al. (2020b;b); Fan et al. (2021); He et al. (2022) and
natural language processing Devlin et al. (2018); Radford et al. (2018); Wu et al. (2021); Conneau
& Lample (2019). These paradigms have introduced pre-trained foundation models that leverage
self-supervised learning on extensive unannotated data. This approach produces standardized and
generalized representations, offering substantial benefits across domains with limited task-specific
data availability. However, this paradigm has been few studied for brain networks. BrainNPT Hu
et al. (2023), for example, constructs disturbance inputs by replacing regional features to enhance the
models’ understanding of the underlying input patterns. BrainGSLs Wen et al. (2023), on the other
hand, proposes an ensemble masked graph self-supervised framework based on masking and pre-
diction. Nevertheless, these two studies have only achieved modest improvements when compared
to approaches without pre-training (i.e., approximately 71.5% accuracy on the ABIDE dataset). It’s
important to note that these pre-training strategies, borrowed from BERT-like models, still rely on
a substantial amount of training data to establish data dependencies, which may not be suitable
for brain network studies. In summary, there remains a notable gap in the development of self-
supervised learning strategies tailored to uncover the intrinsic characteristics of brain networks.

3 TIME-INVARIANT BRAIN CONNECTOME SELF-SUPERVISED LEARNING

3.1 PROBLEM DEFINITION

Our objective is to develop a mapping function f : X → y, where X ∈ RV×V represents a
brain network with V Regions of Interest (ROIs), and y denotes the predicted diagnosis phenotype
for each subject. Our approach consists of two key phases: self-supervised representation learning
and downstream classification. The self-supervised learning framework is depicted in Figure 2 (a),
which comprises an online network, a target network, and a prediction function. Both the online
and target networks share the same architecture, featuring a Transformer network and a readout
function. In the online network, input brain networks undergo encoding via an L-layer self-attention
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Figure 2: The overall framework of BTIL comprises two phases. In the initial phase, the model
undergoes self-supervised learning. In the subsequent phase, the acquired representations are input
into a classifier for disease diagnosis prediction. The components are color-coded for clarity: the
yellow and blue segments represent the online network and the target network, respectively, while
the pink section symbolizes the Masked ROI Modeling module.

Multi-head Self-Attention (MHSA) Transformer network, leading to nonlinear mappings denoted
as X → O ∈ RV×V . Subsequently, the readout function transforms the encoded features O into
subjective embeddings Z ∈ RD×V . Similarly, the target network generates subjective embeddings
Ẑ using the same process. Finally, a prediction MLP is employed to learn the mapping from the
online network outputs Z to predict the target network outputs Ẑ. In the downstream classification
phase, a Support Vector Machine (SVM) classifier is employed for prediction. This classifier takes
input features inferred from the learned representations Z derived from the online network.

3.2 TIME-INVARIANT BRAIN NETWORK AUGMENTATION

In this study, we propose to investigate brain network augmentation methods involving the random
removal of certain timepoints within timeseries data. Given a brain network X derived from a
timeseries matrix S ∈ RV×T with T time steps, we randomly generate a mask vector m ∈ RM ,
where M ≤ V , and utilize it to exclude these masked timepoints. We then apply Pearson correlation
to the modified timeseries matrix Ŝ ∈ RV×(T−M) to generate pFC X̂ . It’s crucial to acknowledge
that fMRI data is frequently acquired using diverse protocols, leading to variations in scanning
durations. Consequently, the length of timeseries data may differ between individual samples. To
accommodate this variability, we explore various mask lengths, considering different numbers of
time steps and different percentages of time steps. The impact of these masking configurations will
be addressed in Section 4.2.
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3.3 SELF-SUPERVISED LEARNING FRAMEWORK

Latent representation learning. BTIL is designed to learn a time-invariant latent representation
Z containing specific embeddings for downstream diagnosis tasks by connecting two views of aug-
mented brain networks. Following previous works Grill et al. (2020); Chen et al. (2020b), we employ
two neural networks: the online network and the target network. Both networks share the same ar-
chitecture, featuring a Transformer encoder and a readout function. The target network provides
regression targets for training the online network. Its parameters ξ are updated using a momentum
approach based on the online parameters θ, as ξ ← τξ + (1 − τ)θ, where τ is a target decay rate
τ ∈ [0, 1]. To prevent collapsed solutions Grill et al. (2020), a predictor qθ is applied to the online
network to predict the target outputs. The optimization is performed using the mean squared error
between the normalized predictions and the target projections:

Llatent = 2− 2
< qθ(Z), Ẑ >

||qθ(Z)||2 · ||Ẑ||2
(1)

Transformer encoder. Transformer-based models have led a tremendous success in various down-
stream tasks across fields including natural language processing, computer vision, and also graph
learning. However, the brain network data potentially falls in neither of these classes. The brain net-
works are symmetric semi-positive defined matrices and densely distributed. Previous studies tackle
the brain networks as graph data, however, there are still no explicit relationships between ROIs Kan
et al. (2022b); Yang et al. (2023b); Li et al. (2021). In this study, we instead tackle the brain network
connection profile as a sequence, where each ROI is represented as a sequential step with V features.
The input brain network X is viewed as a sequence {x0,x1, ...,xV−1}, where the i-th element is
obtained by xi = Xi,: ∈ RV . In this context, Multi-Head Self-Attention is implemented to relate
inter-ROI dependencies and generate more expressive brain features HL = MHSA(X) ∈ RV×V .
For each layer l, we first calculate the query Ql,c, key Kl,c, and value V l,c for the c-th head through
linear projection as Ql,c = H l−1W l,c

q ,Kl,c = H l−1W l,c
k ,V l,c = H l−1W l,c

v , where H l−1 is the
output of the l-th layer, H0 = X , and W l,c

q ,W l,c
k ,W l,c

v are learnable parameters. c is in the range
of {1, 2, ..., C}, and C denotes the number of self-attention heads. The output for each head is com-
puted as a scaled dot-product as H l,c = Softmax(Q

l,c(Kl,c)T√
d

)V l,c, where d is the first dimension
of W l,c. Finally, the output H l is obtained by H l = (||Cc=1H

l,c)W l
O, where || is the concatenation

operator, and W l
O are learnable model parameters. We implement the Feed Foward Network and

layer normalization for mapping the H l into encoder outputs O.

Readout function. After obtaining the non-linear features from the Transformer encoders, we are
left with high-dimensional data, which can pose challenges for downstream classification tasks,
especially given the limited fMRI data samples available. In this study, we employ a readout function
to transform the output features O into subject-specific embeddings Z. To achieve this, we aggregate
the output features for each ROI into a set of D features. These features are then concatenated
to form the final feature representation O ∈ RD×V . In this study, we set D = 8 and obtain
8× 100 = 800 representations for each brain network.

Masked ROI distinguishing. In this study, we introduce a joint discriminative and generative
objective to regulate the online network’s pretraining process and establish intra-network ROI de-
pendencies. As illustrated in Figure 2, each input brain network is treated as a sequence, divided
into V ROIs, and randomly assigned a set P of P masked ROI position indices. For each patch that
needs to be masked, we replace its patch embedding with a learnable mask embedding. Positional
embeddings are added to the patch embeddings, and the resulting data is fed into the Transformer
encoder. For each masked patch xi, we obtain a corresponding output o

′

i from the Transformer
encoder. Subsequently, we pass o

′

i through both a classification head and a reconstruction head to
obtain outputs ci and ri, respectively. Both the classification and reconstruction heads consist of
two-layer MLPs designed to map o

′

i to the same dimension as xi. The goal is to make ri as close
as possible to xi while ensuring the model can correctly match pairs (xi, ci). To achieve this, we
employ the InfoNCE loss Oord et al. (2018) Lc for the classification objective and the mean square
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error loss Lr for the reconstruction objective:

Lc = −
1

N

N∑
i=1

log

(
exp(cTi xi)∑N
j=1 exp(c

T
i xj)

)
(2)

Lr =
1

N

N∑
i=1

(ri − xi)
2 (3)

To note that, there remains two types of inputs for the online network training. For latent repre-
sentation learning, non-masked brain networks are fed into the online network to obtain the output
features O, while for the MRM module, the online network encodes the masked brain networks to
prediction the mask embeddings. Finally, the objective function for self-supervised pre-training is
obtained through a weighted summation, incorporating λc and λr to balance the training:

L = Llatent + λcLc + λrLr (4)

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluated our approach on three real-world datasets, and their demographic infor-
mation is provided in Appendix A. Here’s a brief overview of the datasets: (a) ABIDE (Autism
Brain Imaging Data Exchange-I): The ABIDE-I dataset included 528 individuals diagnosed with
ASD and 555 controls, with fMRI data collected from 17 international sites. All images underwent
preprocessing using the C-PAC pipeline and were mapped into the Schaefer-100 atlas, consisting
of 100 brain regions. (b) ADHD-200 (ADHD-200 global competition): The ADHD-200 dataset
comprises 710 healthy control subjects and 550 patients with ADHD. Data from eight international
sites were used, and similar to ABIDE, preprocessing and mapping into the Schaefer-100 atlas were
performed. (c) REST-MDD: The REST-MDD dataset includes 1276 patients with depression and
1104 healthy controls from 25 international sites. Harvard-Oxford atlas was used for mapping fM-
RIs into 112 brain regions. In all three datasets, the repetition time (TR) was 2 seconds. Further
details regarding preprocessing can be found in Appendix B.

Implementation details. To ensure comparability, we employed a consistent approach for dataset
splitting across all three datasets: 70% for training, 15% for validation (if necessary), and 15%
for testing. The training set served for both self-supervised pre-training and classifier supervision.
We utilized the Adam optimizer with an initial learning rate of 3 × 10−5 and a weight decay of
5× 10−5. The learning rate underwent a linear increase to 3× 10−4 within 10 warmup epochs. The
batch size was set to 256 for all datasets. The BTIL model underwent training for 10,000 epochs,
and we saved the models with the lowest training loss for subsequent classification tasks. The
decay rate for target network update is set as 0.996 Our experiments were conducted on a platform
equipped with 64 NVIDIA Tesla V100 GPUs, with 4 GPUs allocated for each training run. The
training duration varied, taking approximately 8, 8, and 12 hours for the ABIDE, ADHD-200, and
REST-MDD datasets, respectively. To explore the effects of different model sizes, we configured
five parameter settings, including hidden features, Transformer layers, and the number of attention
heads, as detailed in Appendix C. For the loss function, as shown in Eq. 4, we set λc to 0.1, which
had minimal impact on downstream classification tasks. The discussion on the choice of λr can be
found in Section 4.4. For the downstream classification tasks, the encoded latent representations
were input into an SVM classifier for prediction.

Metrics. We assess the performance of diagnosis classification, differentiating ASD, ADHD, and
MDD from HC across the three datasets, using accuracy, sensitivity, and specificity as our key met-
rics. Both tasks involve binary classification. To account for the variability introduced by data col-
lection from multiple centers, we employ a rigorous stratified sampling strategy that considers col-
lection sites during the training-validation-testing split. This approach aligns with previous studies,
ensuring fair comparisons Kan et al. (2022b); Parisot et al. (2018). All reported performance met-
rics represent averages computed over 10 random test set runs, accompanied by standard deviation
values. Our code and pre-trained checkpoints are publicly available online (currently anonymous).
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Figure 3: Evaluation on the feature similarity and prediction similarity of time-invariant augmenta-
tion. GT: ground truth. Full: raw features derived from the full timesteps.

4.2 TIME-INVARIANT FEATURE EVALUATION (RQ1)

We embarked on an assessment of two distinct time-invariant data augmentation techniques, specif-
ically random time-point removal in fixed and unfixed settings. Cosine similarity served as our
metric for gauging both feature similarity (pre-hoc) and prediction similarity (post-hoc), as eluci-
dated in Figures A) and B) of Figure 5. Supplementary results for the ADHD-200 and REST-MDD
datasets are accessible in Appendix E.1. The pre-hoc analysis primarily centers around evaluating
feature similarity within the brain network. Our results reveal that judiciously configured random
drop augmentation can yield robust and closely aligned features. Furthermore, whether the number
of dropped time-points is fixed (”drop by number”) or unfixed (”drop by percentage”), both strate-
gies yield analogous outcomes. Notably, increasing the number of dropped time-points consistently
leads to a reduction in similarity. In the post-hoc analysis, we shift our focus to assessing prediction
similarity using SVM classification. For this analysis, we flatten the brain network features into a
vector comprising V × (V − 1)/2 elements. Remarkably, the post-hoc results align closely with
those from the pre-hoc analysis. Additionally, we conducted experiments involving time-invariant
data augmentation with BTIL, as elaborated in Appendix E.2. In summary, our findings suggest that
configurations involving the random removal of fewer than 40 timesteps or 20% represent preferable
choices. These results underscore the advantages of time-invariance in resting-state fMRI, which can
be harnessed as a data augmentation strategy and for enhancing disease diagnosis.

4.3 BRAIN DISORDER DIAGNOSIS PERFORMANCE (RQ2)

To assess the performance of brain disorder diagnosis, we conducted comparisons involving BTIL
against two categories of baseline models: those with self-supervised learning (SSL) and those with-
out SSL. The baseline models without SSL include BrainNetCNN Kawahara et al. (2017), DHGNN
Jiang et al. (2019), BrainGNN Li et al. (2021), Semi-GCN Parisot et al. (2018), vanilla-Transformer
(vanillaTF), and BrainNetTransformer (BrainNetTF) Kan et al. (2022b). For SSL comparisons,
the architecture of BTIL closely resembles that of BYOL Grill et al. (2020) and MOCO He et al.
(2020), which are also included in the evaluation. Furthermore, we considered two existing works:
BrainNPT Hu et al. (2023) and BrainGSLs Wen et al. (2023). Detailed implementations of these
comparable approaches can be found in Appendix D.

Table 1 displays the results, with the best performance shown in bold and the second best under-
lined. Key observations are as follows: 1) Among the baseline models without pretraining, CNN,
GNN, and Transformer models achieve comparable performances across all three datasets. Trans-
former models, with increased computational complexity, exhibit limited performance gains given
the fMRI data in limited samples. However, BrainNetTF, incorporating orthonormal clustering
readout, significantly enhances diagnosis performance, aligning with previous studies Kan et al.
(2022b). 2) In contrast, most self-supervised learning approaches did not contribute significantly to
performance improvement when compared to BrainNetTF. This limitation can be attributed to the
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scarcity of available data samples. It’s worth noting that, as reported in Hu et al. (2023), Brain-
NPT achieves a performance of 71.25% on the ABIDE dataset when pre-trained on a broad dataset,
including ABIDE, HCP, and REST-MDD datasets. Such self-supervised learning paradigms still
heavily depend on large-scale data, which is not available for fMRI studies. Overall, these existing
self-supervised learning approaches are limited in their performance. 3) Lastly, our proposed BTIL
achieves consistent improvements across all three datasets compared to state-of-the-art approaches
(with improvements of 2.06%, 2.92%, and 3.06% in accuracy for ABIDE, ADHD-200, and REST-
MDD datasets, respectively). This underscores the crucial role of time-invariant representations in
brain disorder diagnosis and the framework for self-supervised learning.

Table 1: Classification results of different approaches on three datasets (ABIDE, ADHD-200, and
REST-MDD) in terms of accuracy (Acc), sensitivity (Sen), and specificity (Spe).

Methods ABIDE-I ADHD-200 REST-MDD
Model Type Acc Spe Sen Acc Spe Sen Acc Spe Sen

BrainNetCNN CNN 68.14 67.56 69.74 61.62 63.18 61.82 62.55 65.41 59.93
DHGNN GNN 64.31 63.81 64.97 59.84 53.52 61.72 59.24 61.40 56.51

BrainGNN GNN 69.60 61.47 76.46 61.02 54.60 64.08 61.40 71.37 50.86
PopGCN GNN 69.76 67.61 71.72 62.20 56.69 66.40 61.20 65.06 57.23
vanillaTF TF 68.98 65.01 72.48 61.62 63.18 61.82 62.49 64.60 60.65

BrainNetTF TF 71.02 73.27 71.18 62.75 63.61 62.85 63.50 65.05 61.56
MOCO-V3 SSL 70.32 70.74 71.91 63.30 64.29 63.14 63.34 62.64 64.83

BYOL SSL 71.04 70.60 72.11 63.35 61.97 63.88 63.80 64.43 63.61
BrainNPT SSL 68.92 67.29 70.00 62.49 59.60 63.31 57.84 58.84 56.01
BrainGSLs SSL 71.30* 70.20* 69.90* 62.32 63.48 66.25 59.87 59.11 62.22

BTIL SSL 73.36 74.02 73.12 66.27 68.61 65.70 66.56 66.59 66.58

4.4 SENSITIVE ANALYSIS AND ABLATION STUDIES (RQ3)

Ablation studies. We conducted evaluations on the various components of Eq. 4. These compo-
nents encompass latent representation learning (Llatent), classification heads (Lc), and reconstruc-
tion heads (Lr) for ROI distinguishing. We listed the corresponding results in Table 2. The results
consistently indicate that the inclusion of the Lr term leads to performance improvements across
all three datasets. Although the ROI classification term has a relatively minor impact on perfor-
mance, combining it with Llatent + Lr further enhances model performance. This improvement
is attributed to the model’s enhanced capability to capture dependencies among brain regions and
intra-brain network representation learning facilitated by the masked ROI distinguishing module.

Table 2: Ablation studies on the elements of BTIL.

Llatent Llatent + Lc Llatent + Lr BTIL
ABIDE 71.02 72.04 72.99 73.36
ADHD 63.35 63.29 64.05 66.27

REST-MDD 62.80 62.46 66.00 66.56

Table 3: Effect on λr values

1 5 10 20
ABIDE 71.92 72.52 73.36 73.06
ADHD 63.78 65.03 66.27 64.54

REST-MDD 62.55 62.30 66.56 62.94

Mask ratio analysis. In this study, the choice of mask ratio proves to be a pivotal factor within the
Masked ROI Modeling module. As illustrated in Figure 4 A), we observe that performance initially
improves with an increase in the mask ratio and then starts to decline. Across all three datasets, the
optimal mask number is 10 (equivalent to 10% with 100 ROIs) for classification heads and ranges
between 5 and 20 (5% to 20%) for reconstruction heads. Performance deteriorates when the mask
ratio exceeds 20 across all three datasets. It’s worth noting that, in contrast to other frameworks like
Masked AutoEncoder He et al. (2022), our BTIL exhibits limitations at high mask ratios.

Model Size analysis. Figure 4 B) depicts the accuracy performance of models of different sizes,
and the corresponding hyperparameter settings can be found in Appendix C. It is worth noting that
the top-performing models are the base model (REST-MDD dataset) and the large model (ABIDE
and ADHD-200 datasets). However, as these models incorporate more hyperparameters, their per-
formance starts to plateau due to the constraints posed by the limited availability of data samples.

The balance of mask & prediction and latent learning. Throughout our experiments, we noticed
a substantial impact on downstream classification performance stemming from the choice of λr.
This effect is illustrated in Table 3. When λr is set to a small value, like λr = 1, the contribution
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Figure 4: Sensitive analysis on the mask ratio on classification heads (i), reconstruction heads (ii) in
A), and hyperparameter settings in B).

of the reconstruction loss to the gradient update becomes minimal, making it challenging to achieve
convergence. In this regard, we opted for higher values for the reconstruction loss. The results in the
table demonstrate that setting λr = 10 consistently yields top performance across all three datasets.

5 DISCUSSION AND CONCLUSION

In this study, we introduce BTIL, a self-supervised approach designed to uncover time-invariant
latent representations for diagnosing brain diseases. Our method comprises two essential compo-
nents: time-invariant data augmentation and a latent representation learning framework featuring a
masked ROI distinguishing module, both of which play crucial roles in downstream classifications.
This paradigm has led to several significant contributions. Firstly, it has markedly enhanced disease
diagnosis performance. To our knowledge, our study represents the first to achieve an accuracy ex-
ceeding 73% on the ABIDE dataset, surpassing previous limitations. Secondly, the self-supervised
learning paradigm has offered insights into the interpretation of biomarkers with broad data. In Ap-
pendix F, we present an evaluation of attention weights, demonstrating that the key regions returned
by MHSA align with findings from prior studies.

Nonetheless, neuroscience studies still face substantial challenges, including the collection of large-
scale, hard-to-obtain datasets and the high variability in scanning protocols. In this study, we trained
our BTIL model on individual database. However, when we attempted to consolidate diverse data
for pre-training, the downstream classification performance showed a decrease to some extent, as
illustrated in Appendix E.4. This decline can be attributed to both the limited number of data samples
and the significant variability in data domains among different data centers. Our future work aims
to construct a large-scale, adaptable foundational model for brain disease diagnosis.

In summary, our study introduces BTIL, a self-supervised learning approach tailored for resting-
state fMRI data, which surpasses the performance limits of conventional methods by achieving
more than a 2% improvement. Our experimental results, spanning three datasets, validate the effec-
tiveness of our framework. This research not only provides valuable data augmentation techniques
but also advances the evaluation of training frameworks, offering fresh perspectives on large-scale
self-supervised learning for brain functional network analysis.

6 REPRODUCIBILITY STATEMENT

Our code is available online publicly (anonymous for now), and is accessable in the supplemen-
tary material. We provide the following: (1) Code used to reproduce the results in our paper. (2)
README explaining how to install packages, preprocess data, and run experiments. (3) we provide
scripts to automate the process of running experiments across the various models, ablation studies,
etc. The checkpoint pre-trained on the ABIDE dataset is attached. Other checkpoints would be
released online. We hope this will allow others to use our code for future projects.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B Erhardt, Tom Eichele, and Vince D Calhoun.
Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3):663–676,
2014.

C Aston, L Jiang, and BP Sokolov. Transcriptional profiling reveals evidence for signaling and
oligodendroglial abnormalities in the temporal cortex from patients with major depressive disor-
der. Molecular psychiatry, 10(3):309–322, 2005.

Tiago Azevedo, Alexander Campbell, Rafael Romero-Garcia, Luca Passamonti, Richard AI Bethle-
hem, Pietro Lio, and Nicola Toschi. A deep graph neural network architecture for modelling
spatio-temporal dynamics in resting-state functional mri data. Medical Image Analysis, 79:
102471, 2022.

Cornelia I Bargmann and Eve Marder. From the connectome to brain function. Nature methods, 10
(6):483–490, 2013.

Hasan A Bedel, Irmak Sivgin, Onat Dalmaz, Salman UH Dar, and Tolga Çukur. Bolt: Fused window
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A DEMOGRAPHICAL INFORMATION

Table 4: Demographical statistics on the three datasets.

Dataset Group Gender (M/F) Age (Mean±Std) Min. Timesteps Max. Timesteps
ABIDE NC 491/95 16.78±7.71

82 320ASD 466/62 16.95±8.44
ADHD NC 358/352 11.96±3.48

59 261ADHD 398/124 11.26±2.94
REST-MDD NC 462/641 36.15±15.67

90 240MDD 463/813 36.23±14.62

B FMRI DATA PREPROCESSING

All the fMRI images were pre-processed by reference to the Configurable Pipeline for the Analysis
of Connectomes (C-PAC) pipeline Craddock et al. (2013), including skull striping, slice timing
correction, motion correction, global mean intensity normalization, nuisance signal regression with
24 motion parameters, and band-pass filtering (0.01-0.08Hz). The functional images were finally
registered into standard anatomical space (MNI152). The mean time series for a set of regions were
computed and normalized into zero mean and unit variance. Pearson Coefficient Correlation was
applied to measure functional connectivity.

C HYPERPARAMETER SETTINGS

Table 5: Hyperparameter settings for five types of model size.

n layer n heads FFN dim MLP dim #Params

ABIDE & ADHD-200

X-Small 4 4 1024 512 7.65M
Small 8 5 2048 1024 14.82M
Base 12 10 2048 1024 16.80M
Large 16 10 3096 1024 19.19M

X-Large 20 20 3096 1024 21.17M

MDD

X-Small 4 4 1024 512 8.83M
Small 8 4 2048 1024 16.53M
Base 12 8 2048 1024 18.78M
Large 16 8 3096 1024 21.50M

X-Large 20 16 3096 1024 23.75M

D COMPARABLE METHOD IMPLEMENTATIONS

BrainNetCNN, DHGNN, and BrainGNN are powerful baselines for brain network analysis. We
follow the original architecture and decide the best performance by search the convolution chan-
nels in {32, 64, 128, 256}. The three models are implemented as baseline deep learning models for
comparison.

PopGCN builts a population graph and predict digagnosis phenotype by node classification in a
semi-supervised learning manner. Each node is represented by concatenating the vectorized upper
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matrix of the brain networks of a subject. Key features were selected by recursive feature elimination
and vectorized into a set for each vertex and then concatenated. The number of selected features is
searched in {400, 1000, 2000}. The adjacency matrix was constructed by the phenotype values (i.e,
gender, age, and siteID phenotypes) as well as the similarity between node features.

vallinaTF and BrainNetTF are implemented based on Transformer networks. Due to the limited
sample size of fMRI data, these models are implemented with small sizes. The layer number of
Transformer is searched in {2, 4, 6, 8} and the number of MHSA heads is decided in {2, 4, 8}. The
hidden feature size is searched in {512, 1024, 2048}.
MOCO and BYOL are implemented for comparison with our proposed BTIL in terms of self-
supvervised representation learning. We carry out experiments by using the same Transforer encoder
architecture and data augmentation approaches. In comparision, MOCO learns representations from
both positive pairs and negative pairs by contrastive learning, while BYOL only implement positive
pairs.

BrainNPT and BrainGSLs. BrainNPT implements ROI-replacing for building disturbance inputs
to help the models better understand the intrinsic patterns of the inputs. As is stated in this study, the
only mask and prediction method achieves lower performances than BrainNPT. This might be caused
by the limited sample size of fMRI data. In terms of this, other types of masking and prediction self-
supervised approaches are not applied for comparison, except BrainGSLs. We follow the originally
proposed architecture and change the ROI number to 100/112 on our datasets. For BrainNPT, with
the remaining 50% probability, the inputs were replaced by 50% ROIs from another brain network.
For BrainGSLs, 10% ROIs were randomly masked.

E ADDITIONAL EXPERIMENTS AND RESULTS

E.1 FEATURE AND PREDICTION SIMILARITY ON ADHD-200 AND REST-MDD DATASET

We also evaluated the time-invariant augmentation methods on the ADHD-200, and REST-MDD
datasets. The results coincides with those on the ABIDE dataset. With a proper settings, the resting-
state brain functional networks achieve similar features and patterns for diagnosis.

E.2 EVALUATION ON THE TIME-INVARIANT DATA AUGMENTATION FOR BTIL

Based on the data augmentation testing, we performed evaluations on training BTIL. The results
are shown in Figure 6. By random dropping a fixed number of timepoints in BOLD signals, the
number of 40 timesteps is preferable for all three datasets. And 10 or 20 timestep dropping might
contribute to weak augmentation. This tendency also exists in those by dropping some proportion
of Timesteps. Overall, 20-40 timesteps or 10%-20% dropping is the optimal.

E.3 DIAGNOSIS PERFORMANCE

Table 6: Standard deviation on the 10 runs.

Methods ABIDE-I ADHD-200 REST-MDD
Model Type Acc Spe Sen Acc Spe Sen Acc Spe Sen

BrainNetCNN CNN 2.04 7.02 4.41 1.81 8.39 1.46 1.58 3.43 1.93
DHGNN GNN 1.52 5.03 2.62 2.04 2.65 2.51 1.39 1.88 1.37

BrainGNN GNN 2.24 3.59 2.57 2.59 4.05 2.85 1.84 8.02 1.37
PopGCN GNN 1.40 3.12 1.74 1.36 2.17 2.98 1.90 1.90 2.79
vanillaTF TF 1.13 5.19 4.03 1.14 5.20 1.74 1.03 3.31 1.94

BrainNetTF TF 1.16 5.62 4.38 1.14 5.20 1.74 2.38 2.42 2.92
MOCO-V3 SSL 2.25 4.98 5.51 1.29 5.25 2.25 1.55 1.12 2.76

BYOL SSL 2.11 4.90 2.36 0.99 8.37 2.17 1.16 0.82 2.15
BrainNPT SSL 0.98 4.62 2.89 3.50 9.32 3.73 1.31 0.97 2.03
BrainGSLs SSL - - - 2.96 5.28 5.42 2.67 3.10 1.23

BTIL SSL 3.85 5.08 6.61 2.22 5.67 2.49 1.31 1.22 1.93
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Figure 5: Evaluation on the feature similarity and prediction similarity of time-invariant augmenta-
tion on the ADHD-200 and REST-MDD datasets.

Figure 6: Accuracy performance on different timestep dropping settings.

E.4 LARGE-SCALE PRETRAINING PERFORMANCE

For pretraining, we acquired an additional dataset specifically for this purpose. The ABIDE-II
dataset comprises 677 healthy controls and 559 individuals with ASD. In Figure 7, we present the
accuracy performance, with the X-axis denoting the increasing number of training samples. The
purple line represents downstream classification accuracy on ABIDE-I, while the pink line repre-
sents accuracy on ADHD-200. From the results, we notice that as the number of training samples
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Figure 7: Evaluation on training with broader data. The X-axis demonstrate the training set, while
the set set remain fixed for the ABIDE and ADHD-200 datasets.

Figure 8: Evaluation on the feature similarity and prediction similarity of time-invariant augmenta-
tion.

increases, the performance tends to plateau or exhibit slight fluctuations. Notably, when we include
both the ABIDE and ADHD-200 datasets for pretraining, the classification accuracy on ADHD-200
decreases. There are two primary reasons for this. First, the protocols used in these databases differ
significantly, resulting in a notable domain gap between the brain networks. Second, the available
data samples remain limited, and incorporating more out-of-distribution samples might introduce
unwanted noise into the downstream classification process.

F BIOLOGICAL EXPLANATION

Our investigation also delved into the crucial brain regions highlighted by the Multi-Head Self-
Attention (MHSA). We extracted the attention weights and conducted comparisons between patients
and healthy controls (HC) by calculating the difference in weight values, and aggregating them into
vectors by summation. In Figure 8, we present the top 5 key features for each of the three datasets.
In the results, blue signifies regions that received greater attention from HC, while red indicates
regions of heightened attention among patients.

In the case of distinguishing Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity
Disorder (ADHD) from HC, our analysis identified the Salience Ventricle Attention Network (in the
temporal cortex) and the Default Network (in the prefrontal cortex) as key regions. These regions are
strongly associated with deficits in executive control and task-irrelevant mental processes, aligning
with findings from previous studies Tang et al. (2020); Keehn et al. (2013). Additionally, the visual
network and the somatomotor network also emerged as critical regions in both datasets, as they play

16



Under review as a conference paper at ICLR 2024

pivotal roles in social communication development Lombardo et al. (2019); Marshall et al. (2020). In
the case of the REST-MDD dataset, key regions included the paracingulate gyrus, temporal cortex,
occipital pole, brain stem, and thalamus. These regions have been identified as important biomarkers
for Major Depressive Disorder (MDD) in previous research Yucel et al. (2009); Sacher et al. (2012);
Aston et al. (2005); Smoski et al. (2009); Nugent et al. (2013).
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