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Abstract

A key step in reverse engineering neural networks is to decompose them into sim-
pler parts that can be studied in relative isolation. Linear parameter decomposition—
a framework that has been proposed to resolve several issues with current decompo-
sition methods—decomposes neural network parameters into a sum of sparsely used
vectors in parameter space. However, the current main method in this framework,
Attribution-based Parameter Decomposition (APD), is impractical on account of
its computational cost and sensitivity to hyperparameters. In this work, we intro-
duce Stochastic Parameter Decomposition (SPD), a method that is more scalable
and robust to hyperparameters than APD, which we demonstrate by decomposing
models that are slightly larger and more complex than was possible to decompose
with APD. We also show that SPD avoids other issues, such as shrinkage of the
learned parameters, and better identifies ground truth mechanisms in toy models.
By bridging causal mediation analysis and network decomposition methods, this
demonstration opens up new research possibilities in mechanistic interpretability
by removing barriers to scaling linear parameter decomposition methods to larger
models. We release a library for running SPD and reproducing our experiments at
https://github.com/goodfire-ai/spd/tree/spd-paper.

1 Introduction

We have little understanding of the internal mechanisms that neural networks learn that enable their
impressive capabilities. Understanding—or reverse engineering—these mechanisms may enable us
to better predict and design neural network behavior and propensities for the purposes of safety and
control. It may also be useful for scientific knowledge discovery: Neural networks can often perform
better than humans on some tasks. They must therefore ‘know’ things about the world that we do not
know—things that we could uncover by understanding their mechanisms.

An important first step to reverse engineering neural networks is to decompose them into individual
mechanisms whose structure and interactions can be studied in relative isolation. Previous work has
taken a variety of approaches to network decomposition. A popular approach is sparse dictionary
learning (SDL) [Cunningham et al., 2024, Bricken et al., 2023], which aims to decompose neural
network activations by optimizing sparsely activating dictionary elements to reconstruct or predict
neural activation vectors. However, this approach suffers from a range of conceptual and practical
problems, such as failing to account for feature geometry [Leask et al., 2025, Mendel, 2024] and not
decomposing networks into functional components [Chanin et al., 2024, Bricken et al., 2023, Till,
2024] (see Sharkey et al. [2025] for a review).

Recently, linear parameter decomposition [Braun et al., 2025], has been proposed to address some
of the issues faced by SDL and other current approaches. Instead of decomposing networks into
directions in activation space, linear parameter decomposition methods decompose networks into
vectors in parameter space, called parameter components. Parameter components are selected such
that, simultaneously, (a) they sum to the parameters of the original model, (b) as few as possible
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are required to replicate the network’s behavior on any given input, and (c) they are as ‘simple’ as
possible. This approach promises a framework that suggests solutions to issues like ‘feature splitting’
[Chanin et al., 2024, Bricken et al., 2023]; the foundational conceptual issue of defining a ‘feature’ (by
re-basing it in the language of ‘mechanisms’); and the issues of multidimensional features and feature
geometry [Braun et al., 2025]. It also suggests a new way to bridge mechanistic interpretability and
causal mediation analysis [Mueller et al., 2024].

However, Attribution-based Parameter Decomposition (APD) [Braun et al., 2025], the only method
that has been so far proposed for linear parameter decomposition (with which this paper assumes
some familiarity), suffers from several significant issues that hinder its use in practice, including:

1. Scalability: APD has a high memory cost, since it decomposes a network into many
parameter components, each of which is a whole vector in parameter space. They therefore
each have the same memory cost as the original network.

2. Sensitivity to hyperparameters: In the toy models it was tested on, APD only recovers
ground-truth mechanisms for a very narrow range of hyperparameters. In particular, APD
requires choosing the top-k hyperparameter, the expected number of active parameter
components per datapoint, which would usually not be known in advance for non-toy
models. As discussed in Braun et al. [2025], choosing a value for top-k that is too high or
low makes it difficult for APD to identify optimal parameter components.

3. Use of attribution methods: APD relies on attribution methods (e.g. gradient attributions,
used in Braun et al. [2025]), to estimate the causal importance of each parameter component
for computing the model’s outputs on each datapoint. Gradient-based attributions, and
attribution methods more generally, are often poor approximations of ground-truth causal
importance [Syed et al., 2024] and sometimes fail to pass basic sanity checks [Adebayo
et al., 2018].

In this work, we introduce a new method for linear parameter decomposition that overcomes all of
these issues: Stochastic Parameter Decomposition (SPD) (Section 2).

Our approach decomposes each matrix in a network into a set of rank-one matrices called sub-
components. The number of rank-one matrices can be higher than the rank of the decomposed
matrix. Subcomponents are not full parameter components as in the APD method, but they can
later be aggregated into full components. In this work, we use toy models with known ground-truth
mechanisms, where the clusters are therefore straightforward to identify. However, in future it will be
necessary to algorithmically cluster these components in cases where ground truth is not known.

Instead of relying on attribution techniques and a top-k hyperparameter that needs to be chosen
in advance, we define the causal importance of a subcomponent as how ablatable it is on a given
datapoint. Causally important subcomponents should not be ablatable, and ablatable subcomponents
should be causally unimportant for computing the output. We train a causal importance function to
predict the causal importance gi ∈ [0, 1] of subcomponent i for computing the model’s output on a
given datapoint and use the predicted causal importances to ablate unimportant subcomponents by
random amounts by masking them multiplicatively with a random scalar sampled from a uniform
distribution U(gi, 1). We train a model that is parametrized by the sum of these randomly masked
subcomponents to compute the same output as the target model. Crucially, we regularize the predicted
causal importance values gi to be close to zero, so that as many subcomponents as possible will be
predicted to be ablatable on any given datapoint. The core intuition behind this training setup is that
all combinations of ablating the subcomponents are checked with some probability. And since the
causal importance function is penalized for outputting large values of g, it should only output high
values of gi when subcomponent i is really ‘used’ by the network.

We apply SPD to all of the toy models that Braun et al. [2025] used to study APD, including: A Toy
Model of Superposition [Elhage et al., 2022] (Section 3.1); a Toy Model of Compressed Computation
[Braun et al., 2025] (Section 3.3); and a Toy Model of Cross-Layer Distributed Representations
(Section 3.4). We demonstrate that the method recovers ground-truth mechanisms in all of these
models. We also extend the suite of models to include two more challenging models where APD
struggles but SPD succeeds: A Toy Model of Superposition with an additional identity matrix in
the hidden space (Section 3.2) and a deeper Toy Model of Cross-Layer Distributed Representations
(Section 3.4). Using APD, these new models were unmanageably difficult to correctly decompose,
but SPD succeeds with relative ease.
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The successful application of SPD to more challenging models demonstrates that SPD is more
scalable and stable than APD. Nevertheless, some challenges remain: Firstly, the method needs
to be scaled to larger models, which will likely require further improvements in training stability.
Second, SPD only finds rank-one components in individual layers, meaning that further clustering
step is required to find components that span more than one rank and/or more than one layer. In
the toy models presented in this paper, these clusters are known and are therefore straightforward
to identify. However, a general clustering solution will be needed in order to find such components
where ground-truth is unknown. Despite these challenges, SPD opens up new research avenues for
mechanistic interpretability by introducing a linear parameter decomposition method that removes
the main barriers to scaling to larger, non-toy models such as language models (Section 5).

2 Method: Stochastic Parameter Decomposition

Suppose we have a trained neural network f(x,W ) that maps inputs x to outputs y = f(x,W ),
parametrized by a set of weight matrices1 W = {W 1, . . . ,WL}. This set W can also be represented
as a single vector in a high-dimensional vector space called parameter space. Linear parameter
decomposition methods such as APD aim to decompose neural network parameters into a set of
parameter components, which are vectors in parameter space that are trained to exhibit three desirable
properties [Braun et al., 2025]:

• Faithfulness: The parameter components should sum to the parameters of the original
network.

• Minimality: As few parameter components as possible should be used by the network for a
forward pass of any given datapoint in the training dataset.

• Simplicity: Parameter components should use as little computational machinery as possible,
in that they should span as few matrices and as few ranks as possible.

If a set of parameter components exhibit these three properties, we say that they comprise the net-
work’s mechanisms2. In APD, gradient-based attributions are used to estimate the importance of each
parameter component for a given datapoint. Then, the top-k most important parameter components
are summed together and used for a second forward pass. These active parameter components
are trained to produce the same output on that datapoint as the target model. Simultaneously, the
parameter components are trained to sum to the parameters of the target model, and are trained to be
simple by penalizing the sum of the spectral p-norms of their individual weight matrices, encouraging
them to be low-rank.

In our work, we aim to identify parameter components with the same three properties, but we achieve
it in a different way.

2.1 Our approach optimizes rank-one subcomponents instead of full-rank parameter
components

A major issue with the APD method is that it is computationally very expensive: It involves optimizing
L full-rank matrices for every parameter component (where L is the number of matrices in the model).
But this is wasteful if we expect most parameter components to be low-rank and localized only to a
subset of layers. With SPD, instead of using full-rank parameter components that span every layer,
we decompose each of a neural network’s weight matrices W 1, . . . ,WL into a set of C rank-one
matrices called subcomponents, U⃗ l

c
⃗V l⊤
c :

W l
i,j ≈

C∑
c=1

U l
i,cV

l
c,j . (1)

1As in Braun et al. [2025], we do not decompose biases. Biases can be folded into the weights by treating
them as an additional column in each weight matrix, meaning they can in theory be decomposed like any other
type of parameter. However, in this work, for simplicity we treat them as their own parameter component that is
active for every input, and leave their decomposition for future work.

2Note that these properties can trade off against each other. Therefore, in practice, we quantify how much we
care about each property, and find the set of parameter components that minimise the resulting overall loss.
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Here, l indexes the neural network’s matrices and i, j are its hidden indices. We will later cluster
these subcomponents into full parameter components if they tend to co-activate together. In this
paper, the groups are easy to identify and this clustering process is implicit. However, future work
will require an explicit clustering algorithm for cases where groups of subcomponents are harder to
identify.

Note that the number of subcomponents in each layer C may be larger than the minimum of the
number of rows or columns of the matrix at that layer, thus enabling SPD to identify computations in
superposition.

2.2 Optimizing for faithfulness

The way we optimize for faithfulness is the same as in Braun et al. [2025], by optimizing the sum of
our subcomponents to approximate the parameters of the target model:

Lfaithfulness =
1

N

L∑
l=1

∑
i,j

(
W l

i,j −
C∑

c=1

U l
i,cV

l
c,j

)2

, (2)

where N is the total number of parameters in the target model.

2.3 Optimizing for minimality and simplicity by learning a causal importance function to
stochastically sample masks

The way we optimize for minimality and simplicity is different from Braun et al. [2025]. Since
we already start with rank-one subcomponents that are localized in single layers, we don’t need to
optimize for subcomponent simplicity. Instead, we only need to train our set of subcomponents
such that as few as possible are "active" or "used" or "required" by the network to compute its
output on any given datapoint in the training set. We consider this equivalent to requiring that as few
subcomponents as possible be causally important for computing the network’s output.

To optimize our set of subcomponents such that as few as possible are causally important for
computing the model’s output on any given datapoint, we have three requirements:

1. A formal definition of what it means for a subcomponent to be ‘causally important’ for
computing the model’s outputs (Section 2.3.1);

2. A loss function that trains causally important subcomponents to compute the same function
as the original network (Section 2.3.2);

3. A loss function that encourages as many subcomponents as possible to be causally un-
important on each datapoint (Section 2.3.3).

2.3.1 Requirement 1: Formally defining a subcomponent’s causal importance as the extent to
which it can be ablated

Intuitively, we say a subcomponent is causally important on a particular datapoint x if and only if it
is required to compute the model’s output for that datapoint. Conversely, we say a subcomponent is
causally unimportant if it can be ablated by some arbitrary amount while leaving the model’s output
unchanged. In particular, if a component is fully unimportant, then it shouldn’t matter how much we
ablate it by; we should be able to fully ablate all causally unimportant components, or only partially
ablate them, or ablate only a subset of them, and still get the same model output. Note, the distinction
between causally important and unimportant is not binary; we can say that a subcomponent is causally
unimportant to the extent that it can be ablated without affecting the model’s output.

Formally, suppose glc(x) ∈ [0, 1] indicates the causal importance of subcomponent (c) of weight
matrix l on a given datapoint x. For now, we take this quantity as given, but later we discuss how
we obtain it. In general, we want to get the same model output for any weight matrices along all
monotonic ‘ablation curves’ ml

c(x, r) that interpolate between the original model and the model with
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all inactive subcomponents ablated. Here, r is a vector sampled such that:

rlc ∈ [0, 1]

ml
c(x, r) := glc(x) + (1− glc(x))r

l
c

W ′l
i,j(x, r) :=

C∑
c=1

U l
i,cm

l
c(x, r)V

l
c,j

∀r : f(x|W ′1(x, r), . . . ,W ′L(x, r)) ≈ f(x|W 1, . . . ,WL) .

(3)

Now we need a differentiable loss function(s) in order to be able to train the masked model
f(x|W ′1(x, r), . . . ,W ′L(x, r)) to approximate the target model f(x|W 1, . . . ,WL) for all values of
r ∈ [0, 1]

C×L.

2.3.2 Requirement 2: A loss function that lets us optimize causally important subcomponents
to approximate the same function as the original network

Unfortunately, calculating f(x|W ′1(x, r), . . . ,W ′L(x, r)) for all values of r ∈ [0, 1]
C×L is compu-

tationally intractable because there are infinitely many possible values. But we can calculate it for a
randomly chosen subset of values. To do this, we uniformly sample S points, rl,(s)c ∼ U(0, 1) and
mask the subcomponents with the resulting stochastic masks ml

c(x, r
(s)). Then, as S → ∞, the

following loss approximately optimizes f(x|W ′1(x, r), . . . ,W ′L(x, r)) to satisfy Equation 3:

Lstochastic-recon =
1

S

S∑
s=1

D
(
f(x|W ′(x, r(s))), f(x|W )

)
(4)

Here, D is some appropriate divergence measure in the space of model outputs, such as KL-divergence
for language models, or MSE loss.

However, this loss can be somewhat noisy because it involves a forward pass in which every
subcomponent has been multiplied by a random mask. Therefore, in addition to this loss, we also use
an auxiliary loss Lstochastic-recon-layerwise, which is simply a layerwise version of Lstochastic-recon where
only the parameters in a single layer at a time are replaced by stochastically masked subcomponents.
The gradients are still calculated at the output of the model:

Lstochastic-recon-layerwise =
1

LS

L∑
l=1

S∑
s=1

D
(
f(x|W 1, . . . ,W ′l(x, rl,(s)), . . . ,WL), f(x|W )

)
(5)

This should not substantially alter the global optimum of training, because Equation 5 is equivalent to
Equation 4 if the subcomponents sum to the original weights and if we sample rlc = 1 for all layers
except one at a time.

2.3.3 Requirement 3: A loss function that encourages as many subcomponents as possible to
be causally unimportant

We have not yet defined how we obtain subcomponents’ causal importance values glc(x). Measuring
this directly would be intractable, so we learn a function to predict it.

In theory, we could use any arbitrary causal importance function Γ : X → [0, 1]C×L to predict causal
importance values. In practice, we use a set of independent functions Γl

c, one for each subcomponent.
Each function consists of a very small trained MLP γl

c (see Appendix A.1 for its architecture). Each
MLP takes as input a scalar, the subcomponent’s ‘inner activation’, hl

c(x) :=
∑

j V
l
c,ja

l
j(x), where

⃗al(x) is the activation vector in the target model that gets multiplied by weight matrix W l. The
MLP outputs are passed to a hard sigmoid σH to get a prediction of the subcomponent’s causal
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importance3:
glc(x) = Γl

c(x) = σH(γl
c(h

l
c(x))) (6)

The output of the causal importance function for each subcomponent is therefore a single scalar
number that should be in the range [0, 1].

While this form of causal importance function works well for the toy models in this paper, it is
likely that the best causal importance functions for arbitrary models require more expressivity. For
example, a subcomponent’s causal importance function may take as input the inner activations of all
subcomponents, rather than just its own. Such variants may be explored in future work.

The causal importance values glc(x) are used to sample masks that randomly ablate each subcom-
ponent ml

c(x, g
l
c(x)) ∼ U(glc(x), 1). We use the reparametrization trick [Kingma and Welling,

2013](Equation 3) to allow gradients to be backpropagated through the masks ml
c(x, g

l
c(x)) to train

the causal importance functions Γl
c. The causal importance functions can therefore learn to produce

masks that better predict the ablatability of each subcomponent on a given datapoint. However, if
the causal importance functions were trained using only the Lstochastic-recon loss, they could perform
optimally (but pathologically) by outputting a causal importance value of glc(x) = 1 for every
subcomponent on every input, since there is no incentive to learn to predict the full extent of the
ablatability of the subcomponents. An additional loss is required to encourage the causal importance
function to always try to ablate as much as possible. We therefore penalize causal importance values
for being above 0 using a Limportance-minimality loss:

Limportance-minimality =

L∑
l=1

C∑
c=1

|glc(x)|p , (7)

where p > 0 4.

2.4 Summary of training setup

Our full loss function consists of four losses:

LSPD = Lfaithfulness + (β1Lstochastic-recon + β2Lstochastic-recon-layerwise) + β3Limportance-minimality (8)

Our training setup involves five hyperparameters (excluding optimizer hyperparameters such as
learning rate): The coefficients β1, β2, β3 for each of the losses; the p-norm used in Limportance-minimality
and the number of mask samples S that are used for each training step, for which we find S = 1
sufficient. We discuss some heuristics for choosing the loss coefficients in Appendix A.3. Pseudocode
for the SPD algorithm can be found in Appendix A.6.

3 Results

We apply SPD to decompose a set of toy models with known ground-truth mechanisms. Some of
these models were previously studied by Braun et al. [2025] to evaluate APD, while others are new.
We study:

3We use hard sigmoids rather than standard sigmoids because we would like to make it possible for causal
importance values to take values of exactly 0 or 1 or anywhere in between; a standard sigmoid function only
tends toward 0 or 1 as its input tends toward −∞ or ∞ respectively. However, note that hard sigmoids have
large regions where gradients are 0. We therefore actually use leaky-hard sigmoids to increase training stability.
Outputs may therefore lie slightly outside of the [0, 1] range (Appendix A.2).

4It is important to note that Limportance-minimality is somewhat different from the Lp penalties often used to
sparsify latents in SDL, where p is restricted to (0, 1]. We find that training with Limportance-minimality successfully
minimizes importance values even when p > 1. We believe that this happens for the following reason: If
p > 1 in SDL, a single active feature can always be split into many active features to improve the sparsity loss.
However, if p > 1 in SPD, then if one causally important subcomponent were pathologically split into two, both
resulting subcomponents would still have causal importance of ≈ 1, since both are still needed to maintain low
Lstochastic-recon, meaning Limportance-minimality would increase.
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Figure 1: Results of running SPD on TMS5−2. Top row: Plots of (left to right) the columns of
the weight matrix of the target model; the sum of the SPD parameter components; and individual
parameter components. Although this run of SPD used 20 subcomponents, only 6 subcomponents are
shown, ordered by the sum of the norms of each of the columns of their (rank-one) weight matrices.
The first five have learned one direction each, each corresponding to one of the columns of the target
model. The final column and the other 14 components (not shown) have a negligible norm because
they are superfluous for replicating the behavior of the target model. Bottom row: Depiction of the
corresponding parametrized networks.

MMCS ML2R

TMS5−2 1.000 ± 0.000 0.993 ± 0.002
TMS40−10 1.000 ± 0.000 1.010 ± 0.007

TMS5−2+ID 1.000 ± 0.000 0.992 ± 0.010
TMS40−10+ID 1.000 ± 0.000 1.031 ± 0.001

Table 1: Mean Max Cosine Similarity (MMCS) and Mean L2 Ratio (ML2R) with their standard
deviations (to 3 decimal places) between learned parameter subcomponents and the target model
weights in the subcomponents found by SPD for the embedding matrix W matrix in the TMS5−2 and
TMS40−10 models (Section 3.1) and TMS5−2+ID and TMS40−10+ID models (Section 3.2). These
results indicate that the ground truth mechanisms are recovered perfectly and with negligible shrinkage
for all models.

1. A Toy Model of Superposition (TMS) [Elhage et al., 2022] previously studied by Braun
et al. [2025] (Section 3.1);

2. A TMS model with an identity matrix inserted in the middle of the model (not previously
studied) (Section 3.2);

3. A Toy Model of Compressed Computation previously studied by Braun et al. [2025]
(Section 3.3);

4. Two Toy Models of Cross-Layer Distributed Representations: One with two residual
MLP blocks (previously studied by Braun et al. [2025]) and one with three MLP blocks (not
previously studied) (Section 3.4);

In all cases, we find that SPD seems to identify known ground-truth mechanisms up to a small
error. For the models that were also decomposed with APD in Braun et al. [2025], we find that
the SPD decompositions have fewer errors despite requiring less hyperparameter tuning to find the
ground-truth mechanisms.

Code to reproduce our experiments can be found at https://github.com/goodfire-ai/spd/
tree/spd-paper. Training details and hyperparameters can be found in Appendix A.4. Additional
figures and training logs can be found in the WandB report here.

3.1 Toy Model of Superposition

We decompose Elhage et al. [2022]’s Toy Model of Superposition (TMS), which can be written as
x̂ = ReLU(W⊤Wx+ b), with weight matrix W ∈ Rm1×m2 . The model is trained to reconstruct its
inputs, which are sparse sums of one-hot m2-dimensional input features whose activations are scaled
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to a random uniform distribution [0, 1]. Typically, m1 < m2, so the model is forced to ‘squeeze’
representations through a m1-dimensional bottleneck. When the model is trained on sufficiently
sparse data distributions, it can learn to represent features in superposition in this bottleneck. For
certain values of m1 and m2, the columns of the W matrix can form regular polygons in the m1-
dimensional hidden activation space (Figure 1 - Leftmost panel).

The ground truth mechanisms in this model should be a set of rank-1 matrices that are zero everywhere
except in the cth column, where they take the values W⃗:,c. Intuitively, a column of W is only ‘used’ if
the corresponding input feature is active; other columns can be ablated without significantly affecting
the output of the model.

SPD Results: Toy Model of Superposition

We apply SPD to TMS models with 5 features in 2 dimensions, denoted TMS5−2 and 40 features
in 10 dimensions, denoted TMS40−10. In both cases, SPD successfully decomposes the model into
subcomponents that closely correspond to the columns of W (Figure 1). This result is robust to
different training seeds and required less hyperparameter tuning than APD [Braun et al., 2025].

We quantify how aligned the learned parameter components vectors are to the columns of W in the
target model using the mean max cosine similarity (MMCS) [Sharkey et al., 2022]. The MMCS
measures alignment between each column of W and the corresponding column in the parameter
component that it best aligns with:

MMCS(W, {U⃗cV⃗c
⊤
}) = 1

m2

m2∑
j=1

max
c

(
U⃗:,cVc,j ·W:,j

||U⃗:,cVc,j ||2||W:,j ||2

)
, (9)

where c ∈ C are parameter component indices and j ∈ {1, · · · ,m2} are input feature indices. A
value of 1 for MMCS indicates that, for all input feature directions in the target model, there exists a
parameter subcomponent whose corresponding column points in the same direction.

We also quantify how close their magnitudes are with the mean L2 Ratio (ML2R) between the
Euclidean norm of the columns of W and the Euclidean norm of the columns of the parameter
components with which they have the highest cosine similarity:

ML2R(W, {U⃗cV⃗c
⊤
}) = 1

m2

m2∑
j=1

||U⃗:,mcs(j)Vmcs(j),j ||2
||W:,j ||2

, (10)

where mcs(j) is the index of the subcomponent that has maximum cosine similarity with weight
column j of the target model. A value close to 1 for the ML2R indicates that the magnitude of each
parameter component is close to that of its corresponding target model column.

For both TMS5−2 and TMS40−10, the MMCS and ML2R values are ≈ 1, with a closer match than
that obtained for the decomposition in [Braun et al., 2025] (Table 1). This indicates that the parameter
components are close representations of the target model geometrically. In contrast, APD exhibited
significant shrinkage of the learned parameter components, with an ML2R of approximately 0.9 for
both models [Braun et al., 2025], reminiscent of feature shrinkage in SAEs [Jermyn et al., 2024,
Wright and Sharkey, 2024].

3.2 Toy Model of Superposition with hidden identity

SDL methods are known to suffer from the phenomenon of ‘feature splitting’, where the features that
are learned depend on the dictionary size, with larger dictionaries finding more sparsely activating,
finer-grained features than smaller dictionaries [Bricken et al., 2023, Chanin et al., 2024]: Suppose a
network has a hidden layer that simply implements a linear map. When decomposing this layer with a
transcoder, we can continually increase the number of latents and learn ever more sparsely activating,
ever more fine-grained latents to better minimize its reconstruction and sparsity losses. This problem
is particularly salient in the case of a linear map, but similar arguments apply to nonlinear maps.

By contrast, Braun et al. [2025] claimed that linear parameter decomposition methods do not suffer
from feature splitting. In the linear case, SPD losses would be minimized by learning a single
d-dimensional component that performs the linear map. The losses cannot be further reduced by

8



Figure 2: Plots of (left to right) the columns of the input weight matrix W of the TMS5−2+ID model
(which can be written as x̂ = ReLU(W⊤IWx + b), with a weight matrix W ∈ Rm1×m2 and an
identity matrix I ∈ Rm1×m1 ); the sum of the parameter subcomponents for that matrix found by SPD;
and the individual parameter subcomponents. Although this run of SPD used 20 subcomponents, only
6 subcomponents are shown, ordered by the sum of their matrix norms. The first five have learned
one direction each, each corresponding to one of the columns of the target model. The final column
and the other 14 components (not shown) have a negligible norm because they are superfluous for
replicating the behavior of the target model.

Figure 3: Plots of (left to right) the weights in the hidden identity matrix I of the TMS5−2+ID; the
sum of all subcomponents found by SPD for that matrix (including small-norm subcomponents
that are not shown); and the largest three individual subcomponents. We see that SPD finds two
subcomponents that together sum to the original rank-2 identity matrix of the target model, while the
other subcomponents have a negligible weight norm.

adding more subcomponents, because that would prevent the components from summing to the
original network weights.

Here, we empirically demonstrate this claim in a simple setting. We train a toy model of super-
position identical to the TMS5−2 and TMS40−10, but with identity matrices inserted between the
down-projection and up-projection steps of the models. These models, denoted TMS5−2+ID and
TMS40−10+ID, can be written as x̂ = ReLU(W⊤IWx + b), with a weight matrix W ∈ Rm1×m2

and an identity matrix I ∈ Rm1×m1 .

We should expect SPD to find m2 +m1 subcomponents in total: m2 subcomponents that correspond
to the columns of the matrix W (each having causal importance for the model output if and only if one
particular feature is present in the input, as in standard TMS (Section 3.1)) and m1 subcomponents
for the matrix I (almost all of which should have causal importance for the model output on every
input). There are m1 subcomponents because we need m1 rank-one matrices to sum to a rank-m1

matrix.

Figure 4: Plots of (left to right) the TMS5−2+ID networks parametrized by: The target model
parameters; the sum of all parameter subcomponents found by SPD the decomposition of the
model; and the seven individual subcomponents of non-negligible size. We see that SPD finds five
subcomponents for the embedding matrix W , corresponding to the five input features, and two
subcomponents that span the identity matrix I in the middle of the model.

9



Input Output

Figure 5: The architecture of the Toy Model of Compressed Computation. It uses a 1-layer residual
MLP. Figure adapted from Braun et al. [2025].

SPD Results: Toy Model of Superposition with hidden identity

As expected, we find that SPD decomposes the embedding matrices W of both the TMS5−2+ID
and TMS40−10+ID models into parameter subcomponents that closely correspond to their columns
(Figure 3; Table 1).

Also as expected, SPD decomposes the identity matrix I ∈ Rm1×m1 into only m1 subcomponents
that sum to the original matrix I (Figure 3). In total, SPD identifies only m2 +m1 subcomponents
with non-negligible norm, thus identifying the ground truth mechanisms in each layer (Figure 4).
APD fails to learn ground truth mechanisms in this model.

3.3 Toy Model of Compressed Computation

In this setting, the target network is a residual MLP that was previously studied by Braun et al.
[2025] (Figure 5). It consists of a single residual MLP layer of width dmlp = 50; a fixed, random
embedding matrix with unit norm rows WE ; an unembedding matrix WU = W⊤

E ; and 100 input
features, with a residual stream width of dresid = 1000. This model is trained to approximate a
function of sparsely activating input features xi ∈ [−1, 1], using a Mean Squared Error (MSE) loss
between the model output and the labels. The labels we train the model to predict are produced by the
function yi = xi +ReLU(xi). Crucially, the task involves learning to compute more ReLU functions
than the network has neurons.

A naive solution to this task would be to dedicate each of the 50 neurons ‘monosemantically’ to
computing one of the 100 input-output mappings. But this solution would perform poorly on the
other 50 mappings. Instead, the model seems to achieve a better loss by using multiple neurons
‘polysemantically’ to compute a single input-output mapping. We thus expected that, for each
mapping, a single subcomponent in the model’s MLP input weight matrix Win would be responsible
for computing it, with every component connecting to many neurons5.

Originally, we were unsure what the ground-truth mechanisms in the model’s MLP output weight
matrix Wout were. It seemed both possible that (a) for each input-output mapping, the model would
have a single mechanism within Wout that projects the result of MLP activations back into the residual
stream, or (b) that Wout was a single mechanism embedding the entire MLP output back into the
residual stream, similar to the case of the identity matrix in the TMS model in Section 3.2. The
analysis based on the APD decomposition in Braun et al. [2025] claimed the former, but our SPD
decomposition, as shown below, clearly finds the latter.

SPD Results: Toy Model of Compressed Computation

To understand how each neuron participates in computing the output for a given input feature, Braun
et al. [2025] measured the neuron’s contribution to each input feature computation. The neuron
contributions for input features i ∈ {0, · · · , 99} are calculated as:

NeuronContributionmodel(i) = (WU [i,:]Wout)⊙ (WinWE [:,i]) (11)

where WE [:,i],WU [i,:] are the i-th column of the embedding matrix and the i-th row of the unembed-
ding matrix, and ⊙ denotes element-wise multiplication. A large positive contribution indicates that
the neuron plays an important role in computing the output for input feature i.

5See Bhagat et al. [2025] for further discussion on how the model may be performing this task.

10



Figure 6: Toy Model of Compressed Computation: Similarity between target model weights and SPD
subcomponents for the first 10 (out of 100) input feature dimensions. Top: Neuron contributions
measured by Equation 11 for each input feature index i ∈ {0, . . . , 9}. Bottom: Neuron contributions
for the corresponding parameter subcomponents, measured by Equation 12 for each input feature
index i ∈ {0, . . . , 9}. The neurons are numbered from 0 to 49 based on their raw position in the MLP
layer. An extended version of this figure showing all input features and parameter components can be
found here.

Neuron contributions for individual subcomponents of Win are calculated in a similar way:

NeuronContributionsubcomponent(i) = max
c

[(WU [i,:]UoutV
⊤

out)⊙ (Uin,[:,c]V
⊤

in,[c,:]WE [:,i])] (12)

We apply SPD to the MLP weight matrices Win,Wout in the target model. We find that SPD
decomposes the Win matrix into 100 subcomponents, each of which is involved in implementing
yi = xi + ReLU(xi) for a unique input dimension i ∈ {0, · · · , 99}. The computations required to
produce the output for each input dimension in the target network (Figure 6 - top) are well replicated
by individual parameter subcomponents in the SPD model (Figure 6 - bottom). For each input
dimension, there is a corresponding parameter subcomponent of Win that uses the same neurons
to compute the function as the target model does. In other words, for each input dimension, the
neuron contributions for each input dimension match the neuron contributions of some corresponding
subcomponent. Figure 7 also summarizes all neuron contributions in the target model compared to
individual subcomponents in the SPD model and shows they all match closely. Given a one-hot input
xi of magnitude 0.75 to the model, the masking functions in Win select only their corresponding
component to activate (Figure 8 - middle column).

Meanwhile, SPD splits its corresponding Wout into 50 subcomponents, which appear to all be
effectively part of a single rank-50 component comprising the entire Wout matrix, since the masking
functions seem to activate many components despite being a one-hot input xi = 0.75 to the model.
Both APD and SPD split the MLP input weight matrices Win into one component per input feature
[Braun et al., 2025]. However, APD also decomposed the MLP output weight matrix Wout into 100
components roughly corresponding to different input features, instead of a single rank-50 component.
We believe that the SPD decomposition is more accurate, and that the APD decomposition of Wout
was incorrect due to a poorly chosen value for the top-k hyperparameter. The SPD decomposition
seems to reconstruct the computations of the original model more cleanly. In particular, Braun et al.
[2025] note that some components partially represent secondary features (See Appendix C2 of Braun
et al. [2025]), whereas SPD’s masks do not have this issue. Additionally, the neuron contributions of
the SPD decomposition are much closer to the target model and have less shrinkage (Compare neuron
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Figure 7: Toy Model of Compressed Computation: Similarity between target model weights and
SPD subcomponents for all 100 input feature dimensions. X-axis: Neuron contributions measured
by Equation 11 for each input feature index i ∈ {0, . . . , 99}. Y-axis: Neuron contributions for the
corresponding parameter subcomponents of Win, measured by Equation 12 for each feature index
i ∈ {0, . . . , 99}. There is a very close match between the X and Y axis for each neuron contribution,
indicating that each subcomponent connects its corresponding feature to the MLP neurons with
almost the same weights as the target model.

contributions in Figure 6 of Braun et al. [2025] to our Figure 6). The SPD results also seem to better
match theoretical predictions made by a mathematical framework for computation in superposition
[unpublished work, forthcoming].

When the importance loss coefficient β3 is too small, a single input feature activates a large number
of components in Win (Figure 8 - left two columns). This is suboptimal with respect to minimality,
and is therefore a poor decomposition. When the importance loss coefficient β3 is too high, the
importance values decrease below 1 (Figure 8 - right two columns), which, aside from being a
suboptimal decomposition, is also associated with high reconstruction losses.

3.4 Toy Models of Cross-Layer Distributed Representations

Realistic neural networks seem capable of implementing mechanisms distributed across more than
one layer [Yun et al., 2021, Lindsay et al., 2024]. To study the ability of SPD to identify components
that are spread over multiple layers, Braun et al. [2025] also studied a toy model trained on the same
task with the same residual MLP architecture as the one in Section 3.3, but with the 50 neurons
spread over two MLPs instead of one (Figure 9).

As in the Toy Model of Compressed Computation, the model learns to compute individual functions
using multiple neurons. But here it learns to do so using neurons that are spread over two layers.
SPD should find subcomponents in both W 1

in and W 2
in that are causally important for computing each

function. And, for the same reasons as in the Toy Model of Compressed Computation, W 1
out and W 2

out
should be decomposed into subcomponents that are in fact all part of one large parameter component,
but in this model this one large component should span both layers.

We apply SPD on this model, as well as another model that spreads 51 neurons over three MLPs to
compute functions of 102 input features. APD struggled to decompose a model with more than two
layers due to hyperparameter sensitivity, but SPD succeeds.

SPD Results for two- and three-layer models of Cross-Layer Distributed Representations

SPD finds qualitatively similar results to the 1-layer Toy Model of Compressed Computation presented
in Section 3.3. In the two-layer model, the MLP input matrices W 1

in,W
2
in, which each have shape
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Figure 8: Causal importance values of each subcomponent (clipped between 0 and 1) in response to
one-hot inputs (xi = 0.75) for multiple importance loss coefficients β3. The columns of each matrix
are permuted differently, ordered by iteratively choosing the subcomponent (without replacement)
with the highest causal importance for each input feature. When the importance loss coefficient
β3 is too low (Left), subcomponents in Win are not ‘monosemantic’ (i.e. multiple subcomponents
have causal importance for the same feature). When the importance loss coefficient β3 is just right
(middle column), each subcomponent in Win has causal importance for computing a unique input
feature. It also identifies the correct number of subcomponents in Wout (50). Although it identifies
the correct number of components, these subcomponents need not align with any particular basis,
and hence look ‘noisy’ because they align with multiple features. But this does not matter, since
they always co-activate together and sum to the target model’s identity-matrix parameters. When
the importance loss coefficient β3 is too high (Right), the rank-50 Wout component is split into too
many subcomponents—approximately one subcomponent for each feature, but where many of the
subcomponents have small causal importance values for other features. Also, the causal importance
values on the diagonal shrink far below 1.0, resulting in high Lstochastic-recon and Lstochastic-recon-layerwise
losses.

Input Output

Figure 9: The architecture of one of our two Toy models of Cross-Layer Distributed representations.
The other toy model has three MLP blocks instead of two. Figure adapted from Braun et al. [2025].

13



Figure 10: Toy Model of Distributed Representations (Two Layers): Similarity between target
model weights and SPD subcomponents for all 100 input feature dimensions in a 2-layer residual
MLP. Each point represents one neuron’s contribution to a particular input feature. X-axis: Neuron
contributions measured by Equation 11. Y-axis: Neuron contributions for the same neuron on the
same input feature in the corresponding parameter subcomponents of W 1

in,W
2
in, measured by Equation

12. There is a close match between the X and Y axes for each neuron contribution, indicating that
each subcomponent connects its corresponding feature to the MLP neurons with similar weights as
the target model. However, there is a systematic skew toward higher values on the Y-axis, indicating
that the neuron contributions of the subcomponents tend to be slightly larger. This is in contrast to
the one-layer case (Figure 7) and three-layer case (Figure 11). We currently do not understand the
source of this discrepancy, but it is possibly an outcome of suboptimal hyperparameters.

(d_mlp=25, d_embed=1000), are decomposed into 100 components that each compute the functions
for one of the input features, using neurons spread over both MLP layers. The MLP output matrices
W 1

out,W
2
out are decomposed into a single rank 50 component. Notably, however, this component is

now spread over both layers (Figure 12). This demonstrates that SPD can identify mechanisms that
span multiple layers.

In the three-layer model, the MLP input matrices W 1
in,W

2
in,W

3
in, which each have shape (d_mlp=17,

d_embed = 1000), are likewise decomposed into 102 components all spread over 3 layers, and the
MLP output matrices W 1

out,W
2
out,W

3
out are decomposed into a single rank 51 component spread over

all three layers (Figure 13). In both the two- and three-layer models, we find that the computations
occurring in each parameter subcomponent of the Win matrices closely correspond to individual
input feature computations in the target model (Figures 10, 11, 14, 15). We note, however, that there
is sensitivity to random seeds in these results for these models, possibly due to unfavorable random
initialization, which we intend to explore in future work.

4 Related Work

SPD uses randomly sampled masks in order to identify the minimal set of parameter subcomponents
that are causally important for computing a model’s output on a given input. This is, in essence, a
method for finding a good set of causal mediators [Mueller et al., 2024, Vig et al., 2020, Geiger et al.,
2024a,b]: Our causal importance function can be thought of as learning how to causally intervene
on our target model in order to identify a minimal set of simple causal mediators of a model’s
computation. However, unlike many approaches in the causal intervention literature (e.g. Chan et al.
[2022], Wang et al. [2022], Conmy et al. [2023]), our approach does not assume a particular basis for
these interventions. Instead, it learns the basis in which causal interventions are made. It also makes
these interventions in parameter space.
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Figure 11: Toy Model of Distributed Representations (Three Layers): Similarity between target model
weights and SPD subcomponents for all 102 input feature dimensions in a 3-layer residual MLP. Each
point represents one neuron’s contribution for a particular input feature. X-axis: Neuron contributions
measured by Equation 11. Y-axis: Neuron contributions for the same neuron on the same input
feature in the corresponding parameter subcomponents of W 1

in,W
2
in,W

3
in, measured by Equation 12.

There is a close match between the X and Y axes for each neuron contribution, indicating that each
subcomponent connects its corresponding feature to the MLP neurons with similar weights as the
target model.

Some previous work learns fixed masks to ablate parts of the model’s input or parts of its parameters
[Csordás et al., 2021, Cao et al., 2021, Zhang et al., 2021]. But these masks tend to be for fixed
inputs, and also often assume a particular basis. Our work also has an important difference to
other masking-based attribution approaches: While our causal importances are predicted, the masks
themselves are stochastically sampled with an amount of randomness based on the predicted causal
importances.

Our definition of causal importance of subcomponents is related but not identical to the definition of
causal dependence used in other literature [Lewis, 1973, Mueller, 2024]. For one, it may be possible
that networks compute particular outputs even if one causally important subcomponent is ablated,
using emergent self-repair [McGrath et al., 2023]. In that case, a subcomponent may be causally
important for a particular output, but the output may not be causally dependent on it.

SPD also has parallels to work that uses attribution methods to approximate the causal importance
of model components (e.g. Mozer and Smolensky [1988], Syed et al. [2024], Marks et al. [2024],
Braun et al. [2025]) or the inputs (as in saliency maps) (e.g. Fong and Vedaldi [2017], Simonyan et al.
[2014]). Our approach learns to predict causal importances given an input, which can be thought
of as learning to predict attributions. To the best of our knowledge, we are not aware of similar
approaches that learn to predict the input-dependent ablatability of model components using the
method described in this paper.

Chrisman et al. [2025] decomposed networks in parameter space by finding low-rank parameter
components that can reconstruct, using sparse coefficients, the gradient of a loss between the network
output and a baseline output. Somewhat similarly, Matena and Raffel [2025] decomposed models in
parameter space via non-negative factorisation of the models’ per-sample Fisher Information matrices
into components. SPD also decomposes networks into low-rank components in parameter space based
on how the network output responds to perturbations. But instead of relying on local approximations
like gradients to estimate the effects of a perturbation, it is trained by directly checking the effect
ablating components in various combinations has on the output.

SPD can be viewed as approximately quantifying the degeneracy in neural network weights over
different subdistributions of the data. SPD was in part inspired by singular learning theory [Watanabe,
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Figure 12: Toy Model of Distributed Representations (Two Layers): Causal importance values of each
subcomponent (clipped between 0 and 1) for the matrices in both MLP layers, W 1

in,W
1
out,W

2
in,W

2
out

in response to one-hot inputs (xi = 0.75). Each subcomponent in W 1
in,W

2
in has causal importance

for computing a unique input feature. On the other hand, the combined 50 subcomponents of
W 1

out,W
2
out all coactivate for all input features, indicating they are part of a single rank-50 identity

component. The columns of each matrix are permuted differently, ordered by iteratively choosing the
subcomponent (without replacement) with the highest causal importance for each input feature.
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Figure 13: Toy Model of Distributed Representations (Three Layers): Causal importance val-
ues of each subcomponent (clipped between 0 and 1) for the matrices in all three MLP layers,
W 1

in,W
1
out,W

2
in,W

2
out,W

3
in,W

3
out in response to one-hot inputs (xi = 0.75). Each subcomponent in

W 1
in,W

2
in,W

3
in has causal importance for computing a unique input feature. On the other hand, the

combined 51 subcomponents of W 1
out,W

2
out,W

3
out all coactivate for all input features, indicating they

are part of a single rank-51 identity component. The columns of each matrix are permuted differently,
ordered by iteratively choosing the subcomponent (without replacement) with the highest causal
importance for each input feature.
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2009], which quantifies degeneracy in network weights present over the entire data distribution
using the learning coefficient. Wang et al. [2024] defined the data-refined learning coefficient, which
measures degeneracy in neural network weights over a chosen subset of the distribution. In contrast,
SPD works in an unsupervised manner, finding a single set of vectors to represent the neural network
parameters, such that as many vectors as possible are degenerate on any given datapoint in the
distribution. SPD also requires vectors to be ablatable to zero rather than just being degenerate
locally.

See Braun et al. [2025] for further discussion on the relationship between linear parameter decompo-
sition methods and sparse autoencoders; transcoders; weight masking and pruning; circuit discovery
and causal mediation analysis; interpretability of neural network parameters; mixture of experts; and
loss landscape intrinsic dimensionality and degeneracy.

5 Discussion

In this paper we introduced SPD, a method that resolves many of the issues of APD [Braun et al., 2025].
The method is considerably more scalable and robust to hyperparameters, which we demonstrate
by using the method to decompose deeper and more complex models than APD has successfully
decomposed.

We hypothesize that this relative robustness comes from various sources:

1. APD required estimating the expected number of active components in advance, be-
cause it needed to set the hyperparameter k for selecting the top-k most attributed compo-
nents per batch. This number would usually not be known in advance for realistic models.
APD results were very sensitive to it. SPD uses trained causal importance functions instead,
and therefore no longer needs to use a fixed estimate for the number of active subcompo-
nents per datapoint. We still need to pick the loss coefficient for the causal importance
penalty β3, but this is a much more forgiving hyperparameter than the hyper-sensitive top-k
hyperparameter6

2. Gradients flow through every subcomponent on every datapoint, unlike in APD, where
gradients only flowed through the top-k most attributed components. Top-k activation
functions create discontinuities that, in general, tend to lead to unstable gradient-based
training. In SPD, even subcomponents with causal importance values of zero will almost
always permit gradients to flow, thus helping them error-correct if they are wrong.

3. SPD does not need to optimize for ‘simplicity’ (in the sense of Braun et al. [2025],
where simple parameter components span as few ranks and layers as possible). Not only
does this remove one hyperparameter (making tuning easier), but it also avoids inducing
shrinkage in the singular values of the parameter component weight matrices. SPD does not
exhibit shrinkage in the parameter subcomponents because the importance norm penalizes
the probability that a subcomponent will be unmasked, but does not directly penalize
norms of the singular values of the parameter matrices themselves. This can be helpful for
learning correct solutions: For example, if correctly-oriented parameter components exhibit
shrinkage, then their sum will not sum to the parameters of the target model, and therefore
other parameter components will need to compensate. For this reason, the faithfulness and
simplicity losses in APD were in tension. Removing this tension, and removing a whole
hyperparameter to tune, makes it easier to hit small targets in parameter space. Although
there is shrinkage in the causal importance values, this does not appear to be very influential
since causal importance values only determine the allowed minimum value of the masks.
For example, a causal importance value of 0.95 indicates that we can ablate a subcomponent
by up to five percent without significantly affecting the network output, but we can also just
not ablate it at all.

4. APD used gradient-based attribution methods to estimate causal importance, even
though those methods are only first-order approximations of ideal causal attributions, which
is often a poor approximation [Watson, 2022, Kramár et al., 2024]. If causal attributions

6In an idealized setting where (a) there is no batch noise in the loss, (b) no finite floating point precision,
and (c) inactive mechanisms do not causally influence the network output at all, then setting β3 to any value
infinitesimally larger than zero should suffice to make our desired decomposition the global optimum.
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are wrong, then the wrong parameter components would activate, so the wrong parameter
components would be trained to compute the model’s function on particular inputs. System-
atic errors in causal attributions will lead to systematic biases in the gradients, which can
be catastrophic when trying to hit a very particular target in parameter space. SPD instead
directly optimizes for causal importance and is likely a much better estimate than the ap-
proximations found by even somewhat sophisticated attribution methods (e.g. Sundararajan
et al. [2017]).

We hope that the stability and scalability of SPD will facilitate further scaling to much larger models
than the ones studied here. In future work, we plan to test the scaling limits of the current method
and explore any necessary adjustments for increased scalability and robustness.

We plan to investigate several outlying issues in future work. One issue is that we are unsure if
learning independent subcomponents will enable the method to learn subcomponents that can describe
the network’s function using as short a description as possible. It may be possible that information
from future layers is necessary to identify whether a given subcomponent is causally important. If it
is, then calculating causal importance values layerwise will mean that some subcomponents are active
when they need not be. It may therefore be interesting to explore causal importance functions that take
as input more global information from throughout the network, rather than only the subcomponent
inner activations at a given layer. Another issue is that both APD and SPD privilege mechanisms that
span individual layers due to the importance loss or simplicity loss in SPD and APD respectively; it
may be desirable to identify loss functions that privilege layers less.

The toy models in our work had known ground truth mechanisms, and therefore it was straightforward
to identify which subcomponents should be grouped together into full parameter components. How-
ever, in the general case we will not know this by default. We therefore need to develop approaches
that cluster subcomponents together in a way that combines the sparse and dense coding schemes
laid out in the appendix of Braun et al. [2025] to achieve components that permit a minimum length
description of the network’s function in terms of parameter components.

It is worth noting that the SPD approach can be generalized in multiple straightforward ways. It is not
necessary, for instance, to decompose parameter components strictly into subcomponents consisting
of rank-one matrices. Subcomponents could, for instance, span only one rank but across all matrices
in all layers. Alternatively, different implementations of the causal importance function could be
used.

We expect that SPD’s scalability and stability will enable new research directions previously in-
accessible with APD, such as investigating mechanisms of memorization and their relationship to
neural network parameter storage capacity. Additionally, the principles behind SPD may be useful
for training intrinsically decomposed models.
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A Appendix

A.1 Architecture of Causal Importance Function MLPs

The MLPs γl
c that are used in the causal importance function consist of a single hidden layer of

GELU neurons with width dgate, followed by a hard sigmoid function:

glc(x) = σH

(
W l,gate out

c GELU
(
W l,gate in

c hl
c(x) + bl,gate in

c

)
+ bl,gate out

c

)
σH(x) :=


0 x ≤ 0

x 0 ≤ x ≤ 1

1 1 ≤ x

(13)

Here, hl
c(x) :=

∑
j V

l
c,ja

l
j(x) is the inner activation of the component and W l,gate in

c ∈
Rdgate×1,W l,gate out ∈ R1×dgate , bl,gate in ∈ Rdgate , bl,gate out ∈ R are trainable parameters. Note that
there is no sum over c in the above expression: Every subcomponent has its own separate causal
importance MLP. This keeps the computational costs of training the gates low compared to the cost
of training the subcomponents themselves.

It is important to note that this choice of causal importance function is only one of many possibilities.
We chose it for its relative simplicity and low cost. In theory, SPD should be compatible with any
method of predicting causal importance values glc(x) for the subcomponents. This is somewhat in
contrast to sparse dictionary learning methods, where using arbitrarily expressive nonlinearities and
optimization methods to determine dictionary activations raises concerns about whether a ‘feature’
is really represented by the network if it can only be identified in neural activations using a very
complex nonlinear function versus a simple thresholded-linear function. See e.g. Bricken et al. [2023]
for discussion.

A.2 Avoiding dead gradients with leaky hard sigmoids

The flat regions in a hard sigmoid function can lead to dead gradients for inputs below 0 or above
1. To avoid this, we use leaky hard sigmoids instead, which introduce a small non-zero slope below
0 or above 1. Specifically, we use lower-leaky hard sigmoids σH,lower(x) with slope 0.01 below 0
for the gates used in the forward pass for the Lstochastic-recon and Lstochastic-recon-layerwise losses. And we
use upper-leaky hard sigmoids σH,upper(x) with slope 0.01 above 1 in the causal importance loss
Limportance-minimality :

σH,lower(x) :=


0.01x x ≤ 0

x 0 ≤ x ≤ 1

1 1 ≤ x

σH,upper(x) :=


0 x ≤ 0

x 0 ≤ x ≤ 1

1 + 0.01(x− 1) 1 ≤ x

(14)

We use the lower leaky hard sigmoid for the forward pass because we should usually be able to scale
a subcomponent that does not influence the output of the model below zero, but we cannot scale a
subcomponent that does influence the output of the model above 1. So we can use masks smaller
than zero in the forward pass, but not masks greater than one.

We use the upper leaky hard sigmoid in the importance loss because the causal importance values
cannot be allowed to take negative values, else the training would not be incentivized to sparsify
them. But there is no issue with allowing causal importance function outputs to be greater than 1.0
when computing the importance loss.

A.3 Heuristics for Hyperparameter Selection

Here we list some heuristics for how to select hyperparameters to balance the different loss terms of
SPD in Equation 8. In particular, we focus on how to determine the appropriate trade-off between
the stochastic reconstruction losses Lstochastic-recon and Lstochastic-recon-layerwise (controlled by β1, β2) and
importance minimality loss Limportance-minimality (controlled by β3).
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• Negligible performance loss: The performance difference between the SPD model and
the original model on the training dataset should be small enough to be mostly negligible.
Quantitatively, one might want to judge how large the performance drop is based on LM
scaling curves, as Gao et al. [2024] suggested for judging the quality of SAE reconstructions.

• Noise from superposition: Inactive mechanisms in superposition can still contribute to
the model output through small interference terms [Hänni et al., 2024]. We can estimate
the expected size of such terms, and ensure that Lstochastic-recon,Lstochastic-recon-layerwise are no
larger than what could plausibly be caused by such noise terms.

• Recovering known mechanisms: If some of the ground truth mechanisms in the target
model are already known, we can restrict hyperparameters such that they recover those
mechanisms. For example, in a language model, the embedding matrix mechanisms are
usually known: Each vocabulary element should be assigned one mechanism. If none of
a model’s mechanisms are known to start with, we could insert known mechanisms into
it. For example, one might insert an identity matrix at some layer in an LLM and check
whether the SPD decomposition recovers it as a single high-rank component, as in the
TMS-with-identity model in Section 3.2.

• Other sanity checks: The decomposition should pass other sanity checks. For example, a
model parametrized by the sum of unmasked subcomponents should recover the performance
of the target model. And at least some of the causal importance values should take values
of 1 for most inputs; if they do not, then it is likely that the importance minimality loss
coefficient β3 is too high.

A.4 Training details and hyperparameters

A.4.1 Toy models of superposition (TMS)

Target model training All target models were trained for 10k steps using the AdamW optimizer
[Loshchilov and Hutter, 2019] with weight decay 0.01 and constant learning rate 5 × 10−3. The
dataset uses input features sampled from [0, 1] uniformly with probability 0.05, and 0 otherwise.

• TMS5−2 and TMS5−2+ID: batch size 1024
• TMS40−10 and TMS40−10+ID: batch size 8192

SPD training: Common hyperparameters

• Optimizer: Adam with max learning rate 1× 10−3 and cosine learning rate schedule
• Training: 40k steps, batch size 4096
• Data distribution: same as target model (feature probability 0.05)
• Stochastic sampling: S = 1 for Lstochastic-recon and Lstochastic-recon-layerwise

• Loss coefficients: Lfaithfulness = 1, Lstochastic-recon = 1, Lstochastic-recon-layerwise = 1

• Causal importance functions: One MLP per subcomponent, each with one hidden layer of
dgate = 16 GELU neurons.

SPD training: Model-specific hyperparameters

• TMS5−2 and TMS5−2+ID: Limportance-minimality coefficient 3× 10−3, p = 1

• TMS40−10 and TMS40−10+ID: Limportance-minimality coefficient 1 × 10−4, p = 2 (we expect
that one could obtain similar results in these toy models with many different settings for p)

A.4.2 Toy models of Compressed computation and Cross-Layer Distributed Representation

Model architectures

• 1-layer and 2-layer residual MLPs: 100 input features, embedding dimension 1000, 50 MLP
neurons total (25 per layer for 2-layer)

• 3-layer residual MLP: 102 input features, embedding dimension 1000, 51 MLP neurons
total (17 per layer)
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Target model training All models trained using AdamW with weight decay 0.01, max learning
rate 3 × 10−3 with cosine decay, batch size 2048. The dataset uses input features sampled from
[−1, 1] uniformly with probability 0.01, and 0 otherwise.

SPD training: Common hyperparameters

• Optimizer: Adam with constant learning rate
• Batch size: 2048
• Data distribution: same as target model (feature probability 0.01)
• Stochastic sampling: S = 1 for both stochastic losses
• Loss coefficients: Lstochastic-recon = 1, Lstochastic-recon-layerwise = 1

• p = 2 for Limportance-minimality

SPD training: Model-specific hyperparameters

• 1-layer residual MLP: learning rate 2 × 10−3, Limportance-minimality coefficient 1 × 10−5,
C = 100 initial subcomponents, 30k training steps, causal importance function with
dgate = 16 hidden neurons per subcomponent

• 2-layer residual MLP: learning rate 1 × 10−3, Limportance-minimality coefficient 1 × 10−5,
C = 400 initial subcomponents, 50k training steps, causal importance function with
dgate = 16 hidden GELU neurons per subcomponent

• 3-layer residual MLP: learning rate 1×10−3, Limportance-minimality coefficient 0.5×10−5, C =
500 initial subcomponents, 200k training steps (converges around 70k), causal importance
function with dgate = 128 hidden GELU neurons per subcomponent

The hyperparameters can also be found in the WandB report here.

A.5 Supplementary figures
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Figure 14: Toy Model of Distributed Representations (Two Layers): Similarity between target
model weights and SPD model components for the first 10 input feature dimensions in a 2-layer
residual MLP. Top: Neuron contributions measured by (WEWIN) ⊙ (WOUTWU ), where ⊙ is an
element-wise product and WIN and WOUT are the MLP input and output matrices in both layers
concatenated together. Bottom: Neuron contributions for the learned parameter components, mea-
sured by maxm[(WU [i,:]U

OUTV OUT)⊙ (U IN
[:,m]V

IN
[m,:]WE [:,i])] for each feature index i ∈ [0, 9]. The

neurons are numbered based on their raw position in the network, with neurons 0 to 24 in the first
layer and neurons 25 to 49 in the second layer.
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Figure 15: Toy Model of Distributed Representations (Three Layers): Similarity between target
model weights and SPD model components for the first 10 input feature dimensions in a 3-layer
residual MLP. Top: Neuron contributions measured by (WEWIN) ⊙ (WOUTWU ) where ⊙ is an
element-wise product and WIN and WOUT are the MLP input and output matrices in all three layers
concatenated together. Bottom: Neuron contributions for the learned parameter components, mea-
sured by maxm[(WU [i,:]U

OUTV OUT)⊙ (U IN
[:,m]V

IN
[m,:]WE [:,i])] for each feature index i ∈ [0, 9]. The

neurons are numbered based on their raw position in the network, with neurons 0 to 16 in the first
layer, 17 to 33 in the second layer and neurons 34 to 50 in the third layer.
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A.6 SPD Pseudocode

Algorithm 1 Stochastic Parameter Decomposition (SPD)
Require: Target model f(·,W ) with parameters W = {W l}Ll=1 to be decomposed.
Require: Dataset D.
Require: C subcomponents per layer.
Require: Loss coefficients β1, β2, β3.
Require: Causal Importance Minimality loss p-norm p > 0.
Require: Number of mask samples S ≥ 1.
Ensure: Learned subcomponents {U l, V l}Ll=1 and parameters for causal importance MLP {Γl}Ll=1.

1: Initialize subcomponents U l ∈ Rdout×C , V l ∈ RC×din for each layer l.
2: Initialize parameters for causal importance MLPs Γl.
3: Initialize an optimizer for all trainable parameters ({U l, V l,Γl}Ll=1).
4: for each training step do
5: Sample a data batch X = {x1, . . . , xB} from D.
6: Compute target model outputs Ytarget and pre-weight activations {al}Ll=1 for batch X .
7: Lfaithfulness ← 1

N

∑L
l=1 ∥W l − U lV l∥2F

8: for each layer l = 1, . . . , L do
9: hl ← V lal // Inner activations

10: Gl
raw ← Γl(hl) // Raw causal importance MLP outputs

11: end for
12: Limportance-minimality ← 1

B

∑B
b=1

∑L
l=1

∑C
c=1 |σH,upper(G

l
raw,b,c)|p

13: Lstochastic-recon ← 0
14: Lstochastic-recon-layerwise ← 0

15: Let Gl = σH,lower(G
l
raw) for all l.

16: for s = 1, . . . , S do
17: Sample Rl

s ∼ U(0, 1)B×C for each layer l.
18: Compute masks M l

s ← Gl + (1−Gl)⊙Rl
s.

19: Construct masked weights {W ′(s)
b }Bb=1 with W

′(s),l
b = U l · Diag(M l

s,b) · V l.
20: Ymasked ← f(X,W ′(s))
21: Lstochastic-recon ← Lstochastic-recon +D(Ymasked, Ytarget)
22: for layer l′ = 1, . . . , L do
23: Construct layerwise masked weights {W ′(s,l′)

b }Bb=1 as follows:
W

′(s,l′),l
b = U l · Diag(M l

s,b if l = l′ else 1) · V l

24: Ymasked-layerwise ← f(X,W ′(s,l′))
25: Lstochastic-recon-layerwise ← Lstochastic-recon-layerwise +D(Ymasked-layerwise, Ytarget)
26: end for
27: end for
28: Normalize Lstochastic-recon ← Lstochastic-recon/S
29: Normalize Lstochastic-recon-layerwise ← Lstochastic-recon-layerwise/(S · L)
30: LSPD ← Lfaithfulness + β1Lstochastic-recon + β2Lstochastic-recon-layerwise + β3Limportance-minimality

31: Update parameters of {U l, V l,Γl}Ll=1 using gradients of LSPD.
32: end for
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