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Full-Surround, Multi-Modal Data Streams
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Abstract—1In this paper, we focus on obtaining 2D and 3D
labels, as well as track IDs for objects on the road with the
help of a novel 3D Bounding Box Annotation Toolbox (3D BAT).
Our open source, web-based 3D BAT incorporates several smart
features to improve usability and efficiency. For instance, this
annotation toolbox supports semi-automatic labeling of tracks
using interpolation, which is vital for downstream tasks like
tracking, motion planning and motion prediction. Moreover,
annotations for all camera images are automatically obtained by
projecting annotations from 3D space into the image domain. In
addition to the raw image and point cloud feeds, a Masterview
consisting of the top view (bird’s-eye-view), side view and front
views is made available to observe objects of interest from
different perspectives. Comparisons of our method with other
publicly available annotation tools reveal that 3D annotations
can be obtained faster and more efficiently by using our toolbox.

I. INTRODUCTION

There is a growing need for broadly available 3D an-
notation platforms that have a labeling user interface that
is intuitive enough for non-domain experts to use. Many
existing tools can annotate 2D images, but there is a growing
need to also annotate 3D LiDAR data.

Navigating/labeling in 3D space requires a carefully de-
signed user interface. Annotating large amounts of 3D data
also requires a big workforce that may need training. Another
challenge is that the resolution and the clarity may be limited,
making it hard to differentiate between objects. In this paper,
we propose an open source tool that alleviates the need
to buy end-to-end “Training Data as a Service” solutions.
Annotators can label their own data very accurately and
have full control of the toolbox and their data. Our toolbox
also provides functionality to evaluate annotated data (built-
in quality control) in order to obtain labels with high quality.
Finally, human annotation tasks are very labor-intensive and
sometimes require additional human resources. As a remedy,
one can even consider using our toolbox to outsource the
annotation tasks to Amazon Mechanical Turks (AMTSs) - a
popular crowd-sourcing platform. This is possible because of
the web-based, platform-independent nature of our toolbox,
capable of running on most modern browsers, irrespective of
the operating system involved.

Recently, applications related to autonomous and partially
automated cars have attracted significant attention. For re-
search in these applications, a full-surround multi-modal
dataset with 2D and 3D annotations, as well as assigned
track IDs would be very useful [1]-[3]. Motivated by these
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Fig. 1: Overview of the annotation toolbox. (1) A horizontal
scrollable and vertical resizable panoramic camera image
provides a full-surround view. (2) The Masterview that
consists of a side view (top), a front view (middle) and a
top view (bottom) supports the user during the annotation
process. (3) 3D view in that the user can navigate and place
annotations.

needs, our work focuses on the challenging task of 2D image
and 3D point cloud annotation of street scenes. Inspired by
the easy usage of 3D modeling tools (e.g. Blender [4]), we
make the user annotate scenes directly in 3D and transfer
those annotations back into the image domain. Laser data
is first annotated with rough bounding primitives, and then
a geometric model is used to transfer these labels into the
image space. The advantage of this approach is that the
label in 3D is automatically projected into multiple camera
views, thus lowering the annotation time considerably. We
also include additional features like smart interpolation for
users to semi-automatically label sequential data streams.
All these features put together make our tool easy to use,
accurate and efficient.

The main contributions of this work are as follows: First,
we propose a novel annotation system with tools for efficient,
accurate 3D localization and tracking of objects using full-
surround multi-modal data streams (see Fig. 1). Second, a
systematic comparison with 33 annotation tools is carried out
to highlight improvements and benefits of our approach (see
Table I). Finally, we conduct both qualitative and quantitative
evaluations of the efficiency and accuracy of our system
using four human annotators with diverse background and
skills, resulting in more than 13,800 object annotations
within one hour of usage. The annotation toolbox is available
for public use at: https://github.com/walzimmer/3d-bat.
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TABLE I: Comparison between different annotation tools.
O Integrates feature O Feature only available for 2D images O Feature not available

Feature

Tool F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Fl4 Score

3D BAT (OUR) v v v v v v v v v v v v v v 14/14

TUBS [5] v v v v v v v 714

VAST [6] v v v v v v 6.0/14

CVAT [7] v ) v v v v 5.5/14

open source 4 LabelMe [8] v (v) v v v v 5.5/14
CLEAN [9] v ) v v v v 5.5/14

BRAT [10] v ) v v 3.5/14

WebAnno [11] () v v v 3.5/14

Image Tagger [12] (v) v v v 3.5/14

3D BAT (OUR) v v v v v v v v v v v v v v 14/14

scale.ai [13] v v v v v v v v v v 10/14

playment.io [14] v v v v v v v v v 9/14

surfing.ai [15] v v v v v v v v v 9/14

. dataturks.com [16] v ) v v v v 5.5/14
commercial 1 supervise.ly [17] ) v v v v 4.5/14
labelbox.com [18] ) v v v v 4.5/14

neurala.com [19] ) v v v v 4.5/14

prodi.gy [20] ) v v v v 4.5/14

F1  Full-surround annotations F8 3D transform controls

F2  Semi-automatic labeling

F3 3D to 2D label transfer (projections)

F4  Automatic tracking

F5  Masterview (side, front, top and 3D view)
F6  Navigation in 3D

F7  Auto ground detection

II. RELATED STUDIES

In this section, we provide a comprehensive comparison
between a variety of popular annotation tools. Although 33
annotation tools were evaluated in total, only 16 of the
highest scoring ones are shown in Table I for the sake of
brevity. More than half of the evaluated tools are open source.
The comparison is split into two tables to separate the open
source tools from the commercial tools.

Looking at the open source tools, only the TUBS [5]
annotation tool comes close to our toolbox. It provides full-
surround annotations, semi-automatic labeling and annota-
tions are projected to all cameras. Besides an automatic
tracking functionality, the TUBS labeling tool has also pos-
sibility to detect and remove the ground to better locate
road users on the ground. Our tool was also compared to
commercial tools and achieves the highest ranking, given the
features that are listed in Table I. Among the commercial
options, three tools come close to our annotation tool:
scale.ai [13], playment.io [14] and surftech.ai
[15]. All of them provide automatic or semi-automatic 3D
annotation techniques, a 3D to 2D label transfer as well
as the possibility to navigate in 3D space. Most of the
annotation tools listed in the table are web-based, offer a
redo/undo functionality and automatically save changes that
are done by the user. However, none of the tools support
keyboard only annotations, which is a very efficient way to
create labels. Full-surround annotations are only offered by
scale.ai, surfing.ai and the TUBS annotation tool,
whereas only playment . 10 and the TUBS annotation tool
support the annotation of tracks. Compared to annotating

F9 2D and 3D annotations

F10  Web-based (online accessible & platform ind.)
FI1  Redo/undo functionality

F12  Keyboard only annotation mode

F13  Auto save function

F14  Review annotations

individual images, video sequences offer the advantage of
temporal coherence between adjacent frames, thereby mak-
ing it possible to use propagation techniques to transfer
labels from the current frame to subsequent frames. Note
that two open source tools (TUBS and VAST) and only
three commercial tools (scale.ai, playment.io and
surftech.ai) support the annotation of 3D objects. All
other listed tools provide only the functionality to label in
image space, hence only half a point (yellow checkmark)
was added to the final score.

To evaluate our tool in realistic use cases, we consider
different publicly available real world datasets. Compared to
the popular KITTI dataset which only has camera images
that were obtained by two stereo cameras pointing forward,
the LISA-T [21] test vehicle has six full-surround cameras,
thus more data has to be annotated per timestamp. We also
consider the newly released NuScenes dataset [22] com-
prising of a similar full-surround sensor configuration. Since
this dataset consists of vast amounts of labelled sequences,
we use it to carry out quantitative evaluations of our tool.

ITI. SYSTEM ARCHITECTURE

In this section, the proposed methodology as well as the
implemented features will be described in detail. The goal
was to develop a limited and simple interface, since this
leads to superior annotation experience. The 3D annotation
toolbox is based on WebGL (see Fig. 1) to allow collaborative
annotating. The toolbox was designed to annotate one object
at a time because it is more efficient and strongly preferred
by the workers.



&

(a) Creating control points for interpolation.

- J

(b) Interpolation of objects. The track of the car is displayed
transparent (gray). The interpolation takes also rotation and scaling
into account.

Fig. 2: Illustration of object interpolation within a curve.

First, all available camera images are displayed at once
(full-surround view, see Fig. 1) so that objects that are
covered by multiple cameras can always be seen by the user.
Without this feature, the user would have to switch between
all camera images to find an object, leading to inefficiency.

Next, an optional semi-automatic labeling method is used
to annotate all frames between two specific frames (start
and end frame) that are determined by the annotator. Af-
ter the implementation of this semi-automatic interpolation
technique (see Fig. 2a and 2b), the annotation time was seen
to drastically decrease. This interpolation is based on a linear
model and is to be used primarily for labelling small clips
of the data sequence.

Additionally, we use 3D and projective geometry to create
a 3D to 2D label transfer option for the user. A 3D to 2D
label transfer is very useful to obtain automatically annotated
camera images from already labelled 3D point clouds. The
annotator places a 3D label in the point cloud which is then
projected into all six camera images. This method reduces
annotation time and helps the user to place the annotation
very accurately into the point cloud, since the projection is
updated in real-time. The projection of 3D annotations into
the camera images (3D to 2D label transfer) does not require
the user to label each camera image which increases the
speed by many orders. An automatic track assignment of
objects simplifies the annotation further. Those tracks can
later be used for motion planning and motion prediction.
Adding the Masterview (see Fig. 1) which consists of the
side, front and bird’s-eye-view, the user doesn’t have to

(a) Translation con-
trols.

(b) Scale Controls. (c) Rotation Controls.

Fig. 3: The user can switch between three transformation
modes for which short cuts are provided. Transformation
controls can be hidden as well as changed in size. They allow
to translate/scale an object along two axis simultaneously.

change into the 3D view anymore to adjust the dimensions
of an object.

Once the user selects an object in the scene, transform
controls appear on next to it (see Fig. 3a, 3b and 3c). These
controls allow the user to translate, scale and rotate the
selected object. The user can interactively correct wrong
positions and orientations and change between those three
modes using keyboard shortcuts. This transformation can
also be done using the keyboard. Shortcuts are provided to
switch between the translation, scaling and rotation mode.

Furthermore, graphical elements such as buttons and
checkboxes were kept at a minimum and keyboard shortcuts
are provided for every operation. Having a limited number
of choices is shown to save time and remove confusion, as
it diminishes the cognitive load of the workers. Fig. 4 shows
two example frames that were labeled from the LISA-T
dataset.

IV. EXPERIMENTAL EVALUATION

The most common strategy to evaluate annotated data
is to compare the obtained annotations with ground truth,
this is, annotations from experts. After all features were
implemented an experiment was performed in that several
user had the task to annotate a sequence of 10 seconds
which consists of 300 key frames and another very crowded
sequence of 35 key frames. Annotators were first instructed
to watch the tutorial videos as well as the raw video to
get familiar with the scene and to see where interpolation
makes sense. The annotation results were compared against
the ground truth that was created by an experienced user
(Userl) who was familiar with the annotation toolbox. Table
IT shows how much time, mouse clicks and keystrokes the
annotation user needed to annotate a sequence. Furthermore
the total number of annotated objects is listed as well as the
number of objects for each class.

Annotating 1800 camera images and 300 laser scans
requires on average about one hour. This results in anno-
tating 30 camera images and 5 laser scans per second. To
improve the speed of the annotation process one can evaluate



Fig. 4: Example annotations of two sequences from the LISA-T dataset.

TABLE II: Annotation statistics of different users on the
LISA-T dataset.

[ | Ground truth  Userl  User2  User3 |
Time (hh:mm): 02:00 01:02  01:00  00:52
Clicks: 3324 1388 984 780
Keystrokes: 1032 112 255 1663
Annotated obj.: 6851 1722 3078 2212

CAR: 5051 1112 2329 1481
PEDESTRIAN: 1500 610 749 431
MOTORCYCLE: | 0 0 0 0
BICYCLE: 0 0 0 0
TRUCK: 300 0 0 300
3D-IoU: - 0.073  0.206 0.135
3D-IoU>0.6: - 0.058  0.091 0.049
Precision: - 0.012  0.013 0.010
Recall: - 0.012 0.012 0.010
F1 score: - 0.012 0.091 0.010

heatmaps of both, mouse and keyboard. Fig. 5a shows the
average heatmap of user interactions with the mouse and
Fig. 5b visualizes the heatmap of the average keystrokes the
annotation users performed during their task.

Evaluating the mouse heatmap one can see that annotators
preferred to use the button to navigate to the next frame
instead of using a keyboard shortcut which would be faster.
A solution would be to provide more instructions to the user
a also provide more time to get familiar with the toolbox.
The majority of the annotators translated and rescaled the
3D bounding box after they positioned it into the pointcloud.
Hence the keyboard key T’ (to switch into translation mode)
and ’S’ (to switch into scaling mode) was pressed often. The
average intersection over union in 3D (3D-IoU) between the
manually created ground truth and the user annotations is
0.138 and 0.066 (considering a boundary of 0.6).

Fig. 6 shows evaluation metrics (3D-IoU, precision, recall
and F-score) for the annotated LI SA-T dataset. We provide
the mathematical descriptions of each of these metrics below:
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(a) Mouse interactions with the annotation tool. Red areas
visualize a high number of clicks.
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(b) A keyboard heatmap visualizes the keystrokes of all annotators.

Fig. 5: Heatmaps of keyboard and mouse were created using
the toolbox WhatPulse [23].

Precision and Recall are standard metrics that evaluate the
overall performance of statistical models, and the F}-score
calculates the harmonic mean of the precision and recall
(harmonic mean because the precision and recall are ratios)
[24].

After the experiment, all participants were asked to fill
out a feedback form to evaluate the performance and user
experience with the annotation toolbox. Table IIT shows the
average results. From these results, we gather that the anno-
tators described the toolbox as efficient, helpful, intelligent
and easy to learn. The average score is 4.12 out of 5.00
which is 82.40%.

Evaluation was also performed on the NuScenes dataset
since groundtruth annotations were already provided. In
the second experiment again user statistics were created
(see Table IV). The average 3D-IoU between the manually
created ground truth and the user annotations is 0.0748 and
0.0393 (considering the boundary of 0.6). Fig. 7 shows
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Fig. 6: Evaluation metrics on the LISA-T dataset. User!
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Fig. 7: Evaluation metrics on the NuScenes dataset. User2
achieved the best accuracy in total.
® Userl ® User2 ® User3

evaluation metrics (3D-IoU, precision, recall and Fi-score)
for each annotated frame on the first NuScenes sequence.

Next, we focus on the qualitative evaluation of our an-
notation tool. Fig. 8 shows a comparison between manu-
ally annotated objects (top) and annotations provided by
NuScenes (bottom). One can see that NuScenes provides
a lot of annotations. Even objects that can’t be seen in the
camera image were annotated. The reason for that is that
objects containing at least one point of the point clouds were
annotated [22].

TABLE III: Evaluation of the user experience. All annotators
rated the Masterview with the highest score because it
simplified the annotation task a lot.

[ Criteria [ Score l
Does this toolbox increase your productivity? 4.33/5
How would you rate the performance of the annotation tool? 3.67/5
Is the annotation toolbox useful for you? 4.50/5
Is the toolbox efficient? 4.00/5
Is the interaction with the toolbox clear and understandable? 3.67/5
Are screen message consistent? 3.67/5
Are input prompts clear? 4.00/5
Are error messages helpful? 3.67/5
Was it easy to learn to operate the annotation toolbox? 4.00/5
How easy was the exploration of new features? 3.67/5
Was it easy to remember all commands? 4.33/5
Were help messages on the screen helpful? 3.67/5
Was the supplemental reference material clear? 3.67/5
Was it easy to read and understand the instructions? 4.33/5
The Masterview (side view, front view and bird’s-eye-view) | 5.00/5
simplifies the task.

The organization of information is very clear. 4.00/5
The system speed is fast enough to run the toolbox. 3.67/5
The projection of 3D labels into the image domain is useful. 4.33/5
The interpolation mode helps me to annotate more labels in | 4.67/5
the same amount of time.
The auto-save functionality was helpful to save time. 4.67/5
The undo/redo functionality follows an important principle of | 4.00/5
user interface design and increases the satisfaction of users.

4.12/5

TABLE IV: Annotation statistics of different users on the
NuScenes dataset. Annotators who spent more time on the
annotation task achieved better accuracy.

[ | Ground truth  Userl  User2 User3 |
Time (hh:mm): 04:00 00:49  02:30 01:30
Clicks: 4933 2815 4418 2440
Keystrokes: 5812 1521 1488 134
Annotated obj.: 1303 388 395 585

CAR: 1048 374 395 585
PEDESTRIAN: 97 14 0 0
MOTORCYCLE: | 0 0 0 0
BICYCLE: 0 0 0 0
TRUCK: 158 0 0 0
3D-IoU: - 0.068  0.084 0.072
3D-1oU>0.6: - 0.047  0.054 0.017
Precision: - 0.004  0.015 0.002
Recall: - 0.004  0.014 0.002
F score: - 0.004 0.015 0.002

V. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this research we have contributed to three specific areas.
First, we proposed a novel annotation system with tools
for efficient, accurate 3D localization of objects and their
dynamic movement using full-surround multi-modal (camera
and LiDAR) data streams. A robust, scalable and efficient
way to annotate 2D and 3D data was provided. The main
goal was to create an annotation tool that enables the user
to obtain full-surround annotations as well as annotations of
tracks. Second, a systematic comparison with 33 annotation
tools was performed. Finally, an evaluation of the efficiency
and accuracy of the system with four human annotators with
diverse backgrounds and skills was carried out, resulting in
more than 13,800 object annotations within one hour.

The next immediate step is to test the annotation toolbox



Fig. 8: Comparison between manually created annotations (top) and annotations provided by NuScenes (bottom).

with multiple users, to perform stress tests and make the
toolbox ready to be used by multiple users in parallel. A
server-side application will be implemented that is connected
to a database to obtain and store labels from the crowd.

The second goal is to use a small amount of the dataset
that was manually annotated to train object detection al-
gorithms to provide an inference feature that predicts the
pose of objects. Using this feature, annotators only need
to perform small adjustments and sometimes delete false
positives. Annotators also mentioned that interpolation for
multiple objects would be very helpful which would further
decrease annotation time.

Next, a point cloud aggregation mode will be added to
facilitate the labeling of distant objects. Also, a variant of
the Iterative Closest Point (ICP) algorithm will be used to
ensure that labels move in the correct direction when the
user switches to the next frame. Moreover, further annotation
modes (attribute annotation, key point annotation, semantic
annotation as well as behavior annotation) will be added to
the toolbox. Finally, a highly automatic annotation mode will
enable the user to obtain annotations very efficiently so that
only small corrections by the human are needed.

REFERENCES

[1] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-
object tracking for autonomous vehicles using cameras & lidars,” arXiv
preprint arXiv:1802.08755, 2018.

[2] N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround
vehicles move? a unified framework for maneuver classification and
motion prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3,
no. 2, pp. 129-140, 2018.

[3] A. Rangesh and M. M. Trivedi, “Ground plane polling for 6dof pose
estimation of objects on the road,” arXiv preprint arXiv:1811.06666,
2018.

[4] Blender. Blenderorg - Home of the Blender project - Free
and Open 3D Creation Software. 00000. [Online]. Available:
https://www.blender.org/

[5] C. Plachetka, J. Rieken, and M. Maurer, “The TUBS Road User

Dataset: A New LiDAR Dataset and its Application to CNN-based
Road User Classification for Automated Vehicles,” in 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC),
pp. 2623-2630, 00000.

[6] D. R. Berger, H. S. Seung, and J. W. Lichtman, “VAST
(Volume Annotation and Segmentation Tool): Efficient Manual
and Semi-Automatic Labeling of Large 3D Image Stacks,”
vol. 12, 00001. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC6198149/

[7]

[8]

[10]

[11]

[12]
[13]
(14]

[15]

[16]

(171

(18]
[19]
[20]

[21]

[22]

(23]
[24]

C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently Scaling
up Crowdsourced Video Annotation: A Set of Best Practices
for High Quality, Economical Video Labeling,” vol. 101, no. 1,
pp. 184-204, 00000. [Online]. Available: http://link.springer.com/10.
1007/s11263-012-0564-1

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“LabelMe: A Database and Web-Based Tool for Image Annotation,”
vol. 77, mno. 1-3, pp. 157-173, 02439. [Online]. Available:
http://link.springer.com/10.1007/s11263-007-0090-8

T.-T. Kuo, J. Huh, J. Kim, R. El-Kareh, S. Singh, S. F. Feupe,
V. Kuri, G. Lin, M. E. Day, L. Ohno-Machado, and C.-N. Hsu,
“The Impact of Automatic Pre-annotation in Clinical Note Data
Element Extraction - the CLEAN Tool,” 00000. [Online]. Available:
http://arxiv.org/abs/1808.03806

P. Stenetorp, S. Pyysalo, G. Topic, T. Ohta, S. Ananiadou, and J. Tsujii,
“Brat: A Web-based Tool for NLP-Assisted Text Annotation,” p. 6.
R. E. de Castilho, S. M. Yimam, S. Hartmann, I. Gurevych, A. Frank,
and C. Biemann, “A Web-based Tool for the Integrated Annotation of
Semantic and Syntactic Structures,” p. 9, 00020.

N. Fiedler, M. Bestmann, and N. Hendrich, “ImageTagger: An Open
Source Online Platform for Collaborative Image Labeling,” p. 8.
ScaleAi. Sensor Fusion: 3D Point Cloud Annotation - Scale. 00000.
[Online]. Available: https://scale.ai/sensor-fusion-annotation
playment. 3D Point Cloud Annotation — Data Labeling Platform.
00000. [Online]. Available: https://playment.io

J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger, “Semantic Instance
Annotation of Street Scenes by 3D to 2D Label Transfer,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp. 3688-3697, 00048. [Online]. Available:
http://ieeexplore.ieee.org/document/7780770/

Dataturks. Best online platform for your ML data annotation needs.
00000. [Online]. Available: https://dataturks.com/

supervisely. Supervisely - Web platform for computer vision.
Annotation, training and deploy. 00000. [Online]. Available: https:
/Isupervise.ly/

labelbox. Labelbox: The best way to create and manage training data.
00000. [Online]. Available: https://labelbox.com/automotive-industry
Neurala. Brain Builder Beta — Neurala. 00000. [Online]. Available:
https://www.neurala.com/solutions/brain

Prodigy. Prodigy An annotation tool for AI, Machine Learning &
NLP. 00000. [Online]. Available: https:/prodi.gy/index

A. Rangesh, N. Deo, K. Yuen, K. Pirozhenko, P. Gunaratne, and
M. M. Trivedi, “Exploring the Situational Awareness of Humans Inside
Autonomous Vehicles,” p. 8.

H. Caesar, “The devkit of the nuScenes dataset. Contribute to
nutonomy/nuscenes-devkit development by creating an account on
GitHub,” nuTonomy, 00000. [Online]. Available: https://github.com/
nutonomy/nuscenes-devkit

M. Smit. WhatPulse. 00000. [Online]. Available: https://whatpulse.org/
C. Goutte and E. Gaussier, “A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation,” in Advances in
Information Retrieval, ser. Lecture Notes in Computer Science, D. E.
Losada and J. M. Fernndez-Luna, Eds. Springer Berlin Heidelberg,
pp. 345-359, 00469.


https://www.blender.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198149/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198149/
http://link.springer.com/10.1007/s11263-012-0564-1
http://link.springer.com/10.1007/s11263-012-0564-1
http://link.springer.com/10.1007/s11263-007-0090-8
http://arxiv.org/abs/1808.03806
https://scale.ai/sensor-fusion-annotation
https://playment.io
http://ieeexplore.ieee.org/document/7780770/
https://dataturks.com/
https://supervise.ly/
https://supervise.ly/
https://labelbox.com/automotive-industry
https://www.neurala.com/solutions/brain
https://prodi.gy/index
https://github.com/nutonomy/nuscenes-devkit
https://github.com/nutonomy/nuscenes-devkit
https://whatpulse.org/

