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Abstract
Large multimodal models excel in multimodal
tasks but face significant computational chal-
lenges due to excessive computation on visual
tokens. Unlike token reduction methods that fo-
cus on token-level redundancy, we identify and
study the computation-level redundancy on vi-
sion tokens to ensure no information loss. Our key
insight is that vision tokens from the pretrained
vision encoder do not necessarily require all the
heavy operations (e.g., self-attention, FFNs) in
decoder-only LMMs and could be processed more
lightly with proper designs. We designed a se-
ries of experiments to discover and progressively
squeeze out the vision-related computation re-
dundancy. Based on our findings, we propose
ProxyV, a novel approach that utilizes proxy vi-
sion tokens to alleviate the computational burden
on original vision tokens. ProxyV enhances effi-
ciency without compromising performance and
can even yield notable performance gains in sce-
narios with more moderate efficiency improve-
ments. Furthermore, the flexibility of ProxyV is
demonstrated through its combination with token
reduction methods to boost efficiency further. The
code will be made public here.

1. Introduction
Large multimodal models (LMMs) have demonstrated pow-
erful capabilities by combining visual information with large
language models (LLMs), but their computational overhead
can be immense due to the large number of vision tokens.
To mitigate this, most existing efforts address token-level
redundancy by pruning or merging vision tokens with the
risk of discarding fine-grained details. In this paper, we
instead tackle the computation-level redundancy on vi-
sion tokens, an often-overlooked dimension. We find that
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Figure 1. ProxyV retains or increases the fine-grained benchmark
performance while effectively reducing the computational cost.
ProxyV-L12 and ProxyV-L16 denote applying ProxyV from layers
12 and 16, respectively.

computation-level redundancy exists in the processing of vi-
sion tokens and can be squeezed out through proper designs
without sacrificing performance.

Current mainstream LMMs adopt a typical decoder-only
architecture, exemplified by LLaVA-style (Liu et al., 2024b)
pipelines, usually comprising: 1) A pretrained vision en-
coder extracting vision features, 2) A lightweight projection
module projecting vision features into LLMs’ input space
3) An LLM jointly processing the concatenated vision and
text tokens through multiple layers of self-attention and
feed-forward networks (FFNs). Though simple and effec-
tive, this structure faces a significant challenge: the high
computational cost incurred by vision tokens, which typi-
cally far outnumber text tokens. Since self-attention scales
quadratically with sequence length, the problem becomes
even more severe as top-performing LMMs (Li et al., 2024b;
Wang et al., 2024; Chen et al., 2024b) usually process high-
resolution images, resulting in thousands of tokens per im-
age. Moreover, LMMs are now being extended to process
video frames (Lin et al., 2023a; Maaz et al., 2024; Zhang
et al., 2024a; Xue et al., 2024) or multiple images (Li et al.,
2024c; Jiang et al., 2024a) within the same structure, further
increasing the length of visual token sequences.

A popular and intuitive solution to this problem is to re-
duce the number of vision tokens via pruning and merging
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(Chen et al., 2025b; Shang et al., 2024; Zhang et al., 2024b;
Xing et al., 2024; Yang et al., 2024b). While effective in
certain scenarios, this approach is problematic as it involves
non-recoverable operations that risk discarding fine-grained
information or contextual details. For instance, in the case
of a dense document image, pruning or merging tokens is
highly likely to result in the loss of critical information. Sev-
eral methods (Huang et al., 2025; Xing et al., 2024) use the
textual question as guidance for the token pruning or selec-
tion process. However, this approach can fail in multi-turn
conversations, where later questions might require visual
information not retained based on the guidance of the initial
question. Additionally, it can be challenging to identify all
critical visual information for complex or indirect questions.
Furthermore, many token reduction methods rely on text-
to-image attention scores, which makes them incompatible
with time and memory-efficient attention implementations
(Dao et al., 2022; Dao, 2023).

How can we reduce the computation cost brought by long
vision sequences while always preserving all vision tokens
to avoid any possible information loss? Note that the vision
tokens for most LMMs come from a pretrained vision en-
coder, so the vision tokens are already highly semantic. This
raises the question: Is it still necessary to perform all the
heavy operations (e.g., vision-to-vision attention and FFNs)
on them within the LLM? Is there any computation-level
redundancy on vision tokens in LMMs? Cross-attention-
based LMMs (Alayrac et al., 2022; Laurencon et al., 2023;
Dubey et al., 2024; Dai et al., 2024) already offer some
promising insights into these questions. These methods
treat vision features as context, injecting them into the LLM
via additional cross-attention modules, thereby avoiding
unrolling all vision tokens in the LLM and improving com-
putational efficiency. However, these models also have
drawbacks such as requiring significantly more pre-training
data, bringing a large number of additional parameters, and
still slightly under-performing the decoder-only counter-
parts. The computation-level redundancy on vision tokens
is likely to exist, but can we reduce it while retaining the
simplicity and efficiency of the decoder-only structure?

Motivated by this, we first conduct experiments to verify
the existence of computation-level redundancy. Our find-
ings confirm that attention-related computation redundancy
on vision tokens does exist, with different LLMs exhibiting
varying degrees of redundancy. We then explore the possibil-
ity of skipping both attention and FFN operations on vision
tokens by replacing them with lightweight MLP modules.
Interestingly, the newly added lightweight modules, which
are vision-specific, bring additional performance gains. And
the final performance can be understood as the performance
gain from the lightweight modules minus the performance
drop caused by skipping attention and FFN operations on
vision tokens. But can we have a better design to further mit-

igate the negative impact of skipping all heavy operations
on vision tokens?

We then propose a better solution, ProxyV, that introduces
a group of proxy vision tokens to relieve the full vision
tokens from the heavy computation burden. As shown in
Figure 1, ProxyV achieves 101% performance with prefill-
ing FLOPs and time reduced by 43% and 40% respectively,
and achieves 102.4% performance with FLOPs and time
reduced by 36% and 33% respectively on benchmarks re-
quiring fine-grained visual understanding when applied to
Vicuna1.5-7B. We compare ProxyV against token reduc-
tion methods and highlight the information loss problem
for them. Furthermore, we explore a non-spatial variant
of ProxyV, which can be seamlessly integrated with token
reduction methods to further enhance efficiency.

Overall, our contributions are threefold:

• We systematically study the computation-level redun-
dancy on vision tokens in decoder-only LMMs and
explore ways to progressively reduce it.

• We propose ProxyV, a novel design that introduces
proxy tokens to carry out heavy computations, effec-
tively reducing computation while ensuring perfor-
mance.

• We extensively validate the effectiveness of ProxyV
with different LLMs and show its flexibility by propos-
ing a non-spatial variant that can be directly combined
with token reduction methods.

2. Discover Computation-level Redundancy
To validate our hypothesis regarding computation-level re-
dundancy in decoder-only LMMs, we first design a series
of exploratory experiments to investigate the presence of
such redundancy in self-attention operations among vision
tokens. Specifically, we train a set of LMMs based on
the LLaVA-Next (Liu et al., 2024a) structure with differ-
ent LLM backbones, including Vicuna1.5-7B (Zheng et al.,
2023), Vicuna1.5-13B (Zheng et al., 2023), LLama3-8B
(Dubey et al., 2024), Qwen2-7B (Yang et al., 2024a), Phi3-
3B (Abdin et al., 2024), and InternLM2.5-7B (Cai et al.,
2024). Detailed experimental settings are provided in Sec-
tion 4. During inference, we masked the attention within
vision tokens to disable inter-token interactions, applying
this attention masking at different positions within the LLM
(i.e., across various portions of the decoder layers). To
evaluate the impact of this masking on the performance
of LMMs, we select a set of OCR-extensive benchmarks
(DocVQA (Mathew et al., 2021), ChartQA (Masry et al.,
2022), InfoVQA (Mathew et al., 2022), OCRBench (Liu
et al., 2024c), TextVQA (Singh et al., 2019)) that require
fine-grained visual information, thus being highly sensitive
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Figure 2. The relative Scorefine with different vision attention
masking ratios for different LLMs. The computation redundancy
begins in the middle to rear part of the LLMs as masking the vision
attention does not affect the performance.

to potential information loss in vision tokens, and denote
the average performance on them as Scorefine.

As shown in Figure 2, directly masking vision token atten-
tion across the entire LLM leads to a significant performance
drop, while masking it from the middle or later layers has
minimal or no effect on performance. Furthermore, while
the general trend is consistent across all LLMs, different
models exhibit different patterns, indicating varying degrees
of redundancy. For instance, Vicuna1.5-7B and Vicuna1.5-
13B maintain full performance when the masking is applied
from the middle layers, while Qwen2-7B achieves 100% per-
formance when only the latter 25% layers are masked. The
different patterns of vision attention across LLMs present
an intriguing research direction, but we do not explore them
in this paper and focus on the general trend. Based on these
observations, we conclude that the attention-related com-
putation redundancy on vision tokens does exist in the
middle and later layers of LMMs, with varying degrees
of redundancy across different LLMs.

Since the above experiments are directly conducted in the
training-free approach, a natural question arises: Can we
finetune the model with the vision-to-all attention operations
skipped to further reduce the performance gap? In practice,
skipping the vision-to-all attention operation means that the
vision tokens only act as the keys and values in the atten-
tion operation and are updated directly with v-projection
and o-projection, which is also the implementation stud-
ied in EE-MLLM (Ma et al., 2024). We then conduct this
experiment with the Vicuna1.5-7B LLM and skip the vision-
to-all attention from layers 0, 12, and 16, respectively. As
shown in Table 1, finetuning with the vision-to-all atten-
tion skipped mitigates the performance drop. We also
report the reduced FLOPs and time cost for the prefilling

stage in Table 1. Notably, even when vision attention is
skipped across all layers, the reduction in FLOPs is limited.
This is primarily due to the computationally intensive nature
of the heavy FFN operations on vision tokens. This leads to
another question: is it possible to also skip the heavy FFNs
or replace them with lightweight alternatives?

Table 1. Results of finetuning LMMs with vision-to-all attention
skipped. TF denotes the training-free approach by masking vision
attention during inference and FT denotes finetuning with vision
attention skipped. L0, L12, and L16 indicate the layer index where
the masking or skipping starts to be applied. Finetuning can further
improve the performance, but FLOPs reduction is limited.

Scorefine Rel FLOPs Time

L0 - TF 62.7% - -
L0 - FT 87.2% ↓ 18% ↓ 60%

L12 - TF 94.5% - -
L12 - FT 99.3% ↓ 11% ↓ 40%

L16 - TF 100.2% - -
L16 - FT 99.9% ↓ 9% ↓ 32%

Table 2. Results of replacing the original attentions and FFNs on
vision tokens with lightweight MLPs. ATN represents the previous
approach that only skips the attention, while ATN-FFN represents
skipping both attention and FFNs. Skipping FFNs reduces the
FLOPs, and adding lightweight MLPs brings a performance gain.

Scorefine Rel FLOPs Time

L0 - ATN 87.2% ↓ 18% ↓ 60%
L0 - ATN+FFN 65.1% ↓ 80% ↓ 77%

L12 - ATN 99.3% ↓ 11% ↓ 40%
L12 - ATN+FFN 99.3% ↓ 50% ↓ 49%

L16 - ATN 99.9% ↓ 9% ↓ 32%
L16 - ATN+FFN 100.4% ↓ 40% ↓ 39%

Our initial attempt reveals that directly skipping FFNs
and keeping vision tokens constant across decoder layers
severely degrades the performance, so we use lightweight
MLPs to replace the attention operations and FFNs for the
vision token update. The corresponding results, shown in
Table 2, indicate that this approach significantly reduces
FLOPs and further improves the speed. Compared to
skipping attention operations alone, additionally skipping
the FFNs degrades the performance for the layer-0 case,
achieves similar performance for the layer-12 case, and
even improves the performance for the layer-16 case. This
interesting performance improvement arises because the
addition of lightweight MLPs introduces decoupled vision-
specific modules, which benefit overall performance. This
finding also partially aligns with findings from Libra (Xu
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et al., 2024), which demonstrated that the decoupled vision-
specific modeling can better process the vision-specific in-
formation without distorting the original knowledge in the
LLM. However, unlike Libra, which employs a substantial
number of vision-specific parameters, we achieve this with
lightweight MLPs (9.44M parameters per layer). The final
performance can thus be understood as the performance
gain from the newly added vision-specific parameters
minus the performance drop caused by skipping the orig-
inal heavy operations on vision tokens. Based on these
observations, instead of this simple implementation, can we
have a better design to eliminate performance loss further
or even enhance performance while maintaining computa-
tional efficiency?

3. A Better Solution with Proxy Vision Tokens
We now introduce our algorithm ProxyV, with its overall
framework shown in Figure 3. The core idea of ProxyV
is to employ a small group of proxy vision tokens as sub-
stitutes for the original vision tokens in compute-intensive
operations. These proxy tokens then guide the updates of
the original vision tokens through lightweight modules.

3.1. Proxy Tokens with Spatial Priors

As the original full vision tokens still preserve the 2D spatial
structure, a direct approach is to downsample them into a
smaller vision feature map to serve as proxy tokens. Specif-
ically, given N ×N original vision tokens, we downsample
them by a factor r to get a thumbnail version of size M×M
where M = N/r. In the LLM decoder layer, the proxy vi-
sion tokens and text tokens serve as queries, while the values
and keys consist of the proxy vision tokens, original full
vision tokens, and text tokens. After the attention operation,
only the proxy tokens and text tokens are processed by the
FFNs. In this way, proxy vision tokens replace full vision
tokens in the compute-intensive operations, significantly
reducing computational cost. After the proxy tokens obtain
useful information through these operations, each proxy
token guides the spatially corresponding r × r full vision
tokens for an update through a lightweight guided-update
module. Through this design, the important information
in the heavy computation of the decoder layer could be ef-
fectively obtained and transferred to the full vision tokens
with proxy vision tokens as an intermediary. As a result,
the negative effect of skipping all extensive operations is
effectively mitigated without sacrificing much efficiency.

In our implementation of the guided-update module, we first
down-project the full and proxy vision tokens with linear
layers and then directly concatenate the full vision tokens
with their spatially corresponding proxy vision tokens and
process them with a lightweight two-layer MLP to update
the full vision tokens. Note that this guided-update module

could also include some local attention layer or convolution
layer to further promote the fine-grained inter-token inter-
actions in each local r × r window, and we leave this for
future work. We validate the ProxyV design in the same
setting as Section 2 and the results are shown in Table 3.
With ProxyV, the negative effect of skipping attention and
FFNs on full vision tokens is effectively mitigated, and now
the performance gain brought by decoupled vision-specific
modules becomes more pronounced, leading to better over-
all performance at the layer 12 and 16 cases.

Table 3. Results of applying ProxyV from different layers. ProxyV
effectively mitigates the performance drop caused by skipping
operations on vision tokens and brings additional performance
gain with vision-specific modules.

Scorefine Rel FLOPs Time

L0 - ProxyV 88.9% ↓ 73% ↓ 68%
L12 - ProxyV 101.0% ↓ 46% ↓ 41%
L16 - ProxyV 102.4% ↓ 36% ↓ 31%

We further validate the effectiveness of our ProxyV algo-
rithms with different LLM backbones in Table 4. The results
indicate that applying ProxyV from the middle layers can
achieve no performance loss or a small performance gain
(100% - 101%) with moderate efficiency improvement. Ap-
plying it from the middle and rear part of the LLM achieves
notable performance improvement (101% - 102%) with a
smaller efficiency gain. We provide the evaluation results on
additional general LMM benchmarks in the Supplementary.

We also conduct a preliminary study to reveal the possible
internal mechanisms underlying the performance improve-
ment. Specifically, we measured the MIR (Modality Inte-
gration Rate) score (Huang et al., 2024), which quantifies
the degree of alignment between visual and textual tokens
within LMMs (lower scores indicate better alignment). We
randomly sample 100 instances from the dense captioning
dataset DetailCaps-4870 (Dong et al., 2024) and measure
the MIR scores of the baseline and the variant where the
vision-specific MLPs replace the original vision operations
from layer 0. ProxyV with vision-specific MLPs reduces
the MIR scores from 3.62 to 3.10. This indicates that the
vision-specific parameters achieve better alignment between
text and vision tokens, leading to performance improvement.
We leave further study about this direction as future work.

3.2. Comparison with Token Reduction Methods

Here we compare ProxyV with two state-of-the-art token
reduction methods: VisionZip (Yang et al., 2024b) and Pyra-
midDrop (Xing et al., 2024) with the Vicuna1.5-7B LLM
setting. VisionZip performs token reduction before the LLM
by selecting a group of dominant vision tokens and merging
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Figure 3. Left: the vanilla LMM structure where full vision tokens cause significant computation. Right: the overall pipeline of the
proposed ProxyV algorithm. The full vision tokens are first downsampled to obtain a much smaller version that works as proxy vision
tokens. The proxy vision tokens participate in the original operations in the decoder layer including the self-attention and the FFNs to
obtain useful information at a much lower cost. After this, each original vision token is guided by its spatially corresponding proxy vision
token for an update through a lightweight MLP.

the remaining as contextual tokens. PyramidDrop progres-
sively reduces the number of vision tokens inside the LLM,
utilizing the attention scores. We configure these two meth-
ods so that the efficiency improvement is similar to ours, and
finetune the LMMs for fair comparison. We acknowledge
that token-level redundancy does exist in general scenarios,
but our goal is to ensure no vision information loss for all
cases even when the images contain very dense visual in-
formation or require accurate visual grounding. Therefore,
we also evaluate the models on a grounding benchmark Ref-
COCO (Kazemzadeh et al., 2014) and additionally include
the document parsing task to simulate this scenario. For the
document parsing task, we continue to train the models on
the 1M document parsing data from DocStruct4M (Hu et al.,
2024) dataset and evaluate them on the CCpdf (Turski et al.,
2023) dateset in the validation split. We measure the BLEU
(Papineni et al., 2002) and edit distance for this task.

As shown in Table 5, VisionZip and PyramidDrop achieve
nearly no performance drop on selected benchmarks but
have notable degradation and grounding benchmark and
much worse performance on the document parsing task,
highlighting the issue of visual information loss inherent
to token reduction methods. We also provide qualitative
examples in Figure 5 to show the failure of token reduction
methods where dense or structured visual information needs
to be extracted or the image contains dense information and
visual details, while ProxyV retains all visual information.

3.3. A ProxyV Variant without Spatial Constraints

Though we directly compare ProxyV with token reduction
methods in the previous section, our goal is to diminish
computation-level redundancy, which is theoretically or-
thogonal to the objective of token reduction methods that
focus on removing token-level redundancy. This raises the
question: Is it possible to combine ProxyV with these to-
ken reduction methods? The primary challenge in directly
combining the two approaches lies in the fact that ProxyV
relies on the 2D spatial structure of vision tokens for gen-
erating proxy tokens and establishing correspondence in
the guided-update module. However, after applying token
reduction methods, the spatial structure of the vision tokens
is no longer preserved, making integration nontrivial.

To resolve this problem, we propose a non-spatial variant
of the original ProxyV algorithm to remove the require-
ment of a spatial prior so that this alternative can be flexibly
combined with token reduction methods or non-spatial vi-
sion features. Specifically, we initialize a set of learnable
embeddings Q ∈ Rm×d where m is the number of de-
sired proxy tokens and d is a hidden dimension typically
set smaller than the hidden dimension of the LLM. A linear
layer projects the full vision tokens to K ∈ Rn×d where
n is the total number of full vision tokens. And we also
define values V ∈ Rn×dhidden to be directly equal to the
full vision tokens, where hhidden is the dimension of the
full vision tokens.

A vanilla attention operation is then applied on Q,K, and
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Table 4. The results of applying ProxyV on different LLMs. Applying ProxvV from the middle layers ensures no performance drop, and
applying it from the middle to rear layers achieves notable performance improvement.

Scorefine Scorefine Relative FLOPs reduced Time reduced

Vicuna-7B
Baseline 54.64 100.0% – –

ProxyV - Layer 12 55.16 101.0% 46% 41%
ProxyV - Layer 16 55.94 102.4% 36% 31%

Vicuna-13B
Baseline 58.58 100.0% – –

ProxyV - Layer 16 58.95 100.6% 43% 40%
ProxyV - Layer 20 59.22 101.1% 36% 33%

Llama3-8B
Baseline 56.60 100.0% – –

ProxyV - Layer 16 56.87 100.5% 42% 34%
ProxyV - Layer 20 57.49 101.6% 32% 25%

Qwen2-7B
Baseline 60.15 100.0% – –

ProxyV - Layer 16 60.55 100.7% 37% 29%
ProxyV - Layer 20 61.44 102.1% 25% 14%

Phi3-3B
Baseline 49.89 100.0% – –

ProxyV - Layer 16 50.28 100.8% 35% 34%
ProxyV - Layer 20 50.72 101.7% 27% 25%

InternLM2.5-7B
Baseline 58.33 100.0% – –

ProxyV - Layer 16 58.68 100.6% 39% 33%
ProxyV - Layer 20 59.08 101.3% 30% 24%

V to get the attention logits (before softmax) A ∈ Rm×n.
As a result, the proxy tokens are the direct weighted com-
bination of the full vision tokens as softmax(A, dim =
−1)V . During the guided update process for the full vi-
sion tokens, the previous ProxyV algorithm with spatial
constraints mapped each full vision token to a proxy token
based on spatial correspondence. In this non-spatial variant,
we re-use the attention logits matrix A, transpose it, apply
the softmax along the proxy token dimension, and multiply
it with the proxy tokens to get the guidance for all full vision
tokens as the weighted combination of proxy tokens. The
process is illustrated in Figure 4.

First, we validate the feasibility of this non-spatial variant
version of ProxyV. Subsequently, we combine it with Vi-
sionZip to explore the possibility of combining our approach
with token reduction methods. As shown in Table 6, the
non-spatial ProxyV variant attains a similar performance as
the original one, and combining it with VisioZip achieves
the desired performance with further increased efficiency.

4. Experiment Details
For all experiments, we use the widely adopted 2-stage
training pipeline. For stage 1, we pretrain the multi-modal
projector and the newly added vision-specific modules using
1.2M captioning data from ShareGPT4V (Chen et al., 2025a)
for 1 epoch. For the finetuning stage, we train the model for
1 epoch using the 779K instruction tuning data in LLava-
Next (Liu et al., 2024a) and unfreeze the LLM in this stage.

For image encoding, we adopt the AnyRes strategy (Liu
et al., 2024a) with a maximal 5 grids per image, including
the thumbnail one. Each grid with resolution 336×336 is
encoded by CLIP-ViT-L-336px (Radford et al., 2021)
to a 24×24 image feature. The image feature is further
projected by a 2-layer MLP projector and flattened in raster
order within each grid, and concatenated grid by grid, sim-
ilar to the UniRes strategy (Zhang et al., 2024a). We also
append one separator token after each grid.

For our ProxyV implementation, we choose the downsam-
pling factor r = 4 so that 576 full vision tokens are com-
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Table 5. Comparison between ProxyV and token reduction methods. Token reduction methods significantly underperform on the document
parsing task, indicating the inherent information loss problem.

Methods Scorefine RefCOCO DocParsing-BLEU ↑ DocParsing-ED ↓ FLOPs Time

Baseline 54.64 82.96 0.7991 0.1551 – –
ProxyV - Layer 12 55.16 84.41 0.7923 0.1566 ↓ 46% ↓ 41%
VisionZip 54.58 79.11 0.7218 0.1734 ↓ 32% ↓ 40%
PyramidDrop 54.63 80.75 0.7261 0.1702 ↓ 42% ↓ 46%

Table 6. The results of the non-spatial ProxyV variant (the ProxyV-
ns entry) and the combination of non-spatial ProxyV and VisionZip
(the Combination entry). The non-spatial version achieves simi-
lar performance and combining it with token reduction methods
further boosts the efficiency while maintaining the performance.

Scorefine FLOPs Time

Baseline 54.64 – –
VisionZip 54.58 ↓ 32% ↓ 40%
ProxyV - Layer12 55.16 ↓ 46% ↓ 41%
ProxyV-ns - Layer12 54.85 ↓ 44% ↓ 44%
Combination 54.83 ↓ 62% ↓ 65%

pressed to 36 proxy vision tokens, and each proxy token
corresponds to 16 full vision tokens in the guided-update
process. For the non-spatial ProxyV version, we set the num-
ber of learnable queries to be the same as the spatial version.
The hidden dimension in the guided-updated MLP module
is set to be 1

4 of the hidden dimension in the LLM. The
number of parameters of the newly added guided-update
module for each layer is 14.68M for the Vicuna1.5-7B case.
For the VisionZip baseline, we use 360 dominant tokens
and 40 contextual tokens. For the PyramidDrop baseline,
the vision token is reduced by 50% after layers 12, 20, and
26.

The reported FLOPs and time for all experiments are mea-
sured during the prefilling stage, using a fixed configuration
of five image grids (2880 tokens) and 50 text tokens, with
eager attention implementation on a single H100 GPU. The
full evaluation results are provided in Appendix B.

5. Related Works
5.1. Large Multimodal Models

As large language models achieved unprecedented success,
large multimodal models (Liu et al., 2024b; Dai et al., 2023;
Liu et al., 2024a; Lin et al., 2023b; Tong et al., 2024; Li
et al., 2024b; Wang et al., 2024; Chen et al., 2024b) have
emerged, leveraging LLMs as a foundation while incor-
porating multimodal capabilities by injecting multimodal
information extracted from pretrained multimodal encoders

Figure 4. The illustration of the non-spatial ProxyV. Upper part:
proxy vision tokens are generated as a weighted combination of
full vision tokens through a simple attention operation. Lower part:
The previous attention score is reused to splat the proxy vision
tokens into guidance for the full vision tokens update. The softmax
operations are skipped in the figure.

into the LLMs.

Current LMMs can be broadly categorized into two groups:
decoder-only LMMs and cross-attention-based LMMs.
Decoder-only LMMs (Liu et al., 2024b; Wang et al., 2024;
Chen et al., 2024b) directly concatenate the projected visual
tokens with textual tokens before LLM and process them
equally as text tokens in the LLM through self-attention de-
coder layers. This approach has validated its simplicity and
effectiveness, but incurs high computational costs with long
vision sequences. Cross-attention based LMMs (Alayrac
et al., 2022; Laurencon et al., 2023; Dubey et al., 2024; Dai
et al., 2024), on the contrary, treat the visual information
as context and introduce additional cross-attention layers
to let text tokens extract visual information. These meth-
ods avoid the computationally intensive vision-to-vision
attention. But they also bring additional training complex-
ity and a non-negligible amount of parameters compared
with decoder-only ones and usually require a significantly
larger amount of data for pertaining cross-attention mod-
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Figure 5. Cases where token reduction methods fail. Left: Token reduction methods fail to extract the complete dense information
accurately. Right: Token reduction methods fail to retain critical visual information when the image contains diverse and dense visual
details. In these cases, ProxyV retains all the visual information and successfully extracts the important visual details.

ules. Besides, cross-attention based methods still slightly
underperform the decoder-only ones, especially on tasks
requiring fine-grained visual information.

Early LMMs typically processed low-resolution images
(e.g., 336× 336), which significantly constrained their per-
formance due to the limited input resolution. Recent ad-
vancements in LMMs have adopted multi-grid image en-
coding schemes (Liu et al., 2024a) or directly processed
native high-resolution images (Wang et al., 2024), leading
to substantial performance improvements and unlocking
their potential for a wide range of applications. However,
this capability comes at a cost, as the computational burden
increases sharply due to the quadratic scaling of attention
computation with the number of vision tokens. This chal-
lenge becomes even more pronounced with video LMMs
(Lin et al., 2023a; Maaz et al., 2024; Zhang et al., 2024a;

Xue et al., 2024) and multi-image LMMs (Li et al., 2024c;
Jiang et al., 2024a), which introduce significantly more vi-
sion tokens, further exacerbating the computational load.

5.2. Token Reduction in LMMs

As LMMs face significant computational costs, especially
with long vision sequences, extensive research has focused
on reducing these costs through vision token reduction.
The stages at which vision token reduction occurs can be
grouped into three categories: (1) before the LLM, (2) dur-
ing the prefilling stage, and (3) during the decoding stage.

Token Reduction Before the LLM: Methods in this cat-
egory directly reduce the number of vision tokens either
within the vision encoder or from its outputs, utilizing the
attention scores in the vision encoders (Shang et al., 2024;

8
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Jiang et al., 2024b; Yang et al., 2024b). LLaVA-Prumerge
(Shang et al., 2024) utilizes the attention scores between
CLS token and other vision tokens from the vision encoder
to choose crucial tokens to retain which are then further
grouped and merged. FoPru (Jiang et al., 2024b) adopts
two strategies to calculate the significance of vision tokens
in global and local views respectively. VisionZip (Yang
et al., 2024b) also uses the vision attention scores to select
informative tokens but they merge the remaining tokens to
reduce information loss.

Token Reduction During the Prefilling Stage: Methods
that conduct token reduction during the prefilling stage
within the LLM often use the attention scores in the LLM
self-attention for token reduction (Chen et al., 2025b; He
et al., 2024; Zhang et al., 2024b; Xing et al., 2024; Endo
et al., 2024; Zhong et al., 2024). Some methods (He et al.,
2024; Zhang et al., 2024b; Xing et al., 2024; Zhong et al.,
2024) also adopt adaptive strategies to progressively prune
or merge the vision tokens along the layers.

FastV (Chen et al., 2025b) uses the attention patterns in
early layers to prune vision tokens in the subsequent layers.
ZipVL(He et al., 2024) designs a dynamic ratio allocation
strategy to adaptively determine important vision tokens
layer-specific attention statistics. SparseVLM (Zhang et al.,
2024b) selects visual-relevant text tokens to rate the signifi-
cance of vision tokens using the LLM self-attention scores
and progressively prunes the vision tokens with adaptive
scarification ratios across layers. PyramidDrop (Xing et al.,
2024) uses the text-to-vision attention scores to progres-
sively prune vision tokens in multiple stages across lay-
ers. G-search and P-Sigmoid are proposed in (Zhao et al.,
2024) to search for the optimal reduction ratio per layer.
FEATHER (Endo et al., 2024) identifies the positional bias
problem in previous methods and proposes to incorporate
uniform sampling to ensure uniform coverage. AIM (Zhong
et al., 2024) first merges the vision tokens before LLM
based on embedding similarity and then adopts the page
rank algorithm to progressively prune vision tokens in the
LLM.

KV-Cache Compression in Decoding: KV-Cache com-
pression during the decoding stage is widely studied in the
LLM field (Xiao et al., 2023; Ge et al., 2023; Zhang et al.,
2023). For LMMs, LOOK-M (Wan et al., 2024) designs
a text-prior KV pairs eviction strategy for multimodal KV
cache pruning and provides different strategies to merge
KV pairs. ElasticCache (Liu et al., 2024d) uses important
key/value vectors as anchors and merges the less impor-
tant ones into them. CSP (Pei et al., 2024) achieves more
precise KV cache pruning by independently managing the
inter-modality and intra-modality attention.

Token reduction methods effectively remove token-level re-
dundancy when it exists in the image in certain scenarios.

However, the reduction also inevitably introduces informa-
tion loss when dense information is contained in the image
and little redundancy exists. And the instruction/text guided
pruning method does not consider the multi-turn conver-
sation cases where later questions might require different
vision information. Also, for complex or indirect questions,
it is hard to accurately select all the critical vision tokens.
On the contrary, our method takes another perspective to
reduce the computation-level redundancy to avoid informa-
tion loss and can also be flexibly combined with these token
reduction methods.

6. Conclusion
In this paper, we reveal the computation-level redundancy
with vision tokens in LMMs. We further explore gradu-
ally skipping the heavy attention and FFNs operations and
find that using lightweight vision-specific MLPs as a re-
placement is able to compensate for the performance drop.
We then propose a better solution ProxyV which utilizes
proxy vision tokens to reduce the negative influence brought
by skipping heavy operations on full vision tokens. Ex-
periments on different LLMs validate the effectiveness of
ProxyV. We also design a non-spatial variant of ProxyV
which can be seamlessly combined with token reduction
methods for better efficiency.
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A. Evaluation on More Benchmarks
Besides the fine-grained benchmarks, here we evaluate models on a wide range of general multimodal benchmarks including
MMBench (Liu et al., 2025), SEED-Bench (Li et al., 2023a), RefCOCO (Kazemzadeh et al., 2014), MMStar (Chen et al.,
2024a), GQA (Hudson & Manning, 2019), MME (Fu et al., 2023), MMMU (Yue et al., 2024), POPE (Li et al., 2023b),
ScienceQA (Lu et al., 2022), AI2D (Kembhavi et al., 2016), and RealWorldQA (xAI, 2024). We use the en-dev split of
MMBench, the image-split of SEED-Bench, the test-A and test-B splits of RefCOCO, the testdev-balanced split of GQA,
the perception split of MME, the validation split of MMMU, and the image split of ScienceQA.

We observe that on such general benchmarks where less fine-grained visual information is needed, the redundancy of visual
information appears in earlier layers and the performance loss from skipping operations is smaller. Consequently, applying
ProxyV from middle-to-later layers achieves similar or better overall performance and better efficiency than later layers,
as it introduces vision-specific modules in more layers, leading to a larger gain. We provide results of applying ProxyV
on different LLMs together with the two token reduction baselines in Table 7. We can observe that ProxyV consistently
achieves no performance loss or even improvements on general multimodal benchmarks.

Table 7. Evaluation on a comprehensive set of general multimodal benchmarks.

MMBench SEED-Img RefCOCO MMStar GQA MME-P MMMU POPE SQA AI2D RealWorldQA

Vicuna-7B
Baseline 65.03 68.60 75.39 37.70 63.36 1428.52 36.56 86.91 68.52 66.71 56.73
ProxyV-L12 67.61 70.02 76.76 38.35 64.02 1478.61 35.44 86.55 68.07 69.11 59.08
VisionZip 65.37 68.74 71.63 37.38 63.93 1437.50 34.33 87.44 69.51 68.30 57.52
PyramidDrop 65.37 68.45 72.53 36.66 63.84 1451.33 35.56 87.10 67.63 67.94 58.04

Vicuna-13B
Baseline 67.78 70.45 81.68 41.6 65.19 1617.57 34.56 86.58 71.05 69.88 58.95
ProxyV-L16 69.15 71.71 83.30 42.40 65.59 1602.15 36.00 87.16 73.53 71.50 58.82

Llama3-8B
Baseline 70.01 72.11 71.8 44.04 64.63 1470.08 37.56 87.81 77.64 72.54 59.61
ProxyV-L16 70.53 72.44 73.32 44.61 64.28 1480.87 36.67 87.17 74.22 72.93 59.74

Qwen2-7B
Baseline 73.71 72.62 84.28 48.73 64.77 1579.88 42.67 87.19 77.59 74.13 62.61
ProxyV-L16 75.51 73.58 90.37 51.38 64.28 1543.9 44.67 87.5 77.24 74.94 63.53

Phi3-3B
Baseline 64.69 68.16 52.63 38.36 61.27 1477.93 38.56 85.57 70.10 67.68 56.73
ProxyV-L16 67.95 68.77 56.22 40.60 61.64 1437.92 39.78 85.76 70.85 68.17 57.52

InternLM2.5-7B
Baseline 74.14 74.55 66.36 48.07 64.52 1455.53 42.56 87.78 77.24 75.61 63.52
ProxyV-L16 76.20 75.07 77.4 49.52 65.39 1465.65 43.00 87.13 77.98 74.22 65.35

B. Fine-grained Benchmark Details and Full Results
For all evaluations, we use the validation splits of DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), and
TextVQA (Singh et al., 2019). We use the English dev split for MMBench (Liu et al., 2025) and the perception split for
MME (Fu et al., 2023) (the score is normalized to 0-100 when calculating Scorecoarse). For the grounding benchmark
RefCOCO, we calculate the average of the testA and testB splits. All the evaluations are conducted using the lmms-eval
framework (Li et al., 2024a).

The full benchmark results of Tables 1 to 3 are shown in Table 8 and the full results of Table 4 are provided in Table 10.
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Table 8. Full results of the explorative experiments and ProxyV on the fine-grained benchmarks.

DocVQA ChartQA InfoVQA TextVQA OCRBench Scorefine

Baseline 68.03 59.64 33.60 62.12 49.80 54.64

L0 - TF 35.82 31.92 25.74 45.85 31.90 34.25
L0 - FT 57.50 48.48 31.38 58.29 42.70 47.67
L0 - ATN+FFN 40.19 36.60 25.60 45.88 29.60 35.57
L0 - ProxyV 57.99 51.24 30.88 59.07 43.70 48.58

L12 - TF 63.20 55.40 31.59 60.53 47.40 51.62
L12 - FT 66.55 58.48 34.27 61.36 50.70 54.27
L12 - ATN+FFN 67.45 59.48 34.77 60.72 49.00 54.28
L12 - ProxyV 68.18 60.16 34.77 61.69 51.00 55.16

L16 - TF 68.46 59.20 33.55 61.80 50.70 54.74
L16 - FT 68.09 59.40 33.35 62.07 50.00 54.58
L16 - ATN+FFN 68.95 59.32 33.49 61.29 51.20 54.85
L16 - ProxyV 69.90 61.48 34.24 62.28 51.80 55.94

Table 9. Full results of the token reduction methods, the non-spatial ProxyV, and the combination of Proxvy-ns and VisionZip.

DocVQA ChartQA InfoVQA TextVQA OCRBench Scorefine

Baseline 68.03 59.64 33.60 62.12 49.80 54.64
ProxyV - Layer12 68.18 60.16 34.77 61.69 51.00 55.16
VisionZip 68.84 58.04 33.35 62.26 50.40 54.58
PyramidDrop 68.50 58.88 34.43 61.84 49.50 54.63
ProxyV-ns - Layer12 68.16 60.28 34.27 61.56 50.00 54.85
ProxyV-ns + VisionZip 68.31 58.76 34.17 62.29 50.60 54.83
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Table 10. Full results of ProxyV with different LLMs on the fine-grained benchmarks.

DocVQA ChartQA InfoVQA TextVQA OCRBench Scorefine

Vicuna-7B
Baseline 68.03 59.64 33.60 62.12 49.80 54.64
ProxyV - Layer 12 68.18 60.16 34.77 61.69 51.00 55.16
ProxyV - Layer 16 69.90 61.48 34.24 62.28 51.80 55.94

Vicuna-13B
Baseline 72.11 63.64 37.52 65.35 54.30 58.58
ProxyV - Layer 16 73.69 65.04 38.09 64.72 53.20 58.95
ProxyV - Layer 20 73.83 65.32 37.52 65.65 53.80 59.22

Llama3-8B
Baseline 71.87 63.64 32.20 63.08 52.20 56.60
ProxyV - Layer 16 73.08 63.00 33.81 62.86 51.60 56.87
ProxyV - Layer 20 72.89 63.32 35.09 62.84 53.30 57.49

Qwen2-7B
Baseline 76.59 65.76 42.31 63.69 52.40 60.15
ProxyV - Layer 16 76.54 65.80 42.31 63.99 54.10 60.55
ProxyV - Layer 20 78.29 68.12 42.30 63.60 54.90 61.44

Phi3-3B
Baseline 62.98 53.00 33.88 56.89 42.70 49.89
ProxyV - Layer 16 62.55 53.72 34.67 56.98 43.50 50.28
ProxyV - Layer 20 64.78 54.04 33.60 56.48 44.70 50.72

InternLM2.5-7B
Baseline 72.46 64.80 38.38 63.40 52.60 58.33
ProxyV - Layer 16 74.00 65.20 39.41 62.70 52.10 58.68
ProxyV - Layer 20 74.24 66.04 38.66 63.98 52.50 59.08
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