
Parallel Scaling Law for Language Models

Mouxiang Chen1,2∗, Binyuan Hui2,†, Zeyu Cui2, Jiaxi Yang2,
Dayiheng Liu2, Jianling Sun1, Junyang Lin2, Zhongxin Liu1,†

1Zhejiang University, 2Qwen Team, Alibaba Group
{chenmx,liu_zx}@zju.edu.cn, binyuan.hby@alibaba-inc.com

Abstract

It is commonly believed that scaling language models should commit a significant
space or time cost, by increasing the parameters (parameter scaling) or output
tokens (inference-time scaling). We introduce another and more inference-efficient
scaling paradigm: increasing the model’s parallel computation during both training
and inference time. We apply P diverse and learnable transformations to the input,
execute forward passes of the model in parallel, and dynamically aggregate the
P outputs. This method, namely parallel scaling (PARSCALE), scales parallel
computation by reusing existing parameters and can be applied to any model
structure, optimization procedure, data, or task. We theoretically propose a new
scaling law and validate it through large-scale pre-training, which shows that a
model with P parallel streams is similar to scaling the parameters by O(logP)
while showing superior inference efficiency. For example, PARSCALE can use up
to 22× less memory increase and 6× less latency increase compared to parameter
scaling that achieves the same performance improvement. It can also recycle
an off-the-shelf pre-trained model into a parallelly scaled one by post-training
on a small amount of tokens, further reducing the training budget. The new
scaling law we discovered potentially facilitates the deployment of more powerful
models in low-resource scenarios, and provides an alternative perspective for
the role of computation in machine learning. Our code and 67 trained model
checkpoints are publicly available at https://github.com/QwenLM/ParScale
and https://huggingface.co/ParScale.

1 Introduction

Recent years have witnessed the rapid scaling of large language models (LLMs) [10, 64, 55, 72] to
narrow the gap towards Artificial General Intelligence (AGI). Mainstream efforts focus on parameter
scaling [40], a practice that requires substantial space overhead. For example, DeepSeek-V3 [51]
scales the model size up to 672B parameters, which imposes prohibitive memory requirements for
edge deployment. More recently, researchers have explored inference-time scaling [65] to enhance the
reasoning capability by scaling the number of generated reasoning tokens. However, inference-time
scaling is limited to certain scenarios and necessitates specialized training data [20, 68], and typically
imposes significant time costs. For example, Chen et al. [13] find that the most powerful models can
generate up to 900 reasoning tokens for trivial problems like “2+3=?”. This motivates the question:
Is there a universal and efficient scaling approach that avoids excessive space and time costs?

We draw inspiration from classifier-free guidance (CFG) [34], a widely used trick during the inference
phase of diffusion models [35], with similar concepts also developed in the NLP community [75, 50].
Unlike traditional methods that use a single forward pass, CFG utilizes two forward passes during
inference: it first performs a normal forward pass to obtain the first stream of output, then perturbs

∗Work is partially done during internship in Qwen Team, Alibaba Group. †Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/QwenLM/ParScale
https://huggingface.co/ParScale

(2) Parallel Scaling Law

Scaling Law:

-45% parameters

(3) Scaling with Inference Space and Time Cost

Number of Parallel Streams

Input

Learnable
Transformation

Next
Token

Learnable
Aggregation...

Model

Parallel
Forward

Input

(1) Illustration of Three Scaling Approaches

7x less
memory
increase

Parameter Scaling Inference-Time Scaling

Input

Model

🤔 🤔

High Time Cost!

...

Reasoning
Tokens

Input Next
Token

Model
...

High Space Cost!

Parallel Scaling

Next
Token

1.7x
less
latency
increase

Figure 1: (1) Illustrations of our proposed parallel scaling (PARSCALE). (2) Parallel scaling laws
for pre-training models on 42B tokens from Stack-V2 (Python subset). (3) Loss scaling curve
with inference cost. Results are averaged from batch size ∈ {1, 2, 4, 8} and input + output tokens
∈ {128, 256, 512, 1024}.

the input (e.g., by discarding conditions in the input) to get a second stream of output. The two
streams are aggregated based on predetermined contrastive rules, yielding superior performance over
single-pass outputs. Despite its widespread use, the theoretical guarantee of CFG remains an open
question. In this paper, we hypothesize that the effectiveness of CFG lies in its double computation.
We further propose the following hypothesis:

Hypothesis 1. Scaling parallel computation (while maintaining the nearly constant parameters)
enhances the model’s capability, with similar effects as scaling parameters.

We propose a proof-of-concept scaling approach called parallel scaling (PARSCALE) to validate this
hypothesis on language models. The core idea is to increase the number of parallel streams while
making the input transformation and output aggregation learnable. We propose appending P different
learnable prefixes to the input and feeding them in parallel into the model. These P outputs are then
aggregated into a single output using a dynamic weighted sum, as shown in Figure 1(1). This method
efficiently scales parallel computation during both training and inference time by recycling existing
parameters, which applies to various training algorithms, data, and tasks.

Our preliminary theoretical analysis suggests that the loss of PARSCALE may follow a power law
similar to the Chinchilla scaling law [36]. We then carry out large-scale pre-training experiments
on the Stack-V2 [58] and Pile [26] corpus, by ranging P from 1 to 8 and model parameters from
500M to 4.4B. We use the results to fit a new parallel scaling law that generalizes the Chinchilla
scaling law, as depicted in Figure 1(2). It shows that parallelizing into P streams equates to scaling
the model parameters by O(logP). Results on comprehensive tasks corroborate this conclusion.
Unlike parameter scaling, PARSCALE introduces negligible parameters and increases only a little
space overhead. It also leverages GPU-friendly parallel computation, shifting the memory bottleneck

2

Table 1: Comparisons of mainstream LLM scaling strategies. We subdivide parameter scaling into
traditional Dense Scaling and Mixture-of-Expert (MoE) Scaling [23] for comparison. Inference-
Time Scaling: Enhancing the reasoning ability through large-scale reinforcement learning (RL) to
scale reasoning tokens during inference.

Method Inference Time Inference Space Training Cost Specialized Strategy

Dense Scaling Moderate High Pre-training only No
MoE Scaling Low High Pre-training only Load balancing
Inference-Time Scaling High Moderate Post-training RL / reward data
Parallel Scaling Moderate Moderate Pre- or Post-training No

in LLM decoding to a computational bottleneck and, therefore, does not notably increase latency.
For example, for a 1.6B model, when scaling to P = 8 using PARSCALE, it uses 22× less memory
increase and 6× less latency increase compared to parameter scaling that achieves the same model
capacity (batch size = 1, detailed in Section 3.3). Figure 1(3) illustrates that PARSCALE offers
superior inference efficiency.

Furthermore, we show that the high training cost of PARSCALE can be reduced by a two-stage
approach: the first stage employs traditional training with most of the training data, and PARSCALE is
applied only in the second stage with a small number of tokens. Based on this, we train 1.8B models
with various P and scale the training data to 1T tokens. The results of 21 downstream benchmarks
indicate the efficacy of this strategy. For example, when scaling to P = 8, it yields a 34% relative
improvement for GSM8K and 23% relative improvement for MMLU using exactly the same training
data. We also implement PARSCALE on an off-the-shelf model, Qwen-2.5 [70], and demonstrate
that PARSCALE is effective in both full and parameter-efficient fine-tuning settings. This also shows
the viability of dynamic parallel scaling, which allows flexible adjustment of P during deployment
while freezing the backbone weights, to fit different application scenerios.

Table 1 compares PARSCALE with other mainstream scaling strategies. Beyond introducing an
efficient scaling approach for language models, our research also tries to address a more fundamental
question in machine learning: Is a model’s capacity determined by the parameters or by the
computation, and what is their individual contribution? Traditional machine learning models
typically scale both parameters and computation simultaneously, making it difficult to determine
their contribution ratio. The PARSCALE and the fitted parallel scaling law may offer a novel and
quantitative perspective on this problem.

We posit that large computing can foster the emergence of large intelligence. We hope our work can
inspire more ways to scaling computing towards AGI and provide insights for other areas of machine
learning. Our key findings in this paper can be summarized as follows:

• Scaling P times of parallel computation is similar to scaling parameters by a ratio of O(logP),
and larger models reap greater benefits from PARSCALE.

• Reasoning-intensive tasks (e.g., coding or math) benefit more from PARSCALE, which suggests
that scaling computation can effectively push the boundary of reasoning.

• PARSCALE offers superior inference efficiency compared to parameter scaling due to the effective
use of memory, particularly suitable for low-resource edge deployment.

• The training cost of PARSCALE can be significantly alleviated through a two-stage training strategy.

• PARSCALE remains effective with frozen main parameters for different P . This illustrates the
potential of dynamic parallel scaling: switching P to adapt model capabilities during inference.

2 Background and Methodology

Classifier-Free Guidance (CFG) CFG [34] has become a de facto inference-time trick in diffusion
models [35], with similar concepts also developed in NLP [75, 50]. At a high level, these lines of
work can be summarized as follows: given an input x ∈ Rdi and a trained model fθ : Rdi → Rdo ,
where θ is the parameter and di, do are dimensions, we transform x into a “bad” version x′ based
on some heuristic rules (e.g., removing conditions), obtaining two parallel outputs fθ(x) and fθ(x

′).

3

The final output gθ(x) is aggregated based on the following rule:
gθ(x) = fθ(x) + w (fθ(x)− fθ(x

′)) . (1)

Here, w > 0 is a pre-set hyperparameter. Intuitively, Equation (1) can be seen as starting from
a “good” prediction and moving w steps in the direction away from a “bad” prediction. Existing
research shows that gθ(x) can perform better than the vanilla fθ(x) in practice [73].

Motivation In Equation (1), x′ is simply a degraded version of x, suggesting that gθ(x) does not
gain more useful information than fθ(x). This raises the question: why is fθ(x) unable to learn the
capability of gθ(x) during training, despite both having the same parameters? We hypothesize
that the fundamental reason lies in gθ(x) having twice the computation as fθ(x). This inspires us to
further expand Equation (1) into the following form:

gθ(x) = w1fθ(x1) + w2fθ(x2) + · · ·+ wP fθ(xP), (2)
where P denotes the number of parallel streams. x1, · · · , xP are P distinct transformations of x, and
w1, · · · , wP are aggregation weights. We term Equation (2) as a parallel scaling (PARSCALE) of
the model fθ with P streams. This scaling strategy does not require changing the structure of fθ
and training data. In this paper, we focus on Transformer language models [86, 10], and regard the
stacked Transformer layers as fθ(·).

Implementation Details and Pivot Experiments We apply Equation (2) in both training and
inference time, and perform a series of pivot experiments to determine the best input transformation
and output aggregation strategies (refer to Appendix A). The findings revealed that variations in
these strategies minimally affect model performance; the significant factor is the number of
computations (i.e., P). Finally, for input transformation, we employ prefix tuning [49] as the input
transformation, which is equivalent to using different KV-caches to distinguish different streams.
For output aggregation, we employ a dynamic weighted average approach, utilizing an MLP to
convert outputs from multiple streams into aggregation weights. This increases about 0.2% additional
parameters for each stream.

3 Parallel Scaling Law

This section focuses on the in-depth comparison of scaling parallel computation with scaling param-
eters. In Section 3.1, we theoretically demonstrate that parallel scaling is equivalent to increasing
parameters by a certain amount. In Section 3.2, we validate this with a practical scaling law through
large-scale experiments. Finally, in Section 3.3, we analyze latency and memory usage during
inference to show that parallel scaling is more efficient.

3.1 Theoretical Analysis: Can PARSCALE Achieve Similar Effects as Parameter Scaling?

From another perspective, PARSCALE can be seen as an ensemble of multiple different next token
predictions, despite the ensemble components sharing most of the parameters. Existing theory in
literature finds that the ensembling performance depends on the diversity of different components
[8, 57]. In this section, we further validate this finding by theoretically proposing a new scaling law
that generalizes existing language model scaling laws, and demonstrate that PARSCALE can achieve
similar effects as parameter scaling.

We consider a special case that w1 = w2 = · · · = 1/P to simplify our analysis. This is a degraded
version of PARSCALE, therefore, we can expect that the full version of PARSCALE is at least not
worse than the theoretical results we can obtain (See Appendix A for further numeric comparison).
Let p̂i(· | x) = fθ(xi) denote the next token distribution for the input sequence x predicted by the
i-th stream. Based on Equation (2), the final prediction p̂(· | x) = gθ(x) is the average across p̂i, i.e.,
p̂(· | x) = 1/P

∑
i p̂i(· | x). Chinchilla [36] proposes that the loss L of a language model with N

parameters is a function of N after convergence. We assume the prediction of each stream adheres to
the Chinchilla scaling law, as follows:
Lemma 3.1 (Chinchilla Scaling Law [36]). The language model cross-entropy loss Li for the i-th
stream prediction (with N parameters) when convergence is:

Li =

(
A

N

)α

+ E, 1 ≤ i ≤ P, (3)

4

where {A,E, α} are some positive constants. E is the entropy of natural text.2

Based on Lemma 3.1, we theoretically derive that after aggregating P streams, the prediction follows
a new type of scaling law, as follows:
Proposition 1 (Theoretical Formula for Parallel Scaling Law). The loss L for PARSCALE (with P
streams and N parameters) is

L =

(
A

N · P 1/α · DIVERSITY

)α

+ E. (4)

We define DIVERSITY as:

DIVERSITY = [(P − 1)ρ+ 1]
−1/α

,

where ρ is the correlation coefficient between random variables ∆pi and ∆pj (i ̸= j), and ∆pi is
the relative residuals for the i-th stream prediction, i.e., ∆pi = [p̂i(y|x)−p(y|x)]/p(y|x). p(y | x) is the
real next token probability.

Proof for Proposition 1 is elaborated in Appendix B. From it, we can observe two key insights:

1. When ρ = 1, predictions across different streams are identical, at which point we can validate that
Equation (4) degenerates into Equation (3). Random initialization on a small number of parameters
introduced (i.e., prefix embeddings) is sufficient to avoid this situation in our experiments, likely due
to the impact being magnified by the extensive computation of LLMs.

2. When ρ ̸= 1, L is inversely correlated to P . Notably, when ρ = 0, residuals are independent
between streams and the training loss exhibits a power-law relationship with P (i.e., L ∝ P−1). This
aligns with findings in Lobacheva et al. [57]. When ρ is negative, the loss can further decrease and
approach zero. This somewhat demystifies the effectiveness of CFG: by widening the gap between
“good” input x and “bad” input x′, we force the model to “think” from two distinct perspectives,
which can increase the diversity between the two outputs.

Despite the difficulty in further modeling ρ, Proposition 1 suggests that scaling P times of
parallel computation is equivalent to scaling the model parameter count, by a factor of
(P

1/α·DIVERSITY). This motivates us to go further, by empirically fitting a practical parallel
scaling law to validate Hypothesis 1.

3.2 Practical Parallel Scaling Laws

Experiment Setup To fit a parallel scaling law in practice, we pre-train Transformer language
models with the Qwen-2.5 dense architecture and tokenizer [70] from scratch on the open-source
corpus. We primarily focus on the relationship between parallel scaling and parameter scaling.
Therefore, we fix the training data size at 42 billion tokens without data repeat3. We introduce the
results for more training tokens in the next section, and leave the impact of data scale on the scaling
law for future work. Most of our settings follow existing works [63], detailed in Appendix C.

Our pre-training is conducted on two widely utilized datasets: Stack-V2 (Python subset) [58] and
Pile [26]. Pile serves as a general corpus aimed at enhancing common sense and memorization skills,
while Stack-V2 focuses on code comprehension and reasoning skills. Analyzing PARSCALE across
these contexts can assess how parameters and computations contribute to different skills.

Parametric Fitting We plot the results in Figure 2, where each point represents the loss of a training
run, detailed in Appendix F. We observe that increasing P yields benefits following a logarithmic
trend. Similar gains are seen when raising P from 1 to 2, 2 to 4, and 4 to 8. Thus, we preliminarily
try the following form:

L =

(
A

N · (k logP + 1)

)α

+ E, (5)

2Chinchilla also considers the limited training steps. In this paper, we focus on the impact of computation
and parameters on model capacity and assumes that the model has been trained to convergence.

3In Appendix D, we test PARSCALE with repeated data on a small-scale corpus, OpenWebText [28], and
found that PARSCALE helps mitigate the overfitting when data is limited. We leave further exploration on
the data-constrained parallel scaling law for future work.

5

1B 2B 3B 4B
Parameters (Non-Embedding)

1.00

1.05

1.10

1.15

1.20

Lo
ss

0.5B
0.7B

1.1B
1.6B

2.8B
4.4BE = 0.6912

A = 1.131 × 107
k = 0.3935

= 0.1894
Goodness: R2 = 0.9978

Stack-V2-Python

P = 1
P = 2
P = 4
P = 8

1B 2B 3B 4B
Parameters (Non-Embedding)

1.80

1.85
1.90
1.95
2.00
2.05
2.10
2.15

Lo
ss

0.5B
0.7B

1.1B
1.6B

2.8B
4.4B

E = 1.2888
A = 1.974 × 108

k = 0.3345
= 0.1963

Goodness: R2 = 0.9987

Pile

P = 1
P = 2
P = 4
P = 8

Figure 2: Loss of LLMs scaled on parameters and number of parallel streams P trained on 42B
tokens. Each point depicts the loss from a training run. The fitted scaling law curve from Equation (5)
is displayed, with annotated fitted parameters (E,A, k, α) and the goodness of fit R2.

Scaling Parameters

Sc
al

in
g

C
om

pu
ta

tio
n

Scaling Parameters

Sc
al

in
g

C
om

pu
ta

tio
n

Figure 3: Predicted loss contours for PARSCALE. Each contour line indicates a combination of
(parameter, P) with similar performance.

where we assume that P 1/α · DIVERSITY = k logP + 1 in Equation (4) based on the finding of the
logarithmic trend. (A, k, α,E) are parameters to fit, and we use the natural logarithm (base e). We
follow the fitting procedure from [36, 63], detailed in Appendix E.

Figure 2 illustrates the parallel scaling law fitted for two training datasets. It shows a high goodness
of fit (R2 up to 0.998), validating the effectiveness of Equation (5). Notably, we can observe that
the k value for Stack-V2 (0.39) is higher than for Pile (0.33). Recall that k reflects the benefits of
increased parallel computation. Since Stack-V2 emphasizes coding and reasoning abilities while Pile
emphasizes memorization capacity, we propose an intuitive conjecture that model parameters
mainly impact the memorization skills, while computation mainly impacts the reasoning
skills. This aligns with recent findings on inference-time scaling [27]. Unlike those studies, we
further quantitatively assess the ratio of contribution to model performance between parameters and
computation through our proposed scaling laws.

Recall that Equation (5) implies scaling P equates to increasing parameters by O(N logP). It
suggests that models with more parameters benefit more from PARSCALE. Figure 3 more
intuitively displays the influence of computation and parameters on model capacity. As model
parameters increase, the loss contours flatten, showing greater benefits from increasing computation.

Downstream Performance Tables 2 and 3 illustrate the average performance on downstream tasks
(coding tasks for Stack-V2-Python and general tasks for Pile) after pre-training, with comprehensive
results in Appendix G. It shows that increasing the number of parallel streams P consistently boosts
performance, which confirms that PARSCALE is able to enhance the model capabilities and similar to
scale the parameters. Notably, PARSCALE offers more substantial improvements for coding tasks
compared to general tasks. For example, as shown in Table 2, the coding ability of the 1.6B model
for P = 8 aligns with the 4.4B model, while Table 3 indicates that such setting performs comparably
to the 2.8B model on general tasks that focusing on common-sense memorization.

3.3 Inference Cost Analysis

We further compare the inference efficiency between parallel scaling and parameter scaling at
equivalent performance levels. Although some work uses FLOPS to measure the inference cost

6

Table 2: Average performance (%) on two code
generation tasks, HumanEval(+) and MBPP(+),
after pre-training on the Stack-V2-Python dataset.

N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 26.7 28.4 31.6 33.9 36.9 39.2
P = 2 30.3 32.4 33.6 37.4 39.4 42.6
P = 4 30.1 32.5 34.1 37.6 40.7 42.6
P = 8 32.3 34.0 37.2 39.1 42.1 45.4

Table 3: Average performance (%) on six general
lm-evaluation-harness tasks after pre-training on
the Pile dataset.

N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 49.1 50.6 52.1 53.1 55.2 57.2
P = 2 49.9 51.0 52.4 54.4 57.0 58.5
P = 4 50.6 51.8 53.3 55.0 57.8 59.1
P = 8 50.7 51.8 54.2 55.7 58.1 59.6

22x less
memory
increase

(a) batch size = 1

4 5 6 7 8 9 10 11
GPU Memory (GB)

0.98
1.00
1.02
1.04
1.06
1.08
1.10

1.6B

2.8B

4.4B

(b) batch size = 8

6x less
latency

increase

(c) batch size = 1

0.5 1.0 1.5 2.0 2.5
Latency (s)

0.98
1.00
1.02
1.04
1.06
1.08
1.10

1.6B

2.8B

4.4B

(d) batch size = 8

Figure 4: Loss scales on the inference space-time cost, with three parameters (1.6B, 2.8B, and 4.4B)
and two batch sizes. Results are averaged from input / output tokens ∈ {64, 128, 256, 512}. Blue
arrows indicate parameter scaling; gray arrows represent parallel scaling.

[36, 76], we argue that this is not an ideal metric. Most Transformer operations are bottlenecked by
memory access rather than computation during the decoding stage [39]. Some work (such as flash
attention [18]) incurs more FLOPS but achieves lower latency by reducing memory access. Therefore,
we use memory and latency to measure the inference cost, based on the llm-analysis framework [48].
We analyze the inference cost across various inference batch sizes. It is worth mentioning that all
models in our experiments feature the same number of layers, differing only in parameter width and
parallel streams (detailed in Appendix C). This enables a more fair comparison of the efficiencies.

Space Cost Figures 4(a) and 4(b) compare the inference memory usage of two scaling strategies,
where we utilize loss on Stack-V2-Python as an indicator for model capacity. It shows that PARSCALE
only marginally increases memory usage, even with larger batch sizes. This is because PARSCALE
introduces negligible amounts of additional parameters (i.e., prefix tokens and aggregation weights,
about 0.2% parameters per stream) and increases KV cache size (expanded by P times with P
streams), which generally occupies far less GPU memory than model parameters. As the input
batch size increases, the KV cache size also grows; however, PARSCALE continues to demonstrate
significantly better memory efficiency compared to parameter scaling. This suggests that PARSCALE
maximizes the utility of memory through parameter reusing, while parameter scaling employs
limited computation per parameter and cannot fully exploit computation resources.

Time Cost Figures 4(c) and 4(d) compare the inference time of two scaling strategies. It shows that
PARSCALE adds minimal latency at smaller batch sizes since the memory bottlenect is converted
tothe computation bottleneck. Given that parallel computation introduced by PARSCALE is friendly to
GPUs, it will not significantly raise latency. As batch sizes increase, decoding shifts from a memory
to a computation bottleneck, resulting in higher costs for PARSCALE, but it remains more efficient
than parameter scaling up to a batch size of 8.

The above analysis indicates that PARSCALE is ideal for low-resource edge devices like smartphones,
smart cars, and robots, where queries are typically few and batch sizes are small. Given limited
memory resources in these environments, PARSCALE effectively utilizes memory and latency ad-
vantages at small batch sizes. When batch size is 1, for a 1.6B model and scaling to P = 8 using
PARSCALE, it uses 22× less memory increase and 6× less latency increase compared to parameter
scaling that achieves the same performance. We anticipate that the future LLMs will gradually
shift from centralized server deployments to edge deployments with the popularization of
artificial intelligence. This suggests the promising potential of PARSCALE in the future.

7

Table 4: Performance comparison of the 1.8B models after training on 1T tokens from scratch
using the two-stage strategy. We incorporate recent strong baselines (less than 2B parameters) as
a comparison to validate that our P = 1 baseline is well-trained. The best performance and its
comparable performance (within 0.5%) is bolded. Appendix G elaborates the evaluation details.

Tokens Data
Average General

General Math Code MMLU WinoGrande Hellaswag OBQA PiQA ARC
gemma-3-1B 2T Private 53.4 1.9 14.9 26.4 61.4 63.0 37.8 75.6 56.2
Llama-3.2-1B 15T Private 54.8 4.7 30.1 30.8 62.1 65.7 39.2 75.9 55.3
Qwen2.5-1.5B 18T Private 63.6 52.3 55.8 61.0 65.6 68.0 42.6 76.6 67.9
SmolLM-1.7B 1T Public 57.0 6.0 37.9 29.7 61.8 67.3 42.8 77.3 63.3
SmolLM2-1.7B 12T Public 63.3 24.3 41.6 50.1 68.2 73.1 42.6 78.3 67.3

Baseline (P = 1) 1T Public 56.0 25.5 45.6 28.5 61.9 65.0 40.6 75.2 64.8
PARSCALE (P = 2) 1T Public 56.2 27.1 47.4 29.0 62.4 64.7 42.0 74.9 64.3
PARSCALE (P = 4) 1T Public 57.2 30.0 48.6 30.0 63.4 65.9 42.0 75.6 66.3
PARSCALE (P = 8) 1T Public 58.6 32.8 49.9 35.1 64.9 67.0 42.6 76.1 66.0

Tokens Data

Math Code

GSM8K
GSM8K Minerva HumanEval HumanEval+ MBPP MBPP+

+CoT Math @1 @10 @1 @10 @1 @10 @1 @10
gemma-3-1B 2T Private 1.8 2.3 1.5 6.7 15.9 6.1 14.6 13.0 29.1 10.8 23.0
Llama-3.2-1B 15T Private 5.1 7.2 1.8 16.5 27.4 14.0 25.0 33.1 54.5 27.0 43.4
Qwen2.5-1.5B 18T Private 61.7 67.2 28.1 36.0 62.8 31.1 55.5 61.9 79.6 50.8 68.5
SmolLM-1.7B 1T Public 6.4 8.3 3.2 20.1 35.4 15.9 32.3 40.7 66.4 34.7 57.4
SmolLM2-1.7B 12T Public 30.4 30.8 11.8 23.8 44.5 18.9 37.8 45.2 68.5 36.0 57.9

Baseline (P = 1) 1T Public 28.7 35.9 12.0 26.8 44.5 20.7 38.4 51.6 75.9 43.9 62.7
PARSCALE (P = 2) 1T Public 32.6 35.6 13.0 26.2 50.0 20.1 42.1 52.9 77.0 45.0 65.6
PARSCALE (P = 4) 1T Public 34.7 40.8 14.5 27.4 47.6 23.8 43.9 55.3 77.0 47.1 66.7
PARSCALE (P = 8) 1T Public 38.4 43.7 16.4 28.7 50.6 24.4 44.5 56.3 79.1 48.1 67.2

4 Scaling Training Data

Due to our limited budget, our previous experiments on scaling laws focus on pre-training with 42
billion tokens. In this section, we will train a 1.8B model (with 1.6B non-embedding parameters) and
scale the training data to 1T tokens, to investigate whether PARSCALE is effective for production-level
training. We also apply PARSCALE to an off-the-shelf model, Qwen-2.5 [70] (which is pre-trained on
18T tokens), under two settings: continual pre-training and parameter-efficient fine-tuning (PEFT).

4.1 Two-Stage Pretraining

While PARSCALE is efficient for the inference stage (as we discuss in Section 3.3), it still introduces
about P times of floating-point operations and significantly increases overhead in the computation-
intensive training processes. To address this limitation, we propose a two-stage strategy: in the first
stage, we use traditional pre-training methods with 1 trillion tokens; in the second stage, we conduct
PARSCALE training with 20 billion tokens. Since the second stage accounts for only 2% of the first
stage, this strategy can greatly reduce training costs. This two-stage strategy is similar to long-context
fine-tuning [22], which also positions the more resource-intensive phase at the end. In this section,
we will examine the effectiveness of this strategy. Pre-training setup is elaborated in Appendix C.

Training Loss Figure 5(a) demonstrates the loss curve during our two-stage training. At the
beginning of the second phase, the loss for P > 1 initially exceed those for P = 1 due to the
introduction of randomly initialized parameters. However, after processing a small amount of data
(0.0002T tokens), the model quickly adapts to these newly introduced parameters and remains stable
thereafter. This proves that PARSCALE can take effect rapidly with just a little data. We can also find
that in the later stages, PARSCALE yields similar logarithmic gains. This aligns with previous scaling
law findings, suggesting that our earlier conclusions for from-scratch pre-training — parallelism with
P streams equates to a O(N log(P)) increase in parameters — also applies to continued pretraining.
Additionally, larger P (such as P = 8) can gradually widen the gap compared to smaller P values
(such as P = 4). This demonstrates that parallel scaling can also benefit from data scaling.

Downstream Performance In Table 4, we report the downstream performance of the model after
finishing two-stage training, across 7 general tasks, 3 math tasks, and 8 coding tasks. It can be

8

1.0002T

Stage 1: normal pre-training
(1T tokens)

Stage 2: parallel
scaling training
(20B tokens)

(a) Two-Stage Training

1 2 4 8 1 2 4 8
P

Pe
rfo

rm
an

ce
 (%

)

47.4

50.1

51.6

53.0

73.1

75.4
76.4

78.2

Pass@1 Pass@10

(b) PEFT for Qwen-2.5

Figure 5: (a) Loss for two-stage training, smoothing using an exponential moving average with a
weight of 0.95. (b) Code generation performance after fine-tuning on Stack-V2 (Python), averaged
from HumanEval(+) and MBPP(+). We only fine-tune the introduced parameters (prefix tokens and
aggregation weights), with different P sharing exactly the same Qwen2.5-3B pre-trained weights.

observed that with the increase of P , the performance presents an upward trend for most of the
benchmarks, which validates the effectiveness of PARSCALE trained on the large dataset. Specifically,
when P increases from 1 to 8, PARSCALE improves by 2.6% on general tasks, and by 7.3% and 4.3%
on math and code tasks, respectively. It achieves a 10% improvement (34% relative improvement)
on GSM8K. This reaffirms that PARSCALE can more effectively address reasoning-intensive tasks.
Moreover, in combination with CoT, it achieves about an 8% improvement on GSM8K, suggesting
that parallel scaling can be used together with inference-time scaling to achieve better results.

To validate the applicability of PARSCALE to other training stages and data, we use instruction tuning
for the base models as detailed in Appendix I.

4.2 Applying to the Off-the-Shelf Pre-Trained Model

We further investigate applying PARSCALE to off-the-shelf models under two settings: continual
pre-training and parameter-efficient fine-tuning (PEFT). Specifically, we use Pile and Stack-V2
(Python) to continue pre-training the Qwen-2.5 (3B) model. The training settings remain consistent
with Appendix C, with the only difference being that we initialize with Qwen2.5-3B weights and
adjust the RoPE base to the preset 1,000,000.

The results for full continual pre-training is elaborated in Appendix J. We further utilize PEFT to
fine-tune the introduced parameters while freezing the backbone. Figure 5(b) shows that this strategy
can still significantly improve downstream code generation performance. Moreover, this demonstrates
the promising prospects of dynamic parallel scaling: we can deploy the same backbone and flexibly
switch between different numbers of parallel streams in various scenarios (e.g., high throughput and
low throughput), which enables quick transitions between different levels of model capacities.

5 Related Work

Beyond language modeling, our work can be connected to various machine learning domains. First,
scaling computation while maintaining parameters is also the core idea of inference-time scaling.
Second, as previously mentioned, PARSCALE can be viewed as a dynamic and scalable classifier-free
guidance. Third, our method can be seen as a special case of model ensemble. Lastly, the parallel
scaling law we explore is a generalization of the existing language model scaling laws.

Inference-Time Scaling The notable successes of reasoning models, such as GPT-o1 [65],
DeepSeek-R1 [20], QwQ [71], and Kimi k1.5 [41] have heightened interest in inference-time scaling.
These lines of work [91, 59, 102] focus on scaling serial computation to increase the length of
the chain-of-thought [91]. Despite impressiveness, it results in inefficient inference and sometimes
exhibits overthinking problems [13, 83].

Other lines of approaches focus on scaling parallel computation. Early methods such as beam search
[94], self-consistency [90], and majority voting [11] require no additional training. We also provide
an experimental comparison with Beam Search and Majority Voting in Appendix H, which shows the

9

importance of scaling parallel computing during the training stage. Recently, the proposal-verifier
paradigm has gained attention, by employing a trained verifier to select from multiple parallel outputs
[9, 95, 101]. However, these methods are limited to certain application scenarios (i.e., generation
tasks) and specialized training data (i.e., reward signals).

More recently, Geiping et al. [27] introduce training LLMs to reason within the latent space and scale
sequential computation, applicable to any application scenarios without needing specialized datasets.
However, this method demands significant serial computation scaling (e.g., 64 times the looping) and
invasive model modifications, necessitating training from scratch and complicating integration with
existing trained LLMs.

Classifier-Free Guidance Classifier-Free Guidance (CFG) stems from Classifier Guided Diffusion
[21], which uses an additional classifier to guide image generation using diffusion models [35].
By using the generation model itself as a classifier, CFG [34] further eliminates dependency on
the classifier and leverage two forward passes. Similar concepts have emerged in NLP, such as
Coherence Boosting [60], PREADD [66], Context-Aware Decoding [78], and Contrastive Decoding
[50]. Recently, Sanchez et al. [75] proposed transferring CFG to language models. However, due
to constraints of human-designed heuristic rules, these techniques cannot leverage the power of
training-time scaling [40] and the performance is limited.

Model Ensemble Model ensemble is a classic research field in machine learning and is also em-
ployed in the context of LLMs [14]. In traditional model ensembles, most ensemble components
do not share parameters. Some recent work consider setups with partially shared parameters. For
example, Monte Carlo dropout [25] employs multiple different random dropouts during the inference
phase, while BatchEnsemble [93, 85] and LoRA ensemble [89] use distinct low-rank matrix factoriza-
tions for model weights to differentiate different streams (we also experimented with this technique
as input transformation in Appendix A). Weight sharing [96, 44] is another line of work, where some
weights of a model are shared across different components and participate in multiple computations.
However, these works have not explored the scaling law of parallel computation from the perspective
of model capacity. As we discuss in Appendix A, we find that the specific differentiation technique
had a minimal impact, and the key factor is the scaling in parallel computation.

Scaling Laws for Language Models Many researchers explore the predictable relationships
between LLM training performance and various factors under different settings, such as the number
of parameters and data [33, 40, 36, 19, 24], data repetition cycles [63, 32], data mixing [97, 69],
and fine-tuning [100]. By extending the predictive empirical scaling laws developed from smaller
models to larger models, we can significantly reduce exploration costs. Recently, some studies
have investigated the scaling effects during inference [76], noting a log-linear relationship between
sampling number and performance [9, 80]. But they are limited to certain application scenarios. Our
work extends the Chinchilla scaling law [36] by introducing the intrinsic quantitative relationship
between parallel scaling and parameter scaling. Existing literature has also identified a power-law
relationship between the number of ensembles and loss in model ensemble scaling laws [56], which
can be considered a special case of Proposition 1 when ρ = 0.

6 Conclusions

In this paper, we propose a new type of scaling strategy, PARSCALE, for training LLMs by reusing
existing parameters for multiple times to scale the parallel computation. Our theoretical analysis and
extensive experiments propose a parallel scaling law, showing that a model with N parameters and
P× parallel computation can be comparable to a model with O(N logP) parameters. We scale the
training data to 1T tokens to validate PARSCALE in the real-world practice based on the proposed
two-stage strategy, and show that PARSCALE remains effective with frozen main parameters for
different P . We also demonstrate that parallel scaling is more efficient than parameter scaling during
the inference time, especially in low-resource edge scenarios. We elaborate the discussion and future
work in Appendix K.

10

Acknowledgement

This research/project was partially supported by the National Natural Science Foundation of China
(No. 62202420) and Zhejiang Provincial Natural Science Foundation of China (No. LZ25F020003).
The authors would like to thank Jiquan Wang, Han Fu, Zhiling Luo, and Yusu Hong for their early
idea discussions and inspirations, as well as Lingzhi Zhou for the discussions on efficiency analysis.

References
[1] Loubna Ben Allal, Anton Lozhkov, and Elie Bakouch. Smollm - blazingly fast and remarkably

powerful. https://huggingface.co/blog/smollm, 2024.

[2] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme
Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav
Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben
Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro
von Werra, and Thomas Wolf. Smollm2: When smol goes big – data-centric training of a
small language model. arXiv preprint arXiv:2502.02737, 2025. URL https://arxiv.org/
abs/2502.02737.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

[4] Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro
von Werra. Cosmopedia, February 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/cosmopedia.

[5] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 1–9, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL
https://aclanthology.org/2022.acl-short.1/.

[6] Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa
Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason
Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata,
François Yvon, and Andy Zou. Lessons from the trenches on reproducible evaluation of
language models. arXiv preprint arXiv:2405.14782, 2024. URL https://arxiv.org/abs/
2405.14782.

[7] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439.
AAAI Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/
aaai.v34i05.6239.

[8] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-6125.
doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[9] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024. URL https://arxiv.org/abs/2407.
21787.

11

https://huggingface.co/blog/smollm
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://aclanthology.org/2022.acl-short.1/
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

[11] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more LLM calls all you need? towards the scaling properties of compound AI
systems. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=m5106RRLgx.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021. URL https://arxiv.org/abs/2107.03374.

[13] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song,
Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong
Yu. Do not think that much for 2+3=? on the overthinking of o1-like llms. arXiv preprint
arXiv:2412.21187, 2024. URL https://arxiv.org/abs/2412.21187.

[14] Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren
Mao, Dingqi Yang, Hailong Sun, and Philip S. Yu. Harnessing multiple large language
models: A survey on llm ensemble. arXiv preprint arXiv:2502.18036, 2025. URL https:
//arxiv.org/abs/2502.18036.

[15] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.
05457.

[16] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, 2009. doi: 10.1137/070710111. URL
https://doi.org/10.1137/070710111.

[17] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

[18] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. arXiv preprint arXiv:2205.14135,
2022. URL https://arxiv.org/abs/2205.14135.

[19] DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv
preprint arXiv:2401.02954, 2024. URL https://arxiv.org/abs/2401.02954.

[20] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.
12948.

12

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=m5106RRLgx
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2502.18036
https://arxiv.org/abs/2502.18036
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.1137/070710111
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

[21] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image
synthesis. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=AAWuCvzaVt.

[22] Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu,
Fan Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens.
arXiv preprint arXiv:2402.13753, 2024. URL https://arxiv.org/abs/2402.13753.

[23] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1), January 2022.
ISSN 1532-4435.

[24] Elias Frantar, Carlos Riquelme Ruiz, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws
for sparsely-connected foundation models. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=i9K2ZWkYIP.

[25] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA,
20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/gal16.html.

[26] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2021. URL https://arxiv.org/abs/2101.00027.

[27] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R.
Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time
compute with latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171,
2025. URL https://arxiv.org/abs/2502.05171.

[28] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[29] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-
tuning for large models: A comprehensive survey. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=lIsCS8b6zj.

[30] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=d7KBjmI3GmQ.

[31] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

[32] Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk,
Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben
Mann, Chris Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam
McCandlish. Scaling laws and interpretability of learning from repeated data. arXiv preprint
arXiv:2205.10487, 2022. URL https://arxiv.org/abs/2205.10487.

[33] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling
is predictable, empirically. arXiv preprint arXiv:1712.00409, 2017. URL https://arxiv.
org/abs/1712.00409.

[34] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022. URL https://arxiv.org/abs/2207.12598.

13

https://openreview.net/forum?id=AAWuCvzaVt
https://openreview.net/forum?id=AAWuCvzaVt
https://arxiv.org/abs/2402.13753
https://openreview.net/forum?id=i9K2ZWkYIP
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2502.05171
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=lIsCS8b6zj
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2205.10487
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2207.12598

[35] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[36] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022. URL https://arxiv.org/abs/2203.15556.

[37] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[38] Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi
Zheng, Yewei Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng Thai, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng,
dahai li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential of small language
models with scalable training strategies. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=3X2L2TFr0f.

[39] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. Data movement
is all you need: A case study on optimizing transformers. In A. Smola, A. Dimakis, and
I. Stoica, editors, Proceedings of Machine Learning and Systems, volume 3, pages 711–
732, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/file/
bc86e95606a6392f51f95a8de106728d-Paper.pdf.

[40] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020. URL https://arxiv.org/abs/
2001.08361.

[41] Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025. URL https://arxiv.org/abs/2501.12599.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[43] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale
ReAding comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 785–794, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics. doi: 10.18653/v1/D17-1082. URL https:
//aclanthology.org/D17-1082/.

[44] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019. URL https://arxiv.org/abs/1909.11942.

[45] Minh Le, Chau Nguyen, Huy Nguyen, Quyen Tran, Trung Le, and Nhat Ho. Revisiting
prefix-tuning: Statistical benefits of reparameterization among prompts. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=QjTSaFXg25.

[46] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=3X2L2TFr0f
https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2501.12599
http://arxiv.org/abs/1412.6980
https://aclanthology.org/D17-1082/
https://aclanthology.org/D17-1082/
https://arxiv.org/abs/1909.11942
https://openreview.net/forum?id=QjTSaFXg25
https://openreview.net/forum?id=QjTSaFXg25

Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243/.

[47] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. arXiv preprint arXiv:2206.14858, 2022. URL https:
//arxiv.org/abs/2206.14858.

[48] Cheng Li. Llm-analysis: Latency and memory analysis of transformer models for training and
inference. https://github.com/cli99/llm-analysis, 2023.

[49] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.353. URL https://aclanthology.org/2021.acl-long.353/.

[50] Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto,
Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as
optimization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 12286–12312, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.687. URL https://aclanthology.org/2023.
acl-long.687/.

[51] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

[52] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimiza-
tion. Math. Program., 45(1–3):503–528, August 1989. ISSN 0025-5610.

[53] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

[54] Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov,
Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai,
and Vikas Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-
device use cases. arXiv preprint arXiv:2402.14905, 2024. URL https://arxiv.org/abs/
2402.14905.

[55] Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. URL
https://arxiv.org/abs/2407.21783.

[56] Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry Vetrov. On power
laws in deep ensembles. arXiv preprint arXiv:2007.08483, 2020. URL https://arxiv.
org/abs/2007.08483.

[57] Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry P Vetrov. On power
laws in deep ensembles. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 2375–2385.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/191595dc11b4d6e54f01504e3aa92f96-Paper.pdf.

[58] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,

15

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://github.com/cli99/llm-analysis
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2023.acl-long.687/
https://aclanthology.org/2023.acl-long.687/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2007.08483
https://arxiv.org/abs/2007.08483
https://proceedings.neurips.cc/paper_files/paper/2020/file/191595dc11b4d6e54f01504e3aa92f96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/191595dc11b4d6e54f01504e3aa92f96-Paper.pdf

Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan
Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,
Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,
Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu,
Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane
Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra,
and Harm de Vries. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173, 2024. URL https://arxiv.org/abs/2402.19173.

[59] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter
Clark. Self-refine: Iterative refinement with self-feedback. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=S37hOerQLB.

[60] Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Coherence boosting: When your pretrained
language model is not paying enough attention. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8214–8236, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.565. URL
https://aclanthology.org/2022.acl-long.565/.

[61] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016. URL https://arxiv.org/abs/1609.
07843.

[62] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
conduct electricity? a new dataset for open book question answering. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 2381–2391, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1260. URL https://aclanthology.org/D18-1260/.

[63] Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi,
Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained
language models. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=j5BuTrEj35.

[64] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https:
//arxiv.org/abs/2303.08774.

[65] OpenAI. New reasoning models: Openai o1-preview and o1-mini. https://openai.com/
research/o1-preview-and-o1-mini, 2024.

[66] Jonathan Pei, Kevin Yang, and Dan Klein. PREADD: Prefix-adaptive decoding for controlled
text generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings
of the Association for Computational Linguistics: ACL 2023, pages 10018–10037, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.636. URL https://aclanthology.org/2023.findings-acl.636/.

[67] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting
the web for the finest text data at scale. arXiv preprint arXiv:2406.17557, 2024. URL
https://arxiv.org/abs/2406.17557.

[68] Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe
Yuan, Hector Liu, Yuanzhi Li, and Pengfei Liu. O1 replication journey: A strategic progress
report – part 1. arXiv preprint arXiv:2410.18982, 2024. URL https://arxiv.org/abs/
2410.18982.

16

https://arxiv.org/abs/2402.19173
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://aclanthology.org/2022.acl-long.565/
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://aclanthology.org/D18-1260/
https://openreview.net/forum?id=j5BuTrEj35
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/research/o1-pre view-and-o1-mini
https://openai.com/research/o1-pre view-and-o1-mini
https://aclanthology.org/2023.findings-acl.636/
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2410.18982

[69] Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan,
Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, Xu Tan, Jie Fu, Wenbo Su, Jiamang Wang, Lin
Qu, and Bo Zheng. D-cpt law: Domain-specific continual pre-training scaling law for large
language models. arXiv preprint arXiv:2406.01375, 2024. URL https://arxiv.org/abs/
2406.01375.

[70] Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024. URL
https://arxiv.org/abs/2412.15115.

[71] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.
github.io/blog/qwq-32b-preview/, 2025.

[72] Qwen Team. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. URL https:
//arxiv.org/abs/2505.09388.

[73] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes,
Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487,
2022. URL https://arxiv.org/abs/2205.11487.

[74] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

[75] Guillaume V Sanchez, Alexander Spangher, Honglu Fan, Elad Levi, and Stella Biderman. Stay
on topic with classifier-free guidance. In Proceedings of the 41st International Conference on
Machine Learning, pages 43197–43234, 2024.

[76] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-
optimal: accounting for inference in language model scaling laws. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

[77] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv preprint arXiv:1701.06538, 2017. URL https://arxiv.org/abs/
1701.06538.

[78] Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau
Yih. Trusting your evidence: Hallucinate less with context-aware decoding. In Kevin Duh,
Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 2: Short Papers), pages 783–791, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-short.69. URL
https://aclanthology.org/2024.naacl-short.69/.

[79] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019. URL https://arxiv.org/abs/1909.
08053.

[80] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time
compute optimally can be more effective than scaling parameters for reasoning. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=4FWAwZtd2n.

[81] Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits
of llm resampling with imperfect verifiers. arXiv preprint arXiv:2411.17501, 2024. URL
https://arxiv.org/abs/2411.17501.

[82] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864,
2021. URL https://arxiv.org/abs/2104.09864.

17

https://arxiv.org/abs/2406.01375
https://arxiv.org/abs/2406.01375
https://arxiv.org/abs/2412.15115
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2205.11487
https://doi.org/10.1145/3474381
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://aclanthology.org/2024.naacl-short.69/
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2104.09864

[83] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
on efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.
URL https://arxiv.org/abs/2503.16419.

[84] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision . In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, Los Alamitos,
CA, USA, June 2016. IEEE Computer Society. doi: 10.1109/CVPR.2016.308. URL
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308.

[85] Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang
Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary
Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan,
Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and
Balaji Lakshminarayanan. Plex: Towards reliability using pretrained large model extensions.
arXiv preprint arXiv:2207.07411, 2022. URL https://arxiv.org/abs/2207.07411.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[87] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius
Hobbhahn. Will we run out of data? limits of llm scaling based on human-generated data.
arXiv preprint arXiv:2211.04325, 2022. URL https://arxiv.org/abs/2211.04325.

[88] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[89] Xi Wang, Laurence Aitchison, and Maja Rudolph. Lora ensembles for large language model
fine-tuning. arXiv preprint arXiv:2310.00035, 2023. URL https://arxiv.org/abs/2310.
00035.

[90] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=1PL1NIMMrw.

[91] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903, 2022. URL https://arxiv.org/abs/2201.
11903.

[92] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin, editors, Proceedings
of the 3rd Workshop on Noisy User-generated Text, pages 94–106, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413.
URL https://aclanthology.org/W17-4413/.

[93] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to
efficient ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020. URL
https://arxiv.org/abs/2002.06715.

18

https://arxiv.org/abs/2503.16419
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/2207.07411
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://aclanthology.org/W17-4413/
https://arxiv.org/abs/2002.06715

[94] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search
optimization. In Jian Su, Kevin Duh, and Xavier Carreras, editors, Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1296–1306,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1137. URL https://aclanthology.org/D16-1137.

[95] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling
laws: An empirical analysis of compute-optimal inference for LLM problem-solving. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=VNckp7JEHn.

[96] Shuo Yang, Le Hou, Xiaodan Song, Qiang Liu, and Denny Zhou. Speeding up deep model
training by sharing weights and then unsharing. arXiv preprint arXiv:2110.03848, 2021. URL
https://arxiv.org/abs/2110.03848.

[97] Jiasheng Ye, Peiju Liu, Tianxiang Sun, Jun Zhan, Yunhua Zhou, and Xipeng Qiu. Data
mixing laws: Optimizing data mixtures by predicting language modeling performance. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=jjCB27TMK3.

[98] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

[99] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. arXiv preprint arXiv:2106.04560, 2021. URL https://arxiv.org/abs/2106.04560.

[100] Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets LLM fine-
tuning: The effect of data, model and finetuning method. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=5HCnKDeTws.

[101] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. In The 4th Workshop
on Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/
forum?id=CxHRoTLmPX.

[102] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most
prompting enables complex reasoning in large language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WZH7099tgfM.

[103] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023. URL https://arxiv.org/abs/2311.07911.

19

https://aclanthology.org/D16-1137
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn
https://arxiv.org/abs/2110.03848
https://openreview.net/forum?id=jjCB27TMK3
https://openreview.net/forum?id=jjCB27TMK3
https://aclanthology.org/P19-1472/
https://arxiv.org/abs/2106.04560
https://openreview.net/forum?id=5HCnKDeTws
https://openreview.net/forum?id=5HCnKDeTws
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2311.07911

Appendix

Contents
A Implementation Details and Pivot Experiments 21

B Proof for Proposition 1 22

C Training Details 24

D Training Loss for OpenWebText with Repeating Data 25

E Parametric Fitting for the Parallel Scaling Law 26

F Training Loss for Pile and Stack-V2-Python 28

G Downstream Datasets 29

H Compared with Inference-time Parallel Scaling 30

I Instruction Tuning 30

J Continual Pre-training Qwen-2.5 3B Model 31

K Discussion and Future Work 31

L Broader Impacts 32

M Visualization for Different Parallel Streams 32

20

A Implementation Details and Pivot Experiments

Input Transformation We expect that the transformations applied to the input embedding x can
significantly influence the output, which avoids excessively similar outputs across different parallel
streams. This can be achieved through the Soft Prompting technique [46]. Specifically, Lester et al.
[46] introduced trainable continuous embeddings, known as soft prompts, which are appended to
the original sequence of input word embeddings. Freezing the main network while only fine-tuning
these soft prompts can be comparable to full fine-tuning. Building on this concept, prefix-tuning [49]
incorporates soft prompts into every attention layer of the Transformer model and appends them to
the key and value vectors, showing superiority performance to soft prompts.

We utilize prefix-tuning to implement input transformation. To be specific, we first duplicate the
input x into P parallel copies, distinguishing them with different prefixes in each attention layer. This
can be implemented as using different KV caches for different streams. We found that randomly
initializing the prefixes is sufficient to ensure diverse outputs across different streams. We also
leverage the prefix reparameterization trick [49, 29], which is theoretically proved effectiveness by
Le et al. [45].

As a comparison, we also compared using other parameter-efficient fine-tuning strategy for discrimi-
nating the input, including LoRA [37] and BitFit [5]. Notably, LoRA has been also applied to the
model ensemble scenario in the literature [89], but only used in the fine-tuning setting while freezing
the main parameters in their experiments.

Output Aggregation We found that using dynamic aggregation weights performs better than static
ones. Specifically, we concatenate each output together and use an MLP h : Rdo×P → RP to convert
it into a vector of length P as aggregation weights. The process can be formalized as:

w1, · · · , wP ← Softmax (h (Concat[fθ(x1); · · · ; fθ(xP)])) , (6)

where Softmax ensures aggregation weights are normalized. It can be seen as dynamically weighting
different parallel streams during forward process for each token. We observed that, in the early stages
of training, the model may assign nearly all weight to a few streams, leaving others with near-zero
weights. It prevents the prefix parameters of these unlucky streams from receiving gradients and
updates. This is similar to the load imbalance phenomenon in sparse MoE architectures [23, 77],
where most tokens are sometimes assigned to a few experts. To address this, we apply label smoothing
[84] to set a non-zero minimum for each weight, formulated as:

wi ← wi × (1− ϵ) +
ϵ

P
, (7)

where ϵ denotes the smoothing parameter and we set it to 0.1 in our experiments.

As a comparison, we also compare using Linear layer to aggregate different outputs and directly
average the outputs.

Results We trained a 0.5B model on Stack-V2-Python. Table 5 compares the impact of different
strategies on final performance. For output aggregation, a dynamic weighted sum with label smoothing
proved most effective. The differences between methods for input transformation were minor (around
0.1%), much less than the benefits obtained from changing P . Therefore, we opt for the simplest
strategy, prefix tuning. Unlike LoRA and BitFit, it requires minimal changes to the model, only
necessitating adjustments to the KV-cache.

21

Table 5: Comparisons of different strategies for input transformations and output aggregation.
P Input Transformation Output Aggregation Loss ↓ Rel. Improvement ↑
1 - - 1.1518 0.00%

2 Prefix (48 tokens) Dynamic Weighted Sum (ϵ = 0.1) 1.1276 2.10%
2 Prefix (48 tokens) Dynamic Weighted Sum (ϵ = 0.0) 1.1284 2.03%
2 Prefix (48 tokens) Average 1.1288 2.00%
2 Prefix (48 tokens) Linear Layer 1.1323 1.69%
2 Prefix (48 tokens) + shared KV cache Dynamic Weighted Sum (ϵ = 0.1) 1.1282 2.05%

2 Prefix (48 tokens) Dynamic Weighted Sum (ϵ = 0.1) 1.1276 2.10%
2 Prefix (96 tokens) Dynamic Weighted Sum (ϵ = 0.1) 1.1278 2.08%
2 LoRA (r = 2) Dynamic Weighted Sum (ϵ = 0.1) 1.1281 2.06%
2 Prefix (48 tokens) + LoRA (r = 2) Dynamic Weighted Sum (ϵ = 0.1) 1.1263 2.21%
2 Prefix (48 tokens) + LoRA (r = 2) + BitFit Dynamic Weighted Sum (ϵ = 0.1) 1.1263 2.21%
2 Prefix (48 tokens) + LoRA (r = 4) Dynamic Weighted Sum (ϵ = 0.1) 1.1260 2.24%

4 Prefix (48 tokens) Dynamic Weighted Sum (ϵ = 0.1) 1.1145 3.24%

8 Prefix (48 tokens) Dynamic Weighted Sum (ϵ = 0.1) 1.1019 4.33%

B Proof for Proposition 1

Proof. We first decompose the individual loss Li. Based on the definition of language model loss,
we have:

Li = Ex

∑
y∈V

[−p(y | x) log p̂i(y | x)]

= Ex

∑
y∈V
−p(y | x) log {p(y | x)× (1 + ∆pi(y | x))}

= Ex

∑
y∈V

[−p(y | x) log p(y | x)]︸ ︷︷ ︸
entropy of natural text

+Ex

∑
y∈V
−p(y | x) log (1 + ∆pi(y | x))︸ ︷︷ ︸

approximation error for the language model

,

where V is the vocabulary. In Chichilla scaling law, the entropy of natural text is E and the
approximation error is (A/N)α. Therefore, we have:

Ex

∑
y∈V
−p(y | x) log (1 + ∆pi(y | x)) =

(
A

N

)α

. (8)

Based on the Taylor series expansion, log(1 + x) = x − x2

2 + O(x3). Apply this expansion to
Equation (8), we have:(
A

N

)α

= Ex

∑
y∈V
−p(y | x)

[
∆pi(y | x)−

∆pi(y | x)2

2
+O

(
∆pi(y | x)3

)]

= Ex

∑
y∈V
− (p̂i(y | x)− p(y | x))

+ Ex

∑
y∈V

p(y | x)∆pi(y | x)2

2

+O
(
∆pi(y | x)3

)

= Ex

∑
y∈V
−p̂i(y | x) +

∑
y∈V

p(y | x)


︸ ︷︷ ︸

=0

+ExEy|x
∆pi(y | x)2

2
+O

(
∆pi(y | x)3

)

∼ Ex,y

[
∆pi(y | x)2

2

]
, (9)

where the higher-order terms O
(
∆pi(y | x)3

)
are omitted in the last line. The results suggest that

minimizing the approximation loss of a language model is equal to minimizing the mean square
error (MSE) of relative residuals. After fitting the data, an MSE estimator is usually assumed to be
unbiased, meaning that Ex,y∆pi(y | x) = 0. Here we follow this unbiased assumption to simplify
the following derivation.

22

We next consider the aggregated loss L. Let ∆p(y | x) denote the new relative residual after the
aggregation:

∆p(y | x) = p̂(y | x)− p(y | x)
p(y | x)

=
1
P

∑P
i=1 p̂i(y | x)− p(y | x)

p(y | x)

=
1

P

P∑
i=1

p̂i(y | x)− p(y | x)
p(y | x)

=
1

P

P∑
i=1

∆pi(y | x).

Let ρ denote the correlation coefficient between any two relative residuals ∆pi(y | x) and ∆pj(y | x)
for i ̸= j. Repeating the above process to decomposite the aggregated loss L, we have:

L = Ex

∑
y∈V

[−p(y | x) log p(y | x)]︸ ︷︷ ︸
entropy of natural text, equal to E

+Ex

∑
y∈V
−p(y | x) log (1 + ∆p(y | x))︸ ︷︷ ︸

approximation error

= E + Ex,y

[
∆p(y | x)2

2

]

= E +
1

2
Ex,y

(1

P

P∑
i=1

∆pi(y | x)

)2


= E +
1

2P 2
Ex,y

 P∑
i=1

∆p2i (y | x) + 2
∑
i<j

∆pi(y | x)∆pj(y | x)


= E +

1

P 2

 P∑
i=1

Ex,y

[
∆p2i (y | x)

2

]
+ 2

∑
i<j

Ex,y

[
∆pi(y | x)∆pj(y | x)

2

] .

Based on the Corollary of Chinchilla Scaling Law (Equation (9)), for the first term:

Ex,y

[
∆pi(y | x)2

2

]
=

(
A

N

)α

,

for the cross terms:

Ex,y

[
∆pi(y | x)∆pj(y | x)

2

]
= ρ

√
Ex,y

[
∆p2i (y | x)

2

]√√√√Ex,y

[
∆p2j (y | x)

2

]
= ρ

(
A

N

)α

.

Combining the results, we obtain the desired result:

L = E +
1

P 2

[
P ·
(
A

N

)α

+ P (P − 1) ·
(
A

N

)α

· ρ
]

= E +

(
A

N

)α [
1 + (P − 1)ρ

P

]
= E +

(
A

N

)α

·
(

1

P 1/α

)α

·

(
1

[(P − 1)ρ+ 1]
−1/α

)α

= E +

(
A

NP 1/α [(P − 1)ρ+ 1]
−1/α

)α

.

23

C Training Details

Setup for Scaling Law Experiments Our training is based on Megatron-LM [79]. We use a
batch size of 1024 and a sequence length of 2048, resulting in 20K training steps. Models have
up to 4.7 billion parameters (with 4.4B non-embedding parameters) and 8 parallel streams. For
models with P > 1, we incorporate prefix embeddings and aggregation weight, as introduced in
Appendix A. No additional parameters are included for P = 1 models to maintain alignment with
existing architectures. We report the last step training loss using exponential moving average, with a
smoothing weight of 0.95.

For other hyperparameters, the learning rate undergoes a linear warm-up over 2,000 steps, reaching
a peak of 3 × 10−4 before decreasing to a minimum of 1 × 10−5 according to a cosine decay
schedule. The models are trained using a batch size of 1,024 and sequence length of 2,048, alongside
a RoPE base of 10,000 [82]. We utilize bfloat16 precision and the Adam optimizer [42], setting the
epsilon to 1e-8, β1 to 0.9, and β2 to 0.95. All parameters, including backbones and additional ones
we’ve introduced, are initialized with a Gaussian distribution having a standard deviation of 0.02.
Furthermore, we maintain a dropout rate of 0, enforce a weight decay rate of 0.1, and clip gradients
at 1.0. The hyperparameter choices are mostly adopted from existing research [63, 36, 70].

Model Architectures The model architectures are mostly based on the dense model of Qwen-
2.5 [70]. Recent work has indicated that the number of layers still significantly impacts the final
performance of smaller models [1, 54]. To eliminate the influence of the number of layers and
derive a cleaner scaling law, we utilize the architecture of Qwen-2.5-3B (comprising 36 layers, 16
attention heads, and 2 KV groups) and vary the hidden size / intermediate size within this framework.
By keeping the number of layers constant and increasing the parameter width, we can more fairly
compare the latency of parallel scaling and parameter. The final model structure is presented in the
Table 6.

Table 6: Model architectures.
P Parameters (Non-Embedding) Hidden Size Intermediate Size

1 535,813,376 896 4,864
2 538,195,842 896 4,864
4 540,577,412 896 4,864
8 545,340,552 896 4,864

1 693,753,856 1,024 5,504
2 696,738,818 1,024 5,504
4 699,722,756 1,024 5,504
8 705,690,632 1,024 5,504

1 1,088,376,320 1,280 6,912
2 1,092,762,882 1,280 6,912
4 1,097,148,164 1,280 6,912
8 1,105,918,728 1,280 6,912

1 1,571,472,384 1,536 8,320
2 1,577,522,690 1,536 8,320
4 1,583,571,460 1,536 8,320
8 1,595,669,000 1,536 8,320

1 2,774,773,760 2,048 11,008
2 2,784,937,986 2,048 11,008
4 2,795,100,164 2,048 11,008
8 2,815,424,520 2,048 11,008

1 4,353,203,200 2,560 13,824
2 4,368,529,922 2,560 13,824
4 4,383,854,084 2,560 13,824
8 4,414,502,408 2,560 13,824

24

Setup for Two-Stage Training We follow Allal et al. [2] and use the Warmup Stable Decay (WSD)
learning rate schedule [38, 99]. In the first stage, employing a 2K step warm-up followed by a fixed
learning rate of 3e-4. In the second stage, the learning rate is annealed from 3e-4 to 1e-5. The rest of
the hyperparameters remain consistent with the previous experiments.

In the first phase, we do not employ the PARSCALE technique. We refer to the recipe proposed by
Allal et al. [2] to construct our training data, which consists of 370B general data, 80B mathematics
data, and 50B code data. We train the model for two epochs to consume 1T tokens. Among the general
text, there are 345B from FineWeb-Edu [67] and 28B from Cosmopedia 2 [4]; the mathematics data
includes 80B from FineMath [2]; and the code data comprises 47B from Stack-V2-Python and 4B
from Stack-Python-Edu.

In the second phase, we use the trained model from the first phase as the backbone and introduce
additional parameters from PARSCALE, which are randomly initialized using a standard deviation of
0.02 (based on the initialization of Qwen-2.5). Following [2], in this phase, we increase the proportion
of mathematics and code data, finally including a total of 7B general text data, 7B mathematics data,
and 7B Stack-Python-Edu data.

D Training Loss for OpenWebText with Repeating Data

0B 10B 20B 30B 40B
Training Tokens

2.2

2.4

2.6

2.8

3.0

Tr
ai

ni
ng

 L
os

s

N = 3B / P = 1
N = 3B / P = 2
N = 5B / P = 1

(a) Training Loss

0B 10B 20B 30B 40B
Training Tokens

2.5

2.6

2.7

2.8

2.9

3.0
Va

lid
at

io
n

Lo
ss

N = 3B / P = 1
N = 3B / P = 2
N = 5B / P = 1

(b) Validation Loss

Figure 6: Loss for training on OpenWebText for repeating several epochs. On the fifth epoch, the
validation loss suddenly increases, while the model with more computations (N = 3B,P = 2)
shows a stronger resistance to overfitting compared to the model with more parameters (N =
5B,P = 1).

Both Stack-V2-Python and Pile datasets contain more tokens than the total number used in our
experiment (42 billion), and therefore previous scaling law experiments did not involve data reuse.
Muennighoff et al. [63] noted that the performance of scaling laws tends to change when training data
is repeated. In this section, we explore how PARSCALE performs on a smaller dataset, OpenWebText
[28], with repeating data.

Figure 6 shows a comparison of training loss and validation loss, with OpenWebText repeated
over four cycles. At the transition from the end of the fourth epoch to the beginning of the fifth
epoch, we observe a significant decrease in training loss and a notable increase in validation loss,
indicating overfitting. This aligns with the optimal number of epochs being four for training language
models, as reported by Muennighoff et al. [63]. Comparing parallel scaling and parameter scaling,
we observed an intriguing phenomenon: parallel scaling results in a smaller decline in performance
when overfitting occurs, while parameter scaling leads to a larger decline. Specifically, by the time
overfitting occurs, the validation loss of a 3B parameter model with two-way parallel scaling matched
that of a 5 billion parameter model. This suggests that PARSCALE may alleviate the risk of overfitting,
possibly due to having fewer parameters. As we increasingly face the depletion of pre-training data
[87], further research into the scaling laws of computation in data-constrained scenarios presents a
compelling future direction.

25

E Parametric Fitting for the Parallel Scaling Law

To obtain the practical parallel scaling law in Equation (5), based on the 24 runs (i.e., four P × six N)
we obtain for each dataset, we follow the strategy from Hoffmann et al. [36] and Muennighoff et al.
[63] to use the LBFGS algorithm and Huber loss for curve fitting. This process can be fomulated as:

min
A,k,E,α

∑
run i

HUBERδ

(
logLi

pred, logLi
true

)
,

where Li
true is the i-th observed final loss obtained from experiments and Li

pred is the corresponding
prediction based on the corresponding observations {N,P} and parameters {A, k,E, α}. We use
δ = 0.001 for the Huber loss to avoid overfitting.

Following Muennighoff et al. [63], Hoffmann et al. [36], we utilize the LBFGS algorithm [52]
via SciPy [88] to locate local minima of the objective. The initialization grid is defined by: E ∈
{e−1, e−0.5, e0}, A ∈ {e−4, e−2, e0, e2, e4} × 109, α ∈ {0, 0.5, 1, 1.5, 2}, k ∈ {0.2, 0.4, 0.6, 0.9}.
All parameters are constrained to be positive. After fitting, the optimal initialization is found to be
away from the boundaries of our sweep.

Table 7: Fitting results of the logarithmic scal-
ing law (Equation (5)) for Stack-V2 (Python).

A 1.130616× 107

k 0.393463
E 0.691237
α 0.189371

Fitting Huber Loss ↓ 3.677× 10−5

Fitting R2 ↑ 0.9978

Table 8: Fitting results of the logarithmic scal-
ing law (Equation (5)) for Pile.

A 1.973520× 108

k 0.334456
E 1.288766
α 0.196333

Fitting Huber Loss ↓ 1.814× 10−5

Fitting R2 ↑ 0.9987

Table 9: Prediction of the logarithmic scaling
law (Equation (5)) for Stack-V2 (Python).
P Parameters Lpred Ltrue Error

1 535,813,376 1.1728 1.1722 0.0006
1 693,753,856 1.1498 1.1496 0.0002
1 1,088,376,320 1.1123 1.1131 -0.0008
1 1,571,472,384 1.0840 1.0817 0.0023
1 2,774,773,760 1.0439 1.0451 -0.0012
1 4,353,203,200 1.0151 1.0213 -0.0062
2 538,195,842 1.1509 1.1507 0.0002
2 696,738,818 1.1290 1.1262 0.0028
2 1,092,762,882 1.0932 1.0940 -0.0008
2 1,577,522,690 1.0662 1.0623 0.0039
2 2,784,937,986 1.0280 1.0244 0.0036
2 4,368,529,922 1.0005 1.0025 -0.0020
4 540,577,412 1.1340 1.1354 -0.0014
4 699,722,756 1.1129 1.1124 0.0005
4 1,097,148,164 1.0784 1.0808 -0.0024
4 1,583,571,460 1.0524 1.0490 0.0034
4 2,795,100,164 1.0156 1.0126 0.0030
4 4,383,854,084 0.9891 0.9906 -0.0015
8 545,340,552 1.1198 1.1231 -0.0033
8 705,690,632 1.0994 1.0997 -0.0003
8 1,105,918,728 1.0661 1.0688 -0.0027
8 1,595,669,000 1.0410 1.0383 0.0027
8 2,815,424,520 1.0053 1.0016 0.0037
8 4,414,502,408 0.9797 0.9794 0.0003

Table 10: Prediction of the logarithmic scaling
law (Equation (5)) for Pile.
P Parameters Lpred Ltrue Error

1 535,813,376 2.1107 2.1113 -0.0006
1 693,753,856 2.0701 2.0671 0.0030
1 1,088,376,320 2.0039 2.0027 0.0012
1 1,571,472,384 1.9542 1.9539 0.0003
1 2,774,773,760 1.8839 1.8876 -0.0037
1 4,353,203,200 1.8335 1.8451 -0.0116
2 538,195,842 2.0770 2.0772 -0.0002
2 696,738,818 2.0381 2.0363 0.0018
2 1,092,762,882 1.9747 1.9730 0.0017
2 1,577,522,690 1.9270 1.9266 0.0004
2 2,784,937,986 1.8596 1.8610 -0.0014
2 4,368,529,922 1.8113 1.8137 -0.0024
4 540,577,412 2.0501 2.0544 -0.0043
4 699,722,756 2.0125 2.0128 -0.0003
4 1,097,148,164 1.9514 1.9509 0.0005
4 1,583,571,460 1.9053 1.9040 0.0013
4 2,795,100,164 1.8402 1.8394 0.0008
4 4,383,854,084 1.7936 1.7938 -0.0002
8 545,340,552 2.0272 2.0364 -0.0092
8 705,690,632 1.9908 1.9933 -0.0025
8 1,105,918,728 1.9315 1.9318 -0.0003
8 1,595,669,000 1.8869 1.8856 0.0013
8 2,815,424,520 1.8238 1.8218 0.0020
8 4,414,502,408 1.7785 1.7772 0.0013

Tables 7 and 8 present the fitted parameters and evaluation metrics. Tables 9 and 10 show the
prediction results based on the fitted parameters.

26

Table 11: Fitting results of the theoretical scal-
ing law (Equation (4)) for Stack-V2 (Python).

A 1.187646× 107

ρ 0.891914
E 0.660016
α 0.175036

Fitting Huber Loss ↓ 5.259× 10−5

Fitting R2 ↑ 0.9959

Table 12: Fitting results of the theoretical scal-
ing law (Equation (4)) for Pile.

A 2.150890× 108

ρ 0.899475
E 1.272178
α 0.190100

Fitting Huber Loss ↓ 4.545× 10−5

Fitting R2 ↑ 0.9968

Table 13: Prediction of the theoretical scaling
law (Equation (4)) for Stack-V2 (Python).
P Parameters Lpred Ltrue Error

1 535,813,376 1.1734 1.1722 0.0012
1 693,753,856 1.1507 1.1496 0.0011
1 1,088,376,320 1.1135 1.1131 0.0004
1 1,571,472,384 1.0853 1.0817 0.0036
1 2,774,773,760 1.0450 1.0451 -0.0001
1 4,353,203,200 1.0158 1.0213 -0.0055
2 538,195,842 1.1453 1.1507 -0.0054
2 696,738,818 1.1238 1.1262 -0.0024
2 1,092,762,882 1.0887 1.0940 -0.0053
2 1,577,522,690 1.0620 1.0623 -0.0003
2 2,784,937,986 1.0239 1.0244 -0.0005
2 4,368,529,922 0.9964 1.0025 -0.0061
4 540,577,412 1.1310 1.1354 -0.0044
4 699,722,756 1.1102 1.1124 -0.0022
4 1,097,148,164 1.0762 1.0808 -0.0046
4 1,583,571,460 1.0503 1.0490 0.0013
4 2,795,100,164 1.0133 1.0126 0.0007
4 4,383,854,084 0.9866 0.9906 -0.0040
8 545,340,552 1.1234 1.1231 0.0003
8 705,690,632 1.1030 1.0997 0.0033
8 1,105,918,728 1.0695 1.0688 0.0007
8 1,595,669,000 1.0440 1.0383 0.0057
8 2,815,424,520 1.0077 1.0016 0.0061
8 4,414,502,408 0.9814 0.9794 0.0020

Table 14: Prediction of the theoretical scaling
law (Equation (4)) for Pile.
P Parameters Lpred Ltrue Error

1 535,813,376 2.1129 2.1113 0.0016
1 693,753,856 2.0726 2.0671 0.0055
1 1,088,376,320 2.0069 2.0027 0.0042
1 1,571,472,384 1.9574 1.9539 0.0035
1 2,774,773,760 1.8872 1.8876 -0.0004
1 4,353,203,200 1.8367 1.8451 -0.0084
2 538,195,842 2.0700 2.0772 -0.0072
2 696,738,818 2.0317 2.0363 -0.0046
2 1,092,762,882 1.9695 1.9730 -0.0035
2 1,577,522,690 1.9225 1.9266 -0.0041
2 2,784,937,986 1.8559 1.8610 -0.0051
2 4,368,529,922 1.8080 1.8137 -0.0057
4 540,577,412 2.0482 2.0544 -0.0062
4 699,722,756 2.0110 2.0128 -0.0018
4 1,097,148,164 1.9505 1.9509 -0.0004
4 1,583,571,460 1.9048 1.9040 0.0008
4 2,795,100,164 1.8400 1.8394 0.0006
4 4,383,854,084 1.7935 1.7938 -0.0003
8 545,340,552 2.0364 2.0364 -0.0000
8 705,690,632 1.9998 1.9933 0.0065
8 1,105,918,728 1.9403 1.9318 0.0085
8 1,595,669,000 1.8953 1.8856 0.0097
8 2,815,424,520 1.8315 1.8218 0.0097
8 4,414,502,408 1.7857 1.7772 0.0085

We also test our derived theoretical parallel scaling law (Equation (4)), in which the correlation
coefficient ρ is treated as a constant to fit. Tables 11 and 12 present the fitted parameters and
evaluation metrics, while Tables 13 and 14 show the fitted results. It is evident that, whether for
Stack or Pile, treating ρ as a constant yields fitting accuracy that is inferior to the previously proposed
logarithmic parallel scaling law.

27

F Training Loss for Pile and Stack-V2-Python

Figure 7 illustrates the curve of loss versus data size in our scaling law experiments. It clearly shows
that scaling P yields benefits, regardless of the data scale.

0B 10B 20B 30B 40B
Training Tokens

1.15

1.20

1.25

1.30

1.35

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python (0.5B Model)
P = 1
P = 2
P = 4
P = 8

(a)

0B 10B 20B 30B 40B
Training Tokens

1.10

1.15

1.20

1.25

1.30

1.35

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python (0.7B Model)
P = 1
P = 2
P = 4
P = 8

(b)

0B 10B 20B 30B 40B
Training Tokens

1.10

1.15

1.20

1.25

1.30

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python (1.1B Model)
P = 1
P = 2
P = 4
P = 8

(c)

0B 10B 20B 30B 40B
Training Tokens

1.05

1.10

1.15

1.20

1.25

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python (1.6B Model)
P = 1
P = 2
P = 4
P = 8

(d)

0B 10B 20B 30B 40B
Training Tokens

1.0

1.05

1.10

1.15

1.20

1.25

Tr
ai

ni
ng

 L
os

s
Stack-V2-Python (2.8B Model)

P = 1
P = 2
P = 4
P = 8

(e)

0B 10B 20B 30B 40B
Training Tokens

1.0

1.05

1.10

1.15

1.20

1.25

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python (4.4B Model)
P = 1
P = 2
P = 4
P = 8

(f)

0B 10B 20B 30B 40B
Training Tokens

2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40

Tr
ai

ni
ng

 L
os

s

Pile (0.5B Model)
P = 1
P = 2
P = 4
P = 8

(g)

0B 10B 20B 30B 40B
Training Tokens

2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35

Tr
ai

ni
ng

 L
os

s

Pile (0.7B Model)
P = 1
P = 2
P = 4
P = 8

(h)

0B 10B 20B 30B 40B
Training Tokens

1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30

Tr
ai

ni
ng

 L
os

s
Pile (1.1B Model)

P = 1
P = 2
P = 4
P = 8

(i)

0B 10B 20B 30B 40B
Training Tokens

1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25

Tr
ai

ni
ng

 L
os

s

Pile (1.6B Model)
P = 1
P = 2
P = 4
P = 8

(j)

0B 10B 20B 30B 40B
Training Tokens

1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20

Tr
ai

ni
ng

 L
os

s

Pile (2.8B Model)
P = 1
P = 2
P = 4
P = 8

(k)

0B 10B 20B 30B 40B
Training Tokens

1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15

Tr
ai

ni
ng

 L
os

s

Pile (4.4B Model)
P = 1
P = 2
P = 4
P = 8

(l)

Figure 7: Training loss for the Stack-V2-Python and the Pile, smoothing with 0.98 exponential
moving average.

28

G Downstream Datasets

Table 15: HumanEval Pass@1 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 12.8 15.9 17.7 18.3 18.3 19.5
P = 2 15.9 20.7 20.1 19.5 18.9 24.4
P = 4 15.2 17.1 18.3 18.3 22.0 20.7
P = 8 18.9 18.3 21.3 18.3 21.3 25.0

Table 16: HumanEval+ Pass@1 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 11.0 13.4 15.9 15.9 15.9 16.5
P = 2 13.4 17.7 17.7 16.5 16.5 21.3
P = 4 14.0 14.6 15.9 15.9 18.9 18.3
P = 8 15.9 15.2 18.3 16.5 19.5 20.7

Table 17: MBPP Pass@1 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 27.8 30.2 31.5 36.0 40.5 45.8
P = 2 34.4 33.6 36.8 42.6 47.4 47.1
P = 4 35.2 33.9 39.4 40.7 45.5 50.3
P = 8 33.3 36.0 39.9 45.5 47.4 48.4

Table 18: MBPP+ Pass@1 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 23.5 26.2 25.7 31.2 34.7 38.4
P = 2 27.0 27.8 30.7 35.4 39.4 38.9
P = 4 28.0 27.2 32.3 32.5 37.3 40.5
P = 8 29.1 29.1 33.6 38.9 40.5 42.3

Table 19: HumanEval Pass@10 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 25.0 21.3 29.9 29.9 32.9 37.2
P = 2 25.0 27.4 28.0 35.4 34.8 40.2
P = 4 26.2 30.5 28.0 36.0 38.4 40.2
P = 8 29.9 32.3 31.7 37.2 38.4 47.0

Table 20: HumanEval+ Pass@10 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 23.8 21.3 26.8 26.8 29.9 33.5
P = 2 22.0 25.6 24.4 31.7 32.3 36.0
P = 4 24.4 27.4 25.6 33.5 33.5 34.8
P = 8 27.4 29.9 29.9 32.9 36.0 42.7

Table 21: MBPP Pass@10 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 49.2 54.0 57.7 61.4 68.3 66.4
P = 2 57.9 57.7 60.3 64.0 67.7 72.0
P = 4 54.0 59.8 61.1 66.9 70.9 73.5
P = 8 57.7 60.3 66.1 67.5 72.8 75.1

Table 22: MBPP+ Pass@10 (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 40.2 44.7 47.9 51.6 54.5 56.3
P = 2 46.8 48.4 50.5 54.2 58.2 60.6
P = 4 43.7 49.5 52.1 56.6 59.0 62.7
P = 8 46.0 50.8 56.6 56.1 60.6 62.2

Table 23: WinoGrande Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 51.9 51.2 51.6 52.2 53.5 54.7
P = 2 51.0 51.4 53.0 53.3 56.0 57.4
P = 4 52.4 53.0 53.5 54.5 56.7 56.4
P = 8 51.7 53.6 55.0 53.4 55.6 56.9

Table 24: Hellaswag Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 35.7 37.4 40.1 42.6 46.7 49.3
P = 2 36.8 38.4 41.3 44.5 48.4 51.9
P = 4 37.4 39.4 42.9 45.7 50.0 53.8
P = 8 38.6 40.6 44.1 46.8 51.0 54.6

Table 25: OpenBookQA Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 26.0 28.8 28.2 28.0 29.0 32.4
P = 2 26.8 26.6 27.8 29.8 30.6 29.8
P = 4 26.6 29.0 29.8 29.4 31.0 32.0
P = 8 26.8 27.2 29.4 31.0 31.6 30.6

Table 26: PiQA Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 65.0 65.8 66.9 67.5 68.8 69.5
P = 2 65.7 66.8 67.4 68.5 70.5 71.3
P = 4 65.8 66.7 68.0 68.8 70.6 72.1
P = 8 66.5 66.9 67.8 69.5 70.9 71.5

Setup for 42B token experiments For HumanEval(+) [12] and MBPP(+) [3], we use the EvalPlus
framework [53] for evaluation, where Pass@1 employs greedy decoding and Pass@10 employs a
temperature of 0.8. Considering that the pretrained base model cannot follow instructions, we use the
direct completion format. For general tasks, we employ lm-eval harness [6] and report normalized
accuracy when provided. The number of few-shot mostly follows existing research configurations.
Benchmarks include: WinoGrande (5-shot, Sakaguchi et al. [74]), Hellaswag (10-shot, Zellers et al.
[98]), OpenBookQA (5-shot, Mihaylov et al. [62]), PiQA (5-shot, Bisk et al. [7]), ARC-Easy and
ARC-Challenge (25-shot, Clark et al. [15]; we reporting the average of both), and SciQ (3-shot, Welbl
et al. [92]).

29

Table 27: ARC Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 36.9 38.5 40.5 42.1 44.7 46.4
P = 2 38.6 39.9 40.9 43.2 45.9 49.1
P = 4 39.1 39.9 41.1 44.2 47.4 48.8
P = 8 39.4 39.8 42.0 44.8 48.2 49.4

Table 28: SciQ Performance (%)
N 0.5B 0.7B 1.1B 1.6B 2.8B 4.4B

P = 1 78.9 81.7 85.2 86.1 88.5 91.0
P = 2 80.8 83.2 84.0 87.3 90.5 91.4
P = 4 82.3 82.7 84.4 87.2 91.2 91.7
P = 8 81.3 83.0 86.9 88.9 91.2 94.2

Setup for 1T token experiments In the 1T token experiments, we use more challenging datasets for
comprehensive testing, including MMLU (5-shot, Hendrycks et al. [30]) and RACE (4-shot, Lai et al.
[43]). In addition, we introduce mathematics reasoning datasets, including GSM8K (4-shot, Cobbe
et al. [17]), GSM8K-CoT (8-shot), and MATH (4-shot, Hendrycks et al. [31]; using the Minerva
evaluation rules [47]). When evaluating the Instruct model, we also use IFEval (0-shot, Zhou et al.
[103]) and report the average among four metrics provided by lm-eval harness.

Tables 15 to 28 show the downstream task performance in the 42B token experiments. We report the
average of these performances in the main text (Tables 2 and 3).

H Compared with Inference-time Parallel Scaling

Some training-free inference-time scaling methods also expand parallel computation during the
inference phase, with Beam Search and Majority Voting being representative methods. We applied
Beam Search and Majority Voting to the trained Baseline-1.8B and compared it with PARSCALE to
emphasize the importance of expanding parallel computation during the training phase. It is worth
mentioning that these methods cannot be applied to the general tasks in Table 4 because these tasks
primarily evaluate next-token prediction.

Table 29: Comparison with Beam-Search.
Number of Parallels Method GSM8K GSM8K-CoT Minerva MATH

1 - 28.7 35.9 12.0

2 PARSCALE 32.6 35.6 13.0
2 Beam-Search 29.3 37.8 13.6
2 Majority Voting (temp=0.2) 28.2 - 12.0
2 Majority Voting (temp=0.8) 19.7 - 7.5

4 PARSCALE 34.7 40.8 14.5
4 Beam-Search 27.7 37.8 12.5
4 Majority Voting (temp=0.2) 31.5 - 12.6
4 Majority Voting (temp=0.8) 25.7 - 8.5

8 PARSCALE 38.4 43.7 16.4
8 Beam-Search 22.5 30.1 10.0
8 Majority Voting (temp=0.2) 32.8 - 14.5
8 Majority Voting (temp=0.8) 32.0 - 10.8

The results are shown in Table 29. It can be observed that Beam Search is only effective when
n_beams = 2. As n_beams increases, the performance of Beam Search actually decreases. This
indicates that, without a strong verifier, it is difficult for LLM alone to select the correct result from
multiple sampling results. This aligns with the finding in [81]. This experiment further emphasizes
the importance of expanding parallel computation in both the training stage and inference stage.

I Instruction Tuning

We follow standard practice to post-train the base models, to explore whether PARSCALE can enhance
performance during the post-training stage. We conducted instruction tuning on four checkpoints
(P ∈ {1, 2, 4, 8}) from the previous pre-training step, increasing the sequence length from 2048 to
8192 and the RoPE base from 10,000 to 100,000, while keeping other hyperparameters constant. We

30

Table 30: Comparison of the performance
of different Instruct models, where the few-
shot examples are treated as a multi-turn
conversation.

IFEval MMLU GSM8K
0-shot 5-shot 4-shot

SmolLM-1.7B-Inst 16.3 28.4 2.0

Baseline-Inst (P = 1) 54.1 34.2 50.3
PARSCALE-Inst (P = 2) 55.8 35.1 55.3
PARSCALE-Inst (P = 4) 58.4 38.2 54.8
PARSCALE-Inst (P = 8) 59.5 41.7 56.1

used 1 million SmolTalk [2] as the instruction tuning data and trained for 2 epochs. We refer to these
instruction models as PARSCALE-Inst.

The experimental results in Table 30 show that when P increases from 1 to 8, our method achieves a
5% improvement on the instruction-following benchmark IFEval, along with substantial gains in the
general task MMLU and the reasoning task GSM8K. This demonstrates that the proposed PARSCALE
performs effectively during the post-training phase.

J Continual Pre-training Qwen-2.5 3B Model

0B 10B 20B 30B 40B
Training Tokens

1.0

0.93
0.95
0.98

1.02
1.05
1.07
1.10

Tr
ai

ni
ng

 L
os

s

Stack-V2-Python
P = 1
P = 2
P = 4
P = 8

(a)

0B 10B 20B 30B 40B
Training Tokens

1.65

1.70

1.75

1.80

1.85

Tr
ai

ni
ng

 L
os

s

Pile
P = 1
P = 2
P = 4
P = 8

(b)

Figure 8: Loss for continual pre-training the Qwen-2.5-3B model on the two datasets.

Figures 8(a) and 8(b) illustrates the training loss after continuous pre-training on Stack-V2 (Python)
and Pile. Notably, Qwen2.5 has already been pre-trained on 18T of data, which possibly have
significant overlap with both Pile and Stack-V2. This demonstrates that improvements can still be
achieved even with a thoroughly trained foundation model and commonly used training datasets.

K Discussion and Future Work

More Interpretation of Scaling Law Claims Our analysis relies on fitting a log power-law
relationship to empirical scaling data using Huber loss, which is less sensitive to outliers than
standard squared loss. While this approach improves robustness, it does not, by itself, constitute
rigorous statistical evidence for the existence of a true power-law distribution in the underlying
data. As emphasized by Clauset et al. [16], identifying power laws in empirical data is notoriously
challenging and requires careful model comparison, goodness-of-fit testing, and consideration of
alternative functional forms (e.g., log-normal or exponential). Future work could strengthen these
conclusions by applying more rigorous scaling law detection protocols as outlined in the statistical
literature.

Training Inference-Optimal Language Models Chinchilla [36] explored the scaling law to
determine the training-optimal amounts for parameters and training data under a training FLOP
budget. On the other hands, modern LLMs are increasingly interested on inference-optimal models.
Some practitioners use much more data than the Chinchilla recommendation to train small models

31

due to their high inference efficiency [70, 2, 76]. Recent inference-time scaling efforts attempt to
provide a computation-optimal strategy during the inference phase [95, 80], but most rely on specific
scenarios and datasets. Leveraging the proposed PARSCALE, determining how to allocate the number
of parameters and parallel computation under various inference budgets (e.g., memory, latency, and
batch size) to extend inference-optimal scaling laws [76] is a promising direction.

Further Theoretical Analysis for Parallel Scaling Laws One of our contributions is quantitatively
computing the impact of parameters and computation on model capability. Although we present
some theoretical results (Proposition 1), the challenge of directly modeling DIVERSITY limits us to
using extensive experiments to fit parallel scaling laws. Why the diversity is related to logP , is there
a growth rate that exceeds O(logP), and whether there is a performance upper bound for P ≫ 8,
remain open questions.

Optimal Division Point of Two-Stage Strategy Considering that PARSCALE is inefficient in the
training phase, we introduced a two-stage strategy and found that LLMs can still learn to leverage
parallel computation for better capacity with relatively few tokens. We currently employ a 1T vs.
20B tokens as the division point. Whether there is a more optimal division strategy and its trade-off
with performance is also an interesting research direction.

Application to MoE Architecture Similar to the method proposed by Geiping et al. [27],
PARSCALE is a computation-heavy (but more efficient) strategy. This is somewhat complementary
to sparse MoE [23, 77], which is parameter-heavy. Considering that MoE is latency-friendly while
PARSCALE is memory-friendly, exploring whether their combination can yield more efficient and
high-performing models is worth investigating.

Application to Other Machine Learning Domains Although we focus on language models,
PARSCALE is a more general method that can be applied to any model architecture, training algorithm,
and training data. Exploring PARSCALE in other areas and even proposing new scaling laws is also a
promising direction for the future.

L Broader Impacts

LLMs present certain potential risks, such as generating offensive language, perpetuating social
biases, and leaking private information. While the public release of all our models and the insights
we provide to scaling LLMs could inadvertently contribute to the proliferation of these harms, it
is important to note that there are already larger and more capable models freely available that can
also be used in harmful ways. We believe that the benefits of open-source releasing our models and
research can outweigh the associated risks.

M Visualization for Different Parallel Streams

In the output aggregation, we assign different dynamic weights to different streams. These weights
indicate the contribution ratio of different parallel streams to the next token prediction. We visualize
the stream that contributes the most to each token (i.e., the stream with the highest aggregated weight),
based on the 4.4B model pre-trained on the Pile. Tokens of the same color indicating that these tokens
are primarily contributed by the same stream. Tables 31 to 33 visualize the results. An interesting
observation is the locality of the colors: tokens in close proximity are often primarily contributed by
the same stream, especially when P is relatively small (e.g., P = 2).

32

Table 31: Parallel stream visualization, where paragraphs are sampled from wikitext [61]. Tokens
with the same color indicate they are primarily contributed by the same stream.

P = 2

Somerset progressed to the second round of the competition after Trinidad and
Tobago beat Deccan in the final group match , but lost Trescothick , who flew
home after a recurrence of his illness . Wes Durston , who replaced Trescothick
in the side , top - scored for Somerset in their next match , making 57 . Only two
other players reached double - figures for the county , and the Diamond Eagles
chased down the total with eight balls to spare . Somerset went into their final
match , against the New South Wales Blues with a slim mathematical chance
of progressing , but a strong bowling display from Brett Lee and Stuart Clark
restricted Somerset to 111 , which the Australian side reached with ease .

P = 4

Somerset progressed to the second round of the competition after Trinidad and
Tobago beat Deccan in the final group match , but lost Trescothick , who flew
home after a recurrence of his illness . Wes Durston , who replaced Trescothick
in the side , top - scored for Somerset in their next match , making 57 . Only two
other players reached double - figures for the county , and the Diamond Eagles
chased down the total with eight balls to spare . Somerset went into their final
match , against the New South Wales Blues with a slim mathematical chance
of progressing , but a strong bowling display from Brett Lee and Stuart Clark
restricted Somerset to 111 , which the Australian side reached with ease .

P = 8

Somerset progressed to the second round of the competition after Trinidad and
Tobago beat Deccan in the final group match , but lost Trescothick , who flew
home after a recurrence of his illness . Wes Durston , who replaced Trescothick
in the side , top - scored for Somerset in their next match , making 57 . Only two
other players reached double - figures for the county , and the Diamond Eagles
chased down the total with eight balls to spare . Somerset went into their final
match , against the New South Wales Blues with a slim mathematical chance
of progressing , but a strong bowling display from Brett Lee and Stuart Clark
restricted Somerset to 111 , which the Australian side reached with ease .

Table 32: Parallel stream visualization, where paragraphs are sampled from GSM8K [17]. Tokens
with the same color indicate they are primarily contributed by the same stream.

P = 2

Question: A baker is making bread according to a recipe that requires him to use
3 eggs for every 2 cups of flour. If the baker wants to use up the 6 cups of flour
he has remaining in his pantry, how many eggs will he need to use?. Answer: If
he uses 6 cups of flour, the baker will be making 6/2 = «6/23» times the normal
amount that the recipe describes. Thus, he must use 3*3 = «3*=9>9 eggs. #### 9

P = 4

Question: A baker is making bread according to a recipe that requires him to use
3 eggs for every 2 cups of flour. If the baker wants to use up the 6 cups of flour
he has remaining in his pantry, how many eggs will he need to use?. Answer: If
he uses 6 cups of flour, the baker will be making 6/2 = «6/2=» times the normal
amount that the recipe describes. Thus, he must use 3*3 = «3*3=9>eggs. #### 9

P = 8

Question: A baker is making bread according to a recipe that requires him to use
3 eggs for every 2 cups of flour. If the baker wants to use up the 6 cups of flour
he has remaining in his pantry, how many eggs will he need to use?. Answer: If
he uses 6 cups of flour, the baker will be making 6/2 = <6/2=3» times the normal
amount that the recipe describes. Thus, he must use 3*3 = «3*3=99 eggs. #### 9

33

Table 33: Parallel stream visualization, where paragraphs are sampled from RACE [43]. Tokens with
the same color indicate they are primarily contributed by the same stream.

P = 2

The Mysterious Universe By Ellen Jackson and Nic Bishop How did the universe
begin? How big is it? What is dark matter? Cosmologist and expert supernova
hunter Alex Filippenko hopes that supernovas can help us answer some of these
questions. But first we’ve got to find them! Join Alex and his team as they go
on the hunt with huge telescopes and banks of computers. The Time and Space
of Uncle Albert By Russell Stannard What would you say if your uncle asked
you whether you would like to go into space? You’d say, "When do I leave?",
just like the girl in this story. Gedanken is speeding across the universe trying to
help her uncle answer some questions, such as "How big is space?" and "Where
does gravity come from?" Along the way she also discovers how to get heavier
without getting fat, how to live forever without knowing it, and the strange things
that can happen when you go really fast. George’s Secret Key to the Universe By
Lucy Hawking and Stephen Hawking When George chases his pet pig through a
hole in the fence, little does he expect that he will soon be riding a comet around
Saturn . But just as he discovers the joys of space exploration with the computer
Cosmos, which can open doors anywhere in the universe, everything starts to go
wrong.

P = 4

The Mysterious Universe By Ellen Jackson and Nic Bishop How did the universe
begin? How big is it? What is dark matter? Cosmologist and expert supernova
hunter Alex Filippenko hopes that supernovas can help us answer some of these
questions. But first we’ve got to find them! Join Alex and his team as they go
on the hunt with huge telescopes and banks of computers. The Time and Space
of Uncle Albert By Russell Stannard What would you say if your uncle asked
you whether you would like to go into space? You’d say, "When do I leave?",
just like the girl in this story. Gedanken is speeding across the universe trying to
help her uncle answer some questions, such as "How big is space?" and "Where
does gravity come from?" Along the way she also discovers how to get heavier
without getting fat, how to live forever without knowing it, and the strange things
that can happen when you go really fast. George’s Secret Key to the Universe By
Lucy Hawking and Stephen Hawking When George chases his pet pig through a
hole in the fence, little does he expect that he will soon be riding a comet around
Saturn . But just as he discovers the joys of space exploration with the computer
Cosmos, which can open doors anywhere in the universe, everything starts to go
wrong.

P = 8

The Mysterious Universe By Ellen Jackson and Nic Bishop How did the universe
begin? How big is it? What is dark matter? Cosmologist and expert supernova
hunter Alex Filippenko hopes that supernovas can help us answer some of these
questions. But first we’ve got to find them! Join Alex and his team as they go
on the hunt with huge telescopes and banks of computers. The Time and Space
of Uncle Albert By Russell Stannard What would you say if your uncle asked
you whether you would like to go into space? You’d say, "When do I leave?",
just like the girl in this story. Gedanken is speeding across the universe trying to
help her uncle answer some questions, such as "How big is space?" and "Where
does gravity come from?" Along the way she also discovers how to get heavier
without getting fat, how to live forever without knowing it, and the strange things
that can happen when you go really fast. George’s Secret Key to the Universe By
Lucy Hawking and Stephen Hawking When George chases his pet pig through a
hole in the fence, little does he expect that he will soon be riding a comet around
Saturn . But just as he discovers the joys of space exploration with the computer
Cosmos, which can open doors anywhere in the universe, everything starts to go
wrong.

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the Abstract and Introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix K.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

35

Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

36

Answer: [Yes]
Justification: We only use public training data. The training details are in Appendix C and
the code is available in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Training LLMs is expensive, especially we conducted large-scale scaling law
experiments. However, our scaling law fits show high accuracy (Appendix E), indicating
that the impact of noise is minimal.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments? A

Answer: [Yes]

Justification: We provide the number of GPU hours in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow all the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: See Appendix L.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the assets properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We document our released code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

40

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLMs for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Methodology
	Parallel Scaling Law
	Theoretical Analysis: Can ParScale Achieve Similar Effects as Parameter Scaling?
	Practical Parallel Scaling Laws
	Inference Cost Analysis

	Scaling Training Data
	Two-Stage Pretraining
	Applying to the Off-the-Shelf Pre-Trained Model

	Related Work
	Conclusions
	
	Implementation Details and Pivot Experiments
	Proof for thm:parscalelaw
	Training Details
	Training Loss for OpenWebText with Repeating Data
	Parametric Fitting for the Parallel Scaling Law
	Training Loss for Pile and Stack-V2-Python
	Downstream Datasets
	Compared with Inference-time Parallel Scaling
	Instruction Tuning
	Continual Pre-training Qwen-2.5 3B Model
	Discussion and Future Work
	Broader Impacts
	Visualization for Different Parallel Streams

