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Abstract

Chain-of-Thought (CoT) prompting empow-
ers the reasoning abilities of Large Language
Models (LLMs), eliciting them to solve com-
plex reasoning tasks step-by-step. However,
these capabilities appear only in models with
billions of parameters, which represent a bar-
rier to entry for many users who are forced to
operate on a smaller model scale, i.e., Small
Language Models (SLMs). Although many
companies are releasing LLMs of the same
family with a reduced number of parameters,
these models sometimes produce misleading
answers and are unable to deliver CoT reason-
ing. In this paper, we propose a method to en-
able CoT reasoning over SLMs by introducing
two novel mechanisms. First, we propose align-
ing CoT abilities via Instruction-tuning with
the support of CoT Demonstrations "taught"
by LLMs teacher to SLMs students. Second,
we use Curriculum Learning, a pedagogically
motivated learning method that empowers the
Instruction-tuning phase. Hence, we analyze
the impact on the downstream abilities of four
question-answering benchmarks. The results
show that SMLs can be instructed to reason via
Demonstration produced by LLMs. We move
a step further in research: conceiving SLMs
as human learners, we expose them to a CL
teaching-based approach, obtaining better re-
sults on downstream performances.

1 Introduction

Chain-of-Thought (CoT) prompting enables Large
Language Models (LLMs) to deliver multi-step,
controlled reasoning (Kojima et al., 2023; Wei
et al., 2022), achieving outstanding results in com-
monsense (Bubeck et al., 2023), symbolic (Gaur
and Saunshi, 2023), and mathematical (Liu et al.,
2023) reasoning tasks. LLMs achieve all these
results with at least several billions of parame-
ters, such as GPTs family (OpenAl, 2023), PaLM
(Chowdhery et al., 2022), Llama-2-70b (Touvron
et al., 2023) and Mistral (MistralAI 2023).
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Figure 1: In Instruction-tuning, the smaller models
instruct themselves using the reasoning generated by
the larger models. In a zero-shot scenario, we elicit
a larger model to answer complex questions through
Chain-of-Thought reasoning. Moreover, we evaluate
the reasoning chain using Curriculum Learning metrics
to facilitate the instruction phase and expose the Demon-
strations in a meaningful way.

Small Language Models (SLMs) seem to use
Chain-of-Thought (CoT) prompting in a less ef-
fective way. Although these models are highly
functional across different tasks, the CoT prompt-
ing mechanism only proved beneficial for models
at a certain threshold scale (e.g., with more than
60B parameters (Wei et al., 2023)). SLMs are cru-
cial in fostering research since these are smaller
versions of LLMs that are often open-source and
accessible to most researchers, e.g., Llama-2-7b
and Llama-2-13b (Touvron et al., 2023). Yet, these
SLMs produce illogical answers when prompted
under the CoT framework.



In this work, we propose an approach to align
the reasoning abilities of the SMLs (students) with
the LLLMs (teachers) via Instruction-tuning-CoT,
that is, an instruction tuning over CoT Demonstra-
tions delivered from larger models (see Figure 1).
With respect to the fundation teacher-student ap-
proach (Magister et al., 2023; Ho et al., 2023a; Li
et al., 2023), we move a step further by introducing
the Instruction-tuning via CoT, and, with respect
to (Ranaldi and Freitas, 2024; Paul et al., 2024),
we improve the strategies to expose the student to
examples in a reasonable, pedagogically-motivated
order using Curriculum Learning (Bengio et al.,
2009). Hence, starting from the idea that humans
acquire first elemental concepts and then, gradually,
more complex ones, Bengio et al. (2009) proposed
Curriculum Learning (CL) and demonstrated its
benefits in several tasks. We adopt this idea to re-
order the Instruction-tuning Demonstrations in a
meaningful way. In particular, we evaluate the rea-
soning chains that are answers delivered by teach-
ers via CoT prompting to elicit student learning.

This leads to the target research questions, which
are the focus of this paper:

RQ1) How does Instruction-tuning via Demon-
strations impact the reasoning abilities of students
models? And what is the effect of Demonstrations
delivered with the Chain-of-Thought reasoning pro-
cess?

RQ2) How important is reasoning chain valua-
tion to facilitate the presentation of demonstrations
during Instruction-tuning?

To answer these questions, we select Llama-
2-7b, Llama-2-13b (Touvron et al., 2023) as stu-
dents and Llama-2-70b, and GPT-3.5 as teachers.
Hence, we conduct an extensive analysis using four
question-answering benchmarks. We use Llama-2-
70 and GPT-3.5 to deliver Answers at the core of
the Demonstrations (see Fig. 1) to instruct Llama-
2-7 and -13. Furthermore, in order to expose the
students to Demonstrations delivered by teachers
we evaluate the complexity of the reasoning chains
present in CoT Answers. Hence, we propose a
metric based on informativeness comprehensibility
used as a pivot in the Instruction-tuning phase.

Behind a comprehensive analysis, we show that
the Instruction-tuning approach on Demonstrations
instructs students, and they outperform baseline
SLMs in all proposed benchmarks. Moreover, the
students exposed to the Demonstrations via the CL
approach outperformed students instructed via non-
CL.

Our findings can be summarized as follows:

i) The Instruction-tuning of SLM students via
Demonstrations delivered by an LLM teacher out-
performed the baselines in terms of downstream
performance. The SLMs instructed via Demon-
strations consistently outperformed the baselines
defined by non-tuned SLMs on the four proposed
question-answering benchmarks.

ii) The CL-based Instruction-tuning approach
outperforms standard Instruction-tuning. Llama-2-
7 and Llama-2-13, instructed via the CL method,
outperform the instructed models without CL.

iii) Finally, the CL method favors the alignment
of CoT abilities within the family. In fact, Llama-2-
7 and Llama-2-13 exposed to CL. Demonstrations
produced by Llama-2-70 outperform students in-
structed by GPT-3.5 teachers in other SMLs as
well.

2 Method

In order to align the reasoning abilities of smaller
Language Models using further knowledge gen-
erated by larger Language Models, we propose
three steps, as shown in Figure 1. In the first part,
there is an annotation phase where the Large Lan-
guage Models (LLMs) systematically prompt gen-
erate outputs (Section 2.1). The outputs will be the
core of Demonstrations used during the Instruction-
tuning phase from the smaller Language Models,
presented in Section 2.2. However, the Curriculum
Learning approach is behind the Instruction-tuning
phase, where the Demonstrations are reorganized
following our measure introduced in Section 2.3.

2.1 Teacher Model

As teacher model, we selected the largest Llama
version (Touvron et al., 2023), that is, Llama-2-70b,
and in terms of comparison, GPT-3.5' (OpenAl,
2023). We selected GPT-3.5 because it generates
high-quality data with and without the CoT prompt-
ing approach, as shown in (Fu et al., 2023). Mean-
while, Llama-2-70b because it has smaller versions
that can be used as students of the same family
(presented in Section 2.2), and these smaller ver-
sions obtain remarkable results despite the reduced
number of parameters. In particular, as teacher
model, we used the "chat" version of the LLM
called Llama-2-70-chat. We selected this version
because, as reported by Touvron et al. (2023), it

'"We use GPT-3.5-turbo, however in the rest of work we
will use only GPT-3.5



is optimized for dialogue use cases and provides
better demonstrations. In the rest of the paper, we
will call this model Llama-2-70.

Hence, we proposed the following input-prompt
in a zero-shot scenario:

Choose the answer to the question only from
options A, B, C, D.

Question: <Question>

Choices:

A) <Optionl>

B) <Option2>

C) <Option3>

D) <Option4>

Answer: Let’s think step by step

Input prompts have a generic structure, but
behind "Answer:" we insert the formula "Let’s
think step by step" as done in (Kojima et al.,
2023; Wei et al., 2022), that is shown in Table 6.

Following the annotation process performed by
LLMs, the answers generated by teachers models
that are the annotations have been used to construct
the Demonstrations (see Table 1).

2.2 Student Model

Several SLMs have been fine-tuned for instruction-
following (Taori et al., 2023) and reinforcement
learning with human feedback (Ouyang et al.,
2022). However, whatever the techniques, the
smaller Language Models> do not seem able to
reproduce the step-by-step reasoning abilities.
Recent work proposes techniques of knowl-
edge distillation (Li et al., 2023), skill-refinement
(Huang et al., 2022), and enriched fine-tuning
(Magister et al., 2023) to teach SLMs to produce
reasoned answers. Following this idea, we ana-
lyzed the impact of Instruction-tuning from Demon-
strations provided by different teachers. Hence, we
chose two SLMs students, Llama-2-7b and Llama-
2-13b (Touvron et al., 2023). In both cases, we used
"chat" versions, i.e., Llama-2-7-chat and Llama-2-
13-chat (versions detailed in Table 7), which we
will refer to in the paper as Llama-2-7 and -13.
Student models are evaluated before and after
the Instruction-tuning phases. In particular, we pro-
pose the standard approach where the students are
instructed via Demonstrations delivered arbitrar-
ily and in the Curriculum Learning manner (intro-
duced in Section 2.3). The structure of Instruction-
tuning stems from Alpaca (Taori et al., 2023),
which uses Demonstrations consisting of an instruc-

*We consider Smaller models with less than 60B of param-
eters based on (Wei et al., 2022).

Instruction
Choose the answer to the question only from
options A, B, C, D.

Input
Question:
triangle?
Choices:
A) ice

B) steam
C) water
D) salt water

Which form can be made into a

Output (that is the Answer produced by teacher)
Answer:

A) ice: Ice is a solid form of water. In solid
form, substances can be molded or shaped into
various forms, including triangles. If you
had a block of ice, you could carve or mold
it into a triangular shape.

B) steam: Steam is the gaseous form of
water. Being a gas, it doesn’t have a fixed
shape. You can’t shape steam into a triangle
without containing it within some form of
solid boundary, and even then, the steam
itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the
shape of its container. You can pour water
into a triangular container, and while the
volume inside would be triangular, the water
itself isn’t inherently triangular.

D) salt water: This is essentially the same
as option C, but with salt dissolved in it.
Being a liquid, it takes the shape of its
container.

Given these considerations, the only
substance among the options that can be shaped
into a triangle by itself is A) Ice.

Table 1: Example of Demonstration. The structure is
composed by: Instruction, Input and Output. In
this case, the last part is the Answer produced by GPT-
3.5 CoT prompted.

tion that, in our case, is fixed, i.e., Choose the
answer to the question only from options
A, B, C, D.,an input which is the question, and
an expected output which, in our case, are the out-
put generated by the LLMs teachers. Table 1 shows
an example of input. Additional details about the
Instruction-tuning steps are provided in Section
3.2.1.

2.3 Curriculum Learning

Aligning the teacher-student reasoning abilities via
Demonstrations delivered by multi-step answers
provided by teachers CoT prompted is a promis-
ing technique. However, there are some aspects
that need to be clarified: what constitutes an an-
swer containing a good reasoning chain and how to
evaluate it to optimize the Instruction-tuning phase.
Following the Curriculum Learning (CL) where



training algorithms can achieve better results when
training data are presented according to the model’s
current skills (Bengio et al., 2009). We propose a
method for evaluating the reasoning chain present
in the CoT Answers (that represent the outputs of
CoT Demonstration) using two fundamental prop-
erties: (1) comprehensibility, that is, the compre-
hensibility of a text according to metrics proposed
by Talburt (1986), and (2) informativeness, that is,
every step of the chain provides new information
that is useful and informative for deriving the gen-
erated answer. We apply this metric to the CoT
Answers provided by the teachers; then, we reorder
the demonstrations according to our measure.

Informativeness To quantify the effectiveness of
each step contributing novel information beneficial
for deriving the final Answer A, we propose an
assessment based on the Entropy and Information
Gain (IG). The Entropy, represented by H (), eval-
uates the unexpected within a given sequence .5,
where S; € A. The entropy is given by:

H(S) == p(w)logopw) (1)

weSs

where p(w) denotes the probability of token w
occurring in the sequence. Hence, we compute the
IG between a previous Sprey and a current sequence

S; as:
IG(Sprem Sz) = H(Sprev + Sz) - H(Sprev) (2)

This metric quantifies how much new information
the current step adds relative to the cumulative con-
tent previously considered. To obtain a comprehen-
sive measure, we calculate the average 1G across
the different steps as follows:

1
dI(Az) = N Z IG(SpreUa Sz) (3)

where N represents the total number of steps in
the Answer or the sequences 5;. We calculate this
value for each answer A; and obtain the maximum
dy,,.. and the minimum dy, , scores. Finally, we
normalize these values:

5 dr(4;) —dy .. .
(4 = WA = hese i e 0, D). o

I’min

where | D| are all answers to a specific benchmark.

Comprehensibility Typical factors for measur-
ing comprehensibility are Speed of perception, Per-
ceivability in peripheral vision, Reflex blink tech-
nique, Eye movements, Cognitively motivated fea-
tures, and Word difficulty. However, it is not always
possible to capture all these features.

Hence, we used the Flesch-Kincaid metric (Tal-
burt, 1986). This metric is used to assess the com-
prehensibility of a text. It is based on the length of
sentences and words within a text and provides a
score that indicates the text’s difficulty level. The
lower the score, the easier it is to read and com-
prehend the text. The formula for calculating the
Flesch-Kincaid Grade Level score is as follows:

do(A;) = 0.39‘W 5
Avg(dn(ws)
1.8 20 15,50

where Avg(dr(A;)) average answer length is the
number of words in a sentence divided by the num-
ber of sentences, and Avg(dy,(w;) is the average
word length, i.e. is the number of syllables per
word divided by the number of words. The value
0.39 is used to scale the effect of the average sen-
tence length to compare it to the effect of the aver-
age word length, weighted by 11.8. The final score
is then adjusted by subtracting the value of 15.59,
which adjusts the score scale to match the grading
levels used in education more closely. We calcu-
late this value for each Answer A; and obtain the
maximum dc,,,. and the minimum dc¢,,,, scores.
Finally, we normalize these values:

C o de(A) —d

do(A;) = Cmin i € [0,|D]]. (6)

dcmaa: - dcmzn

Constructing the CL-Demonstration We
gather the annotations (answers) delivered by
the CoT-prompted teachers (as explained in
Section 2.1), and we estimate the informativeness
dr(A;) and complexity de(A;) for each answer
A;, Vi € |D|.

Then we merge the two values in:

dro(Ay) = dr(Ay) + de(As) 7)

We use d;c(A;) as a pivot value to reorder the
Answers provided by the teachers. The Answers
(which form the output of the Demonstrations)
will be delivered in the Instruction-tuning phase
to the students in ascending order with respect
to the value d;c(A;). These heuristics are very



lightweight: using only 16GB of memory, we can
process up to 20k Responses per second to produce
the informativeness and comprehensibility metrics.

3 Experimental Setup

In order to make the experiments comparable
with state-of-the-art models, we use four bench-
marks (introduced in Section 3.1) that are gen-
erally used to assess the abilities of Large Lan-
guage Models (LLMs). Moreover, to conduct
the Instruction-tuning phase on the Small Lan-
guage Models (SMLs), we use two approaches:
the first one is presented in Section 3.2, which
we call Instruction-tuning on Demonstrations; the
second is based on the Curriculum Learning (CL)
approach where the students are exposed to CL-
Demonstrations that are Demonstrations reordered
in a CL way, as exemplified in Section 2.3. All
code is available in the supplementary material, to
be released if accepted.

3.1 Data

General Commonsense Reasoning We evalu-
ate the models’ ability to perform general reason-
ing on the CommonSenseQA (Talmor et al., 2019)
(CSQA) and OpenBookQA (Mihaylov et al., 2018)
(OBQA). CommonSenseQA is one of the best-
known datasets of answers to multiple-choice ques-
tions dealing with different types of general com-
monsense knowledge. OpenBookQA is a resource
that contains questions requiring multi-step reason-
ing, common knowledge, and rich text comprehen-
sion. It is inspired by high school-level open-book
exams in physics and biology, aiming to assess
human comprehension and application of founda-
tional concepts.

Physical Interaction Reasoning We evaluate the
models’ ability to perform physical reasoning on
the Interaction Question Answering (PIQA) (Bisk
etal., 2019). It is a resource consisting of everyday
situations with typical and atypical solutions.

Social Interaction Reasoning We evaluate the
models’ ability to perform social reasoning on
the Social Interaction Question Answering (SIQA)
(Sap et al., 2019). It is a benchmark focusing on
reasoning about people’s actions and social impli-
cations. The actions in Social IQa cover various
social situations and candidates for plausible and
not plausible answers.

Splitting Details Since a test split for all bench-
marks is not always available open-source, we
adopt the following strategy: we use 4000 ex-
amples with equally distributed target classes as
training data and the validation versions found on
huggingface as test data. We performed this split
because we needed to observe the impact of the
responses provided by the teacher models on dif-
ferent benchmarks. The same is true for validation
since we needed open-source and reproducible data
to conduct a detailed evaluation of the student mod-
els. In Table 9, we report the quantitative informa-
tion, global, and splitting ratios, and in Table 8, we
show one example for each benchmark. The data
are fully accessible and open-source, as described
in Table 10.

3.2 Teaching to Reason

We selected Llama-2-70 and GPT-3.5 as the teach-
ers (introduced in Section 2.1). Consequently, the
LLMs are prompted in the zero-shot scenarios, as
shown in Table 5 and Table 6.

We selected Llama-2-7 and Llama-2-13 (Tou-
vron et al., 2023) as student models (as described
in Section 2.2). Therefore, the students models
are Instruction-tuned via Demonstrations, as intro-
duced in Section 3.2, and via CL-Demonstrations,
as explained in Section 2.3. Table 1 shows a
Demonstration containing the Instruction, Input,
and, as Output, the Answer-delivering CoT, an out-
put generated by GPT-3.5 CoT-prompted.

3.2.1 Models Setup

We conduct the Instruction-tuning phases using
QLoRA proposed by Dettmers et al. (2023). This
approach allows tuning to be conducted while re-
ducing memory usage and preserving the perfor-
mances. We follow the training approach proposed
in Alpaca (Taori et al., 2023). Our models are
trained for three epochs and set the learning rate
as 0.00002 with 0.001 weight decay. We use the
cosine learning rate scheduler with a warmup ratio
of 0.03. We conducted our experiments on a work-
station equipped with two Nvidia RTX A6000 with
48GB of VRAM.

3.3 Evaluation

The most commonly used evaluation methods for
question-answering tasks are language-model prob-
ing, in which the option with the highest probability
is chosen (Brown et al., 2020), and multiple-choice
probing, in which the models are asked to answer.
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines) and after on
Demonstrations and CL-Demonstrations. Moreover, there are the teachers’ performances also shown in Table 4

The evaluation is performed with a function taking
the maximum value and, in the second case, with
string matching. The second method is widely used
in recent evaluations because it applies to models
such as GPT-3.5 and GPT-4 (OpenAl, 2023) where
probability values cannot be accessed. In our ex-
periments, we chose the latter to have a compara-
ble and scalable pipeline. Hence, we performed a
string matching between the generated outputs and
the targets.

4 Results & Discussion

Language Models that do not get it can be elicited
to do it through the knowledge of teacher models.
These conclusions can be observed in Figure 2,
where we reported the downstream performances
without the Instruction-tuning phase (see the Base-
line) and the Instruction-tuning on Demonstrations.
As discussed in Section 4.1, Small Language Mod-
els (SLMs) CoT prompted obtained weak results.
In contrast, models that are instructed via Chain-
of-Thought (CoT) Demonstrations, i.e., Demon-
strations produced by CoT-prompted Large Lan-
guage Models (LLMs), outperform non-instructed
models (Section 4.2). However, although Demon-
strations produced better students, the complete
alignments between students and teachers are re-
alized with the Curriculum Learning approach, as
discussed in Section 4.3. In particular, the students
instructed via the CL approach (Instruction-tuning

CL-Demonstration in Figure 2) outperformed the
students instructed via standard Instruction-tuning.

Finally, the CL approach delivers the teacher-
student family-alignment. In Figure 2 (horizontal
lines), it is possible to observe the phenomenon of
family-alignment between Llama-2-70 and Llama-
2-7 and -13 in more detail in Section 4.4.

4.1 CoT-abilities of Small Language Models

Chain-of-Thought (CoT) prompts do not consis-
tently deliver downstream performance improve-
ments. SLMs, i.e., with fewer parameters, have not
benefitted the prompting with the CoT mechanism.
In particular, we evaluated performance on four
question-answering benchmarks, described in Sec-
tion 3.1, using two versions of Llama-2-chat (7b-
13b billion). Proposing a classical prompt (which
we call "Baseline") and a CoT prompt (Table 5 and
Table 6), we obtained the performances in Table 2.

The results confirm what Wei et al. (2022) have
claimed about the limitations of the emergent CoT
prompting abilities that are not observable in SLMs.
Moreover, using CoT prompting leads to model
confusion with subsequent degradation of down-
stream results. It is possible to observe these phe-
nomena in OpenBookQA (OBQA) and Common-
SenseQA (CSQA) (down arrows in Table 2). In par-
ticular, there is a marked deterioration in Llama-2-7
(see ), which has half the parameters of Llama-2-
13 (see ).



The same behavior was not observed for
Physical- and Social-Interaction Question Answer-
ing (PIQA) and (SIQA). In fact, not consider-
ing the nature of benchmarks, unlike the oth-
ers, they are always question-answering multiple-
choice-questions but have fewer possible choices,
as shown in Table 9. In this regard, we hypothesize
that the most controllable scenarios, where chain
reasoning is limited to fewer options, are reason-
able by SLMs elicited with CoT prompts.

Benchmarks Llama-2-7 Llama-2-13
Baseline CoT | Baseline CoT
OBQA 52.5 49.5] 57.6 55.6)
CSQA 58.6 50.61) 63.4 60.8]
SIQA 46.5 45.3 48.3 47.6
PIQA 61.6 63.8 66.4 68.2

Table 2: Accuracies of Llama-2-7 and Llama-2-13, both
without further tuning, on testing data with the standard
prompt (Baseline) (see Table 5) and CoT prompt (CoT)
(see Table 6).

4.2 The Instruction-tuning Method

Instruction-tuning led by Large Language Models
(teachers models), able to reason elicit the Smaller
Language Models (students models) to do the same.
This is shown in Figure 2. The student models
behind Instruction-tuning on Demonstrations pro-
duced by teacher models outperformed the base-
lines in the four proposed benchmarks. While per-
formances are conspicuous improvements overall,
they have sensible variations. The teacher models
have different characteristics. GPT-3.5 is trained on
175B and Llama-2-70 on 70B of parameters. They
consequently achieve different performances in the
proposed benchmarks. Table 4 shows the perfor-
mances in the zero-shot scenario (CoT prompting
and not) on the data used to conduct the Instruction-
tuning phase and on the same test set used to evalu-
ate the proposed models.

Although the performances on the "training set"
are different (see the CoT performances of GPT-3.5
and the same for Llama-2-70 in Table 4), this bias
does not affect the students. The Llama-2-7 and -13
with GPT-3.5 as teacher outperform the Llama-2-7
and -13 with Llama-2-70 as teacher only on OBQA.
As far as CSQA and PIQA are concerned, there is
a balance that is not present in SIQA, where the
students of Llama-2-70 outperform the others.

However, in the Instruction-tuning method, in-
struction is conducted using Demonstrations (com-
posed of Answers provided by teachers) that are de-

livered arbitrarily. Therefore, we propose to study
both the intrinsic complexity of the answers and
their impact on the students’ exposure. In partic-
ular, we propose a CL-based instruction approach
where demonstrations are delivered to students in a
meaningful order (Section 4.3).

4.3 The Impact of Curriculum Learning

Instruction-tuning via Curriculum Learning
Demonstrations elicits the reasoning abilities
of students. The students gradually exposed
to increasingly meaningful Demonstrations
(CL-Demonstrations) learn better than those
exposed to arbitrary Demonstrations.  This
is shown in Figure 2 (bars Instruction-tuned
CL-Demonstrations), where Llama-2-7 and -13
consistently outperformed the other models.

The benchmarks where the most significant ef-
fects can be observed are CSQA and OBQA, with
an increase in average accuracy scores of 6 and
5 points, respectively. The same effects are less
evident in PIQA and SIQA. One possible reason
for this phenomenon might be tied again to the na-
ture of the benchmarks, as hypothesized in Section
4.1. To analyze this phenomenon, we studied the
components of the complexity measure proposed
in Section 4.5.

4.4 The role of CL in family-alignment

Instruction-tuning via CL-Demonstrations still
aligns students’ reasoning abilities with fam-
ily teachers, even as instruction decreases. In
fact, from Figure 2, we can observe that the
performances of students instructed via CL-
Demonstrations delivered by teachers from the
same family outperform the others.

Moreover, to validate our hypothesis of family-
alignment, we introduced Mistral-7b (MistralAl,
2023), a new SLMs with 7 billion parameters that
outperforms the Llama-2-13 version on several
benchmarks, as shown by MistralAI (2023). In par-
ticular, we reproduced the experiments introduced
in Section 4.2. In Figure 3, it can be seen that
Llama-2-7 instructed on different types of Demon-
strations delivered by Llama-2-70 almost consis-
tently outperforms Mistral-7b. These results con-
firm that Demonstrations derived from in-family
teachers have a more significant impact on student
models than the others.
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4.5 Ablation Study

The informativeness and complexity exposed to
students in a meaningful order instruct better stu-
dents. We conducted an Ablation study to esti-
mate the impact of our evaluation measures pro-
posed in Section 2.3. Hence, we reproduced the
same configurations proposed in Section 4.2, but
removed one of the two components (informative-
ness and complexity) presented in Section 2.3. The
results in Table 3 show that students instructed on
CL-Demonstrations ordered by comprehensibility
and informativeness consistently outperform stu-
dents instructed via Demonstrations. The results
show that students instructed on the Demonstra-
tions sorted by informativeness are more produc-
tive in QA tasks with more choices. In comparison,
complexity proved helpful in cases where the num-
ber of choices is minor. Phenomenon manifested in
CSQA and OBQA with 5 and 4 choices and PIQA
and SIQA with 2 and 3 choices, respectively (see
Appendix, Tables 8 and 9).

5 Related Work

5.1 Learning from Explanation

Current methods for conditioning models on task
instructions and provided explanations for individ-
ual data points replace the ancient intermediate
structures (Hase and Bansal, 2022) that used ra-
tionales (Zhang et al., 2016) or inputs (Narang
et al., 2020; Talmor et al., 2020) to learn the models.
Reasoning via the CoT builds upon prior efforts
wherein explanations are viewed as intermediary
constructs produced during inference (Rajani et al.,
2019). Our research stems from the studies of
Shridhar et al. (2023); Ho et al. (2023b). In partic-
ular, we adopt the idea of an LLM teacher and a
second LLM, sometimes smaller, that assumes a
student’s position (Magister et al., 2023). Learning
uses teacher-generated explanations, demonstrating
prompt CoT downstream (Li et al., 2023; Ho et al.,
2023b). Li et al. (2023) claims that massive demon-

strations significantly improve performance over
the single-sample approach Shridhar et al. (2023).

5.2 Large Language Models as a Teacher

Several papers have been published simultaneously,
including those by Ranaldi and Freitas (2024); Paul
et al. (2024), and Saha et al. (2023) that prove
the effect of transferring ability to produce CoT
reasoning from larger to smaller models. Table 11
resumes all main points of these contributions.

Our work goes beyond the following ways: 1)
We propose a method for aligning CoT abilities
via Instruction-tuning through Demonstrations pro-
duced by answers generated by GPT-3.5 and Llama-
2-70. ii) We study how to provide Demonstrations
to students by proposing a measure for evaluating
the Answers provided by teachers. In particular,
we analyze the alignment performance between
in-family and out-family models. iii) Hence, we
propose an approach for improving the alignment
of reasoning abilities between teachers and stu-
dents by employing our evaluations to expose the
students meaningfully.

6 Conclusion

In this paper, we propose a method to enable CoT
reasoning over SLMs by introducing two novel
mechanisms. First, we propose aligning CoT abili-
ties via Instruction-tuning with the support of CoT
Demonstrations delivered by LLMs teacher. Sec-
ond, we use the Curriculum Learning approach
to empower the Instruction-tuning phase. Hence,
we analyze the impact on the downstream abilities
of four question-answering benchmarks. Our re-
sults show that SMLs can be instructed to reason
via Demonstration produced by LLMs. We move
a step further in research: conceiving SLMs as
human learners, we expose them to a CL teaching-
based approach, obtaining better results on down-
stream performances.



Limitations

In our contribution, we analyzed the impact of An-
swers delivered by Large Language Models, using
them as Demonstrations to empower the abilities
of Small Language Models. Although we proposed
an extensive study, there are several limitations.
Firstly, only English-language methods, both in
Chain-of-Thought (CoT) methods and task eval-
uation, are considered. In future works, we will
investigate this aspect, starting from Cross-lingual
alignment approaches.

Secondly, dependence on LLMs, which are
closed-source products or not, but sometimes the
training sets are unknown. Although the charac-
teristics of the corpora are reported in the system
reports, these are only processable by some re-
searchers. Analyzing the differences in pre-training
data between models is difficult.

Finally, learning from and with Demonstrations
carries some specific risks associated with automa-
tion. Although a model may generalize its predic-
tions using a seemingly consistent series of natural
language steps, even if the prediction is ultimately
correct, there is no guarantee that the predicted
output comes from a process represented by the
generalization. A user might be overconfident in
the model based on the CoT. Hence, in the future,
we will investigate refinement approaches based
on RLHF and DPO to improve the generalization
abilities of Student models.

Ethic Statement

Although this research enhances the reasoning abil-
ities of smaller Language Models, they still need
to be sufficiently robust for sensitive contexts such
as education. The primary ethical concerns arise
from the text generation process; both the "teacher"
and "student" models might produce misleading
answers. The content is largely influenced by the
input data, which, in our case, are standard bench-
marking tasks peer-reviewed within the NLP do-
main. We intend to release our code; however, like
many generative models, ours can be exposed to
hallucinations.
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Appendix A

Benchmarks
Students OBQA CSQA PIQA SIQA
Llama-2-7 (Llama-2-70)
Arbitrary Teaching 64.7 71.6 80.2 62.8
Teaching via IC 70.5 76.5 84.8 65.3
Teaching via 1 70.29 77.29 81.2 61.8|
Teaching via C 66.4 69.7| 84.31 66.2
Llama-2-7 (GPT-3.5)
Arbitrary Teaching 65.3 70.8 80.5 62.2
Teaching via IC 69.2 74.2 83.3 64.8
Teaching via 1 68.5{ 73.710 79.6} 63.8
Teaching via C 66.3 69.8 83.91 65.71
Llama-2-13 (Llama-2-70)
Arbitrary Teaching 66.5 76.5 81.9 64.5
Teaching via IC' 72.3 82.2 86.2 67.7
Teaching via I 73.4 81.99 80.7y 63.8
Teaching via C' 67.9 76.6 84.37 70.3
Llama-2-7 (GPT-3.5)
Arbitrary Teaching 68.5 77.3 82.6 63.3
Teaching via IC 71.6 80.5 84.9 66.1
Teaching via I 70.81 81.7 81.9 62.7
Teaching via C 68.2| 78.5 82.3 65.91

Table 3: Ablation study on our Instruction-tuning CL-Demonstrations approach.

Benchmarks Llama-2-70 GPT-3.5
Baseline CoT Baseline CoT
Training
OBQA 65.6 71.3 66.2 75.4
CSQA 74.2 79.6 79.3 84.8
SIQA 65.4 67.5 67.6 70.3
PIQA 82.6 85.8 83.5 85.3
Testing
OBQA 65.9 70.8 67.8 74.6
CSQA 73.4 81.8 80.2 83.7
SIQA 64.2 66.9 66.9 71.3
PIQA 82.6 85.6 84.3 85.8

Table 4: Accuracy (%) of Llama-2-70 and GPT-3.5 (teachers) on training and testing data with CoT prompt (CoT)
and with the standard prompt (Baseline).
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Appendix B
Zero-Shot

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?

A) Shark

B) Turtle

C) Giraffe

D) Spider

Answer:

Table 5: Example of Zero-Shot prompting.

Zero-Shot Chain-of-Thought

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?

A) Shark

B) Turtle

C) Giraffe

D) Spider

Answer: Let’s think step by step

Table 6: Example of Zero-Shot Chain-of-Thought prompting.

Appendix C
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/LLlama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7-instruct | mistralai/Mistral-7B-Instruct-v0.1
GPT-3.5-turbo OpenAl API

Table 7: In this table, we list the versions of the models proposed in this work, which can be found on huggingface.co.
We used all the default configurations proposed in the repositories for each model.
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Appendix D

Dataset

Example

OBQA (Mihaylov et al., 2018)

When birds migrate south for the winter, they do it because
A) they are genetically called to. B) their children ask them to.
C) it is important to their happiness. D) they decide to each.

CSQA (Talmor et al., 2019)

Aside from water and nourishment what does your dog need?
A) bone. B) charm. C) petted.
D) lots of attention. E) walked.

PIQA (Bisk et al., 2019)

How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
tape to the glass jar and then press the toilet paper onto the tape.
B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.

SIQA (Sap et al., 2019)

Taylor gave help to a friend who was having trouble keeping up with their bills.
What will their friend want to do next? A) Help the friend find a higher
paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.

Table 8: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA

classes 4 5 2 3
Training

# examples for 1000 800 2000 1330
each class

Test

# examples for ~ 125* 235" 924* 640™
each class (£ 8) (£11) (£18) (£19)

Table 9: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal.

Name | Repository

CSQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_ga
OBQA (Mihaylov et al., 2018) | huggingface.co/datasets/openbookga
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqga

SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qga

Table 10: In this table, we list the versions of the benchmark proposed in this work, which can be found on

huggingface.co.

Work \ Method Teachers \ Students
(Magister et al., 2023) SFT PalLM T5-small, -medium
GPT-3.5 T5-large, -xx1

(Li et al., 2023) SFT GPT-3 175B OPT-1.3b

(Shridhar et al., 2023) SFT GPT-3 175B GPT-2

(Ho et al., 2023b) SFT InstructGPT GPT-3
(text-davinci-002) | (ada,babbage,curie)

Ours Instruction-tuning Llama-2-70b Llama-2-7b, -13b

GPT-3.5 (turbo) Mistral-7b

Table 11: Summary of methods, teacher and student models of previous work, we indicate Supervised Fine-tuning
as (SFT) employed in most previous work.
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huggingface.co/datasets/commonsense_qa
huggingface.co/datasets/openbookqa
huggingface.co/datasets/piqa
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