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Abstract
Chain-of-Thought (CoT) prompting empow-001
ers the reasoning abilities of Large Language002
Models (LLMs), eliciting them to solve com-003
plex reasoning tasks step-by-step. However,004
these capabilities appear only in models with005
billions of parameters, which represent a bar-006
rier to entry for many users who are forced to007
operate on a smaller model scale, i.e., Small008
Language Models (SLMs). Although many009
companies are releasing LLMs of the same010
family with a reduced number of parameters,011
these models sometimes produce misleading012
answers and are unable to deliver CoT reason-013
ing. In this paper, we propose a method to en-014
able CoT reasoning over SLMs by introducing015
two novel mechanisms. First, we propose align-016
ing CoT abilities via Instruction-tuning with017
the support of CoT Demonstrations "taught"018
by LLMs teacher to SLMs students. Second,019
we use Curriculum Learning, a pedagogically020
motivated learning method that empowers the021
Instruction-tuning phase. Hence, we analyze022
the impact on the downstream abilities of four023
question-answering benchmarks. The results024
show that SMLs can be instructed to reason via025
Demonstration produced by LLMs. We move026
a step further in research: conceiving SLMs027
as human learners, we expose them to a CL028
teaching-based approach, obtaining better re-029
sults on downstream performances.030

1 Introduction031

Chain-of-Thought (CoT) prompting enables Large032

Language Models (LLMs) to deliver multi-step,033

controlled reasoning (Kojima et al., 2023; Wei034

et al., 2022), achieving outstanding results in com-035

monsense (Bubeck et al., 2023), symbolic (Gaur036

and Saunshi, 2023), and mathematical (Liu et al.,037

2023) reasoning tasks. LLMs achieve all these038

results with at least several billions of parame-039

ters, such as GPTs family (OpenAI, 2023), PaLM040

(Chowdhery et al., 2022), Llama-2-70b (Touvron041

et al., 2023) and Mistral (MistralAI, 2023).042

Figure 1: In Instruction-tuning, the smaller models
instruct themselves using the reasoning generated by
the larger models. In a zero-shot scenario, we elicit
a larger model to answer complex questions through
Chain-of-Thought reasoning. Moreover, we evaluate
the reasoning chain using Curriculum Learning metrics
to facilitate the instruction phase and expose the Demon-
strations in a meaningful way.

Small Language Models (SLMs) seem to use 043

Chain-of-Thought (CoT) prompting in a less ef- 044

fective way. Although these models are highly 045

functional across different tasks, the CoT prompt- 046

ing mechanism only proved beneficial for models 047

at a certain threshold scale (e.g., with more than 048

60B parameters (Wei et al., 2023)). SLMs are cru- 049

cial in fostering research since these are smaller 050

versions of LLMs that are often open-source and 051

accessible to most researchers, e.g., Llama-2-7b 052

and Llama-2-13b (Touvron et al., 2023). Yet, these 053

SLMs produce illogical answers when prompted 054

under the CoT framework. 055
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In this work, we propose an approach to align056

the reasoning abilities of the SMLs (students) with057

the LLMs (teachers) via Instruction-tuning-CoT,058

that is, an instruction tuning over CoT Demonstra-059

tions delivered from larger models (see Figure 1).060

With respect to the fundation teacher-student ap-061

proach (Magister et al., 2023; Ho et al., 2023a; Li062

et al., 2023), we move a step further by introducing063

the Instruction-tuning via CoT, and, with respect064

to (Ranaldi and Freitas, 2024; Paul et al., 2024),065

we improve the strategies to expose the student to066

examples in a reasonable, pedagogically-motivated067

order using Curriculum Learning (Bengio et al.,068

2009). Hence, starting from the idea that humans069

acquire first elemental concepts and then, gradually,070

more complex ones, Bengio et al. (2009) proposed071

Curriculum Learning (CL) and demonstrated its072

benefits in several tasks. We adopt this idea to re-073

order the Instruction-tuning Demonstrations in a074

meaningful way. In particular, we evaluate the rea-075

soning chains that are answers delivered by teach-076

ers via CoT prompting to elicit student learning.077

This leads to the target research questions, which078

are the focus of this paper:079

RQ1) How does Instruction-tuning via Demon-080

strations impact the reasoning abilities of students081

models? And what is the effect of Demonstrations082

delivered with the Chain-of-Thought reasoning pro-083

cess?084

RQ2) How important is reasoning chain valua-085

tion to facilitate the presentation of demonstrations086

during Instruction-tuning?087

To answer these questions, we select Llama-088

2-7b, Llama-2-13b (Touvron et al., 2023) as stu-089

dents and Llama-2-70b, and GPT-3.5 as teachers.090

Hence, we conduct an extensive analysis using four091

question-answering benchmarks. We use Llama-2-092

70 and GPT-3.5 to deliver Answers at the core of093

the Demonstrations (see Fig. 1) to instruct Llama-094

2-7 and -13. Furthermore, in order to expose the095

students to Demonstrations delivered by teachers096

we evaluate the complexity of the reasoning chains097

present in CoT Answers. Hence, we propose a098

metric based on informativeness comprehensibility099

used as a pivot in the Instruction-tuning phase.100

Behind a comprehensive analysis, we show that101

the Instruction-tuning approach on Demonstrations102

instructs students, and they outperform baseline103

SLMs in all proposed benchmarks. Moreover, the104

students exposed to the Demonstrations via the CL105

approach outperformed students instructed via non-106

CL.107

Our findings can be summarized as follows: 108

i) The Instruction-tuning of SLM students via 109

Demonstrations delivered by an LLM teacher out- 110

performed the baselines in terms of downstream 111

performance. The SLMs instructed via Demon- 112

strations consistently outperformed the baselines 113

defined by non-tuned SLMs on the four proposed 114

question-answering benchmarks. 115

ii) The CL-based Instruction-tuning approach 116

outperforms standard Instruction-tuning. Llama-2- 117

7 and Llama-2-13, instructed via the CL method, 118

outperform the instructed models without CL. 119

iii) Finally, the CL method favors the alignment 120

of CoT abilities within the family. In fact, Llama-2- 121

7 and Llama-2-13 exposed to CL Demonstrations 122

produced by Llama-2-70 outperform students in- 123

structed by GPT-3.5 teachers in other SMLs as 124

well. 125

2 Method 126

In order to align the reasoning abilities of smaller 127

Language Models using further knowledge gen- 128

erated by larger Language Models, we propose 129

three steps, as shown in Figure 1. In the first part, 130

there is an annotation phase where the Large Lan- 131

guage Models (LLMs) systematically prompt gen- 132

erate outputs (Section 2.1). The outputs will be the 133

core of Demonstrations used during the Instruction- 134

tuning phase from the smaller Language Models, 135

presented in Section 2.2. However, the Curriculum 136

Learning approach is behind the Instruction-tuning 137

phase, where the Demonstrations are reorganized 138

following our measure introduced in Section 2.3. 139

2.1 Teacher Model 140

As teacher model, we selected the largest Llama 141

version (Touvron et al., 2023), that is, Llama-2-70b, 142

and in terms of comparison, GPT-3.51 (OpenAI, 143

2023). We selected GPT-3.5 because it generates 144

high-quality data with and without the CoT prompt- 145

ing approach, as shown in (Fu et al., 2023). Mean- 146

while, Llama-2-70b because it has smaller versions 147

that can be used as students of the same family 148

(presented in Section 2.2), and these smaller ver- 149

sions obtain remarkable results despite the reduced 150

number of parameters. In particular, as teacher 151

model, we used the "chat" version of the LLM 152

called Llama-2-70-chat. We selected this version 153

because, as reported by Touvron et al. (2023), it 154

1We use GPT-3.5-turbo, however in the rest of work we
will use only GPT-3.5
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is optimized for dialogue use cases and provides155

better demonstrations. In the rest of the paper, we156

will call this model Llama-2-70.157

Hence, we proposed the following input-prompt158

in a zero-shot scenario:

Choose the answer to the question only from
options A, B, C, D.
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
D) <Option4>
Answer: Let’s think step by step

159

Input prompts have a generic structure, but160

behind "Answer:" we insert the formula "Let’s161

think step by step" as done in (Kojima et al.,162

2023; Wei et al., 2022), that is shown in Table 6.163

Following the annotation process performed by164

LLMs, the answers generated by teachers models165

that are the annotations have been used to construct166

the Demonstrations (see Table 1).167

2.2 Student Model168

Several SLMs have been fine-tuned for instruction-169

following (Taori et al., 2023) and reinforcement170

learning with human feedback (Ouyang et al.,171

2022). However, whatever the techniques, the172

smaller Language Models2 do not seem able to173

reproduce the step-by-step reasoning abilities.174

Recent work proposes techniques of knowl-175

edge distillation (Li et al., 2023), skill-refinement176

(Huang et al., 2022), and enriched fine-tuning177

(Magister et al., 2023) to teach SLMs to produce178

reasoned answers. Following this idea, we ana-179

lyzed the impact of Instruction-tuning from Demon-180

strations provided by different teachers. Hence, we181

chose two SLMs students, Llama-2-7b and Llama-182

2-13b (Touvron et al., 2023). In both cases, we used183

"chat" versions, i.e., Llama-2-7-chat and Llama-2-184

13-chat (versions detailed in Table 7), which we185

will refer to in the paper as Llama-2-7 and -13.186

Student models are evaluated before and after187

the Instruction-tuning phases. In particular, we pro-188

pose the standard approach where the students are189

instructed via Demonstrations delivered arbitrar-190

ily and in the Curriculum Learning manner (intro-191

duced in Section 2.3). The structure of Instruction-192

tuning stems from Alpaca (Taori et al., 2023),193

which uses Demonstrations consisting of an instruc-194

2We consider Smaller models with less than 60B of param-
eters based on (Wei et al., 2022).

Instruction
Choose the answer to the question only from
options A, B, C, D.

Input
Question: Which form can be made into a
triangle?
Choices:
A) ice
B) steam
C) water
D) salt water

Output (that is the Answer produced by teacher)
Answer:
A) ice: Ice is a solid form of water. In solid
form, substances can be molded or shaped into
various forms, including triangles. If you
had a block of ice, you could carve or mold
it into a triangular shape.
B) steam: Steam is the gaseous form of
water. Being a gas, it doesn’t have a fixed
shape. You can’t shape steam into a triangle
without containing it within some form of
solid boundary, and even then, the steam
itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the
shape of its container. You can pour water
into a triangular container, and while the
volume inside would be triangular, the water
itself isn’t inherently triangular.
D) salt water: This is essentially the same
as option C, but with salt dissolved in it.
Being a liquid, it takes the shape of its
container.
Given these considerations, the only
substance among the options that can be shaped
into a triangle by itself is A) Ice.

Table 1: Example of Demonstration. The structure is
composed by: Instruction, Input and Output. In
this case, the last part is the Answer produced by GPT-
3.5 CoT prompted.

tion that, in our case, is fixed, i.e., Choose the 195

answer to the question only from options 196

A, B, C, D., an input which is the question, and 197

an expected output which, in our case, are the out- 198

put generated by the LLMs teachers. Table 1 shows 199

an example of input. Additional details about the 200

Instruction-tuning steps are provided in Section 201

3.2.1. 202

2.3 Curriculum Learning 203

Aligning the teacher-student reasoning abilities via 204

Demonstrations delivered by multi-step answers 205

provided by teachers CoT prompted is a promis- 206

ing technique. However, there are some aspects 207

that need to be clarified: what constitutes an an- 208

swer containing a good reasoning chain and how to 209

evaluate it to optimize the Instruction-tuning phase. 210

Following the Curriculum Learning (CL) where 211
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training algorithms can achieve better results when212

training data are presented according to the model’s213

current skills (Bengio et al., 2009). We propose a214

method for evaluating the reasoning chain present215

in the CoT Answers (that represent the outputs of216

CoT Demonstration) using two fundamental prop-217

erties: (1) comprehensibility, that is, the compre-218

hensibility of a text according to metrics proposed219

by Talburt (1986), and (2) informativeness, that is,220

every step of the chain provides new information221

that is useful and informative for deriving the gen-222

erated answer. We apply this metric to the CoT223

Answers provided by the teachers; then, we reorder224

the demonstrations according to our measure.225

Informativeness To quantify the effectiveness of226

each step contributing novel information beneficial227

for deriving the final Answer A, we propose an228

assessment based on the Entropy and Information229

Gain (IG). The Entropy, represented by H(S), eval-230

uates the unexpected within a given sequence S,231

where Si ∈ A. The entropy is given by:232

H(S) = −
∑
w∈S

p(w) log2 p(w) (1)233

where p(w) denotes the probability of token w234

occurring in the sequence. Hence, we compute the235

IG between a previous Sprev and a current sequence236

Si as:237

IG(Sprev, Si) = H(Sprev + Si)−H(Sprev) (2)238

This metric quantifies how much new information239

the current step adds relative to the cumulative con-240

tent previously considered. To obtain a comprehen-241

sive measure, we calculate the average IG across242

the different steps as follows:243

dI(Ai) =
1

N

N∑
i=1

IG(Sprev, Si) (3)244

where N represents the total number of steps in245

the Answer or the sequences Si. We calculate this246

value for each answer Ai and obtain the maximum247

dImax and the minimum dImin scores. Finally, we248

normalize these values:249

d̂I(Ai) =
dI(Ai)− dImin

dImax − dImin

, ∀i ∈ [0, |D|]. (4)250

where |D| are all answers to a specific benchmark.251

Comprehensibility Typical factors for measur- 252

ing comprehensibility are Speed of perception, Per- 253

ceivability in peripheral vision, Reflex blink tech- 254

nique, Eye movements, Cognitively motivated fea- 255

tures, and Word difficulty. However, it is not always 256

possible to capture all these features. 257

Hence, we used the Flesch-Kincaid metric (Tal- 258

burt, 1986). This metric is used to assess the com- 259

prehensibility of a text. It is based on the length of 260

sentences and words within a text and provides a 261

score that indicates the text’s difficulty level. The 262

lower the score, the easier it is to read and com- 263

prehend the text. The formula for calculating the 264

Flesch-Kincaid Grade Level score is as follows: 265

dC(Ai) = 0.39
Avg(dL(Ai))

100
+

11.8
Avg(dL(wi))

100
− 15.59

(5) 266

where Avg(dL(Ai)) average answer length is the 267

number of words in a sentence divided by the num- 268

ber of sentences, and Avg(dL(wi) is the average 269

word length, i.e. is the number of syllables per 270

word divided by the number of words. The value 271

0.39 is used to scale the effect of the average sen- 272

tence length to compare it to the effect of the aver- 273

age word length, weighted by 11.8. The final score 274

is then adjusted by subtracting the value of 15.59, 275

which adjusts the score scale to match the grading 276

levels used in education more closely. We calcu- 277

late this value for each Answer Ai and obtain the 278

maximum dCmax and the minimum dCmin scores. 279

Finally, we normalize these values: 280

d̂C(Ai) =
dC(Ai)− dCmin

dCmax − dCmin

,∀i ∈ [0, |D|]. (6) 281

Constructing the CL-Demonstration We 282

gather the annotations (answers) delivered by 283

the CoT-prompted teachers (as explained in 284

Section 2.1), and we estimate the informativeness 285

d̂I(Ai) and complexity d̂C(Ai) for each answer 286

Ai,∀i ∈ |D|. 287

Then we merge the two values in: 288

dIC(Ai) = d̂I(Ai) + d̂C(Ai) (7) 289

We use dIC(Ai) as a pivot value to reorder the 290

Answers provided by the teachers. The Answers 291

(which form the output of the Demonstrations) 292

will be delivered in the Instruction-tuning phase 293

to the students in ascending order with respect 294

to the value dIC(Ai). These heuristics are very 295
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lightweight: using only 16GB of memory, we can296

process up to 20k Responses per second to produce297

the informativeness and comprehensibility metrics.298

3 Experimental Setup299

In order to make the experiments comparable300

with state-of-the-art models, we use four bench-301

marks (introduced in Section 3.1) that are gen-302

erally used to assess the abilities of Large Lan-303

guage Models (LLMs). Moreover, to conduct304

the Instruction-tuning phase on the Small Lan-305

guage Models (SMLs), we use two approaches:306

the first one is presented in Section 3.2, which307

we call Instruction-tuning on Demonstrations; the308

second is based on the Curriculum Learning (CL)309

approach where the students are exposed to CL-310

Demonstrations that are Demonstrations reordered311

in a CL way, as exemplified in Section 2.3. All312

code is available in the supplementary material, to313

be released if accepted.314

3.1 Data315

General Commonsense Reasoning We evalu-316

ate the models’ ability to perform general reason-317

ing on the CommonSenseQA (Talmor et al., 2019)318

(CSQA) and OpenBookQA (Mihaylov et al., 2018)319

(OBQA). CommonSenseQA is one of the best-320

known datasets of answers to multiple-choice ques-321

tions dealing with different types of general com-322

monsense knowledge. OpenBookQA is a resource323

that contains questions requiring multi-step reason-324

ing, common knowledge, and rich text comprehen-325

sion. It is inspired by high school-level open-book326

exams in physics and biology, aiming to assess327

human comprehension and application of founda-328

tional concepts.329

Physical Interaction Reasoning We evaluate the330

models’ ability to perform physical reasoning on331

the Interaction Question Answering (PIQA) (Bisk332

et al., 2019). It is a resource consisting of everyday333

situations with typical and atypical solutions.334

Social Interaction Reasoning We evaluate the335

models’ ability to perform social reasoning on336

the Social Interaction Question Answering (SIQA)337

(Sap et al., 2019). It is a benchmark focusing on338

reasoning about people’s actions and social impli-339

cations. The actions in Social IQa cover various340

social situations and candidates for plausible and341

not plausible answers.342

Splitting Details Since a test split for all bench- 343

marks is not always available open-source, we 344

adopt the following strategy: we use 4000 ex- 345

amples with equally distributed target classes as 346

training data and the validation versions found on 347

huggingface as test data. We performed this split 348

because we needed to observe the impact of the 349

responses provided by the teacher models on dif- 350

ferent benchmarks. The same is true for validation 351

since we needed open-source and reproducible data 352

to conduct a detailed evaluation of the student mod- 353

els. In Table 9, we report the quantitative informa- 354

tion, global, and splitting ratios, and in Table 8, we 355

show one example for each benchmark. The data 356

are fully accessible and open-source, as described 357

in Table 10. 358

3.2 Teaching to Reason 359

We selected Llama-2-70 and GPT-3.5 as the teach- 360

ers (introduced in Section 2.1). Consequently, the 361

LLMs are prompted in the zero-shot scenarios, as 362

shown in Table 5 and Table 6. 363

We selected Llama-2-7 and Llama-2-13 (Tou- 364

vron et al., 2023) as student models (as described 365

in Section 2.2). Therefore, the students models 366

are Instruction-tuned via Demonstrations, as intro- 367

duced in Section 3.2, and via CL-Demonstrations, 368

as explained in Section 2.3. Table 1 shows a 369

Demonstration containing the Instruction, Input, 370

and, as Output, the Answer-delivering CoT, an out- 371

put generated by GPT-3.5 CoT-prompted. 372

3.2.1 Models Setup 373

We conduct the Instruction-tuning phases using 374

QLoRA proposed by Dettmers et al. (2023). This 375

approach allows tuning to be conducted while re- 376

ducing memory usage and preserving the perfor- 377

mances. We follow the training approach proposed 378

in Alpaca (Taori et al., 2023). Our models are 379

trained for three epochs and set the learning rate 380

as 0.00002 with 0.001 weight decay. We use the 381

cosine learning rate scheduler with a warmup ratio 382

of 0.03. We conducted our experiments on a work- 383

station equipped with two Nvidia RTX A6000 with 384

48GB of VRAM. 385

3.3 Evaluation 386

The most commonly used evaluation methods for 387

question-answering tasks are language-model prob- 388

ing, in which the option with the highest probability 389

is chosen (Brown et al., 2020), and multiple-choice 390

probing, in which the models are asked to answer. 391
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines) and after on
Demonstrations and CL-Demonstrations. Moreover, there are the teachers’ performances also shown in Table 4

The evaluation is performed with a function taking392

the maximum value and, in the second case, with393

string matching. The second method is widely used394

in recent evaluations because it applies to models395

such as GPT-3.5 and GPT-4 (OpenAI, 2023) where396

probability values cannot be accessed. In our ex-397

periments, we chose the latter to have a compara-398

ble and scalable pipeline. Hence, we performed a399

string matching between the generated outputs and400

the targets.401

4 Results & Discussion402

Language Models that do not get it can be elicited403

to do it through the knowledge of teacher models.404

These conclusions can be observed in Figure 2,405

where we reported the downstream performances406

without the Instruction-tuning phase (see the Base-407

line) and the Instruction-tuning on Demonstrations.408

As discussed in Section 4.1, Small Language Mod-409

els (SLMs) CoT prompted obtained weak results.410

In contrast, models that are instructed via Chain-411

of-Thought (CoT) Demonstrations, i.e., Demon-412

strations produced by CoT-prompted Large Lan-413

guage Models (LLMs), outperform non-instructed414

models (Section 4.2). However, although Demon-415

strations produced better students, the complete416

alignments between students and teachers are re-417

alized with the Curriculum Learning approach, as418

discussed in Section 4.3. In particular, the students419

instructed via the CL approach (Instruction-tuning420

CL-Demonstration in Figure 2) outperformed the 421

students instructed via standard Instruction-tuning. 422

Finally, the CL approach delivers the teacher- 423

student family-alignment. In Figure 2 (horizontal 424

lines), it is possible to observe the phenomenon of 425

family-alignment between Llama-2-70 and Llama- 426

2-7 and -13 in more detail in Section 4.4. 427

4.1 CoT-abilities of Small Language Models 428

Chain-of-Thought (CoT) prompts do not consis- 429

tently deliver downstream performance improve- 430

ments. SLMs, i.e., with fewer parameters, have not 431

benefitted the prompting with the CoT mechanism. 432

In particular, we evaluated performance on four 433

question-answering benchmarks, described in Sec- 434

tion 3.1, using two versions of Llama-2-chat (7b- 435

13b billion). Proposing a classical prompt (which 436

we call "Baseline") and a CoT prompt (Table 5 and 437

Table 6), we obtained the performances in Table 2. 438

The results confirm what Wei et al. (2022) have 439

claimed about the limitations of the emergent CoT 440

prompting abilities that are not observable in SLMs. 441

Moreover, using CoT prompting leads to model 442

confusion with subsequent degradation of down- 443

stream results. It is possible to observe these phe- 444

nomena in OpenBookQA (OBQA) and Common- 445

SenseQA (CSQA) (down arrows in Table 2). In par- 446

ticular, there is a marked deterioration in Llama-2-7 447

(see ⇓), which has half the parameters of Llama-2- 448

13 (see ↓). 449
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The same behavior was not observed for450

Physical- and Social-Interaction Question Answer-451

ing (PIQA) and (SIQA). In fact, not consider-452

ing the nature of benchmarks, unlike the oth-453

ers, they are always question-answering multiple-454

choice-questions but have fewer possible choices,455

as shown in Table 9. In this regard, we hypothesize456

that the most controllable scenarios, where chain457

reasoning is limited to fewer options, are reason-458

able by SLMs elicited with CoT prompts.459

Benchmarks Llama-2-7 Llama-2-13
Baseline CoT Baseline CoT

OBQA 52.5 49.5⇓ 57.6 55.6↓
CSQA 58.6 50.6⇓ 63.4 60.8↓
SIQA 46.5 45.3 48.3 47.6
PIQA 61.6 63.8 66.4 68.2

Table 2: Accuracies of Llama-2-7 and Llama-2-13, both
without further tuning, on testing data with the standard
prompt (Baseline) (see Table 5) and CoT prompt (CoT)
(see Table 6).

4.2 The Instruction-tuning Method460

Instruction-tuning led by Large Language Models461

(teachers models), able to reason elicit the Smaller462

Language Models (students models) to do the same.463

This is shown in Figure 2. The student models464

behind Instruction-tuning on Demonstrations pro-465

duced by teacher models outperformed the base-466

lines in the four proposed benchmarks. While per-467

formances are conspicuous improvements overall,468

they have sensible variations. The teacher models469

have different characteristics. GPT-3.5 is trained on470

175B and Llama-2-70 on 70B of parameters. They471

consequently achieve different performances in the472

proposed benchmarks. Table 4 shows the perfor-473

mances in the zero-shot scenario (CoT prompting474

and not) on the data used to conduct the Instruction-475

tuning phase and on the same test set used to evalu-476

ate the proposed models.477

Although the performances on the "training set"478

are different (see the CoT performances of GPT-3.5479

and the same for Llama-2-70 in Table 4), this bias480

does not affect the students. The Llama-2-7 and -13481

with GPT-3.5 as teacher outperform the Llama-2-7482

and -13 with Llama-2-70 as teacher only on OBQA.483

As far as CSQA and PIQA are concerned, there is484

a balance that is not present in SIQA, where the485

students of Llama-2-70 outperform the others.486

However, in the Instruction-tuning method, in-487

struction is conducted using Demonstrations (com-488

posed of Answers provided by teachers) that are de-489

livered arbitrarily. Therefore, we propose to study 490

both the intrinsic complexity of the answers and 491

their impact on the students’ exposure. In partic- 492

ular, we propose a CL-based instruction approach 493

where demonstrations are delivered to students in a 494

meaningful order (Section 4.3). 495

4.3 The Impact of Curriculum Learning 496

Instruction-tuning via Curriculum Learning 497

Demonstrations elicits the reasoning abilities 498

of students. The students gradually exposed 499

to increasingly meaningful Demonstrations 500

(CL-Demonstrations) learn better than those 501

exposed to arbitrary Demonstrations. This 502

is shown in Figure 2 (bars Instruction-tuned 503

CL-Demonstrations), where Llama-2-7 and -13 504

consistently outperformed the other models. 505

The benchmarks where the most significant ef- 506

fects can be observed are CSQA and OBQA, with 507

an increase in average accuracy scores of 6 and 508

5 points, respectively. The same effects are less 509

evident in PIQA and SIQA. One possible reason 510

for this phenomenon might be tied again to the na- 511

ture of the benchmarks, as hypothesized in Section 512

4.1. To analyze this phenomenon, we studied the 513

components of the complexity measure proposed 514

in Section 4.5. 515

4.4 The role of CL in family-alignment 516

Instruction-tuning via CL-Demonstrations still 517

aligns students’ reasoning abilities with fam- 518

ily teachers, even as instruction decreases. In 519

fact, from Figure 2, we can observe that the 520

performances of students instructed via CL- 521

Demonstrations delivered by teachers from the 522

same family outperform the others. 523

Moreover, to validate our hypothesis of family- 524

alignment, we introduced Mistral-7b (MistralAI, 525

2023), a new SLMs with 7 billion parameters that 526

outperforms the Llama-2-13 version on several 527

benchmarks, as shown by MistralAI (2023). In par- 528

ticular, we reproduced the experiments introduced 529

in Section 4.2. In Figure 3, it can be seen that 530

Llama-2-7 instructed on different types of Demon- 531

strations delivered by Llama-2-70 almost consis- 532

tently outperforms Mistral-7b. These results con- 533

firm that Demonstrations derived from in-family 534

teachers have a more significant impact on student 535

models than the others. 536
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Figure 3: Accuracies of Llama-2-7 and Mistral-7 Instruction-tuned using setup proposed Section 3.

4.5 Ablation Study537

The informativeness and complexity exposed to538

students in a meaningful order instruct better stu-539

dents. We conducted an Ablation study to esti-540

mate the impact of our evaluation measures pro-541

posed in Section 2.3. Hence, we reproduced the542

same configurations proposed in Section 4.2, but543

removed one of the two components (informative-544

ness and complexity) presented in Section 2.3. The545

results in Table 3 show that students instructed on546

CL-Demonstrations ordered by comprehensibility547

and informativeness consistently outperform stu-548

dents instructed via Demonstrations. The results549

show that students instructed on the Demonstra-550

tions sorted by informativeness are more produc-551

tive in QA tasks with more choices. In comparison,552

complexity proved helpful in cases where the num-553

ber of choices is minor. Phenomenon manifested in554

CSQA and OBQA with 5 and 4 choices and PIQA555

and SIQA with 2 and 3 choices, respectively (see556

Appendix, Tables 8 and 9).557

5 Related Work558

5.1 Learning from Explanation559

Current methods for conditioning models on task560

instructions and provided explanations for individ-561

ual data points replace the ancient intermediate562

structures (Hase and Bansal, 2022) that used ra-563

tionales (Zhang et al., 2016) or inputs (Narang564

et al., 2020; Talmor et al., 2020) to learn the models.565

Reasoning via the CoT builds upon prior efforts566

wherein explanations are viewed as intermediary567

constructs produced during inference (Rajani et al.,568

2019). Our research stems from the studies of569

Shridhar et al. (2023); Ho et al. (2023b). In partic-570

ular, we adopt the idea of an LLM teacher and a571

second LLM, sometimes smaller, that assumes a572

student’s position (Magister et al., 2023). Learning573

uses teacher-generated explanations, demonstrating574

prompt CoT downstream (Li et al., 2023; Ho et al.,575

2023b). Li et al. (2023) claims that massive demon-576

strations significantly improve performance over 577

the single-sample approach Shridhar et al. (2023). 578

5.2 Large Language Models as a Teacher 579

Several papers have been published simultaneously, 580

including those by Ranaldi and Freitas (2024); Paul 581

et al. (2024), and Saha et al. (2023) that prove 582

the effect of transferring ability to produce CoT 583

reasoning from larger to smaller models. Table 11 584

resumes all main points of these contributions. 585

Our work goes beyond the following ways: i) 586

We propose a method for aligning CoT abilities 587

via Instruction-tuning through Demonstrations pro- 588

duced by answers generated by GPT-3.5 and Llama- 589

2-70. ii) We study how to provide Demonstrations 590

to students by proposing a measure for evaluating 591

the Answers provided by teachers. In particular, 592

we analyze the alignment performance between 593

in-family and out-family models. iii) Hence, we 594

propose an approach for improving the alignment 595

of reasoning abilities between teachers and stu- 596

dents by employing our evaluations to expose the 597

students meaningfully. 598

6 Conclusion 599

In this paper, we propose a method to enable CoT 600

reasoning over SLMs by introducing two novel 601

mechanisms. First, we propose aligning CoT abili- 602

ties via Instruction-tuning with the support of CoT 603

Demonstrations delivered by LLMs teacher. Sec- 604

ond, we use the Curriculum Learning approach 605

to empower the Instruction-tuning phase. Hence, 606

we analyze the impact on the downstream abilities 607

of four question-answering benchmarks. Our re- 608

sults show that SMLs can be instructed to reason 609

via Demonstration produced by LLMs. We move 610

a step further in research: conceiving SLMs as 611

human learners, we expose them to a CL teaching- 612

based approach, obtaining better results on down- 613

stream performances. 614
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Limitations615

In our contribution, we analyzed the impact of An-616

swers delivered by Large Language Models, using617

them as Demonstrations to empower the abilities618

of Small Language Models. Although we proposed619

an extensive study, there are several limitations.620

Firstly, only English-language methods, both in621

Chain-of-Thought (CoT) methods and task eval-622

uation, are considered. In future works, we will623

investigate this aspect, starting from Cross-lingual624

alignment approaches.625

Secondly, dependence on LLMs, which are626

closed-source products or not, but sometimes the627

training sets are unknown. Although the charac-628

teristics of the corpora are reported in the system629

reports, these are only processable by some re-630

searchers. Analyzing the differences in pre-training631

data between models is difficult.632

Finally, learning from and with Demonstrations633

carries some specific risks associated with automa-634

tion. Although a model may generalize its predic-635

tions using a seemingly consistent series of natural636

language steps, even if the prediction is ultimately637

correct, there is no guarantee that the predicted638

output comes from a process represented by the639

generalization. A user might be overconfident in640

the model based on the CoT. Hence, in the future,641

we will investigate refinement approaches based642

on RLHF and DPO to improve the generalization643

abilities of Student models.644

Ethic Statement645

Although this research enhances the reasoning abil-646

ities of smaller Language Models, they still need647

to be sufficiently robust for sensitive contexts such648

as education. The primary ethical concerns arise649

from the text generation process; both the "teacher"650

and "student" models might produce misleading651

answers. The content is largely influenced by the652

input data, which, in our case, are standard bench-653

marking tasks peer-reviewed within the NLP do-654

main. We intend to release our code; however, like655

many generative models, ours can be exposed to656

hallucinations.657
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Appendix A
Benchmarks

Students OBQA CSQA PIQA SIQA
Llama-2-7 (Llama-2-70)
Arbitrary Teaching 64.7 71.6 80.2 62.8
Teaching via IC 70.5 76.5 84.8 65.3
Teaching via I 70.2⇑ 77.2⇑ 81.2 61.8⇓
Teaching via C 66.4 69.7⇓ 84.3⇑ 66.2
Llama-2-7 (GPT-3.5)
Arbitrary Teaching 65.3 70.8 80.5 62.2
Teaching via IC 69.2 74.2 83.3 64.8
Teaching via I 68.5⇓ 73.7⇑ 79.6⇓ 63.8
Teaching via C 66.3 69.8 83.9⇑ 65.7⇑
Llama-2-13 (Llama-2-70)
Arbitrary Teaching 66.5 76.5 81.9 64.5
Teaching via IC 72.3 82.2 86.2 67.7
Teaching via I 73.4⇑ 81.9⇑ 80.7⇓ 63.8
Teaching via C 67.9 76.6 84.3⇑ 70.3
Llama-2-7 (GPT-3.5)
Arbitrary Teaching 68.5 77.3 82.6 63.3
Teaching via IC 71.6 80.5 84.9 66.1
Teaching via I 70.8⇑ 81.7 81.9 62.7
Teaching via C 68.2⇓ 78.5 82.3 65.9⇑

Table 3: Ablation study on our Instruction-tuning CL-Demonstrations approach.

Benchmarks Llama-2-70 GPT-3.5
Baseline CoT Baseline CoT

Training

OBQA 65.6 71.3 66.2 75.4
CSQA 74.2 79.6 79.3 84.8
SIQA 65.4 67.5 67.6 70.3
PIQA 82.6 85.8 83.5 85.3

Testing

OBQA 65.9 70.8 67.8 74.6
CSQA 73.4 81.8 80.2 83.7
SIQA 64.2 66.9 66.9 71.3
PIQA 82.6 85.6 84.3 85.8

Table 4: Accuracy (%) of Llama-2-70 and GPT-3.5 (teachers) on training and testing data with CoT prompt (CoT)
and with the standard prompt (Baseline).
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Appendix B

Zero-Shot

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?
A) Shark
B) Turtle
C) Giraffe
D) Spider
Answer:

Table 5: Example of Zero-Shot prompting.

Zero-Shot Chain-of-Thought

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?
A) Shark
B) Turtle
C) Giraffe
D) Spider
Answer: Let’s think step by step

Table 6: Example of Zero-Shot Chain-of-Thought prompting.

Appendix C

Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/Llama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7-instruct mistralai/Mistral-7B-Instruct-v0.1
GPT-3.5-turbo OpenAI API

Table 7: In this table, we list the versions of the models proposed in this work, which can be found on huggingface.co.
We used all the default configurations proposed in the repositories for each model.
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Appendix D
Dataset Example

When birds migrate south for the winter, they do it because
OBQA (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.

C) it is important to their happiness. D) they decide to each.
Aside from water and nourishment what does your dog need?

CSQA (Talmor et al., 2019) A) bone. B) charm. C) petted.
D) lots of attention. E) walked.

How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
PIQA (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.

B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.
Taylor gave help to a friend who was having trouble keeping up with their bills.

SIQA (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher
paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.

Table 8: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA

classes 4 5 2 3

Training
# examples for 1000 800 2000 1330
each class

Test
# examples for 125∗ 235∗ 924∗ 640∗

each class (± 8) (± 11) (± 18) (± 19)

Table 9: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal.

Name Repository
CSQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_qa
OBQA (Mihaylov et al., 2018) huggingface.co/datasets/openbookqa
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa
SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qa

Table 10: In this table, we list the versions of the benchmark proposed in this work, which can be found on
huggingface.co.

Work Method Teachers Students
(Magister et al., 2023) SFT PaLM T5-small, -medium

GPT-3.5 T5-large, -xxl
(Li et al., 2023) SFT GPT-3 175B OPT-1.3b

(Shridhar et al., 2023) SFT GPT-3 175B GPT-2

(Ho et al., 2023b) SFT InstructGPT GPT-3
(text-davinci-002) (ada,babbage,curie)

Ours Instruction-tuning Llama-2-70b Llama-2-7b, -13b
GPT-3.5 (turbo) Mistral-7b

Table 11: Summary of methods, teacher and student models of previous work, we indicate Supervised Fine-tuning
as (SFT) employed in most previous work.
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