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Abstract

Despite extensive studies on binary compounds with high non-metal compositions,
there remains a large, unexplored chemical space, particularly regarding non-
integer non-metal-to-metal ratios. By integrating the chemical template concept
with machine learning algorithms, we developed a specialized structure discovery
workflow that significantly enhances the efficiency of predicting stable compounds.
Our method led to the identification of 13 new structural prototypes and 31 stable
metal superhydrides, representing a 23% increase in discoveries. Metal superhy-
drides, known for their high hydrogen content and polyhedral hydrogen cages,
are promising candidates for high-temperature superconductivity. The method
enables us to discover many structures containing over 50 atoms per primitive
cell. Additionally, 19 of the newly identified superhydrides exhibit T, > 100 K,
highlighting the potential for higher T, materials within the 3D hydrogen clathrate
structures.

1 Introduction

The primary challenge in incorporating non-integer stoichiometry into structural research and density
functional theory (DFT)-based stability predictions of superhydrides lies in the significant com-
putational costs required. This is primarily due to the larger unit cells involved, along with the
dramatically expanded range of possible metal/non-metal ratios when non-integer values are included.
Most previous crystal structure prediction (CSP) studies optimized the positions of both metal and
non-metal atoms simultaneously, causing the computational complexity to escalate rapidly with
increasing structure size. [1-7]

A recent investigation into the chemical template interactions between metal and hydrogen lattices
introduced an effective approach for discovering new metal superhydrides.[8] Guided by the chemical
template theory, we first focused on identifying metal lattices with stronger template effects and then
constructing corresponding superhydrides by introducing a controlled number of hydrogen atoms
into the interstitial sites of selected metal lattices. This two-step approach eliminates many unstable
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or ineffective configurations caused by weak metal-hydrogen interactions, thereby greatly enhancing
the efficiency of structural searches.

In this study, we significantly advance this method by developing a specialized structure discovery
workflow. First, we used machine learning (ML) algorithms to uncover the relationship between
metal lattices from known metal superhydrides and their thermodynamic stability. We then leveraged
the trained ML model to efficiently identify metal lattices with strong template effects, which were
subsequently used to guide and refine structural searches.

Metal superhydrides, known for their high hydrogen content and polyhedral hydrogen cages, are
promising candidates for high-temperature superconductivity.[9-13] Despite extensive studies on
binary metal superhydrides, there remains a large, unexplored chemical space, particularly regarding
non-integer hydrogen-to-metal ratios. By applying our workflow, we identified 13 new structural
prototypes and 31 stable metal superhydrides. Within the compiled dataset used in this work, the
newly identified structures account for 24% of the stable set, and the newly identified prototypes
correspond to a 23% increase at the prototype level. Among prototypes that host 3D hydrogen
clathrates, our results correspond to a 65% increase relative to the baseline in the compiled dataset.
Based on superconducting transition temperature estimates for the newly identified structures, 19 of
the 31 new stable metal superhydrides exhibit Tc > 100 K.

2 The structure discovery workflow

Instead of simultaneously searching and optimizing the positions of both hydrogen and metal atoms,
we first apply ML techniques to identify metal lattices exhibiting significant electron localization at
interstitial sites (also called quasi-atoms). Structural searches with varying metal/non-metal ratios are
then conducted based on these selected metal lattices to uncover new stable structures. The workflow
is schematically illustrated in Figure 1 and comprises six key steps: training set preparation, feature
engineering, ML model training, metal lattice candidate preparation, metal lattice screening, and
high-throughput computational screening of stable metal superhydrides derived from selected metal
lattices.

3 Metal superhydrides of MH, with non-integer stoichiometry x

The ML workflow enabled us to find several new structural polymorphs of integer-stoichiometry
superhydrides, expanding beyond the well-known clathrate phases such as Fm3m-LaH;. Three
new polymorphs of MH;o (M = La, Ce, Th) were identified: P63/mmc-LasH,o, P63/mmc-LagHg,
and R3m-LagHy. These structures feature larger and more complex primitive cells (44—66 atoms)
compared to the classic LaH;( phase (11 atoms). Their metal sublattices adopt diverse symmetries,
including double hexagonal close packing and Sm-type arrangements, while the hydrogen networks
consist of distorted H3o cages, indicating structural flexibility within MH;( stoichiometry. Energeti-
cally, the polymorphs are comparable to Fm3m phases across 150-300 GPa, and remain favorable
when extended to Ce and Th analogues, with stability preserved after accounting for zero-point
energy (ZPE) and finite-temperature effects.

Additionally, a new family of MyHs5 (M = La, Sr, Ac) compounds with P63/mmc symmetry was
discovered. Each primitive cell contains 56 atoms and features an AABB-stacked metal sublattice.
Hydrogen atoms organize into two distinct motifs: repeating Hoy clusters within AA layers and a
two-dimensional hydrogen sheet in AB regions, constructed from interconnected Hg cubes. These
building units echo motifs previously identified in LaH;4 and MHjy clathrates, respectively, but here
coexist within a single structure. Thermodynamically, P63/mmc M4Hs, is stable at target pressures,
though its robustness is temperature-dependent: AcyHso remains stable at 300 GPa with ZPE and
thermal corrections, while LayHs2 and SryHs9 become metastable. Phonon spectra confirm their
dynamical stability under pressure.

4 Superconductivity of newly identified metal superhydrides

The superconducting properties of the newly discovered superhydrides were systematically assessed.
Using a rapid evaluation method based on key hydride-specific descriptors—three-dimensional
electronic connectivity, hydrogen content, and the hydrogen contribution to the electronic density of
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Figure 1: The designed workflow for discovering metal superhydrides. (A) Using 57 collected
structural prototypes, metal substitution is carried out with s-d border metals, and structural op-
timization is performed at various pressure points to obtain the metal lattice and thermodynamic
stability (E},,11) values for the prepared dataset. (B) Atomic features, lattice features, composition,
and electronic features of the metal lattices are extracted to create the final feature set for feature
engineering, with 46 features used for model training. (C) A robust relationship between the features
and thermodynamic stability of superhydrides is established using a stack-ensembling ML strategy
based on the AutoGluon framework, achieving an accuracy of MAE = 11.366 meV/atom and R2 =
0.951. (D) The hypothetical configurations of metal lattices after hydrogen atom filling are considered
under different H/Metal ratios, resulting in 7939 metal lattices for screening. (E) The trained ML
model is used to predict the stability of the screened metal lattices. In the case of the Ce-H system,
the red scatters represent the newly identified Ce-based superhydrides, along with their corresponding

Eﬁﬁh values at various H compositions (shown as blue scatters). The black vertical lines indicate the
identified stable CeHg and CeH;.

states at the Fermi level—the study estimated transition temperatures (T.) across the 31 identified
structures. Remarkably, 19 compounds ( 61%) exhibit Tc values above 100 K, underscoring their
potential as high-temperature superconductors. Most of these high-Tc phases are associated with
La, Ce, and Th systems, aligning with trends observed in previously reported superconducting
superhydrides.

To validate the approach, electron—phonon coupling were calculated for Pm3n-CagHy4 at 200 GPa.
[14-16] The phonon spectrum shows low-frequency modes from Ca and high-frequency modes from
H. The resulting parameters, including a logarithmic average frequency of 1298 K, an electron—phonon
coupling constant (\) of 1.49, and T, in the range of 134—-147 K (p* = 0.1-0.13), confirm a strong
superconducting potential. Most of the superconductivity is contributed by hydrogen vibrational
modes, which contribute 83% of the total coupling.
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Figure 2: A comparison of newly discovered and known metal superhydrides. The left and right
panels show the statistics of the training set and the new superhydrides. The red, blue, and yellow
bars represent the number of stable superhydrides, structure prototypes, and clathrate superhydrides,
respectively.

5 Discussion

The ML workflow, guided by the concept of chemical templates, proved highly effective in acceler-
ating the discovery of complex superhydrides. Traditionally, crystal structure prediction methods
struggle with the vast configurational space of hydrogen-rich systems. By focusing on metal lat-
tices with strong template effects first, the workflow narrows the search to chemically meaningful
candidates, eliminating many unstable configurations.

The ML model, trained on 57 known prototypes and expanded with s—d border metal substitutions,
achieved excellent predictive accuracy (MAE 11 meV/atom, R? =0.95). This allowed rapid screening
of nearly 8,000 hypothetical lattices, from which 1,400 promising candidates were selected. High-
throughput DFT confirmed 13 new structural prototypes and 31 stable superhydrides, representing
23% growth in prototype diversity and 65% growth in clathrate-type frameworks compared to the
training set. Moreover, the workflow captured stability trends consistent with known chemistry, while
also revealing overlooked noninteger stoichiometries. Crucially, it balanced efficiency and accuracy,
making it feasible to explore large and complex structures (50-94 atoms/cell).

This novel framework provides a conceptual structure for organizing and interpreting complex struc-
tural and electronic patterns in superhydrides, enabling more targeted and efficient exploration of the
vast compositional space. The workflow operates through a hybrid human-machine learning approach,
in which human insight formulates and refines conceptual models, while machine algorithms execute
large-scale predictions and optimizations. This methodology exemplifies an early stage attempt
to implement concept-level reasoning within an artificial intelligence framework [17-20]. We are
expanding our current work to include the direct generation of the charge density and ELF, and
the extraction of novel concepts from convolving the 3D images. As such, the current manuscript
represents a step towards the broader goal of developing Al systems capable of managing, generating,
and applying scientific concepts across domains. The 30 predicted compounds did not receive full
electron-phonon calculations, they will need to be performed as the next step. Code is available at
https://github.com/hison001/Metal-superhydrides/tree/main. A full version of this work has been
published in the Journal of the American Chemical Society, DOI: 10.1021/jacs.5c11731.
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