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Abstract

Diversity is an important criterion for many areas of machine learning (ML),
including generative modeling and dataset curation. Yet little work has gone into
understanding, formalizing, and measuring diversity in ML. In this paper we
address the diversity evaluation problem by proposing the Vendi Score, which
extends ideas from ecology to ML. The Vendi Score is defined as the exponential
of the Shannon entropy of the eigenvalues of a similarity matrix. This matrix is
induced by a user-defined similarity function applied to the sample to be evaluated
for diversity. In taking a similarity function as input, the Vendi Score enables its
user to specify any desired form of diversity. Importantly, unlike many existing
metrics in ML, the Vendi Score does not require a reference dataset or distribution
over samples or labels, it is therefore general and applicable to any generative
model, decoding algorithm, and dataset from any domain where similarity can be
defined. We showcase the Vendi Score on molecular generative modeling where
we found it addresses shortcomings of the current diversity metric of choice in
that domain. We also applied the Vendi Score to generative models of images
and decoding algorithms of text where we found it confirms known results about
diversity in those domains. Furthermore, we used the Vendi Score to measure
mode collapse, a known shortcoming of generative adversarial networks (GANs).
In particular, the Vendi Score revealed that even GANs that capture all the modes
of a labelled dataset can be less diverse than the original dataset. Finally, the
interpretability of the Vendi Score allowed us to diagnose several benchmark ML
datasets for diversity, opening the door for diversity-informed data augmentation.1

1 Introduction

Diversity is a criterion that is sought after in many areas of machine learning (ML), from dataset cura-
tion and generative modeling to reinforcement learning, active learning, and decoding algorithms. A
lack of diversity in datasets and models can hinder the usefulness of ML in many critical applications,
e.g. scientific discovery. It is therefore important to be able to measure diversity.

Many diversity metrics have been proposed in ML, but these metrics are often domain-specific
and limited in flexibility. These include metrics that define diversity in terms of a reference
dataset (Heusel et al., 2017; Sajjadi et al., 2018), a pre-trained classifier (Salimans et al., 2016; Sri-
vastava et al., 2017), or discrete features, like n-grams (Li et al., 2016). In this paper, we propose a
general, reference-free approach that defines diversity in terms of a user-specified similarity function.

Our approach is based on work in ecology, where biological diversity has been defined as the ex-
ponential of the entropy of the distribution of species within a population (Hill, 1973; Jost, 2006;
Leinster, 2021). This value can be interpreted as the effective number of species in the population.
To adapt this approach to ML, we define the diversity of a collection of elements x1, . . . , xn as the
exponential of the entropy of the eigenvalues of the n × n similarity matrix K, whose entries are
equal to the similarity scores between each pair of elements. This entropy can be seen as the von
Neumann entropy associated with K (Bach, 2022), so we call our metric the Vendi Score, for the
von Neumann diversity.

1Code for calculating the Vendi Score will be made available publicly after the anonymity period.
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Figure 1: (a) The Vendi Score (VS) can be interpreted as the effective number of unique elements
in a sample. It increases linearly with the number of modes in the dataset. IntDiv, the expected
dissimilarity, becomes less sensitive as the number of modes increases, converging to 1. (b) IntDiv
does not take into account correlations between features, but VS does. VS is highest when the items
in the sample differ in many attributes, and the attributes are not correlated with each other.

Contributions. We summarize our contributions as follows:

• We extend ecological diversity to ML, and propose the Vendi Score, a metric for evaluating
diversity in ML. We study the properties of the Vendi Score, which provides us with a more
formal understanding of desiderata for diversity.

• We showcase the flexibility and wide applicability of the Vendi Score–characteristics that
stem from its sole reliance on the sample to be evaluated for diversity and a user-defined
similarity function–and highlight the shortcomings of existing metrics used to measure di-
versity in different domains.

2 Related Work

Are we measuring diversity correctly in ML? Several existing metrics for diversity rely on a
reference distribution/dataset, which hinders flexibility. These reference-based metrics define diver-
sity in terms of coverage of a reference sample. They assume access to an embedding function that
maps samples to real-valued vectors, such as a pretrained Inception model (Szegedy et al., 2016).
The Fréchet Inception Distance (FID; Heusel et al., 2017) measures the Wasserstein-2 distance be-
tween Gaussian distributions fit to reference embeddings and sample embeddings. FID was orig-
inally proposed for evaluating image GANs but has been applied to text (Cı́fka et al., 2018) and
molecules (Preuer et al., 2018) using domain-specific neural network encoders. Sajjadi et al. (2018)
proposed a two-metric evaluation using precision and recall, with precision measuring quality and
recall measuring diversity, in terms of coverage of the reference distribution, and a number of varia-
tions and improvements have been proposed (Kynkäänniemi et al., 2019; Simon et al., 2019; Naeem
et al., 2020). Compared to these approaches, the Vendi Score can measure diversity without relying
on a reference distribution/dataset.

Some other existing metrics evaluate diversity using a pre-trained classifier. Inception Score (IS;
Salimans et al., 2016) evaluates diversity using the entropy of the marginal distribution of class labels
predicted by an ImageNet classifier. More generally, given a pretrained classifier, mode coverage can
be calculated directly by classifying test samples and calculating the number of unique modes or the
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entropy of the mode distribution (Srivastava et al., 2017). These metrics define diversity in terms of
predefined categories, and require knowledge of the ground truth categories and a separate classifier.

In some discrete domains, diversity is often evaluated in terms of the distribution of unique features.
For example in NLP, a standard metric is n-gram diversity, which is defined as the number of distinct
n-grams divided by the total number of n-grams (e.g. Li et al., 2016). These metrics require an
explicit, discrete feature representation.

There are proposed metrics that use similarity scores to define diversity. The most widely used
metric of this form is the average pairwise dissimilarity score. In biology, average dissimilarity
is known as Internal Diversity (IntDiv; Benhenda, 2017), with similarity defined as the Jaccard
(Tanimoto) similarity beteween molecular fingerprints. Given samples x1, . . . , xn and a pairwise
similarity function k taking values between 0 and 1, IntDiv is defined:

IntDiv(x1, . . . , xn) = 1− 1

n2

∑
i,j

k(xi, xj).

In text, variants of this metric include Pairwise BLEU (Shen et al., 2019) and D-Lex-Sim (Fomicheva
et al., 2020), in which the similarity function is an n-gram overlap metric such as BLEU (Papineni
et al., 2002). As illustrated in Figure 1, IntDiv becomes less sensitive as diversity increases and does
not account for correlations between features. Related to the metric we propose here is a similarity-
sensitive diversity metric proposed in ecology by Leinster and Cobbold (2012), and which was in-
troduced in the context of ML by Posada et al. (2020). This metric is based on a notion of entropy
defined in terms of a similarity profile, a vector whose entries are equal to the expected similarity
scores of each element. Like IntDiv, it does not account for correlations between features.

Some other diversity metrics in the ML literature fall outside of these categories. The Birthday
Paradox Test (Arora and Zhang, 2018) aims to estimate the size of the support of a generative model,
but requires some manual inspection of samples. GILBO (Alemi and Fischer, 2018) is a reference-
free metric but is only applicable to latent variable generative models.

Determinantal point processes. The Vendi Score bears a relationship to determinantal point pro-
cesses (DPPs), which have been used in machine learning for diverse subset selection (Kulesza
et al., 2012). A DPP is a probability distribution over subsets of a ground set X parameterized
by a positive semidefinite kernel matrix K. The likelihood of drawing any subset X ⊆ X is de-
fined as proportional to |KX |, the determinant of the similarity matrix restricted to elements in X:
p(X) ∝ |KX | =

∏
i λi,where λi are the eigenvalues ofKX . The likelihood function has a geomet-

ric interpretation, as the square of the volume spanned by the elements of X in an implicit feature
space. However, the DPP likelihood is not commonly used for evaluating diversity, and has some
limitations. For example, it is always equal to 0 if the sample contains any duplicates, and the ge-
ometric meaning is arguably less straightforward to interpret than the Vendi Score, which can be
understood in terms of the effective number of dissimilar elements.

Spectral clustering. The eigenvalues of the similarity matrix are also related to spectral clustering
algorithms (Von Luxburg, 2007), which use a matrix known as the graph Laplacian, defined L =
D −K, where K is a symmetric, weighted adjacency matrix with non-negative entries, and D is
a diagonal matrix with Di,i =

∑
j Ki,j . The eigenvalues of L can be used to characterize different

properties of the graph—for example, the multiplicity of the eigenvalue 0 is equal to the number of
connected components. As a metric for diversity, the Vendi Score is somewhat more general than
the number of connected components: it provides a meaningful measure even for fully connected
graphs, and captures within-component diversity.

3 Measuring Diversity with the Vendi Score

We now define the Vendi Score, state its properties, and study its computational complexity. (We
relegate all proofs of lemmas and theorems to the appendix.)

3.1 Defining the Vendi Score

To define a diversity metric in ML we look to ecology, the field that centers diversity in its work. In
ecology, one main way diversity is defined is as the exponential of the entropy of the distribution of
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the species under study (Jost, 2006; Leinster, 2021). This is a reasonable index for diversity. Consider
a population with a uniform distribution over n species, with entropy log(n). This population has
maximal ecological diversity n, the same diversity as a population with n members, each belonging
to a different species. The ecological diversity decreases as the distribution over the species becomes
less uniform, and is minimized and equal to one when all members of the population belong to the
same species.

How can we extend this way of thinking about diversity to ML? One naive approach is to define
diversity as the exponential of the Shannon entropy of the probability distribution defined by a ma-
chine learning model or dataset. However, this approach is limiting in that it requires a probability
distribution for which entropy is tractable, which is not possible in many ML settings. We would
like to define a diversity metric that only relies on the samples being evaluated for diversity. And we
would like for such a metric to achieve its maximum value when all samples are dissimilar and its
minimum value when all samples are the same. This implies the need to define a similarity function
over the samples. Endowed with such a similarity function, we can define a form of entropy that only
relies on the samples to be evaluated for diversity. This leads us to the Vendi Score:
Definition 3.1 (Vendi Score). Let x1, . . . , xn ∈ X denote a collection of samples, let k : X×X → R
be a positive semidefinite similarity function, with k(x, x) = 1 for all x, and let K ∈ Rn×n denote
the kernel matrix with entry Ki,j = k(xi, xj). Denote by λ1, . . . , λn the eigenvalues of K/n. The
Vendi Score (VS) is defined as the exponential of the Shannon entropy of the eigenvalues ofK/n:

VSk(x1, . . . , xn) = exp

(
−

S∑
i=1

λi log λi

)
, (1)

where we use the convention 0 log 0 = 0.

To understand the validity of the Vendi Score as a mathematical object, note that the eigenvalues
of K/n are nonnegative (because k is positive semidefinite) and sum to one (because the diagonal
entries ofK/n are equal to 1/n). The Shannon entropy is therefore well-defined and the Vendi Score
is well-defined. In this form, the Vendi Score can also be seen as the effective rank of the kernel matrix
K/n. Effective rank was introduced by Roy and Vetterli (2007) in the context of signal processing;
the effective rank of a matrix is defined as the exponential of the entropy of the normalized singular
values. The Vendi Score can be expressed directly as a function of the kernel similarity matrixK:
Lemma 3.1. Consider the same setting as Definition 3.1. Then

VSk(x1, . . . , xn) = exp

(
− tr

(
K

n
log

K

n

))
. (2)

The lemma makes explicit the connection of the Vendi Score to quantum statistical mechanics: the
Vendi Score is equal to the exponential of the von Neumann entropy associated with K/n (Bach,
2022).

Our formulation of the Vendi Score assumes that x1, . . . , xn were sampled independently, and so
p(xi) ≈ 1

n for all i. This is the usual setting in ML and the setting we study in our experiments.
However, we can generalize the Vendi Score to a setting in which we have an explicit probability
distribution over the sample space X (see Definition 3.1 in the appendix).

3.2 Understanding the Vendi Score

The Vendi Score has several desirable properties as a diversity metric. We summarize them in the
following theorem.
Theorem 3.1 (Properties of the Vendi Score). Consider the same definitions in Definition 3.1.

(a) Effective number: If k(xi, xj) = 0 for all i 6= j, then VSk(x1, . . . , xn) is maximized and
equal to n. If k(xi, xj) = 1 for all i, j, then VSk(x1, . . . , xn) is minimized and equal to 1.

(b) Partitioning: Suppose S1, . . . , Sm are collections of samples such that, for any i 6= j, for
all x ∈ Si, x′ ∈ Sj , k(x, x′) = 0. Then the diversity of the combined samples depends only
on the diversities of S1, . . . , Sm and their relative sizes. In particular, if pi = |Si|/

∑
j |Sj |

is the relative size of Si and H(p1, . . . , pm) denotes the Shannon entropy, then VS is given
by the geometric mean, VSk(S1, . . . , Sm) = exp(H(p1, . . . , pm))

∏m
i=1 VSk(Si)

pi .
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Figure 2: VS increases proportionally with diversity in three sets of synthetic datasets. In each row,
we sample datasets from univariate mixture-of-normal distributions, varying either the number of
components, the mixture proportions, or the per-component variance. The datasets are depicted in
the left, as histograms, and the diversity scores are plotted on the right.

(c) Symmetry: If π1, . . . , πn is a permutation of 1, . . . , n, then VSk(x1, . . . , xn) =
VSk(xπ1

, . . . , xπn
).

Taking the exponential of entropy turns it into an effective number. The value of measuring diversity
with effective numbers has been argued in ecology (e.g. Hill, 1973; Patil and Taillie, 1982; Jost,
2006) and economics (Adelman, 1969). Effective numbers provide a consistent basis for interpreting
diversity scores, and make it possible to compare diversity scores using ratios and percentages. For
example, suppose a population contains one million equally abundant species, and 50% go extinct.
The diversity score will decrease by 50%, while the entropy will decrease by only about 5%.

3.3 Calculating the Vendi Score

Calculating the Vendi Score for a sample of n elements requires finding the eigenvalues of an n× n
matrix, which has a time complexity of O(n3). The Vendi Score can be approximated using column
sampling methods (i.e. the Nyström method; Williams and Seeger, 2000). However, in many of
the applications we consider, the similarity function we use is the cosine similarity between explicit
feature vectors φ(x) ∈ Rd, with d < n. That is,K = X>X , whereX ∈ Rn×d is the feature matrix
with row Xi,: = φ(xi)/‖φ(xi)‖2. The eigenvalues of K/n are the same as the eigenvalues of the
matrix XX>/n, therefore we can calculate the Vendi Score exactly in a time of O(d2n + d3) =
O(d2n). This is the same complexity as existing metrics such as FID (Heusel et al., 2017), which
require calculating the covariance matrix of Inception embeddings.

4 Experiments

We illustrate the Vendi Score (VS) on synthetic data to illustrate that it captures intuitive notions of
diversity, and then apply it to a variety of setting in ML. We used VS to evaluate the diversity of
generative models of molecules, an application where diversity plays an important role in enabling
discovery, and found that VS identifies some model weaknesses that are not detected by IntDiv, the
standard metric in that domain. We also applied VS to generative models of images, and decoding
algorithms of text, where we found it confirms what we know about diversity in those applications.
We also used VS to measure mode collapse in GANs and show that it reveals finer-grained distinctions
in diversity than current metrics for measuring mode collapse. Finally, we used VS to analyze the
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Figure 3: The kernel matrices for 250 molecules sampled from the HMM, AAE, and the original
dataset, sorted lexicographically by SMILES string representation. The samples have similar IntDiv
scores, but the HMM samples score much lower on VS. The figure shows that the HMM generates a
number of exact duplicates, which are reflected by VS but not IntDiv.

diversity of several image, text, and molecule datasets, gaining insights into the least and most diverse
elements of those datasets. (Implementation details are provided in Appendix B.)

4.1 Synthetic experiments

To illustrate the behavior of the Vendi Score, we calculate the diversity of simple datasets drawn
from a mixture of univariate normal distributions, varying either the number of components, the
mixture proportions, or the per-component variance. We measure similarity using the RBF kernel:
k(x, x′) = exp(‖x−x′‖2/2σ2). The results are illustrated in Figure 2. VS behaves consistently and
intuitively in all three settings: in each case, VS can be interpreted as the effective number of modes,
ranging between one and five in the first two rows and increasing from five to seven in the third row
as we increase within-mode variance. On the other hand, the behavior of IntDiv is different in each
settings: for example, IntDiv is relatively insensitive to within-mode variance, and additional modes
bring diminishing returns.

In Appendix C.1, we also validate that VS captures mode dropping in a simulated setting, using image
and text classification datasets, where we have information about the ground truth class distribution.
In both cases, VS has a stronger correlation with the true number of modes compared to IntDiv.

4.2 Evaluating molecular generative models for diversity

Next, we evaluate the diversity of samples from generative models of molecules. For generative
models to be useful for the discovery of novel molecules, they ought to be diverse. The standard
diversity metric in this setting is IntDiv. We evaluate samples from generative models provided
in the MOSES benchmark (Polykovskiy et al., 2020), using the first 2,500 valid molecules in each
sample. Following prior work, our similarity function is the Morgan fingerprint similarity (radius 2),
implemented in RDKit.2 In Figure 3, we highlight an instance where IntDiv and VS disagree: IntDiv
ranks the HMM among the most diverse models, while VS ranks it as the least diverse (the complete
results are in Appendix Table 4). The HMM has a high IntDiv score because, on average, the HMM
molecules have low pairwise similarity scores, but there are a number of clusters of identical or nearly
identical molecules.

4.3 Assessing mode collapse in generative adversarial networks (gans)

Mode collapse is a failure mode of GANs that has received a lot of attention from the ML commu-
nity (Metz et al., 2017; Dieng et al., 2019). The main metric for measuring mode collapse, called
number of modes, can only be used to assess mode collapse for GANs trained on a labelled dataset.

2RDKit: Open-source Cheminformatics. https://www.rdkit.org.
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Model Modes Mode Div. VS
Self-cond. GAN 1000 921.0 746.7
PresGAN 1000 948.7 866.6
Original 1000 950.8 943.7

Table 1: VS reveals that even GANs that capture all the modes of a labeled dataset can be less
diverse than the original dataset, indicating that it captures a more fine-grained notion of diversity
than number of modes.

Model IS↑ FID↓ Prec↑ Rec↑ VS↑

CIFAR-10
Original 19.50
VDVAE 5.82 40.05 0.63 0.35 12.87
DenseFlow 6.01 34.54 0.62 0.38 13.55
IDDPM 9.24 4.39 0.66 0.60 16.86

ImageNet 64×64
Original 43.93
VDVAE 9.68 57.57 0.47 0.37 18.04
DenseFlow 5.62 102.90 0.36 0.17 12.71
IDDPM 15.59 19.24 0.59 0.58 24.28

Model IS↑ FID↓ Prec↑ Rec↑ VS↑

LSUN Bedroom 256×256
Original 8.99
StyleGAN 2.55 2.35 0.59 0.48 8.76
ADM 2.38 1.90 0.66 0.51 7.97
RQ-VT 2.56 3.16 0.60 0.50 8.48

LSUN Cat 256×256
Original 15.12
StyleGAN2 4.84 7.25 0.58 0.43 13.55
ADM 5.19 5.57 0.63 0.52 13.09
RQ-VT 5.76 10.69 0.53 0.48 14.91

Table 2: VS generally agrees with the existing metrics. On low-resolution datasets (left) the diffusion
model performs better on all of the metrics. On the LSUN datasets (right), the diffusion model gets
the best quality scores as measured by FID, but scores lower on VS. No model matches the diversity
score of the original dataset they were trained on.

Number of modes is computed by training a classifier on the labeled training data and counting the
number of unique classes that are predicted by the trained classifier for the generated samples. In
Table 1, we evaluate two models that were trained on the StackedMNIST dataset, a standard setting
for evaluating mode collapse in GANs. StackedMNIST is created by stacking three MNIST images
along the color channel, creating 1000 classes corresponding to 1000 number of modes.

We calculate VS using the probability product kernel (Jebara et al., 2004): k(x, x′) =
∑
y p(y |

x)
1
2 p(y | x′) 1

2 , where the class likelihoods are given by the classifier. We compare PresGAN (Dieng
et al., 2019) and Self-conditioned GAN (Liu et al., 2020), two GANs that are known to capture
all the modes. Table 1 shows that PresGAN and Self-conditioned GAN have the same diversity
according to number of modes, they capture all 1000 modes. However, VS reveals a more fine-grained
notion of diversity, indicating that PresGAN is more diverse than Self-conditioned GAN and that both
are less diverse than the original dataset. One possibility is that VS is capturing imbalances in the
mode distribution. To see whether this is the case, we also calculate Mode Diversity, the exponential
entropy of the predicted mode distribution: expH(p̂(y)), where p̂(y) = 1

n

∑n
i=1 p(y | xi). The

generative models score lower on VS than Mode Diversity, indicating that low scores cannot be
entirely attributed to imbalances in the mode distribution. Therefore VS captures more aspects of
diversity, even when we are using the same representations as existing methods.

4.4 Evaluating image generative models for diversity

We now evaluate several recent models for unconditional image generation, comparing the diver-
sity scores with standard evaluation metrics, Inception Score (IS; Salimans et al., 2016), Frechet
Inception Distance (FID; Heusel et al., 2017), Precision (Sajjadi et al., 2018), and Recall (Sajjadi
et al., 2018). The models we evaluate represent popular classes of generative models, including a
variational autoencoder (VDVAE; Child, 2020), a flow model (DenseFlow; Grcić et al., 2021), dif-
fusion models (IDDPM, Nichol and Dhariwal, 2021; ADM Dhariwal and Nichol, 2021), GAN-based
models (Karras et al., 2019; 2020), and an auto-regressive model (RQ-VT; Lee et al., 2022). The
models are trained on CIFAR-10 (Krizhevsky, 2009), ImageNet (Russakovsky et al., 2015), or two
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categories from the LSUN dataset (Yu et al., 2015). We either select models that provide precom-
puted samples, or download publicly available model checkpoints and sample new images using the
default hyperparameters. (More details are in Appendix B.)

The standard metrics in this setting use a pre-trained Inception ImageNet classifier to map images to
real vectors. Therefore, we calculate VS using the cosine similarity between Inception embeddings,
using the same 2048-dimensional representations used for evaluating FID and Precision/Recall. As
a result, the highest possible similarity score is 2048. The baseline metrics are reference-based, with
the exception of the IS. FID and IS capture diversity implicitly. Recall was introduced to capture
diversity explicitly, with diversity defined as coverage of the reference distribution.

The results of this comparison are in Table 2. On the lower resolution datasets (left), VS generally
agrees with the existing metrics. On those datasets the diffusion model performs better on all of the
metrics. On the LSUN datasets (right), the diffusion model gets the best quality scores as measured
by FID, but scores lower on VS. No model matches the diversity score of the original dataset they
were trained on. In addition to comparing the diversity of the models, we can also compare the
diversity scores between datasets: as a function of Inception similarity, the most diverse dataset is
ImageNet 64×64, followed by CIFAR-10, followed by LSUN Cat, and then LSUN Bedroom. This
agrees with the intuition that the Inception network will induce the highest-rank embedding space
for datasets that most resemble the training distribution.

VS should be understood as the diversity with respect to a specific similarity function, in this case,
the Inception ImageNet similarity. We illustrate this point in the appendix (Figure 6) by comparing
the top eigenvalues of the kernel matrices corresponding to the cosine similarity between Inception
embeddings and pixel vectors. Inception similarity captures a form of semantic similarity, with
components corresponding to particular cat breeds, while the pixel kernel provides a simple form
of visual similarity, with components corresponding to broad differences in lightness, darkness, and
color.

4.5 Evaluating decoding algorithms for text for diversity

Source BLEU-4 N-gram div. VS
Human 0.82 4.88
Beam Search 0.27 0.42 3.00
DBS γ = 0.2 0.25 0.49 3.16
DBS γ = 0.5 0.22 0.63 4.14
DBS γ = 0.8 0.21 0.68 4.37

Table 3: Quality and diversity scores for an image captioning model using Beam Search or Diverse
Beam Search (DBS). Increasing the diversity penalty γ leads to higher diversity scores but a lower
quality score (measured by BLEU-4).

We evaluate diversity on the MS COCO image-captioning dataset (Lin et al., 2014), following prior
work on diverse text generation (Vijayakumar et al., 2018). In this setting, the subjects of evaluation
are diverse decoding algorithms rather than parametric models. Given a fixed model p(x | c), where
c is some conditioning context, the aim is to identify a “Diverse N-Best List”, a list of sentences that
have high likelihood but are mutually distinct. a list of sentences that have high likelihood but are
mutually distinct. The baseline metric we compare to is n-gram diversity (Li et al., 2016), which
is the proportion of unique n-grams divided by the total number of n-grams. We define similarity
using the n-gram overlap kernel: for a given n, the n-gram kernel kn is the cosine similarity between
bag-of-n-gram feature vectors. We use the average of k1, . . . , k4. This ensures that VS and n-gram
diversity are calculated using the same feature representation. Each image in the validation split has
five captions written by different human annotators, and we compare these with captions generated
by a publicly available captioning model trained on this dataset. 3 For each image, we generate five
captions using either beam search or diverse beam search (DBS Vijayakumar et al., 2018). DBS
takes a parameter, γ, called the diversity penalty, and we vary this between 0.2, 0.6, and 0.8.

3https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts
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Figure 4: The categories in CIFAR-100 with the lowest and highest VS, defining similarity as the
cosine similarity between either Inception embeddings or pixel vectors. We show 100 examples
from each category, in decreasing order of average similarity, with the image at the top left having
the highest average similarity scores according to the corresponding kernel.

Table 3 shows that all diversity metrics increase as expected, ranking beam search the lowest, the
human captions the highest, and DBS in between, increasing with the diversity penalty. The human
diversity score of 4.88 can be interpreted as meaning that, on average, all five human-written captions
are almost completely dissimilar from each other, while beam search effectively returns only three
distinct responses for every five that it generates.

4.6 Diagnosing datasets for diversity

In Figure 4, we calculate VS for samples from different categories in CIFAR-100, using the cosine
similarity between either Inception embeddings or pixel vectors. The pixel diversity is highest for
categories like “aquarium fish”, which vary in color, brightness, and orientation, and lowest for cat-
egories like “cockroach” in which images have similar regions of high pixel intensity (like white
backgrounds). The Inception diversity is less straightforward to interpret, but might correspond to
some form of semantic diversity—for example, the Inception diversity might be lower for classes like
“castle,” that correspond to distinct ImageNet categories, and higher for categories like “clock” and
“keyboard” that are more difficult to classify. In Appendix C.5, we show additional examples from
text, molecules, and other image datasets.

5 Discussion

We introduced the Vendi Score, a metric for evaluating diversity in machine learning. The Vendi
Score is defined as a function of the pairwise similarity scores between elements of a sample and can
be interpreted as the effective number of unique elements in the sample. The Vendi Score is inter-
pretable, general, and applicable to any domain where similarity can be defined. It is unsupervised,
in that it doesn’t require labels or a reference probability distribution. Importantly, the Vendi Score
allows its user to specify the form of diversity they want to measure via the similarity function. We
showed the Vendi Score can be computed efficiently exactly and showcased its usefulness in several
ML applications, different datasets, and different domains. In future work, we’ll leverage the Vendi
Score to improve data augmentation, an important ML approach in settings with limited data.
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A Proofs

A.1 Probability-weighted Vendi Score

Definition A.1 (Probability-Weighted Vendi Score). Let p ∈ ∆n denote a probability distribution
on a discrete space X = {x1, . . . , xn}, where ∆n denotes the (n − 1)-dimensional simplex, let
k : X × X → R be a positive semidefinite similarity function, with k(x, x) = 1 for all x, and let
K ∈ Rn×n denote the kernel matrix with Ki,j = k(xi, xj). Let K̃p = diag(

√
p)Kdiag(

√
p)

denote the probability-weighted kernel matrix. Let λ1, . . . , λn denote the eigenvalues of K̃p. The
Vendi Score (VS) is defined as the exponential of the Shannon entropy of the eigenvalues of K̃p:

VSk(x1, . . . , xn,p) = exp

(
−

S∑
i=1

λi log λi

)
. (3)

When all elements in the sample are completely dissimilar, the probability-weighted Vendi Score
defined in Definition A.1 reduces to the exponential of the Shannon entropy of the weighting distri-
bution:
Lemma A.1. Let p ∈ ∆n be a probability distribution over x1, . . . , xn and suppose k(xi, xj) = 0
for all i 6= j. Then VSk(x1, . . . , xn,p) = expH(p), the exponential of the Shannon entropy of p.

A.2 Proof of ??

Rather than prove ?? directly, we prove a more general lemma for the probability-weighted kernel
matrix K̃p defined in Definition A.1. ?? follows by setting p = (1/N, . . . , 1/N) to be the uniform
distribution on N elements.
Lemma A.2. Let K ∈ RN×N denote a positive semi-definite kernel matrix with Kii = 1 for
i ∈ {1, . . . , N}. Let ∆N denote the (N − 1)-dimensional simplex; its elements are vectors of
dimension N whose entries are nonnegative and sum to one. Let p = (p1, . . . , pn) ∈ ∆N denote a
probability distribution on N elements, and let λ = (λ1, . . . , λN ) denote the vector of eigenvalues
of the probability-weighted kernel matrix K̃p = diag(

√
p)Kdiag(

√
p). Then λ ∈ ∆N .

Proof. λ is in the (N − 1)-simplex if its entries are nonnegative and sum to one. The entries of λ
are nonnegative because the eigenvalues of a positive semi-definite matrix are nonnegative, and K̃p

is the product of positive semi-definite matrices and so is positive semi-definite iteslf. (diag(
√
p)

is positive semi-definite because it is a diagonal matrix with nonnegative entries.) The entries sum
to one because the trace of a square matrix is equal to the sum of its eigenvalues, and tr(K̃p) =∑N
i=1Kiipi = 1.

A.3 Proof of Lemma 3.1

Lemma. Consider the same setting as Definition 3.1. Then

VSk(x1, . . . , xn) = exp

(
− tr

(
K

n
log

K

n

))
. (4)

Proof. For any square matrix X ∈ Rn×n, if X has an eigendecomposition X = UΛU−1, then
logX = U (logΛ)U−1, where logΛ = diag(log λ1, . . . , log λn) is a diagonal matrix whose
diagonal entries are the logarithms of the eigenvalues ofX . Also, tr(X) = tr

(
UΛU−1

)
= tr(Λ),
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because the trace is similarity-invariant. K/n is diagonalizable because it is positive semidefinite,
so letK/n = UΛU−1 denote the eigendecomposition. Then

tr(K/n logK/n) = tr
(
UΛU−1 log

(
UΛU−1

))
= tr

(
UΛU−1U (logΛ)U−1

)
= tr (Λ logΛ)

=

n∑
i=1

λi log λi.

Therefore

VSk(x1, . . . , xn) = exp

(
−

n∑
i=1

λi log λi

)
= exp

(
− tr

(
K

n
log

K

n

))
.

A.4 Proof of Lemma A.1

Lemma. Let p ∈ ∆n be a probability distribution over x1, . . . , xn and suppose k(xi, xj) = 0 for all
i 6= j. Then VSk(x1, . . . , xn,p) = expH(p), the exponential of the Shannon entropy of p.

Proof. If all element inp are completely dissimilar, then K̃p is a diagonal matrix, and the eigenvalues
λ1, . . . , λS are the diagonal entries, which are the entries of p. So the von Neumann entropy of K̃p

is identical to the Shannon entropy of p, and the exponential is the Vendi Score.

A.5 Proof of Theorem 3.1

Proof. (a) Effective number: If p is the uniform distribution overN completely dissimilar elements,
then K̃p is a diagonal matrix with each diagonal entry equal to 1/N . The eigenvalues of a diagonal
matrix are the diagonal entries, so VSK(p) = expH(1/N, . . . , 1/N) = exp logN = N . On the
other hand, if all elements are completely similar to each other, then K̃p has rank one and so the
Vendi Score is equal to one.

(b) Identical elements: The eigenvalues of K̃p are the same as the eigenvalues of the covariance
matrix of the corresponding feature space:

Σ̃p =

N∑
i=1

p(xi)φ(xi)φ(xi)
>.

Suppose elements i and j are identical, and let p′ denote the probability distribution created by
combining i and j, i.e. p′i = pi + pj and p′j = 0. Clearly, Σ̃p = Σ̃p′ , and so VSk(x1, . . . , xn,p) =
VSk(x1, . . . , xn,p

′).

(c) Partitioning: Suppose N samples are partitioned into M groups S1, . . . ,SM such that, for any
i 6= j, for all x ∈ Si, x′ ∈ Sj , k(x, x′) = 0. Let pi = |Si|/

∑
j |Sj | denote the relative size of group

i, and let K denote kernel matrix of ∪iSi, sorted in order of group index, and let KSi denote the
restriction of K to elements in Si. Then K/N is a block diagonal matrix, with each block i equal
to piKSi

. The eigenvalues of a block diagonal matrix are the combined eigenvalues of each block,
and the partitioning property then follows from the partitioning property of the Shannon entropy.

(e) Symmetry: The eigenvalues of a matrix are unchanged by orthonormal transformation, and the
Shannon entropy is symmetric in its arguments, so the Vendi Score is symmetric.
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B Implementation Details

B.1 Images

Stacked MNIST We train GANs on Stacked MNIST using the publicly available code for Pres-
GANs 4 and self-conditioned GANs 5. The models share the same DCGAN (Radford et al., 2015)
architecture and are trained on the same dataset of 60,000 Stacked MNIST images, rescaled to 32×32
pixels, and other hyperparameters are set according to the descriptions in the papers. The models are
trained for 50 epochs and the diversity scores are evaluated every five epochs by taking 10,000 sam-
ples. For both models, we report the scores from the epoch corresponding to the highest VS score. As
in prior work (Metz et al., 2017), we classify Stacked MNIST digits by applying a pretrained MNIST
classifier to each color channel independently. The 1000-dimensional Stacked MNIST probability
vector is then the tensor product of the three 10-dimensional probability vectors predicted for the
three channels.

Obtaining Image Samples In Section 4.4, we calculate the diversity scores of several recent gen-
erative models of images. We select models that represent a range of families of generative models
and and provide publicly available samples or model checkpoints for common image datasets. On
the low-resolution datasets, we generate 50,000 samples from each model using the official code for
VDVAE,6 DenseFlow,7, and IDDPM,8, each of which provides a checkpoint for unconditional image
generation models on CIFAR-10 and ImageNet-64. For IDDPM, we sample using DDIM (Song et al.,
2021) for 250 steps, and otherwise use the default sampling parameters. For the higher-resolution
datasets, we use the 50,000 precomputed samples provided by Dhariwal and Nichol (2021)9 for ADM
and StyleGAN models. We obtain 50,000 samples from the RQ-VAE/Transformer model using the
code and checkpoints provided by the authors,10 with the default sampling parameters.

Calculating Image Metrics In Table 2, we calculate standard image quality and diversity metrics,
which are based on Inception embeddings. These Inception-based metrics are sensitive to a number
of implementation details (Parmar et al., 2022) and in general cannot be compared directly between
papers. For a consistent comparison, we calculate all scores using the evaluation code provided
by Dhariwal and Nichol (2021). We also calculated FID and Precision/Recall using the provided
reference images and statistics, with the exception of CIFAR-10, for which we use the training set
as the reference. (The diversity scores of the Original datasets in Table 2 are calculated using these
reference images.) As a result, the numbers in this table may not be directly comparable to results
reported in prior work.

B.2 Text

Obtaining Image Captions In Section 4.5, we sample image captions from a pretrained image-
captioning model,11 which is publicly available in Hugging Face (Wolf et al., 2019), and we use the
Hugging Face implementation of beam search and diverse beam search. For beam search we use a
beam size of 5. For diverse beam search, we use a beam size of 10, a beam group size of 10, and set
the number of return sequences to 5.

Calculating Text Metrics The text metrics we use are calculated in terms of word n-grams, and
therefore depend on how sentences are tokenized into words. We calculate all text metrics using the
pre-trained wordpiece tokenizer used by the captioning models. We use the implementation of the
BLEU score in NLTK (Bird, 2006).

4https://github.com/adjidieng/PresGANs
5https://github.com/stevliu/self-conditioned-gan
6https://github.com/openai/vdvae/
7https://github.com/matejgrcic/DenseFlow
8https://github.com/openai/improved-diffusion
9https://github.com/openai/guided-diffusion

10https://github.com/kakaobrain/rq-vae-transformer
11https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts
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C Additional Results

C.1 Assessing Mode Dropping in Datasets
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Figure 5: We evaluate VS and IntDiv on datasets containing 500 examples drawn uniformly from
between one and ten classes: digits in MNIST and sentences genres in MultiNLI. Compared to IntDiv,
VS increases more consistently with the number of classes.

In Figure 5, we examine whether VS captures mode dropping in a controlled setting, where we have
information about the ground truth class distribution. We simulate mode dropping by sampling equal-
sized subsets of two classification datasets, with each subset Si containing examples sampled uni-
formly from the first i categories. We perform this experiment one image dataset (MNIST) and one
text dataset (MultiNLI; Williams et al., 2018), using simple similarity functions. For MNIST, we
use the cosine similarity between pixel vectors. In MultiNLI, we use the premise sentences from
the validation split (mismatched), which are drawn from one of ten genres. We define similarity
using the n-gram overlap kernel: for a given n, the n-gram kernel kn is the cosine similarity between
bag-of-n-gram feature vectors, and we use the average of k1, . . . , k4.

The results (Figure 5) show that VS generally increases with the number of classes. In MNIST (left),
VS increases roughly linearly for the first six digits (0-5) and then fluctuates. This could occur if the
new modes are similar to the other modes in the sample, or have low internal diversity. In MultiNLI
(right), VS increases monotonically with the number of genres represented in the sample. In both
cases, VS has a stronger correlation with the number of modes compared to IntDiv.

C.2 Evaluating molecular generative models for diversity

We evaluate samples from generative models provided in the MOSES benchmark (Polykovskiy et al.,
2020), using the first 2,500 valid molecules in each sample. Following prior work, our similarity
function is the Morgan fingerprint similarity (radius 2), implemented in RDKit.12 IntDiv ranks the
HMM among the most diverse models, while VS ranks it as the least diverse (see Section 4.2).

C.3 Evaluating image generative models for diversity

In Table 5, we replicate the table described in Section 4.4 and add an additional column, which
evaluates diversity using the cosine similarity between pixel vectors as the similarity function.

VS should be understood as the diversity with respect to a specific similarity function, in this case,
the Inception ImageNet similarity. We illustrate this point in Figure 6 by comparing the top eigenval-
ues of the kernel matrices corresponding to the Inception similarity and the pixel similarity, which
we calculate by resizing the images to 32×32 pixels and taking the cosine similarity between pixel

12RDKit: Open-source Cheminformatics. https://www.rdkit.org.
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Model IntDiv VS
Original 0.855 403.9
AAE 0.859 501.1
Char-RNN 0.856 482.4
Combinatorial 0.873 536.9
HMM 0.871 250.9
JTN 0.856 489.5
Latent GAN 0.857 486.4
N-gram 0.874 479.8
VAE 0.856 475.3

Table 4: IntDiv and VS for generative models of molecules. The HMM has one of the highest IntDiv
scores, but scores much lower on VS. An analysis of 250 molecules from the HMM reveals VS is
more accurate in this case. (See Figure 3.)

Model IS↑ FID↓ Prec↑ Rec↑ VSI↑ VSP ↑

CIFAR-10
Original 19.50 3.52
VDVAE 5.82 40.05 0.63 0.35 12.87 3.34
DenseFlow 6.01 34.54 0.62 0.38 13.55 2.94
IDDPM 9.24 4.39 0.66 0.60 16.86 3.27

ImageNet 64×64
Original 43.93 4.43
VDVAE 9.68 57.57 0.47 0.37 18.04 4.24
DenseFlow 5.62 102.90 0.36 0.17 12.71 3.51
IDDPM 15.59 19.24 0.59 0.58 24.28 4.57

Model IS↑ FID↓ Prec↑ Rec↑ VSI↑ VSP ↑

LSUN Bedroom 256×256
Original 8.99 3.10
StyleGAN 2.55 2.35 0.59 0.48 8.76 3.09
ADM 2.38 1.90 0.66 0.51 7.97 3.27
RQ-VT 2.56 3.16 0.60 0.50 8.48 3.67

LSUN Cat 256×256
Original 15.12 4.58
StyleGAN2 4.84 7.25 0.58 0.43 13.55 4.53
ADM 5.19 5.57 0.63 0.52 13.09 4.81
RQ-VT 5.76 10.69 0.53 0.48 14.91 5.83

Table 5: We evaluate samples from several recent models, measuring similarity using either In-
ception representations (VSI ) or pixels (VSP ). The pixel similarity score is the cosine similarity
between pixel vectors, calculated after resizing the images to 32×32 pixels. The pixel similarity and
Inception similarity scores do not always agree—for example, if the images in a sample represent a
variety of ImageNet classes by share a similar color palette, we might expect the sample to have high
Inception diversity but low pixel diversity. The pixel diversity scores are on a lower scale, indicating
that this similarity metric is less capable of making fine-grained distinctions between the images in
these samples.

vectors. Inception similarity provides a form of semantic similarity, with components correspond-
ing to particular cat breeds, while the pixel kernel provides a simple form of visual similarity, with
components corresponding to broad differences in lightness, darkness, and color.

C.4 Evaluating decoding algorithms for text for diversity

In Figure 7, we plot the relationship between VS and n-gram diversity using the MS-COCO caption-
ing data and the n-gram overlap kernel described in Section 4.5. The figure shows that VS is highly
correlated with n-gram diversity, which is expected given that our similarity function is based on
n-gram overlap. Nonetheless, there are some data points that the metrics rank differently. This is
because n-gram diversity conflates two properties: the diversity of n-grams within a single sentences
and the n-gram overlap between sentences. We highlight two examples in Figure 8. In general, the
instances that n-gram diversity ranks lower compared to VS contain individual sentences that repeat
phrases. On the other hand, n-gram diversity can be inflated in cases when one sentence in the sample
is much longer than the others, even if the other sentences are not diverse.
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Figure 6: The choice of similarity function provides a way of specifying the notion of diversity that is
relevant for a given application. We project LSUN Cat images along the top eigenvectors of the kernel
matrix, using either Inception features or pixels to define similarity. Inception similarity provides a
form of semantic similarity, with components corresponding to particular cat breeds, while the pixel
kernel captures visual similarity. For each eigenvector u, we show the four images with the highest
and lowest entries in u. For both kernels, every similarity score is positive, so all entries in the top
eigenvector have the same sign; the images with the heighest weights in this component have the
highest expected similarity scores. The remaining eigenvectors partition the images along different
dimensions of variation.
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Figure 7: VS is correlated with N-gram diversity. Each point represents a group of five captions for
a particular image.

C.5 Diagnosing datasets for diversity

Molecules We evaluate the diversity scores of molecules in the GoodScents database of perfume
materials,13 which has been used in prior machine learning research on odor modeling (Sanchez-
Lengeling et al., 2019). We use the standardized version of the data provided by the Pyrfume li-
brary. 14 Each molecule in the dataset is labeled with one or more odor descriptors (for exam-
ple, “clean, oily, waxy” or “floral, fruity, green”). We form groups of molecules corresponding
to the seven most common odor descriptors, with each group consisting of 500 randomly sampled

13http://www.thegoodscentscompany.com/
14https://pyrfume.org/
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High Vendi Score, low n-gram diversity:
• two men in bow ties standing next to steel rafter.
• several men in suits talking together in a room.
• an older man in a tuxedo standing next to a

younger man in a tuxedo wearing glasses.
• two men wearing tuxedos glance at each other.
• older man in tuxedo sitting next to another younger

man in tuxedo.

Low Vendi Score, high n-gram diversity:
• a man and woman cutting a slice of cake by trees.
• a couple of people standing cutting a cake.
• the dork with the earring stands next to the asian

beauty who is way out of his league.
• a newly married couple cutting a cake in a park.
• a bride and groom are cutting a cake as they smile.

Figure 8: Two sets of captions that receive different ranks according Vendi Score and n-gram diver-
sity. We manually highlight some features contributing to the different scores. On the left, a sentence
contains repeated n-grams, which are penalized by n-gram diversity. On the right, one long outlier
sentence contributes most of the n-grams for this group, greatly increasing the n-gram diversity.

molecules. We evaluate VS using two similarity functions: the Morgan fingerprint similarity (radius
2), and the similarity between odor descriptors, defined as the cosine similarity between descriptor
indicator vectors φ(x), where φi(x) is equal to one if descriptor i is associated with molecule x and
zero otherwise.
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Figure 9: The Vendi Scores of samples containing 500 molecules with different scent labels, cal-
culating diversity using two similarity functions: Morgan molecular fingerprint similarity, and the
similarity between odor descriptors. Each molecule is associated with one or more human-written
tags (e.g. “floral, fruity, green, sweet”), and the odor-descriptor similarity is the cosine similarity
between binary tag indicator vectors.

The diversity scores are plotted in Figure 9. The molecular diversity score and the odor-descriptor
diversity scores are correlated, meaning that words like “woody” and “green” are used to describe
molecules that vary in molecular structure and also elicit diverse odor descriptions, while words like
“waxy” and “fatty” are used for molecules that are similar to each other and elicit similar odor de-
scriptions. For example, the word “green” appears in tag sets such as “aldehydic, citrus, cortex, green,
herbal, tart” and “floral, green, terpenic, tropical, vegetable, woody”, whereas the word “waxy” tends
to co-occur with the same tags (“fresh, waxy”; “fresh, green, melon rind, mushroom, tropical, waxy”;
“fruity, green, musty, waxy”). Molecules from the categories with the highest and lowest scores are
illustrated in Figure 10.
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Woody Herbal
Most diverse

Waxy Fatty
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Figure 10: The scent categories in Goodscents dataset with the lowest (top) and highest (highest)
Vendi Scores, using the molecular fingerprint similarity. We show 100 examples from each category,
in decreasing order of average similarity, with the image at the top left having the highest average
similarity scores.
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Figure 11: The Vendi Scores of samples containing 500 MultiNLI sentences with different genres
(left) or Amazon reviews with different star ratings (right), defining similarity using either n-gram
overlap or SimCSE (Gao et al., 2021).

Text In Figure 11, we evaluate the diversity scores of samples sentences with different genres,
from the MultiNLI dataset (Williams et al., 2018), and Amazon product reviews with different star
ratings (Keung et al., 2020), using either the n-gram overlap similarity or SimCSE (Gao et al., 2021).
SimCSE is a Transformer-based sentence encoder that achieves state-of-the-art scores on semantic
similarity benchmarks. The model we use initialized from the uncased BERT-base model (Devlin
et al., 2019) and trained with a contrastive learning objective to assign high similarity scores to pairs
of MultiNLI sentences that have a logical entailment relationship.

In MultiNLI, both models assign the highest score to Slate, which consists of sentences from articles
published on slate.com. SimCSE assigns a higher score to the “Fiction” category, possibly because
it is less sensitive to common n-grams (e.g. “he said”), that appear in many sentences in this genre
and contribute to the low N-gram diversity score. In the Amazon review dataset, the 5-star reviews
have the highest N-gram diversity but the lowest SimCSE diversity, perhaps because SimCSE assigns
high similarity scores to sentences that have the same strong sentiment. SimCSE assigns the highest
diversity score to 3-star reviews, which can vary in sentiment.

Images Following the setting in Section 4.6, we evaluate two additional datasets, Fashion
MNIST (Xiao et al., 2017) and CelebA (Liu et al., 2015). We use the same similarity scores as
in Section 4.6. Images in CelebA are associated with 40-dimensional binary attribute vectors. We
use these attributes as an additional similarity score, defining the attribute similarity as the cosine
similarity between attribute vectors. These illustrations highlight the importance of the choice of
similarity function in defining a diversity metric.
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Figure 12: The categories in Fashion MNIST with the lowest (left) and highest (right) Vendi Scores,
defining similarity as the cosine similarity between either Inception embeddings (top) or pixel vectors
(bottom). We show 100 examples from each category, in decreasing order of average similarity, with
the image at the top left having the highest average similarity scores according to the corresponding
kernel.
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Figure 13: The attributes in CelebA with the lowest (left) and highest (right) Vendi Scores, defining
similarity as the cosine similarity between either Inception embeddings (top), pixel vectors (middle),
or binary attribute vectors (bottom). We show 100 examples from each category, in decreasing or-
der of average similarity, with the image at the top left having the highest average similarity scores
according to the corresponding kernel. These examples illustrate the importance of the choice of
similarity score for defining the notion of diversity that is relevant for a given application.
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