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Abstract

Healthcare applications pose significant challenges to existing reinforcement learn-
ing (RL) methods due to implementation risks, limited data availability, short
treatment episodes, sparse rewards, partial observations, and heterogeneous treat-
ment effects. Despite significant interest in using RL to generate dynamic treatment
regimes for longitudinal patient care scenarios, no standardized benchmark has
yet been developed. To fill this need we introduce Episodes of Care (EpiCare),
a benchmark designed to mimic the challenges associated with applying RL to
longitudinal healthcare settings. We leverage this benchmark to test five state-
of-the-art offline RL models as well as five common off-policy evaluation (OPE)
techniques. Our results suggest that while offline RL may be capable of improving
upon existing standards of care given sufficient data, its applicability does not
appear to extend to the moderate to low data regimes typical of current healthcare
settings. Additionally, we demonstrate that several OPE techniques standard in
the the medical RL literature fail to perform adequately on our benchmark. These
results suggest that the performance of RL models in dynamic treatment regimes
may be difficult to meaningfully evaluate using current OPE methods, indicating
that RL for this application domain may still be in its early stages. We hope that
these results along with the benchmark will facilitate better comparison of existing
methods and inspire further research into techniques that increase the practical
applicability of medical RL.

1 Introduction

Most human diseases evolve over time, many with trajectories that can be influenced by the right
treatment [1]. Dynamic treatment regimes (DTRs) are adaptive medical policies which define a set
of decision rules to determine the treatment to apply to a patient given the patient’s medical history,
including past treatments and observations [2]. Although latent biology drives disease progression,
physicians lack direct access to the true biological state of any given patient and instead must rely
on indirect and often partial clinical observations that correlate with this hidden state [1, 3, 4, 5, 6].
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Spurred by previous work applying reinforcement learning (RL) to other types of medical problems
[7, 8], numerous authors have expressed interest in using offline RL to generate DTRs, especially in
the case of longitudinal patient care with multi-treatment selection [9, 10, 11].

Medical RL models are faced with a chicken-and-egg problem: the RL models cannot be deployed
until they are evaluated for safety, and cannot be directly evaluated except by being deployed. To
address this, indirect pre-deployment validation methods are commonly used to evaluate the real-
world readiness of various RL techniques. This pre-deployment validation can be approached in three
ways. First, models can be trained on historical data, and their performance predicted via off-policy
evaluation (OPE). Second, models can limit themselves to directly mimicking the behavior policy
under which the historical data was collected, a process known as behavior cloning (BC) [12], which
can avoid some issues with OPE by restricting the RL model’s behavioral repertoire [13]. Finally,
RL models can be trained on a simulated environment designed to capture the challenges expected
in the real-world environment of interest. This simulation approach enables direct evaluation of RL
policies on the simulated environment without ethical concerns. This approach also makes it possible
to compare OPE performance predictions against the actual online performance of RL policies,
providing a performance benchmark for OPE methods themselves. Despite the distinct advantages
of the simulation-based approach, to date no such simulated environments have been developed for
longitudinal healthcare applications — instead, most previous work has focused on simulating the
effect of controlling individual drug dosages over short periods of time (See Section 2).

In this paper we introduce Episodes of Care (EpiCare), the first benchmark for RL in longitudinal
patient care. We compare the performance of five state-of-the-art offline RL. models on our bench-
mark. Additionally, we evaluate five common OPE methods to determine whether they reliably
predict the performance of RL models when trained on EpiCare’s simulated clinical trial data. Our
findings indicate that these OPE methods cannot be trusted to accurately predict RL performance in
longitudinal medical scenarios, calling into question their use for benchmarking RL performance in
real-world clinical applications.

Key design considerations include:

Realistic Difficulty. EpiCare presents significant challenges for existing RL methods, including short
episodes with varied initial conditions, unknown transition dynamics, and observation distributions
that overlap between multiple distinct hidden states. Our benchmark also includes healthcare-specific
challenges such as heterogeneous treatment effects (HTEs) and adverse events [14]. As we are
chiefly interested in offline RL, we generate our off-policy datasets by way of simulated clinical trials
which emulate the real-world collection of clinical data. While the challenges present in EpiCare are
germane to the field of healthcare, EpiCare is designed as a benchmark capable of representing a
class of medically inspired problems rather than a disease-specific simulation.

Patient Safety. One of the most important considerations in deployment of any new DTR is that it
should not reduce patient safety relative to the existing standard of care (SoC). Therefore, in addition
to mean returns, we also measure patient welfare statistics such as the adverse event rate and mean
time to remission. For comparison, we model the SoC via a policy designed to emulate performance
of a hypothetical clinician following best practice but without access to the latent disease states.

Reproducibility and Configurability. As an open source tool available on GitHub and conforming
to OpenAl Gym standards [15], EpiCare aims to encourage the reproducibility and comparability
of results critical to advancing the field of medical RL. The environment’s configurability ensures
that researchers can simulate a wide array of procedurally generated disease treatment scenarios of
variable difficulty. We would like to stress that no such longitudinal medical treatment simulation
environments exist and thus our work represents a first-in-class example of such a benchmark.

Standardized Benchmarks. While configurability is useful, having a standard benchmark is
also important. To this end we have chosen some specific environment hyperparameters in close
collaboration with medical professionals which reflect the realities of longitudinal patient treatment
scenarios. As online RL has historically been too risky for most medical contexts [16], we focused
our benchmarking efforts on offline RL methods, as well as off-policy evaluation (OPE).
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2 Related Work

Reviews on both offline RL [17, 16], and medical RL [18] comprehensively cover a large scope of
related work. An enormous fraction of the offline RL literature cites healthcare as a core motivation
[19, 20, 21, 22], but evaluations typically use standard RL benchmarks that are unrelated to medicine
[15, 23, 24]. This highlights a significant need for a healthcare-oriented RL benchmark like EpiCare.

A central problem in RL-generated DTRs is that of validating their real-world performance [25, 26,
27]. RL-generated DTRs are typically evaluated online; the DTR is applied to an environment for
some number of episodes and the rewards are reported. In medical RL however, online evaluation is
too risky prior to employing alternate initial validation strategies [16]. Instead, DTRs are evaluated
by either off-policy evaluation (OPE) or via simulation, each having advantages and drawbacks.

Off-Policy Evaluation on Real-World Data. OPE is a class of techniques for predicting real-world
performance of a policy by way of historical data [28, 29]. However, OPE is plagued by high data
overheads and significant variance in the predicted performance [30]. Consequently, it has been
claimed that most available medical datasets are not large enough for OPE [31]. Despite these
challenges, numerous exciting RL contributions have emerged in the medical context, not only for
discrete treatment selection in longitudinal patient care [9, 10, 11], but also for problems including
propofol infusion control during surgery [32], mechanical ventilation for intensive care [33], sepsis
treatment [34, 35, 36, 37], and chemotherapy [38]. Due to the widespread use of OPE to evaluate RL
models trained on real-world data, much of the previous research on medical RL hinges on the quality
of OPE methods themselves. Short of the ethically dubious proposition of deploying RL models
directly on patient populations, simulated patient care models are the only other available pathway
to validating OPE techniques. EpiCare represents such a benchmark and provides an unambiguous
evaluation of OPE efficacy in longitudinal patient care scenarios.

Simulated Environments. In contrast to OPE, simulation-based methods evaluate the performance
of RL algorithms on domain-specific pathogensis models. Most simulated environments in the
medical RL literature are chiefly concerned with the continuous control of drug dosages. For example,
an HIV drug dosage model [39] has been used by a number of researchers as a test bed for various
RL techniques [40, 41, 42, 43]. Similarly, researchers have simulated blood glucose control for
diabetes [44, 45, 46], anti-seizure medications for epilepsy [47], and levidopa dosage for Parkinson’s
disease [48]. Despite this focus on continuous control, it is common for clinicians to model disease
progression dynamics as a set of discrete states which evolve over time (Figure 1a). While continuous
models of medical scenarios like propofol infusion can be modulated to represent well-understood
HTEs (especially those arising from known risk factors), we are not aware of any simulation which
uses a discrete hidden state model to represent cryptic disease states. More broadly, there are no
existing RL environments for longitudinal healthcare applications. This is despite the wealth of
literature focused on the challenge of developing longitudinal treatment protocols for conditions
specifically characterized by HTESs, such as acute respiratory effect syndrome [49], atrial fibrillation
[50], osteoarthritis [51], and borderline personality disorder [52]. In this way EpiCare fills a critical
gap in the existing medical RL literature.

3 Environment

EpiCare represents longitudinal patient care scenarios by modeling disease progression and treatment
response over time (Figure 1b) using a Partially Observable Markov Decision Process (POMDP)
framework (Figure 1¢). The environment contains a state space representing various disease states
including remission and adverse events, an observation space capturing clinical indicators (symptoms),
and an action space representing the set of available therapeutic interventions. The probabilistic state
transition dynamics are influenced by both the current state and selected treatment, while observations
are emitted based on state-specific symptom distributions and modified by treatment effects. The
reward function of EpiCare aligns with medical objectives to account for symptom management,
treatment costs, and achieving remission. Each episode begins with a patient initialized in a random
initial state, and the goal is to manage the patient’s symptoms effectively through a sequence of
treatment decisions until remission is achieved or the episode ends. EpiCare is highly configurable,
allowing researchers to simulate a wide range of disease dynamics and treatment scenarios, providing
a comprehensive benchmark for evaluating RL methods in longitudinal medical contexts. For the full
modeling details of EpiCare, see Appendix A.
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Figure 1: (a) A simple real-world example of the state transition graph for liver disease [53]. (b)
A diagram representing a simple two-state disease. Inside the dashed boxes is a Markov model
representing disease states. For each disease state, there exists a set of treatments which if applied
may lead to remission (as indicated by the blue table), as well as a distribution of symptom severities.
At the beginning of each episode, a patient is initialized in one of the disease states, and an initial
observation of that patient’s symptoms is collected. An agent then uses that observation to select a
treatment to apply, which affects the transition probabilities out of the current state. This process
continues until remission is achieved or a maximum number of timesteps is reached. (c) A graphical
model of a POMDP complete with observations, rewards, states, and actions. The dashed lines from
actions to observations indicate that in EpiCare, actions can directly affect observations.

An important feature of this model is that all of the POMDP parameters are generated pseudorandomly
according to an “environment seed”, which is separate from the random seed controlling the stochastic
transitions within an episode. As a result, EpiCare defines a class of related environments indexed
by the environment seed. The performance of an RL method should be evaluated across multiple
environments in order to assess its generalizability. In this paper, we report the performance of each
algorithm on eight different environment instantiations.

4 Policies

EpiCare includes three non-RL policies which serve two different purposes. First, they can be used
to generate the datasets from which we train our offline RL algorithms of interest. When used in this
way, the policies are referred to as “behavior policies”. Second, they can be used as performance
baselines against which to compare the performance of our RL models. When used in this way, the
policies are referred to as “baseline policies”.

These policies are not trained from data; instead, their behavior is computed directly from the
parameters of the POMDP. These policies simulate medical decision-making (1) with complete state
and state-specific treatment response knowledge (Oracle Policy), (2) without state or state-specific
treatment response knowledge (SoC), and (3) using a popular real-world approach (SMART) for
clinical trial randomization [54, 55]. For policies without state knowledge, it is possible to mis-
estimate the efficacy of treatments, leading to worse performance compared to situations where states
are identifiable (see Section 4.2). Overall performance of these policies is compared in Appendix B.3.

4.1 Oracle Policy (OP)

The oracle policy (OP) provides direct access to the hidden state, and at each timestep chooses the
action which greedily maximizes the instantaneous expected reward given that state. This policy
is not fully optimal, as it does not take into account multi-step treatment strategies (e.g. biasing



transition probabilities towards a disease state that would be easier to treat on the next step).> Still,
the OP operates with significant advantage and can thus be used to establish a reasonable floor on
best-case DTR performance.

4.2 Standard of Care (SoC)

The SoC policy aims to provide a facsimile of real clinician performance. Because our treatment
scenarios are procedurally generated, however, there is no such thing as a real-world SoC to compare
against. Therefore, we have made some assumptions about what such an SoC would look like.
Because we are focused on the challenges associated with generating DTRs in scenarios with cryptic
latent disease states and HTEs, we assume our idealized clinician does not have a way to estimate
latent state or state-specific treatment effects. Instead, their knowledge of the medical literature and
best practices is modeled by use of the ground truth expected reward of each action without hidden
state information. Our SoC clinician also assumes that the reward distribution during each episode is
non-stationary and patient-dependent. Thus each individual episode is a non-stationary multi-armed
bandit with some known prior information, which we address using the common technique of an
exponentially recency-weighted value estimate [56] that resets to the stationary expected reward at
the beginning of each episode.? For implementation details, see Appendix B.1.

Given the importance of safety as a performance metric, a meaningful baseline policy must be able to
take adverse events into account when selecting actions. Since adverse events occur when symptoms
reach extreme values, our SoC policy simply avoids prescribing treatments which would worsen any
symptom that is currently above a given threshold. The result is a greedy policy that simulates a
plausible clinical SoC in the face of incomplete information about disease state.* This provides a
conservative benchmark against which the performance of RL algorithms can be assessed.

4.3 Sequential Multiple Assignment Randomized Trial (SMART)

The SMART policy models treatment selection for a simulated sequential multiple assignment
randomized trial (SMART) [54, 55]. This widely-used clinical trial strategy randomizes patients
across multiple treatment arms. The policy adheres to a weighted random selection process where
each treatment’s likelihood of selection is based on its expected reward (for details, see Appendix B.2).
This weighted sampling approach is inspired by Thompson sampling, a simple but effective heuristic
approach for balancing exploration and exploitation [58]. The SMART policy allows us to generate
synthetic clinical trial data which can be used to provide our RL approaches with relevant and realistic
off-policy datasets.

5 Results

We employed EpiCare to benchmark five recent, high-impact offline RL methods: AWAC [59],
EDAC [60], TD3+BC [61], IQL [62], and CQL [63]. Our implementations of these models are
derivative of the CORL library [64]. Most of these models are usable for discrete control simply by
optimizing the logits of a one-hot-encoded action output, but for TD3+BC and EDAC, it is necessary
to propagate gradients through the chosen action; to convert these implementations for the discrete
control case, we used Gumbel-Softmax reparameterization [65, 66]. Additionally, we benchmarked
two simpler methods as baselines: behavior cloning (BC), and a deep @) network (DQN) [67]. The
input to each model consisted of not only the current symptoms, but also the entire observation
history of the current episode as well as the last action selected. Hyperparameters were derived from
sweeps carried out on each model according to ranges established in the literature (Appendix C.3). A
diagram detailing the benchmarking process can be found in Figure 2.

’Greediness works well in the context of EpiCare because the environment is designed such that for every
state there exists at least one effective treatment. If this were not the case, OP could fall into a local optima
where it would only manage symptoms.

3Here the “arms” of the bandit are the possible actions/treatments at each timestep.

*Optimal multi-armed bandit policies must sometimes take actions which do not maximize instantaneous
reward in order to gain information, due to the explore-exploit trade-off [57]. However, in the context of medicine,
where the adage “first, do no harm” applies, exploration is prohibited, as exploring would be tantamount to
enrolling a patient in a clinical trial without consent. As such, explore-exploit-based optimal solutions are not
available to our idealized clinicians, resulting in the need for a greedy policy when modeling their behavior.
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Figure 2: A diagram of the benchmarking process. The SMART policy was used to generate a
synthetic clinical trial dataset from our environment. Once trained, the offline RL methods were
evaluated both online and by way of OPE.

5.1 Online Evaluation

We assessed the performance of our chosen RL methods across variations of the environment by
generating a dataset of 2'7 = 131,072 episodes from each of 8 different environment seeds collected
under the SMART policy defined in Section 4.3.° Because the underlying POMDP is generated
from the environment parameters, these datasets can be thought of as being drawn from sequentially
randomized clinical trials of 8 unrelated diseases. These datasets, consisting of observation, action,
and reward trajectories, were then used to train four replicates of each of our models of interest. Each
trained model was evaluated on 1,000 episodes of online interactions. Online evaluations of OP and
SoC are also reported, with SoC representing a lower bound on the acceptable performance of an RL
algorithm. A policy which takes uniform random actions at all timesteps (Rand) was also assessed.
The outcomes of this experiment can be found in Figure 3a and Table 4.

The RL methods we benchmarked fit broadly into two categories: value-based (CQL, DQN, and IQL)
and actor-critic (TD34BC, AWAC, and EDAC).° In our online evaluation metrics, all value-based
methods outperformed all actor-critic methods for all metrics when averaged across environments.
This makes some sense considering that our benchmarks used a relatively small action space of 16
treatments, and one of the main advantages of actor-critic methods is their ability to efficiently manage
large (high-dimensional or continuous) action-spaces [68]. Indeed the advantage of value-based
methods over actor-critic methods in discrete action spaces is well documented in other, non-medical
domains [69]. Interestingly, TD3+BC, which is a hybrid between the actor-critic method TD3 and
BC performs significantly better across the board than either method type in isolation (Figure 3a).
We see similar relationships between model performance when it is quantified in terms of ability to
achieve remission (Table 6). Overall, CQL, DQN, IQL, and to a lesser extent TD3+BC all outperform
our SoC policy baseline, indicating that they learn to distinguish between the latent states. Of these,
CQL has the best performance overall.

This advantage continues to a lesser degree in terms of adverse event rates, which we use to evaluate
the safety of each RL method, i.e. the degree to which they avoid rare but negative consequences
(Figure 3b). The adverse event rate metric also reveals that while DQN may achieve higher overall
reward than IQL, IQL manages to trigger fewer adverse events. The safety disadvantage of DQN can
be ascribed to its tendency to overestimate future rewards [70], a tendency which IQL and CQL are

3For a discussion on how training on SMART data compares to training on SoC data, see Section 5.4.
SBC, which we use as a performance baseline, is technically supervised learning as it does not use reward as
a learning signal.
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Figure 3: Performance evaluations in terms of (a) returns and (b) adverse event rates for all learning
methods. These metrics are reported as their respective means across 4 replicates each of 8 structurally
different EpiCare environments generated from environment seeds 1-8. The error bars represent the
mean (across environments) of the standard deviation (across replicates). For comparison, the SoC
baseline performance is shown as a horizontal dashed red line. See Tables 4 and 5 for full results.

both designed to correct against [62, 63]. Despite optimizing only for mean returns, CQL, IQL, and
DQN all outperform SoC'’s heuristic approach in terms of adverse event rates, demonstrating that
these methods have some ability to avoid actions which would lead to dangerous outcomes.

5.2 Data Restriction

For the results presented in Figure 3 we used 2!7 = 131, 072 episodes worth of training data per
environment. This quantity of simulated patients is well in excess of the typical size of clinical trials.
Although clinical trials of individual treatments have in some cases had in the millions of patients, a
more typical sample size would be in the hundreds, with the largest SMART trial including 2,876
patients [71, 72]. As such, it is important to evaluate how RL models perform in a restricted data
regime. To test this, we trained the four top performing models from the initial evaluation with
varying training set sizes to see how performance degrades as offline training data size decreases
(Figure 4)7. We compare these to the OP, SoC, and Rand (random) policies, whose performance
curves are constant horizontal lines because they are based on known environment parameters rather
than learned from data.

DOQN is the first model to beat SoC performance at 2,048 patients worth of data, very close to the size
of the largest ever SMART clinical trial. In the low data regime, below 256 patients worth of data,
DOQN performance degrades below random. This is likely due to the fact that DQN has no mechanism
by which to correct against reward overestimates, a problem that becomes more pronounced as data
availability decreases. IQL in particular lags in terms of relative performance for a unique reason: the
optimal number of IQL training steps varies as as function of data availability. For a full discussion
of this peculiarity, see Appendix C.4. TD3+BC also exhibits an interesting phenomenon where the
mean and variance of its returns decrease substantially near N = 256. We suspect that this may
correspond to a double-descent-like effect, where the model (whose layers each have 256 neurons)
moves out of the overparametrization regime, as was recently recorded in TD models [73]. We carry
out the same analysis but with median remission rate instead of episode reward in Appendix C.5.

5.3 Off-policy Evaluation

A significant amount of previous work in medical RL is dependent on the belief that existing OPE
methods behave as faithful estimators of the true real-world performance of a learned policy [13].
In the context of medicine however, the number of interactions with any given patient is usually

"The specific numerical results for the mean returns of these four models given a training set of only 2, 048
episodes can be found in Table 9
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Table 1: RMSE between the OPE estimates and the true online returns evaluated on 1,000 episodes
for each combination of OPE method and RL model, across 8 seeds with 4 replicates. A plot of these
results can be found in Appendix Figure 13.

EDAC AWAC BC TD3+BC IQL DQN CQL

IS 32.7 4.3 2.3 81.0 37.1 354 37.7
WIS 61.4 4.3 2.3 36.2 35.0 10.9 10.7
PDIS 35.6 4.4 2.3 112.8 383 57.9 56.0

WPDIS 36.7 8.4 6.7 46.3 30.7 444 46.9
DM 23.0 11.8 12.3 50.6 46.9 935 1064

quite small compared to existing RL benchmarks, a regime which is out of scope for existing OPE
benchmarks [29, 74]. Therefore EpiCare, which incorporates unique challenges associated with
healthcare including short episode lengths, can provide us with an optimistic picture of how well
OPE is likely to work in the clinical setting. To this end we implemented five common OPE methods:
IS, WIS, PDIS, WPDIS [75], and a simple direct method (DM) [76] based on a regression model of
returns at each timestep. These methods were chosen based on their prevalence in the medical RL
literature [9, 11, 34, 37]. In order to evaluate these OPE methods, we took the final model checkpoints
for all RL models and conducted OPE on a 131,072 episode withheld test set. For the four importance
sampling methods (IS, WIS, PDIS, and WPDIS), we used the mean value of the estimator across 8
bootstrap resamples of the test set. On the other hand, since DM is based on a trained model, instead
of bootstrapping, we simply trained 4 replicates. Root-mean-square error (RMSE) between OPE
estimates and online evaluations of each checkpointed model was then used to assess the degree to
which the OPE estimates were indicative of the actual online evaluation results (Table 1).

We find that OPE estimates of online performance on EpiCare are poor overall, in line with the high
reported variance of these estimators [30]. Furthermore, another key limitation of OPE is that its
accuracy is dependent on an effective sample size, which can become orders of magnitude smaller
than the number of data points available when the policy being tested differs significantly from the
behavior policy [13], a fact which has been used to argue that RL in healthcare should be limited to
behavior cloning policies [31]. Indeed, our OPE methods performed reasonably only on AWAC and
BC, the two policies most likely to select the same action as the behavior policy (Appendix D).



Table 2: Mean return comparison between policies trained on SMART data vs. policies trained on
SoC data. Mean (standard deviation) across 4 replicates on EpiCare environment 1. Only CQL and
TD3+BC (italicized) outperform SoC when trained on SoC data.

EDAC AWAC BC TD3+BC IQL DQN CQL
SMART  7.2(17.5)  30.1(1.8) 24.4(1.0) 71.3(52) 76.5(0.7) 77.0(1.6) 79.4(0.7)
SoC 26.8(19.9)  40.7(1.6) 41.5(0.9) 49.5(1.8) 42.6(0.9) -59.6(7.0) 54.3(0.4)
Online 32(0.8)  64.4(0.7) 66.7(0.8) 9.6(1.0) 68.7(0.7) -32.6(0.7) 63.9(0.7)

5.4 Effect of Training Data

The quality of training data significantly affects offline RL performance. We evaluated this by training
models on EpiCare data generated by three policies: the SoC policy (expert clinician behavior),
the SMART policy (clinical trial simulation), and an online-trained DQN policy with the same
hyperparameters as above (but with 2'° episodes) which we refer to simply as Online.

Results in Table 2 show that most models trained on SMART data outperform those trained on SoC
or Online data, likely due to SMART’s increased state space exploration through randomization.
While SoC and Online policies are more effective for individual patients, their exploitative nature
limits the diversity of training data. BC and AWAC by contrast, which both aim to replicate training
data behavior, show improved performance when trained on higher-performing policies (Online
> SoC > SMART), benefiting from the consistent, expert-driven behavior in SoC data and the
patient-optimized decisions in the Online data.

These findings emphasize that more exploratory datasets may outperform expert-driven data for
training robust RL policies in DTR healthcare, despite the latter’s apparent advantages. Furthermore,
methods like DQN, while effective with exploratory data, degrade significantly with less exploratory
data likely due to overoptimism in unobserved contexts [63, 62].

6 Limitations

Generalizability to Real-World Clinical Scenarios. EpiCare, while sophisticated, clearly cannot
capture all of the complexities of the clinic. We caution against attempting to use EpiCare as a model
of any one particular disease without appropriate domain expertise both in terms of the disease of
interest and the modeling details of the environment. The results of any disease-specific benchmarking
should be audited independently by experts and ethicists for bias prior to deployment.

Dependence on Simulation Parameters. The performance of RL and OPE methods in EpiCare is
influenced by the environment’s parameters. Variations in parameters, such as the number of disease
states or the connectivity of the states, could impact the relevance of our findings to specific contexts.
In particular, we report results for 8 distinct EpiCare disease environments generated randomly
from the same parameters. This leaves open the possibility that other parameters could yield more
consistent OPE performance or faster RL convergence. However, we expect that real longitudinal
medical care applications represent a greater challenge to existing methods than EpiCare such that
our results act as a ceiling on real-world performance of both offline RL and OPE.

OPE Methods. Though we test a comprehensive list of the most common OPE methods in the
medical RL literature, our list is not exhaustive. Still, we expect that our list is representative and that
the same limitations would likely apply to OPE methods not included.

7 Guidance on Usage and Interpretation for Researchers

First and foremost, EpiCare is designed as a standalone medically inspired benchmark for RL and
OPE methods. Any RL or OPE methods that cite longitudinal care as a motivating use-case should
leverage EpiCare to validate the efficacy of the method in longitudinal healthcare contexts. To
accomplish this, offline RL algorithms should be trained on the provided offline training datasets
as generated by the SMART behavior policy, while online RL algorithms should simply train until



convergence on EpiCare itself.% RL algorithms that surpass the SoC baseline in performance are
demonstrating clear evidence for the ability to distinguish between hidden states and associate
effective treatments. Furthermore, RL algorithms with lower adverse event rates than the SoC
baseline are in so doing demonstrating the ability to identify state and select safe treatments.

Given the high-degree of configurability in EpiCare, it may be tempting to set or fit the parameters of
EpiCare to match some medical dataset or model some specific disease for sim-to-real applications.
We caution against using EpiCare in this way as the configurable parameters are predominantly
related to the random generation of different ensembles of fictitious disease environments. In this way
EpiCare parameters are used to define a set of medically-inspired problems for RL to solve, indexed
by environment seeds, rather than a single disease. Anyone interested in modeling a specific disease
would likely be better off designing a more detailed simulation of a disease of interest including any
disease-specific challenges not well-represented in the EpiCare benchmark.

A better way to use EpiCare in the context of applied medical RL research would be to set the
benchmark parameters to ranges which are relevant to the disease of interest by asking questions
like “How many unique treatments exist for my disease?”, “What is the cure-rate for each treatment
and how do they vary?”, “How distinguishable are the hidden states believed to be and how many
are there?”, “How many symptoms or clinical measurements are associated with the disease?” and
“How many time points do we typically have per patient?”. These questions should guide the setting
of the EpiCare parameters and allow researchers to titrate the challenges represented by EpiCare.
Setting the parameters in this way should provide researchers with a rough estimate of the amount of
data that would be necessary for any given RL method to be effective for a given medical use-case,’
though we still caution as above that researchers may need to go beyond simply setting parameters to
incorporate any disease-specific phenomena which are not well-accounted for with EpiCare.

8 Conclusion

Here we have introduced EpiCare, a comprehensive Python library designed to benchmark reinforce-
ment learning (RL) methods in the context of medical treatment. We hope this work represents a
significant stride towards benchmarking and realizing the practical application of RL in healthcare.

Our results demonstrate that existing OPE methods fail to provide reliable performance estimates
even in our simplified model of clinical settings (inherently easier than real-world scenarios). This
suggests that these methods are even less likely to succeed in the noisy and complex environments
of actual clinical practice. The poor performance of OPE methods in our study calls into question
the practical validity of much existing research that relies on these techniques for evaluating RL
in clinical contexts. If OPE cannot reliably estimate model performance in EpiCare, the utility of
OPE in more complex real-world scenarios is dubious—especially given that OPE depends on large
data availability [13], and our simulated trials were orders of magnitude larger than standard and
SMART clinical trials. Additionally, we show that while some RL methods can outperform our SoC
baseline in terms of both efficacy and safety given sufficient data, this advantage disappears in the
data-restricted regime typical of real clinical settings. Additionally, the superior performance of
value-based methods over actor-critic approaches demonstrates the importance of method selection
for medical applications. Finally, we show that of the value-based methods, both CQL and IQL have
advantages over DQN with regards to safety (by way of lower adverse event rates) and with regards
to learning from low-entropy training data as collected by highly exploitative behavior policies.

The medical community’s increasing interest in RL-based dynamic treatment regimes demands
rigorous evaluation methods. EpiCare addresses this need by providing a first-in-class benchmark
that captures the key challenges of longitudinal healthcare settings. By enabling the systematic
comparison of RL methods and evaluation techniques, we hope this work will facilitate more reliable
assessment of RL’s readiness for clinical applications and inspire new approaches better suited to the
unique demands of healthcare settings.

81f training online, we recommend using the default environment parameters to maximize comparability.

“This estimate will vary between environment seeds, as EpiCare’s various complications can interact with
each other in relatively unpredictable ways, affecting the difficulty of the environment. Any disease-specific
benchmarking should consider multiple seeds with the same parameters, as in the present work.
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A Environment Continued

EpiCare models longitudinal care as a POMDP [77] whose state space is denoted by S =
{Sr,8a, 81,82, - - -, Sn, } and consists of n distinct disease states, together with two terminal states s,
and s, representing termination of a treatment episode due to either remission or an adverse event
respectively. The action space A = {aj, as,...,a,, | is a discrete set of n, available treatments. Fi-
nally, the observation space O is an abstract representation of clinical indicators that could potentially
be measured at every timestep in an episode. Observations could be any combination of measurements
taken by a clinician, but for simplicity we will refer to them as just “symptoms”. Observations are
normalized so that O signifies the absence of symptoms, and 1 signifies the most severe symptom
presentation possible. We assume there are d,, separate symptoms, so that O = [0, 1]9. Table 3
summarizes all parameters available for configuring the environment.

A.1 State Transitions and Remission

Disease progression is characterized by a transition function T'(s’|s, a) which gives the probability of
transitioning to state s’ at step ¢ + 1 given both the state s and action a at time ¢ under the common
assumption of time-homogeneity [78, 79].

Remission can occur from any disease state s; with a treatment-dependent probability T'(s,|s;, a).
Adverse events, i.e. transitions into s,, are modeled based on the observations — if any symptom
exceeds a threshold o}, the state transitions directly to the terminal state S,.10

If a given action does not result in remission or an adverse event, the environment transitions to a
different disease state based on an autonomous transition matrix T affected by an action-dependent
modulation vector m, € RYj intended to capture the effect of treatments on state transitions.
The probabilities of transitions between disease states are calculated by multiplying the transition
probabilities by m,, then renormalizing such that the sum of state transition probabilities is equal to
the probability that the state does not transition into remission or an adverse event, as follows:

(m,); T,

T(sjlsi,a) = (1 =T(se|siya) —T(salsi,a) =
(glst:0) = (1= Tlsules @) = Tl @) g (o

ey

An important property of our environment is that the disease transition dynamics are sparse (see
Figure 5), as in the liver disease example of Figure 1a [53]. The use of a multiplicative modulation
m, allows actions to affect the dynamics while preserving the sparsity of T. We generate these
dynamics from the environment seed according to Algorithm 1.

Algorithm 1 Base Transition Matrix Generation

1: initialize T < I,,_
: for (i,7)in {(z,y) |2 <2 <ng,1<y<z}do
sample p ~ Uy 1]
if p < p. then
sample T; ; ~ Ur,.
sample T ; ~ Uz
end if
end for
9: fori =1tons do
10:  let ROWSUM := > 7" T ;
11: forj =1tonsdo

AN A

12: Ti,j — Ti,j/ROWSUM
13:  end for
14: end for

Algorithm 2 is then used to generate the values of T'(s;|s,a) (arranged into a matrix P), which
guarantees that each state is treatable via at least one action. In the algorithm, Sy refers to the set of

1°A true POMDP cannot include transitions which depend on observations, but this framing is much simpler
notationally. In order to recover a proper POMDP, it would be necessary to truncate all observation distributions
at 0; and add a probability of transition to s, equal to the truncated area.
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Table 3: Configurable parameters in EpiCare with default ranges and values. Parameters with default
distributions are sampled and fixed at environment initiation based on a random seed passed to
the environment. Parameters which have a non-empty index column indicate that the parameter in
questions is sampled iid such that there exists a uniquely sampled value of the parameter for every
element of the space.

Environment Parameter Symbol Type Indexed By Default
Number of treatments Na Integer Value - 16
Number of disease states Ng Integer Value - 16
Number of symptoms/indicators do Integer Value - 8
Maximum num. treatment courses v Integer Value - 8
Remission reward Tr Continuous Value 64
Adverse event penalty Ta Continuous Value - —64
Adverse event threshold ox Continuous Value 0.999
Symptom cost Co Continuous Value - re/(2vd,)
State connection probability PDe Continuous Value - 1/ns
Num. diseases treatment cures Ngla Integer Value S ~ UL ng /8)
Num. symptoms affected by treatment doja Integer Value A ~Ui...d,}
Cost of treatment Ca Continuous Value A ~ U7,/ (20)]
Symptom modification vector da Continuous Vector A ~ Z/l[d_"ZJ_o]
Transition modulation vector mg Continuous Vector A ~ u[%%,y 5)
Symptom mean range 1, Continuous Range - [0,2]
Symptom std. range I, Continuous Range - [1,2]
Remission probability range I, Continuous Range - [0.8,1.0]
Transition probability range It Continuous Range - [0.01,0.2]
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Figure 5: The (a) connectivity graph and (b) transition matrix T of the disease states generated by
EpiCare for environment 1.
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all disease states, i.e. every state other than remission and adverse events. This can be defined as:

Sa =8\ {sr,8.} ={s1,82,...,8,.}.

Algorithm 2 Generate Remission Probabilities for Each Action

initialize n, by n, zeros matrix P

set REMAINING_STATES < Sgq

for a in A do
sample ny ., ~ U1, 1, /8)
SELECTED_STATES <— sample n, states from Sq
REMAINING_STATES ¢<— REMAINING_STATES \ SELECTED_STATES
for s in SELECTED_STATES do

sample P, , ~ U,
9: end for

10: end for

11: for s in REMAINING_STATES do

12:  sample a from A

13:  sample P, , ~ U,

14: end for

A A S ol e

A.2 Observations

Each disease state has an associated constellation of symptoms which could be confounded by a
variety of factors, including fluctuation over time, measurement noise, finite measurement resolu-
tion, correlations between symptoms, and the effects of treatment. We model this by generating
observations as

o= [expit(()—l—ﬁa)]l, 2)

where the symptoms o of the current state are chosen randomly at each timestep from a state-
dependent distribution, then combined with a constant confounding vector §, induced by the treatment.
The sum is kept within the symptom range [0, 1] by the sigmoidal function expit x = % tanh § + %,
then quantized'' to have only one digit past the decimal point in order to model finite-resolution
effects. The underlying symptom vector o is drawn from a multivariate Gaussian distribution,
which provides a first-order model of symptom interactions. This distribution has separate means
w1 and covariance X, in each nonterminal state s, which are generated according to Algorithm 3.
The algorithm generates independent mean and standard deviation for d, observations, then uses a
random orthonormal matrix to transform the distribution into coordinates where observations will be
correlated.

Algorithm 3 Generate Observation Parameters p and 3 for Each State

1: for s in Sq do

2:  sample pu, ~ L{}i:

3:  sample o, ~ Z/{ﬁj

4. o4 < sort(oy)

5. sample A ~ N(0,1)doxdo
6 let Q, R :=QR(A)

7. let P:=Q

8: let X, = P-diag(c?) - PT
9: end for

The resulting observation model encapsulates state and treatment-specific effects on symptom obser-
vations, as well as several kinds of confounding. In general, the more distinguishable two states are
on the basis of observations, the easier it becomes for reinforcement learning algorithms to generate
an effective policy. Noise, treatment effects, and quantization all play key roles in determining state

'"We use the notation |- |1 to denote rounding to one decimal place.
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Figure 6: (a) UMAP embedding of clinical observations for N = 105 patients with depression
in an fMRI dataset known to contain latent subtypes. Different markers represent the four unique
subtypes previously calculated for this data subset. (b) UMAP embedding of various biometric
features considered as predictors of diabetes risk for N = 768 patients. Green markers indicate
patients later diagnosed with diabetes. (¢c) UMAP embedding of the observations of 100 episodes
under the random policy in EpiCare environment 1, colored by ground truth hidden state.

separability. We tuned the default environment hyperparameters provided in EpiCare so that states
would not be trivially separable (Figure 6c).

For an illustrative real-world example of disease states which are not trivially separable on the
basis of observation, we performed a simple analysis of a functional magnetic resonance imaging
(fMRI) dataset comprising resting state functional connectivity (RSFC) measurements as well as
clinical rating scales for depression severity [80, 81] for NV = 105 patients undergoing treatment
for depression. Four biotypes for depression have been proposed on the basis of fMRI data [82],
for which a machine learning classifier was recently developed [83]. We applied this biotyping
procedure to each patient in the NV = 105 subject dataset, then performed a UMAP projection of the
clinical observations for each patient. Figure 6a compares these results to a UMAP embedding of
observations from EpiCare environment 1 colored by ground truth hidden state, revealing comparable
degrees of state ambiguity. The same UMAP projection process was carried out on clinical and
demographic features from N = 768 patients with and without diabetes, with similar results as
shown in Figure 6b [84].

A.3 Reward Structure

Our reward function R is designed to align the an RL agent’s actions with the overarching goals
of effective disease management, including minimizing symptoms, reducing treatment costs, and
achieving remission. Consistent with the medical paradigm described above, we assume that states
are inaccessible except indirectly through observations (outside of remission and adverse events,
which we model using state-based rewards for simplicity). Thus our reward function R(s, a,o0) :
S x A x O — R can be written as:

T if s =s,
R(s,a,0) =< T, if s =s, 3)
—Cq — Co 12, 0; otherwise,

with 7, being the reward for achieving remission, r, the penalty associated with an adverse event (by
default r, = —7;), and ¢, a scaling constant for costs associated with symptom-severity intended to
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Figure 7: (a) The distribution of sizes of communicating classes across 10,000 different environment
seeds. (b) The stationary distribution ¢ (s) across disease states for environment 1 of EpiCare.

penalize poor symptom management. The costs ¢, are intrinsic treatment-specific quantities used to
represent clinical realities, such as financial burden, invasiveness, and general risk. We report rewards
rescaled by 100/r; so that the maximum achievable episode reward is 100 regardless of environment
parameters.

A.4 Initial State Distribution

At the beginning of each episode, an initial state sq is sampled from an initial state distribution
¢,. All POMDP parameters remain constant, so that each episode represents a patient in the same
population. A uniform distribution might seem an intuitive choice here, but does not respect the
long-term state occupancy rates expected given our base transition matrix T. Instead, we calculate an
initial state distribution under the assumption that an initial uniform distribution has been allowed to
evolve according to T for many timesteps without the influence of any treatment actions.

If T were irreducible and aperiodic, there would exist a unique stationary distribution ¢ over the
states such that T = ¢, however T is generated such that it may not satisfy these conditions, and
consequently ¢ may not be unique [85]. To address this, we can identify the communicating classes
within T, represented by subsets C, Ca, . .., Ck. This can be accomplished by a variant of Tarjan’s
algorithm implemented in SciPy [86]. Each class C; is a set of states that are mutually reachable;
these can be thought of a distinct patient subtypes. The transition matrix restricted to each subtype,
T|c,, satisfies the criteria for the existence of a unique stationary distribution ¢, which can be
found for all C; using a linear solver [87].

We then establish an initial distribution across these subtypes 7 = (71,72, ...,7x) Where each
7; corresponds to the proportion of the population initialized in subtype C;. Given 7, the global

stationary state distribution ¢ is thus a positive linear combination of the stationary distributions
of the subtypes: ¢(7) = Zle T; - ¢, For our simulations, we take 7o = (l%l, %, cee %)
where |C| is the number of states in C' (see Figure 7a). This allows us to choose a specific stationary
distribution which we will also take to be our initial state distribution ¢, = ¢(7) (e.g. Figure 7b).

There is no remission probability without treatment, so ¢ (s,) = 0.

Because our model is based on disjoint communicating classes of disease states, two patient sub-
populations separated by a non-cryptic factor (e.g. young/old) could easily be represented as two
separate patient subtypes which happen to have similar but not identical dynamics. It is definitionally
impossible for a patient to transition between distinct communicating classes, and therefore EpiCare
is sufficiently general to include HTEs caused by known factors.

A.5 Default Environment Hyperparameters

EpiCare is highly configurable, though specific environment hyperparameters were chosen for the
sake of our benchmarks. These default values can be seen in Table 3. The number of treatments n,,
disease states n,, and symptoms d, were chosen in consultation with clinicians to reflect reasonable
orders of magnitude encountered in real-world medical practice. Similarly, the maximum number of
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treatment courses v was chosen as a high but reasonable number of treatment courses a clinician may
be able to attempt before the patient becomes non-adherent. The symptom and treatment costs ¢, and
c, were set such that the worse-case treatment trajectory would achieve a negative reward equal in
magnitude to the positive reward 7, attributed to remission, assuming no adverse events occur. The
adverse event penalty r, is set to the negative of the remission reward, so the true minimum episode
reward is —27;.

The state connection probability p. was chosen because 1/n is the critical point in the phase
transition of an Erdés-Rényi random graph to having a single giant component [88]. Depending on
the environment seed, the result is typically a few large communicating classes of disease states,
together with a few smaller components or isolated states (Figure 5a). If the goal were to have random
graphs with a giant component, one could increase the connection probability, and if the goal were to
increase the number of communicating classes, one could decrease the connection probability.

The range of the d,,, number of symptoms affected by a each treatment, was chosen to be maximally
large for the sake of generality. On the other hand, the number of disease states each treatment could
cure was chosen as to make treatments fairly state-specific (i.e. to ensure that some strategy was
required to pick the correct treatment for each patient). The remission probability range was chosen
to ensure that if the correct treatment were applied to a given state, it would be highly likely to be
effective, doubling down on our interest in the state-specific treatments.

The symptom modification vector §, was sampled such that treatments are more likely to positively
affect symptoms than negatively affect them, while the transition modulation vector m, was sampled
as to affect but not dominate existing disease state transition dynamics. Finally, the transition
probability range was tuned such that the typical episode would incur at least one transition.

We would like to emphasize that our design choices represent only one set of reasonable choices once
could make, and other researchers may benefit from modifying our assumptions to benchmark RL
methods for their specific use case. We have worked to keep our framework highly modular to allow
easy incorporation of different distributions and extensions by future users of EpiCare.

B Baseline Policies Continued

B.1 SoC Policy Details

This section presents the mathematical formulation of the SoC policy described in Section 4.2. Note
that this depends on POMDP notation established in Appendix A. In the following, we will use the
expression ¢, (s, a) to represent the instantaneous expected reward of the action a in the state s, i.e.
g«(s,a) = E[R]s, a]. The exponentially recency-weighted value estimate of an action a at a timestep
t within an episode is denoted by Q;(a).

At the start of each episode (first interaction with each patient), the value estimate is reinitialized to
the ground truth population expected instantaneous reward for the clinician’s first action:

Qo(a) = E[R|a] = Eswg, la«(s,a)|a]

Ng 4
= ZQ*(Siaa)¢o(5i); @
i=1

where n is the number of states and ¢, (s) is the probability of a given patient being in state s
according to the initial state distribution. As the clinician continues interacting with the patient, this
initial estimate undergoes updates according to:

Qi(ar) + a[Ry — Q(ar)] ifa=ay
Q:(a) otherwise,

Qo) = { )

where R; is the reward received at timestep ¢ and « is a real value between 0 and 1.

Greedily maximizing the above reward estimate would define a state-agnostic policy which could act
as a performance baseline. However, it does not take into account adverse effects, so we additionally
prohibit the SoC policy from choosing actions which could worsen symptoms that are already high.
Specifically, we introduce a threshold parameter x and define an observation-dependent set A, (0)
of safe actions, i.e. the set of all treatments a whose effect (d,); on symptom i is not positive for any
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Figure 8: Comparison of various policies. Total episode reward (a), remission rate (b), time to
remission (c¢), and adverse event rate (d) are all better for SoC than SMART and better for SMART
than for random.

i where 0; > 1 — §. The hyperparameters « and x were optimized for a combination of performance
metrics as described in Appendix B.4.

B.2 SMART Policy Details

This section presents the mathematical formulation of the SMART policy described in Section 4.3. In
the following, we use the notation g.(a) to represent the stationary expected reward of the action a
across all states, i.e. the expected reward E,. 4, [R|a] with s distributed according to the stationary
distribution ¢, described in Appendix A.4.

The treatment a, for a given step ¢ is determined by a weighted sample from A. The weights w, of
each action are defined so that the log probability of each action is proportional to its reward, but
rescaled to ensure that the action with the highest reward estimate was a fixed ratio 3, times more
likely to be chosen than the action with the lowest reward estimate. We define the rescaled reward

values (), for each action as:

gx(a) — max, Q(a)
min, Q(a) — max, Q(a)’

which then yields our weights: w, = e~@= /3" e~%. In the current study, we use 3, = 8 as this
provides a reasonable balance between exploration and exploitation.

B.3 Performance Comparison

Figure 8 compares the performance of the SoC, SMART, and uniform random policies across 1000
episodes each for 100 distinct EpiCare environments using four different metrics: mean returns,
remission rate, time to remission, and adverse event rate. The return (also called episode reward) is
the total undiscounted reward for the episode, shown as a distribution across all episodes for all 100
environments. The bimodality in the violin plot is caused by the large remission reward leading to
large difference in total reward between episodes where remission was achieved and for those which
it was not achieved. There is also a long lower tail coming from infrequent but consequential adverse
events.

Remission rate is the fraction of 1000 episodes in which remission is eventually reached, averaged
across 100 distinct EpiCare environments, with error bars representing a 95% confidence interval.'?
Remission time is the number of actions taken before remission given that remission occurs, shown
as a histogram for all episodes in which remission was eventually reached across all environments.
Finally, the rate of adverse event occurrence is given as a bar graph in the same format as the remission
rate. This is expressed as the average probability of an adverse event at each timestep in order to
more directly measure safety: the absolute number of adverse events is indirectly decreased simply
by increasing remission rates so that the patient spends less time in disease states.

12For this confidence interval we assume normality of errors.
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adverse event rate is expressed as the probability of an adverse event in each timestep, in an attempt
to control for any variation in performance due to changing .

B.4 Hyperparameters of SoC

We tuned the values of o and x used throughout our comparisons by empirically comparing the
performance of various values across 100 different EpiCare environments. First we chose the value
a = 0.8 to maximize remission rate (Figure 9). We then tuned the value of the threshold « above
which a symptom is considered potentially dangerous (so the SoC avoids treatments which increase
that symptom) in exactly the same way (Figure 10), and chose a value of x = 0.2 in order to decrease
the risk of adverse effects as much as possible without significantly reducing mean outcomes. Since
adverse events are relatively rare and the effect size is quite small, we evaluated this on 10 times more
episodes than in other cases in order to get a more accurate estimate of the adverse event probability.
The selection of x determines the degree of risk-averse behavior exhibited by the state-agnostic
clinician modeled by the SoC policy.

B.5 Switching Treatments is Evidence of Belief in States

To understand the effect of the value of o on the performance of the SoC policy, consider two simple
extreme cases. One of these extreme cases is the one where the state does not depend on its previous
values, i.e. every entry of the transition matrix T is taken to be 1/n. In this maximum-entropy case,
the knowledge that a treatment was ineffective at one timestep does not provide any information
about the state of the patient at the next timestep, and therefore the best posterior estimate of the
treatment’s value is still equal to the prior, that is Q:41(a) = Q:(a) for all ¢. Since the patient’s
response is always drawn from the population distribution, the clinician should repeatedly apply the
treatment maximizing (o (a) at every timestep regardless of the patient’s response.

On the other extreme, we can also imagine a simplification of the system where T = I,,_. This
is to say that patients, once initialized, do not deviate from their initial state. When a treatment
does not lead to remission, the patient-specific posterior distribution of its value should decrease
substantially, which is likely to lead to a new treatment being believed optimal for this patient so long
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as treatments are somewhat state-specific. Thus the clinician will continuously try different treatments,
but sometimes reapply previous treatments when others have been ruled out more conclusively.

Given a transition matrix T whose behavior is somewhere in between the maximum-entropy and
fixed-state cases, we would also expect a state-agnostic clinician to switch between treatments in a
similar way. Obviously clinicians commonly switch between treatments for a given disease population
trying the efficacy of various treatments for a given patient in order to determine what works best
for them. This demonstrates that clinicians believe in the existence of patient disease states, making
treatment decisions based on the implicit state transition structure and treatment selectivity of the
disease which they are treating.

Low values of « are ideal for situations close to our maximum entropy limit example or with low
treatment selectivity, and high values of « are ideal for situations close to our stationary limit example
or with high treatment selectivity. In essence this value controls the readiness the policy has to update
its estimates of the reward.

C Training & Additional Results

C.1 Online Results Continued

The full results containing a breakdown for baseline and model performance across all 8 environments
produced by environment seeds 1-8 in terms of both mean returns and adverse event rates (as shown
in Figure 3) can be found in Table 4 and Table 5.

We also measured the success of trained models by their probability of achieving remission (remission
rate), and the mean length of episodes in which remission was achieved (remission time). This is
intended to provide a more disease-focused metric that answers essentially the same question as the
reward. The results show broadly the same trends across methods as the main benchmark. These
results can be found in Table 6 and Table 7 respectively.

Note that because remission time is conditional on remission having been achieved in a given episode,
it does not make much sense to compare it between methods with significantly different remission
rates.

C.2 Computational Resources

This work was carried out using GPU workers on a workstation equipped with four Nvidia RTX6000
GPUs, each with 48 GiB of VRAM. We spent approximately 200 GPU hours on hyperparameter
sweeps, 400 GPU hours training final models across all 8 environments, and 200 GPU hours on data
restriction sweeps, totaling about 8'2 days wall time. A large amount of compute was also spent on
preliminary work.

Table 4: Online evaluation results for 8 structurally different EpiCare environments generated from
environment seeds 1-8. For each variant, the standard deviation of the mean returns across 4 replicates
is reported within the parenthesis.

BASELINES TRAINED MODELS
RAND SoC oP EDAC AWAC BC TD3+BC IQL DQN CQL
MEAN  -0.1(0.7)  39.3(0.7)  95.2(0.0) 2.4(15.9)  17.1(1.7)  18.5(1.7) 52.3(10.8) 72.5(1.0) 75.2(0.8)  78.0(0.9)
ENVI  83(15)  47.8(1.0) 95.7(0.0) 7.2(17.5)  30.1(1.8)  24.4(1.0) 71.3(5.2) 76.5(0.7) 77.0(0.6)  79.4(0.7)
ENV2  -2.8(0.7)  37.4(0.4) 94.00.1) 0.9(4.1)  19.4(2.2) 22.1(2.5) 68.9(1.8) 73.8(1.7) 75.6(0.9) 77.8(0.3)
ENV3  -13.1(0.1) 34.5(0.8) 94.7(0.1) -6.231.5)  8.0(1.1)  11.0(1.5) 10.6(22.2) 68.5(1.8) 72.4(1.3)  75.6(0.8)
ENV4  1.00.7)  35.9(0.4) 95.6(0.0) 2.6(12.0)  20.0(1.0) 20.4(1.9)  69.2(1.5) 71.0(0.8) 75.8(1.4) 78.8(1.2)
ENV5  7.9(0.7)  36.0(0.4) 95.4(0.1) 4.9(14.1)  21.4(2.1)  22.0(1.2) 36.5(24.8) 72.1(0.7) 74.1(0.6)  78.2(1.0)
ENV6  0.5(1.0)  45.6(0.8) 95.9(0.1) 6.7(11.4)  22.2(3.2) 18.5(3.1) 57.6(8.8) 72.9(0.7) 78.2(0.5)  80.0(0.5)
ENV7  -1.1(0.4)  42.4(1.3)  94.9(0.0) 0.120.8)  9.9(1.6)  14.3(1.2)  55.1(6.0) 72.8(0.7) 74.5(0.5) 77.9(0.8)
ENVS  -1.2(0.6) 35.0(0.6) 95.3(0.0) 12.9(16.0)  5.9(0.3)  15.5(1.4) 54.1(16.0) 72.2(0.9) 73.8(1.0) 76.6(1.6)
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Table 5: Adverse event rates for the same baseline policies and models as in Table 4, in units of mean
(standard deviation) of the number of adverse events per 10,000 trials.

BASELINES TRAINED MODELS

RAND SoC oP EDAC BC AWAC TD3+BC  DQN IQL CcQL
MEAN  55(9)  31(5)  2(1) 46(13)  45(12)  36(8) 31(10) 25(8)  22(11)  20(10)
Exvl  31(2)  192)  0(0) 42(25)  42(17)  21(7) 17(4) 123)  14(9)  19(14)
ENv2  71(9)  41(6)  11(6) 61(14)  55(19)  63(8) 36(14)  34(17)  21(12)  24(5)
ENV3  54(5)  28(4)  0(0) 42(8)  49(14)  23(4) 41(14) 25(8)  17(9)  13(6)
ENV4  36(7) 15(1)  3(2) 38(18)  24(7)  28(9) 19(6) 21(7)  22(10)  13(12)
ENVS  58(7)  24(6) 1(1) 47(9)  47(12)  21(4) 25(9) 309) 24(7)  18(8)
ENV6  74(16)  42(14)  3(2) 46(15)  56(10)  32(15)  44(15) 18(5)  26(18)  26(6)
ENV7  65(23)  36(4)  0(0) 51(12)  50(4)  62(8) 36(17)  37(11)  27(16)  31(18)
ENvVS  47(3)  42(6)  0(0) 43(4)  39(13)  36(12) 24(2) 242)  21(6)  18(9)

Table 6: Remission rate across 1000 episodes for each of the baseline policies and trained models.

BASELINES TRAINED MODELS
RAND SoC OP EDAC AWAC BC TD3+BC 1QL DQN CQL

MEAN  0.47(0.01) 0.72(0.00) 1.00(0.00)  0.47(0.12) 0.55(0.01) 0.59(0.01) 0.80(0.07) 0.91(0.01) 0.94(0.00) 0.95(0.00)
ENV 1 0.52(0.01) 0.76(0.01) 1.00(0.00)  0.49(0.14) 0.64(0.01) 0.62(0.01) 0.91(0.03) 0.93(0.00) 0.95(0.00) 0.96(0.00)
ENV2  0.47(0.00) 0.72(0.00) 1.00(0.00)  0.51(0.02) 0.58(0.01) 0.63(0.02) 0.91(0.01) 0.92(0.01) 0.95(0.00) 0.96(0.00)
ENV3  0.41(0.00) 0.67(0.01) 1.00(0.00)  0.46(0.21) 0.45(0.01) 0.55(0.01) 0.56(0.12) 0.89(0.01) 0.93(0.00) 0.94(0.00)
ENV4  0.47(0.01) 0.67(0.00) 1.00(0.00)  0.46(0.15) 0.56(0.01) 0.59(0.01) 0.90(0.01) 0.89(0.00) 0.94(0.01) 0.95(0.01)
ENV5  0.50(0.01) 0.70(0.00) 1.00(0.00)  0.39(0.10) 0.59(0.01) 0.60(0.01) 0.69(0.17) 0.91(0.00) 0.94(0.00) 0.96(0.01)
ENV6  0.46(0.01) 0.75(0.00) 1.00(0.00)  0.43(0.08) 0.55(0.02) 0.57(0.02) 0.81(0.06) 0.90(0.00) 0.95(0.00) 0.96(0.00)
ENV7  0.44(0.00) 0.76(0.01) 1.00(0.00)  0.44(0.15) 0.55(0.01) 0.56(0.01) 0.82(0.04) 0.92(0.00) 0.95(0.00) 0.96(0.00)
ENVS  0.47(0.00) 0.69(0.00) 1.00(0.00)  0.54(0.13) 0.48(0.00) 0.57(0.01) 0.82(0.10) 0.91(0.01) 0.94(0.00) 0.95(0.01)

C.3 Hyperparameter Sweeps

We ran hyperparameter sweeps for all RL methods for which we report performance. In all cases the
hyperparameter sweep ranges were chosen in accordance with the ranges reported in their original
papers, as described in Table 8. Additionally, EDAC and TD3+BC have an extra temperature hyper-
parameter not included in their original formulations due to the Gumbel-Softmax reparameterization.

Note that hyperparameters were swept on a grid of a few discrete values in order to save on computa-
tion. Although these values are representative of values reported in the literature, and other training
runs outside the main sweeps did not reveal any regions of substantially greater performance, we
expect that the small scale of hyperparameter sweeps limits the performance of the models somewhat.
We view this as an acceptable tradeoff since we are presenting a novel benchmarking environment,
not attempting to establish a hard limit on the possible performance of any of these methods.

The table omits two hyperparameters which were included on all models: FRAME STACK and
PREVIOUS ACTION. These control the availability of previous observations and the last selected
action respectively. We found that turning either of these features off negatively impacted performance,
as expected, and did not explicitly include them in the sweep.

Table 7: Mean time to remission in episodes where remission was achieved for each of the policies
(standard deviation across 4 replicates).

BASELINES TRAINED MODELS
RAND SoC oP BC EDAC  TD3+BC  AWAC DQN CQL QL
MEAN  4.000.0)  3.4(0.0)  1.1(0.0) 3.7(0.0)  3.30.7)  2.9(0.2)  2.9(0.1)  2.7(0.1)  2.4(0.0)  2.4(0.0)
ENVI  4.00.0) 3.4(0.0) 1.1(0.0) 3.7(0.0)  3.3(04)  2.6(0.1)  3.1(0.1)  2.7(0.1)  2.3(0.0)  2.3(0.0)
ENV2  3.9(0.0) 3.6(0.0) 1.1(0.0) 3.5(0.0)  3.8(0.4)  2.5(0.1)  2.3(0.1)  2.50.1)  2.3(0.0)  2.3(0.1)
ENV3  4.1(0.0)  2.9(0.0)  1.1(0.0) 3.6(0.1)  3.2(0.9)  3.7(0.6)  2.500.1)  2.6(0.1)  2.5(0.1)  2.4(0.0)
ENV4  4.00.0) 3.2(0.0) 1.1(0.0) 3.6(0.1)  3.6(1.3)  3.000.2)  3.1(0.0)  2.7(0.0)  2.5(0.1)  2.4(0.1)
ENV5  4.1(0.0)  3.4(0.1)  1.1(0.0) 3.7(0.0)  3.50.5)  2.7(0.1)  2.9(0.1)  2.8(0.1)  2.5(0.0)  2.4(0.0)
ENV6  4.1(0.0) 3.800.1)  1.1(0.0) 3.7(0.0)  2.7(0.9)  3.000.1)  3.30.1)  2.7(0.0)  2.5(0.0)  2.5(0.0)
ENV7  4.00.0)  3.4(0.0) 1.10.0) 3.9(0.0)  3.2(0.5)  3.10.2)  3.30.1)  2.7(0.1)  2.4(0.0)  2.4(0.0)
ENVS  4.1(0.1)  3.4(0.1)  1.1(0.0) 3.7(0.1)  3.3(0.9)  2.9(0.2)  3.1(0.1)  2.7(0.1)  2.5(0.0)  2.5(0.0)
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Table 8: Hyperparameters used in the sweep for all benchmarked RL methods.

ALGORITHM  HYPERPARAMETER VALUES OPTIMAL
AWAC LAMBDA 0.3,1.0 0.3
LEARNING RATE 1E-5 3E-4 3E-4
TRAINING STEPS - 2ES
BC LEARNING RATE 3E-5, 1E-4, 3E-4 1E-4
TRAINING STEPS - 4ES
CQL ALPHA 0.1,0.25,0.5, 1.0 1.0
GAMMA 0.0,0.1,0.5,0.9 0.0
(Q FUNCTION LEARNING RATE 3E-5, 1E-4 3E-5
TRAINING STEPS - 2ES
DQN GAMMA 0.1,0.5,0.9 0.1
(@ FUNCTION LEARNING RATE 3E-5, 1E-4 1E-4
TRAINING STEPS - 2E5
EDAC ETA 0.1,1.0,5.0 0.1
NUM CRITICS 10, 55, 100 100
TEMPERATURE 0.25,1.0,4.0 4.0
TRAINING STEPS - SES
IQL TAU 0.5,0.7,0.9 0.9
BETA 3,6,10 3
ACTOR DROPOUT 0.0, 0.1 0.1
TRAINING STEPS - 5ES
TD3+BC ALPHA 1.0,2.5,4.0 4.0
TEMPERATURE 0.3,1.0, 3.0 3.0
TRAINING STEPS - SES

For the number of training iterations, no list of values is given, because it was not part of the grid
search. Instead of explicitly varying the value of this parameter, we performed long training runs,
logging evaluations throughout. For final training, we used the number of training steps where the
training curves exhibited maximum performance. In some cases, such as for CQL, this value needed
to be drastically reduced below previously reported values.

C.4 Data Availability Dependent Hyperparameters

We have observed that for some models, the optimal hyperparameters are dependent on the size of the
training dataset. Figure 11 gives an example of this for IQL, where the optimal number of training
iterations to perform depends in a clear way on data availability. Each of the curves on the left shows
the evaluation performance (smoothed with an exponential moving average, o = 0.01) of the trained
model. In each case, the model begins to overfit after an initial peak in its evaluation performance, so
the number of training steps depends on the training set being considered. Interestingly, the location
of this peak appears to be almost exactly proportional to the dataset size.

C.5 Data Restriction Sweep Continued

In addition to measuring the mean returns as a function of training data availability (Figure 4), we
also investigated the effect of limited training data on the safety of each method, quantified by the
adverse event rate. We found that in general, although training data availability was very important
to performance, it had little effect on the ability of RL methods to avoid adverse events. This is
unsurprising given that these models are optimizing mean rewards and do not have any features
specifically intended to avoid adverse events.

C.6 Patient-Specific Effects

As an additional complication to the model, we ran a separate experiment considering the presence
of patient-specific effects which varied the details of the EpiCare on a patient-to-patient level.
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function of the size of the training set.

Model/Policy
100 - oF
@ SoC
2 == == Random
a CQL
m
o~ 80 IQL
= DQN
B TD3+BC
o
Z 60
L g g g g g S g g Sy S e ——
[}
>
5]
[
£ 40
>
e}
<
=]
<
520 o
(]
=
() o o ——— e e
T T j T T T
102 102 10% 10°

Episodes Available

Figure 12: Data restriction trials for the adverse event rate of the four top performing RL models,
compared to three baselines policies, whose median per-episode performance is dictated only by
the environment parameters and not by data availability. TD3+BC again shows double-descent-like
behavior at 256 Episodes Available.

Table 9: Online evaluation results in terms of mean returns on models trained using a restricted
training set consisting of only 2,048 episodes episodes from environment 1. The standard deviation
of the mean returns across four replicates is reported within parentheses.

CQL IQL DQN TD3+BC
ENv 1 38.1(3.5) 25.5(1.1) 52.9(3.0) 15.4(50.9)
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Table 10: Performance of CQL decreases significantly when patient-specific effects are included.
Mean returns are given together with the standard deviation across four replicates, as in the main text.

Original w/ Patient-Specific Effects

Envl  78.0(0.9) 65.20 (0.74)
Env2  77.8(0.3) 62.13 (0.79)
Env3  75.6(0.8) 55.89 (0.91)
Envd  78.8(1.2) 59.37 (0.75)
EnvS  78.2(1.0) 60.17 (0.77)
Env6  80.0(0.5) 61.33 (0.77)
Env7  77.9(0.8) 61.68 (0.76)
Env8  76.6(1.6) 58.23 (0.77)
Mean 77.36 (1.07) 60.50 (0.78)

We modeled patient-specific effects in four separate ways. First, we introduced a patient-specific
transition modification vector m,, such that

(my);(m,); Ty ;
D oney (my) e (mg ) Tk

T(sjlsi,a,p) = (1 — T(se|si,a) — T(salsi,a)) 6)

When patient-specific effects were included, the entries of the vector m,, were sampled from the
uniform distribution over the interval (0.25,1.75).

Second, we included patient-specific remission modifiers to titrate how likely any given patient
was to achieve remission. This was modeled as an action-indexed multiplier to up-regulate or
downregulate the probabilty any given action would lead to remission on a patient-specific basis. For
this experiment, these modifiers were also drawn from the interval (0.25, 1.75).

Third, we included a patient-specific adverse-event modifier which set the adverse-event threshold o}
on a patient-to-patient basis rather than selecting a single value for all episodes. This modifier was
drawn from the range (0.999, 1/0}) so that each patient’s adverse event threshold would range from
0.998001 to exactly 1.

Finally, we included patient-specific symptom modifiers which add patient-specific fluctuations to
the action-based observation confounding vector d,. These are drawn from the same range as the
treatment-specific symptom modulation.

As a result of these various patient-specific effects, the environment becomes substantially more
difficult and may be even more representative of the challenge of real longitudinal care scenarios,
where patients are known not to be homogeneous even when their disease state is identical. Unsur-
prisingly, this increased difficulty poses a greater challenge for RL approaches to the problem, as
shown for CQL in Table 10. Mean returns decrease by an average of over 16 points, on the same order
of magnitude as several episodes of failed treatment. This suggests that even when RL algorithms
appear to perform well on the original EpiCare benchmark, proper handling of patient-specific effects
will be an important milestone before considering translational applications of those algorithms.

D Off-policy Evaluation Continued

Full scatter plots of the data from which the RMSE of Table 1 was calculated are given in Figure 13.
Each data point represents the eight-fold bootstrapped mean of one OPE estimator for the performance
of a single fully trained model, of which there are a total of 32: 4 replicates across 8 distinct
environments.

In addition to the RMSE of OPE being quite high as reported above, it is also important to note that
there is no visible relationship between the OPE estimate and the true online returns. In a few cases,
a small cluster of scores was predicted for all models in the category, but only for AWAC and BC was
this cluster neard the x = y line indicating an unbiased estimate. This is quantified using Pearson
correlation coefficients in Table 11. Broadly the same performance trends appear in these results as
in the RMSE.
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Figure 13: OPE estimates plotted against true mean normalized rewards for every combination of
OPE method and RL model with RMSE reported. OPE estimates greater than 100 are truncated in
this figure for display purposes.

Because we bootstrapped the importance sampling estimators, we can also investigate the high
variance known to affect them [30]. The distribution of the bootstrap predicted variance for each
estimator is plotted in Figure 15. Many of these values are on the same order of magnitude as
the reward itself, even despite the fact that the test set contains over 10° episodes. Note also that
although bootstrapping reduces variance, it can introduce bias, which we expect to be the reason for
the apparently systematic errors visible in Figure 13 despite the importance sampling methods being
unbiased estimators.

We suspected that the reason that OPE methods perform better on AWAC and BC than on other
models might be due to AWAC selecting actions more similar to the training data. To investigate this,
we computed the geometric mean of the probability that each model would perform the same action
as was selected by the SMART policy in the training data. Indeed, we find that this action probability
is a good predictor of the RMS error of OPE. The rank order of average training action probability is
nearly identical to the rank order of mean RMS error across OPE value estimates (Figure 14).

Another potential problem with OPE in the context of EpiCare is the large positive and negative
rewards of the two terminal states; importance sampling methods have trouble with sparse rewards in
general [13] and do not explicitly model episode termination [29]. Indeed, the reward predictions of
all five OPE methods very frequently exceeded the maximum possible episode reward of 100, often
by a substantial margin. This can lead to extremely large RMSE values. In particular, the evaluation
of every DQN and CQL model by DM was greater than 100. This may be the source of the apparent
bias in the theoretically unbiased importance sampling estimators (IS, WIS, PDIS, and WPDIS).

When observations are non-Markovian (as in this case due to partial observability), the error of
importance sampling-based OPE methods is known to scale exponentially with the horizon [30]. This
is likely a smaller effect in our environment due to the episode lengths being quite short.
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Table 11: Pearson correlation between the OPE estimates and the true online returns evaluated on
1,000 episodes for each combination of OPE method and RL model, across 8 seeds with 4 replicates,
as in Table 1.

EDAC AWAC BC TD3+BC IQL DQN CQL

IS 0.31 0.91 0.90 0.15 0.41  0.31 0.17
WIS 0.11 0.91 0.90 0.12 0.25 020 -0.33
PDIS 0.00 0.90 0.89 0.17 0.51  0.31 0.13
WPDIS 0.34 0.90 0.88 0.55 0.53 0.44 0.19
DM 0.12 0.43 0.47 0.71 0.44 0.18 0.15
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Figure 14: Average RMS error between OPE estimates and online evaluation results (bars) compared
to the geometric mean of the probability that each policy chooses the same action that was taken in
its training data (gray line).
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NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction qualify the contribution being made (providing a
benchmark and using it to discuss reliability of OPE).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations section.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our results are not theoretical.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We are providing all code used for our results including a notebook which
allows for the generation of all key figures and tables.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are providing all code used for our results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main training details are included in the Results section, and further
information is provided in the appendices.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results are reported with error bars for multiple replicates, and this methodol-
ogy is described in the text where relevant.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: There is an appendix section describing this.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics and while most of the points do not
apply to this work (human subjects and dataset privacy are irrelevant to simulation studies
etc.), we do note that there could be safety concerns through misuse of our methods, which
we caution against in the limitations. The human subject data used for comparison in the
Appendix is from previous research that was conducted with fairly compensated patients
under an institutionally approved IRB (see 14 and 15 below).
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10.

11.

12.

13.

14.

15.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Limitations section includes the one key potential for negative misuse of
this project, and the Conclusion discusses the potential positive societal impact of appropriate
use of the work.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have risk for this class of misuse, and we did not include
any pretrained models.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our implementations of offline RL methods are based on the Apache-licensed
CORL library, as mentioned in the text, and are released under the same license. We use no
other assets.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our open-source benchmark includes documentation in the same repository.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No new human subject data was collected over the course of this research.
Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Human data used in the Appendix of this work for comparison with our
simulated data is de-identified data obtained from a separate clinical trial with all participants
appropriately compensated and with the trial researchers adhering to an institutionally
approved IRB.
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