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Abstract

The Bayesian network structure learning (BNSL)
problem asks for a directed acyclic graph that max-
imizes a given score function. For networks with
n nodes, the fastest known algorithms run in time
O(2nn2) in the worst case, with no improvement
in the asymptotic bound for two decades. Inspired
by recent advances in quantum computing, we
ask whether BNSL admits a polynomial quantum
speedup, that is, whether the problem can be solved
by a quantum algorithm in time O(cn) for some
constant c less than 2. We answer the question in
the affirmative by giving two algorithms achieving
c ≤ 1.817 and c ≤ 1.982 assuming the number of
potential parent sets is, respectively, subexponen-
tial and O(1.453n). Both algorithms assume the
availability of a quantum random access memory.
We also prove that one presumably cannot lower
the base 2 for any classical algorithm, as that would
refute the strong exponential time hypothesis.

1 INTRODUCTION

In the score-and-search approach to structure learning in
Bayesian networks, one specifies a score function to be
maximized over all possible directed acyclic graphs (DAGs)
on a given node set. Common score functions—such as
BDeu, BGe, BIC, fNML, or qNML—are decomposable: the
score of a DAG is obtained by summing up the local scores
of each node. The local score expresses how well the given
parent set for a node fits the observed data, prior knowledge
or constraints, and the adopted measures of learning success.
See the textbook of Koller and Friedman [2009] for other
approaches and the survey of Kitson et al. [2023, Sec. 4.1]
for descriptions of the scores.

Decomposability motivates studying a more abstract prob-
lem formulation, in which the local scores are treated as the

input, effectively ignoring that they originate from a partic-
ular scoring metric and observed data. This optimization
problem, known as Bayesian network structure learning
(BNSL), can be solved by dynamic programming over node
subsets in time O(2nn2), thus nearly linearly in the input
size [Ott et al., 2004, Singh and Moore, 2005, Silander and
Myllymäki, 2006]. But what if the input consists of sig-
nificantly fewer local scores, e.g., each node can have at
most some constant number of parents—a case relevant in
practice? Unfortunately, essentially no faster algorithms are
known, the base of the exponential bound being stuck at 2.
In fact, the problem is NP-hard already if the maximum in-
degree of the DAG is set to 2 [Chickering, 1995]. That said,
there have been significant advances in heuristic algorithms,
which may run fast for many practical instances [Yuan and
Malone, 2013, Bartlett and Cussens, 2017], as well as in pa-
rameterized algorithms, which admit improved worst-case
time bounds for restricted problem variants (see Grüttemeier
and Komusiewicz [2022] and references therein).

Here, we ask whether quantum algorithms can beat the
known exponential-time classical algorithms for BNSL.
Quantum algorithms differ from classical ones in that they
can harness quantum effects, such as superposition and en-
tanglement. Typically (but not always) a quantum speedup is
obtained by representing the problem in an appropriate way
and then invoking a routine known as quantum search or
Grover’s algorithm [Grover, 1996]. Given a black-box map-
ping f : {1, 2, . . . ,m} → {0, 1}, this routine only requires
O(
√

m/k) evaluations of f to find, with high probability,
an element that maps to 1, supposing there are k such ele-
ments; the expected number of evaluations required by any
classical algorithm is linear in m/k. Several problems are
known to admit a quadratic quantum speedup in relation to
the best known classical algorithms, examples ranging from
the satisfiability problem [Dantsin et al., 2005] to learning
linear classifiers [Kapoor et al., 2016, Roget et al., 2022]
and to reinforcement learning [Dunjko et al., 2016].

While there exist quantum approximation algorithms for
BNSL [O’Gorman et al., 2015, Soloviev et al., 2023], ap-
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parently, for exact BNSL no quantum speedup was known
before the present work. The main challenge is that the
best classical algorithms already are significantly faster
than exhaustive search over the super-exponentially many
DAGs. The dynamic programming algorithms resemble the
Bellman–Held–Karp algorithm [Held and Karp, 1961, Bell-
man, 1962] for the traveling salesman problem and related
“permutation problems” [Koivisto and Parviainen, 2010,
Bodlaender et al., 2012], for which a quantum speedup was
discovered only relatively recently [Ambainis et al., 2019].

Inspired by the results of Ambainis et al., we will show
that BNSL admits a quantum algorithm running in time
O(1.817nF ), where F ≤ n2n−1 is the number of local
scores given as input. This gives a polynomial speedup as
long as F grows subexponentially or very moderately ex-
ponentially in n. To give a polynomial speedup also when
F grows more rapidly, we present another, rather differ-
ent algorithm: we make use of a construction previously
given for trading space for time in a broad class of permu-
tation problems [Koivisto and Parviainen, 2010], including
BNSL [Parviainen and Koivisto, 2013]. We give a quan-
tum algorithm running in time O(1.982n), provided that
F = O(1.453n). Both algorithms require a quantum ran-
dom access memory (QRAM) [Giovannetti et al., 2008], of
which experimental implementations do not yet exist.

Could the base 2 be lowered also for a classical algorithm?
Before the present work, the only evidence against has been
the lack of progress in faster algorithms. Curiously, for a
problem variant that ask for a sum over DAGs, the base of
the exponential time bound was recently lowered from 3
[Tian and He, 2009] to 2.985 [Koivisto and Röyskö, 2020].
We will show that for the maximization variant, similar
improvement presumably is not possible: we prove that it
would refute the strong exponential time hypothesis (SETH)
and thus give a way to solve the CNF-SAT problem on n
variables in time O(cn) with some constant c < 2.

The rest of this paper is organized as follows. Section 2 intro-
duces more formally the setup, namely the BNSL problem,
the quantum search routine, and QRAM. Section 3 gives
our first algorithm and Section 4 the second. The connection
to SETH is presented in Section 5. In Section 6 we discuss
some open problems and the role of QRAM.

2 PRELIMINARIES

This section introduces the main ingredients needed in later
parts of the paper.

2.1 GRAPHS AND ORDERS

Let N be a finite set and R ⊆ N ×N . We let

Ri := {j : ji ∈ R}

denote the parent set (i.e., direct predecessors) of i in R.

If R is acyclic, i.e., there are no elements i1, i2, . . . , ik such
that i1 = ik and itit+1 ∈ R for all t = 1, 2, . . . , k − 1,
then (N,R) is a directed acyclic graph (DAG).

We call R a partial order on N if it is irreflexive and tran-
sitive, and a linear order on N if it is, in addition, total
(aka strongly connected). A linear order L on N is a linear
extension of R if L ⊇ R, i.e., Li ⊇ Ri for all i ∈ N .

These concepts are illustrated in Figure 1.

2.2 THE BNSL PROBLEM

Given a node set N of size n and a local score si(J) for
each node i ∈ N and node subset J ⊆ N \ {i}, the BNSL
problem is to find a DAG (N,A) that maximizes the score

s(A) :=
∑
i∈N

si(Ai) ,

which measures how well the DAG fits the prior assump-
tions and the data. Here we identify the DAG with its arc set
A, the node set N being fixed. Recall that Ai denotes the
parent set of i. Since our algorithms work for any decompos-
able score, we do not specify the used score; nevertheless
descriptions of commonly used scores can be found on the
survey of Kitson et al. [2023, Sec. 4.1].

Our interest is in instances in which most local scores
equal −∞ and are not given as explicit input. Accordingly,
for each node i we are given a collection of potential par-
ent sets Ci, the size of which can be substantially smaller
than 2n−1. The local scores si(J) are only given for J ∈ Ci.
We let

F :=
∑
i∈N

|Ci|

denote the total size of the input.

In practice, potential parent sets are obtained using several
ideas and combinations thereof. One is to include in Ci only
sets that are contained in a relatively small set of candidate
parents. Another idea is to only include sets whose cardinal-
ity does not exceed some given upper bound. A third tech-
nique is to exclude sets J for which there is a subset J ′ ⊆ J
with an equal or better local score, si(J ′) ≥ si(J); while
this simple pruning rule may require computing the local
scores for a large number of sets, more sophisticated ana-
lytic score bounds can also exclude sets without computing
their scores [Correia et al., 2020]. Importantly, all these
procedures result in collections Ci that are closed under
inclusion, that, if J ∈ Ci and J ′ ⊆ J , then J ′ ∈ Ci.

2.3 QUANTUM CIRCUITS AND QRAM

Quantum computation can be modeled by a quantum cir-
cuit that takes as input ℓ qubits representing the system’s
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Figure 1: Examples of a DAG, a linear order, and a partial order on the node set {1, 2, . . . , 8}. We have A ⊆ L and P ⊆ L;
for example, A6 = {8}, L6 = {4, 7, 8}, and P6 = {7, 8}. For the linear order, shown is its transitive reduction, i.e., only
the edges necessary for determining the relation uniquely using transitivity. The partial order P is a member of the set of
parallel bucket orders described in Section 4 (with k = 4).

initial state, then transforms the state by reversible quantum
logic gates, until the final state of some l ≤ ℓ qubits of
interest is measured and an l-bit output is obtained. The
additional power of quantum circuits in comparison to clas-
sical boolean circuits stems from the fact that ℓ qubits can
represent a superposition (i.e., a linear combination) of all
the 2ℓ possible ℓ-bit vectors. The coefficients (i.e., ampli-
tudes) encode a probability distribution over the possible
vectors, a measurement returning the corresponding random
variable. A quantum algorithm is thus a randomized algo-
rithm. It has bounded error if, for all problem instances, the
ouput is correct with probability at least 2/3.

For classical algorithms, the boolean circuit model can yield
pessimistic complexity bounds—for more practical settings,
one assumes a random access memory (RAM).1 Similarly,
broader applicability of quantum computation is believed to
require an equivalent quantum RAM (QRAM) [Giovannetti
et al., 2008]. Importantly, QRAM enables invoking any
time-T classical algorithm that uses RAM as a O(T )-time
subroutine in a quantum algorithm.

2.4 QUANTUM SEARCH

Grover’s algorithm [Grover, 1996], also known as quantum
search, is a celebrated generic algorithm for finding a needle
in a haystack. As described in the Introduction, it gives a
quadratic speedup in relation to classical algorithms. We
will make use of the following powerful extension:

Theorem 1 (Dürr and Høyer [1996], Ambainis et al. [2019]).
Suppose f(x) is an integer computable for any given x ∈
{1, 2, . . . ,m} by a bounded-error quantum algorithm in
time T . Then there is a bounded-error quantum algorithm
that computes maxmx=1 f(x) in time O(T

√
m logm).

1An algorithm that runs in time T using a RAM can be simu-
lated by a boolean circuit of size T 2polylog(T ) [Cook and Reck-
how, 1973, Pippenger and Fischer, 1979].

This result allows us to apply quantum search (i) in a maxi-
mization problem and (ii) recursively with only a negligible
computational overhead.

3 FINDING A LINEAR ORDER

Various NP-hard graph problems can be viewed as finding
an optimal node ordering. For our purposes it is convenient
to consider the problem of computing

max
L

∑
i∈N

f(Li, i) , (1)

where the function f depends on the problem input and the
maximization is over all linear orders L on N .

Ambainis et al. [2019] gave a quantum algorithm for any
problem of that form:

Theorem 2 (Ambainis et al. [2019, Cor. 3.1]). The problem
(1) admits a bounded-error quantum algorithm that runs in
time O(1.817nT ), assuming f can be evaluated in time T .

It is easy to see—and well known [Cooper and Herskovits,
1992, Eq. (9)]—that BNSL can be written in the above form
by putting

f(Li, i) := max
J⊆Li:J∈Ci

si(J)

Indeed, if A is an optimal DAG and L a topological ordering
of its nodes, the score s(A) is obtained as

∑
i∈N f(Li, i).

Since f(Li, i) can be computed in time O(|Ci|n) by a linear
scan over the potential parent sets, we have got a quantum
algorithm that solves BNSL in time O(1.817nF ). To omit
factors polynomial in n in the asymptotic bound, we used the
fact that the constant base 1.817 of Theorem 2 was originally
obtained by rounding up a strictly smaller constant.

But we can do better. We simply replace the classical linear
scan by quantum search:



Theorem 3. BNSL admits a bounded-error quantum algo-
rithm that runs in time O(1.817n

√
F ).

If F grows subexponentially in n, the bound can be sim-
plified to O(1.817n). On the other hand, the base of the
exponential exceeds the base 2 of the fastest classical algo-
rithms already if F = Ω(1.212n). In the next section, we
give a different quantum algorithm that beats the known
classical algorithms as long as F = O(1.453n).

4 COVERING BY PARTIAL ORDERS

Koivisto and Parviainen [2010] presented the following ap-
proach to a broad class of permutation problems, including
ones of the form (1). Let P be a set of partial orders on N
such that every linear order on N is an extension of at least
one member in P ; we call P simply a cover on N . Now, for
any function f of linear orders on L, we have

max
L

f(L) = max
P∈P

max
L⊇P

f(L)

where the first maximization is over all linear orders on N .
One example is when P = {∅}, rendering the outer maxi-
mization trivial. Another extreme case is when P consists
of all linear orders on N , rendering the inner maximization
trivial. In general, we have decomposed the original prob-
lem into |P| subproblems, each constrained by a different
partial order.

In particular, we can write the BNSL problem as

max
P∈P

g(P ) ,

with the subproblems

g(P ) := max
L⊇P

∑
i∈N

max
J⊆Li:J∈Ci

si(J) . (2)

Parviainen and Koivisto [2013] solved the subproblem by
dynamic programming over the downsets of the partial or-
der P . A downset is a subset S ⊆ N that is closed under
the relation, i.e., if i ∈ S and ji ∈ P , then j ∈ S.

Proposition 4 (Parviainen and Koivisto [2013, Theo-
rem 16]). Suppose each Ci is closed under inclusion. Then
the subproblem (2) admits an algorithm that runs in time
O(Dn2 + Fn), where D is the number of downsets of P .

We are now ready to apply quantum search over the cover P .
Combining Theorem 1 with the above result for the sub-
problem gives us a quantum algorithm for BNSL:

Proposition 5. Let P be a cover on N , each P ∈ P having
O(D) downsets. Suppose each Ci is closed under inclusion
and

∑
i |Ci| = O(D). Then BNSL admits a bounded-error

quantum algorithm that runs in time O(Dn2|P|1/2 log |P|).

For simplicity, we here restricted the sizes of the sets Ci so
that the running time for the subproblem is dominated by
the number of downsets; this restriction will ease our further
running time analysis, but is not crucial for the correctness
of the algorithm.

Our goal is next to show that, with an appropriate choice
of the cover P , the running time is O(cn) for some con-
stant c less than 2. Ignoring lower-order terms, our task is
to minimize the product D|P|1/2.

Fortuitously, essentially the same task is already addressed
by Koivisto and Parviainen [2010] in disguise: they aim
at minimizing the space–time product, i.e., the product of
the space complexity and the time complexity, which is
given by D2|P|, again ignoring lower-order terms. (Both
the space and the time requirement of classical dynamic
programming over downsets scale roughly as D.)

They give the following construction of what they call par-
allel bucket orders (of length two). Suppose n is divisible
by an even natural number k, which is a design parame-
ter. Partition N arbitrarily into n/k sets S1, S2, . . . , Sn/k

of size k. Let P consist of all partial orders on N of the
form R1 ∪ R2 ∪ · · · ∪ Rn/k, where each Rt is a partial
order on St obtained by splitting St into two subsets of
size k/2 so that the elements in one set precede all other
elements in the other set, i.e., Rt = S′ × S′′ for some dis-
joint S′, S′′ ⊂ St with |S′| = |S′′| = k/2. See Fig. 1 for
an illustration. Different values of k yield different space–
time tradeoff. The product is minimized at k = 26, with the
following numbers.

Proposition 6 (Koivisto and Parviainen [2010]). Let N be
an n-element set, with n divisible by 26. There is a cover P
on N with an/26 members, each having bn/26 downsets,
where a :=

(
26
13

)
and b := 214 − 1.

The n-th root of D|P|1/2 is given by

a1/52 · b1/26 < 1.3645 · 1.4525 < 1.9820 =: c .

Since we round up the base c, the bound O(cn) suppresses
any factor that grows subexponentially in n, including fac-
tors that arise when n is not divisible by 26 and the con-
struction is modified accordingly (we omit details).

Theorem 7. BNSL admits a bounded-error quantum algo-
rithm that runs in time O(1.982n), provided that each Ci is
closed under inclusion and F =

∑
i |Ci| = O(1.453n).

5 COMPUTATIONAL HARDNESS

In this section, we show that no classical algorithm can solve
BNSL in time O(cn) with c < 2, assuming the following
strong exponential time hypothesis (SETH) [Impagliazzo
and Paturi, 2001, Impagliazzo et al., 2001].
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Figure 2: An optimal structure in a reduction from a 3-HITTING SET instance with a universe of 4 elements (circles) and a
family of 6 sets (rectangles) to BNSL.

Hypothesis 8 (SETH). For any δ < 1 there exists a num-
ber k such that the k-CNF-SAT problem over n variables
cannot be solved in time O

(
2δn
)

by a classical algorithm.

To connect the hardness of BNSL to SETH, we will con-
struct a reduction from the k-HITTING SET problem: given
a universe U of size n and a family T of subsets of U with
at most k elements, is there a subset of U of size t that
intersects all members of T ?

Theorem 9 (Cygan et al. [2016]). If SETH holds, for any
δ < 1 there exists a number k such that the k-HITTING SET
problem over a universe of size n cannot be solved in time
O
(
2δn
)

by a classical algorithm.

We state our result for BNSL in a form that replaces the
parameter k above by the restriction that the input size is
subexponential in the number of nodes. We leave it as an
open problem to improve this to a polynomial bound.

Theorem 10. If SETH holds, the BNSL problem over n
variables and 2o(n) potential parent sets cannot be solved
in time O

(
2δn
)

for any δ < 1 by a classical algorithm.

Proof. Consider an instance (U, T , k, t) of the k-HITTING
SET problem, where U = {u1, u2, . . . , un} is the universe
and T = {T1, T2, . . . , Tm} is a family of subsets of U of
size at most k.

We first give a simpler reduction that results in a BNSL in-
stance with n+m nodes. Then, we continue by sparsifying
the obtained instance by merging some of the nodes, ren-
dering the number of nodes independent of m. Finally, we
show that solving that instance in time O

(
2δn
)

for any δ < 1
would break SETH.

We construct a BNSL instance where the nodes correspond
to the n elements of the universe U and the m subsets in
the given family T ; we denote these nodes with the same
symbols ui and Tj for notational convenience.

Define the following local scores (the rest being −∞):

sui
(∅) = 0,

sui({T1}) = 1,

sTj
({ui, Tj+1}) = 0 if ui ∈ Tj and j < m,

sTm({ui}) = 0 if ui ∈ Tm.

Suppose that H is a hitting set of T . Then, the following par-
ent set assignment is possible, that is, it yields a nonnegative
score:

Aui = ∅ if ui ∈ H ,

Aui
= {T1} if ui ̸∈ H ,

ATj = {ui, Tj+1} for some ui ∈ H if j < m,

ATm
= {ui} for some ui ∈ H .

Such a DAG attains a score n − |H|. An illustration is
provided in Figure 2.

We claim that if H is a minimum-size hitting set for T , then
no DAG can exceed the score n− |H|. First, note that any
DAG A with a nonnegative score corresponds to a hitting
set

HA := {u1, u2, . . . , un} ∩

(
m⋃
j=1

ATj

)

for T , since the parent set of each Tj must include a node
ui with ui ∈ Tj by the definition of the local scores. Fur-
ther, the nodes ui ∈ HA cannot have any parents, since
otherwise this would violate acyclicity: the only potential
non-empty parent set of ui is {T1}, but the DAG has to
contain edges T1 ← T2 ← · · · ← Tj and Tj ← ui for
some j. Finally, if ui ̸∈ HA, then ui has no children and can
pick any of its potential parent sets. In particular, its local
score is maximized by choosing {T1} with score 1. Thus,
the BNSL instance admits a solution with score n− t if and
only there is a hitting set of size t for T .
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Figure 3: An optimal structure in a sparsified reduction from a 3-HITTING SET instance with a universe of 4 elements and a
family of 6 sets to BNSL. Each set of the input is associated with at least one of the nodes, where the superset is written
above the horizontal line and the associated subsets below it.

The constructed BNSL instance has n+m nodes, which is
too many to prove our theorem. We next sparsify the subset
of m nodes that correspond to the members in T .

We arbitrarily partition the universe U into p := ⌈n1/(k+1)⌉
sets of (almost) equal size, U1, U2, . . . , Up, that is, their
sizes |Ui| differ by at most 1. For all I ⊆ {1, 2, . . . , p}, let

UI :=
⋃
i∈I

Ui .

Note that any T ∈ T is a subset of UI for some I of size k.

Instead of introducing a node for each Tj in our BNSL
instance, we introduce a node for each UI with |I| = k.
Label these sets arbitrarily by T ′

1, T
′
2, . . . , T

′
m′ with m′ =(

p
k

)
. For a subset P of U say that P hits T ′

j if P ⊆ T ′
j and P

intersects all T ∈ T with T ⊆ T ′
j .

Define the following local scores (and potential parent sets):

sui(∅) = 0,

sui
({T ′

1}) = 1,

sT ′
j
(P ∪ {T ′

j+1}) = 0 if P hits T ′
j and j < m′,

sT ′
m′
(P ) = 0 if P hits T ′

m′ .

In other words, the new local scores ensure that the parent
set of T ′

j hits all members of T that are its subsets.

As before, for any minimum-size hitting set H of T , the
maximum score n− |H| is attained by the following parent
set assignments:

Aui
= ∅ if ui ∈ H ,

Aui = {T1} if ui ̸∈ H ,

AT ′
j
= (H ∩ T ′

j) ∪ {T ′
j+1} if j < m′,

AT ′
m′

= H ∩ T ′
m′ .

This is illustrated in Figure 3.

The instance now contains n +
(
p
k

)
nodes. Since p =

⌈n1/(k+1)⌉, we have
(
p
k

)
≤ pk = o(n).

To bound the number of potential parent sets, observe
that each node T ′

j has at most 2|T
′
j | potential parent sets.

Since T ′
j is a union of k parts Ui, each part of size at

most ⌈n/p⌉ ≤ ⌈nk/(k+1)⌉ = o(n), the number of poten-
tial parent sets of T ′

j is at most 2k⌈n/p⌉ = 2o(n). The total
number of potential parent sets is thus bounded by

2n+

(
p

k

)
2o(n) = 2o(n) .

In summary, constructing the instance takes subexponential
time, there are subexponentially many potential parent sets,
and the number of nodes is asymptotically equivalent to n.

Assume now that SETH holds but any instance of BNSL
with n′ nodes could be solved in time O(2δ

′n′
) for

some δ′ < 1. Put δ := (δ′ + 1)/2 < 1. By Theo-
rem 9, there exists a k such that k-HITTING SET with
a universe of size n cannot be solved in time O

(
2δn
)
.

However, we showed that any such instance can be re-
duced to an instance of BNSL on n′ = n + o(n) vari-
ables in time 2o(n). By our assumption, we can solve it in
time O(2δ

′·(n+o(n))) = O(2o(n)2δ
′n) = O(2δn), which is

a contradiction.

6 CONCLUDING REMARKS

We have shown quantum speedups for the problem of
Bayesian network structure learning. Our two algorithms



are built on rather sophisticated previous results: a quantum
algorithm for a related problem [Ambainis et al., 2019] and
a classical algorithm for the same problem [Parviainen and
Koivisto, 2013]. On the other hand, the ways we employed
these previous results are technically relatively simple. We
also proved that similar speedups presumably are not pos-
sible for classical algorithms, suggesting that the BNSL
problem admits a “quantum advantage.”2

An obvious question for further research is whether there
are significantly faster quantum algorithms, e.g., ones with
running time close to O(2n/2) or others that yield a quantum
speedup even when we do not bound the number of potential
parent sets. Achieving the former target would most likely
imply a new algorithm for the travelling salesman problem
that beats current time bound of O(1.728n) [Ambainis et al.,
2019]. The latter question assumes that the local scores are
given implicitly, which is not an obstacle per se, as the
local score of a given node and parent set can be computed
efficiently from data for commonly used scoring functions.

Our algorithms may not have practical value in the near
future. The speedup factor (2/1.817)n of our first algorithm
achieves 10 at n ≈ 24 and 100 at n ≈ 48. However, the hid-
den subexponential factors are likely to favor the classical
algorithms in practice even if the number of potential parent
sets F is small, say, cubic in n. Perhaps most importantly,
our algorithms rely on QRAM, of which size is exponential
in n. While different QRAM architectures have been pro-
posed [Giovannetti et al., 2008, Park et al., 2019], there is
no physical realization of the ideas yet. Currently we do not
know whether the role of QRAM is critical for achieving
any polynomial quantum speedup.

Regarding lower bounds for classical algorithms, there are
several directions for future research. Theorem 10 does not
rule out a faster algorithm when the maximum size of any
potential parent set is bounded by a constant; the problem is
solvable in polynomial time when the maximum size is one
[Chu and Liu, 1965, Edmonds, 1967], but for larger upper
bounds we only know that the problem is NP-hard [Chick-
ering, 1995]. One could also attempt to prove conditional
lower bounds under some other established hypothesis not
known to be implied by SETH such as the set cover conjec-
ture [Cygan et al., 2015, p. 507].
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