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Abstract
In this paper, we consider the task of designing a Kalman Filter (KF) for an unknown and partially
observed autonomous linear time invariant system driven by process and sensor noise. To do so, we
propose studying the following two step process: first, using system identification tools rooted in
subspace methods, we obtain coarse finite-data estimates of the state-space parameters, and Kalman
gain describing the autonomous system; and second, we use these approximate parameters to design
a filter which produces estimates of the system state. We show that when the system identification
step produces sufficiently accurate estimates, or when the underlying true KF is sufficiently robust,
that a Certainty Equivalent (CE) KF, i.e., one designed using the estimated parameters directly,
enjoys provable sub-optimality guarantees. We further show that when these conditions fail, and
in particular, when the CE KF is marginally stable (i.e., has eigenvalues very close to the unit
circle), that imposing additional robustness constraints on the filter leads to similar sub-optimality
guarantees. We further show that with high probability, both the CE and robust filters have mean
prediction error bounded by Õ(1/

√
N), where N is the number of data points collected in the

system identification step. To the best of our knowledge, these are the first end-to-end sample
complexity bounds for the Kalman Filtering of an unknown system.
Keywords: Kalman Filter, System Identification, Sample Complexity, Certainty Equivalence

1. Introduction

Time series prediction is a fundamental problem across control theory (Kailath et al., 2000), eco-
nomics (Bauer and Wagner, 2002) and machine learning. In the case of autonomous linear time
invariant (LTI) systems driven by Gaussian process and sensor noise:

zk+1 = Azk + wk, yk = Czk + vk (1)

the celebrated Kalman Filter (KF) has been the standard method for prediction (Anderson and Moore,
2005) . When model (1) is known, the KF minimizes the mean square prediction error. However, in
many practical cases of interest (e.g., tracking moving objects, stock price forecasting), the state-
space parameters are not known and must be learned from time-series data. This system identification
step, based on a finite amount of data, inevitably introduces parametric errors in model (1), which
leads to a KF with suboptimal prediction performance (El Ghaoui and Calafiore, 2001).

In this paper, we study this scenario, and provide finite-data estimation guarantees for the Kalman
Filtering of an unknown autonomous LTI system (1). We consider a simple two step procedure. In
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the first step, using system identification tools rooted in subspace methods, we obtain finite-data
estimates of the state-space parameters, and Kalman gain describing system (1). Then, in the second
step, we use these approximate parameters to design a filter which predicts the system state. We
provide an end-to-end analysis of this two-step procedure, and characterize the sub-optimality of the
resulting filter in terms of the number of samples used during the system identification step, where
the sub-optimality is measured in terms of the mean square prediction error of the filter. A key insight
that emerges from our analysis is that using a Certainty Equivalent (CE) Kalman Filter, i.e., using
a KF computed directly from estimated parameters, can yield poor estimation performance if the
resulting CE KF has eigenvalues close to the unit circle. To address this issue, we propose a Robust
Kalman Filter that mitigates these effects and that still enjoys provable sub-optimality guarantees.

Our main contributions are that: i) we show that if the system identification step produces
sufficiently accurate estimates, or if the underlying true KF is sufficiently robust, then the CE KF has
near optimal mean square prediction error, ii) we show when the CE KF is marginally stable, i.e.,
when it has eigenvalues close to the unit circle, that a Robust KF synthesized by explicitly imposing
bounds on the magnitude of certain closed loop maps of the system enjoys similar mean square
prediction error bounds as the CE KF, while demonstrating improved stability properties, and iii) we
integrate the above results with the finite-data system identification guarantees of Tsiamis and Pappas
(2019), to provide, to the best of our knowledge, the first end-to-end sample complexity bounds for
the Kalman Filtering of an unknown system. In particular, we show that the mean square estimation
error of both the Certainty Equivalent and Robust Kalman filter produced by the two step procedure
described above is, with high probability, bounded by Õ(1/

√
N), where N is the number of samples

collected in the system identification step.
Related work. A similar two step process was studied for the Linear Quadratic (LQ) control

of an unknown system in Dean et al. (2017); Mania et al. (2019). While LQ optimal control and
Kalman Filtering are known to be dual problems, this duality breaks down when the state-space
parameters describing the system dynamics are not known. In particular, the LQ optimal control
problem assumes full state information, making the system identification step much simpler – in
particular, it reduces to a simple least-squares problem. In contrast, in the KF setting, as only
partial observations are available, the additional challenge of finding an appropriate system order and
state-space realization must be addressed. On the other hand, in the KF problem one can directly
estimate the KF gain from data, which makes analyzing performance of the CE KF simpler than the
performance of the CE LQ optimal controller (Mania et al., 2019).

System identification of autonomous LTI systems (1) is referred to as stochastic system identifi-
cation (Van Overschee and De Moor, 2012). Classical results consider the asymptotic consistency of
stochastic subspace system identification, as in Deistler et al. (1995); Bauer et al. (1999), whereas
contemporary results seek to provide finite data guarantees (Tsiamis and Pappas, 2019; Lee and
Lamperski, 2019). Finite data guarantees for system identification of partially observed systems can
also be found in Oymak and Ozay (2018); Simchowitz et al. (2019); Sarkar et al. (2019), but these
results focus on learning the non-stochastic part of the system, assuming that a user specified input is
used to persistently excite the dynamics.

Classical approaches to robust Kalman Filtering can be found in El Ghaoui and Calafiore
(2001); Sayed et al. (2001); Levy and Nikoukhah (2012), where parametric uncertainty is explicitly
taken into account during the filter synthesis procedure. Although similar in spirit to our robust KF
procedure, these approaches assume fixed parametric uncertainty, and do not characterize the effects
of parametric uncertainty on estimation performance, with this latter step being key in providing
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end-to-end sample complexity bounds. We also note that although not directly comparable to our
work, the filtering problem for an unknown LTI system was also recently studied in the adversarial
noise setting in Hazan et al. (2018), where a spectral filtering technique is used to directly predict the
output bypassing the system identification step. In the stochastic noise case, online-learning of the
Kalman Filter was studied in Kozdoba et al. (2019), where the goal is to predict a scalar output

Paper structure. In Sec. 2, we formulate the problem, and in Sec. 3 and 4, we derive performance
guarantees for the proposed CE and Robust Kalman filters. In Sec. 5, we provide end-to-end sample
complexity bounds for our two step procedure, and demonstrate the effectiveness of our pipeline
with a numerical example in Sec. 6. We end with a discussion of future work in Sec. 7. An extended
version of the paper, containing all proofs and results, is available on arXiv under the same title.

Notation. We let bold symbols denote the frequency representation of signals. For example,
Φ =

∑∞
t=0 Φtz

−t. If M is stable with spectral radius ρ(M) < 1, then we denote its resolvent by
RM , (zI −M)−1. TheH2 system norm is defined by ‖Φ‖2H2

,
∑∞

t=0 ‖Φt‖2F , where ‖·‖F is the
Frobenius norm. TheH∞ system norm is defined by ‖Φ‖H∞ , sup‖z‖=1 ‖Φ(z)‖2, where ‖·‖2 is
the spectral norm. Let 1

zRH∞ be the set of real rational stable strictly proper transfer matrices.

2. Problem Formulation

For the remainder of the paper, we consider the Kalman Filter form of system (1):

xk+1 = Axk +Kek, yk = Cxk + ek, (2)

where xk ∈ Rn is the prediction (state), yk ∈ Rm is the output, and ek ∈ Rn is the innovation
process. The innovations ek are assumed to be i.i.d. zero mean Gaussians, with positive definite
covariance matrix R, and the initial state is assumed to be x0 = 0. In general, the system (1) driven
by i.i.d. zero mean Gaussian process and sensor noise is equivalent to system (2) for a suitable gain
matrix K, as both noise models produce outputs with identical statistical properties (Van Overschee
and De Moor, 2012, Chapter 3). We make the following assumption throughout the rest of the paper.

Assumption 1 Matrices A,C,K,R are unknown, and the pair (A,C) is observable. Both the
matrices A and A−KC have spectral radius less than 1, i.e., ρ(A) < 1 and ρ(A−KC) < 1.

The observability assumption is standard, and the stability of A−KC follows from the properties
of the Kalman filter (Anderson and Moore, 2005). We note that the filter synthesis procedures we
propose can be applied even if ρ(A) ≥ 1 – however, in this case, we are unable to guarantee bounded
estimation error for the resulting CE and robust KFs (see Theorem 1 and Lemma 2).

Our goal is to provide end-to-end sample complexity bounds for the two step pipeline illustrated
in Fig. 1. First, we collect a trajectory {yt}Nt=0 of length N from system (2), and use system
identification tools with finite data guarantees to learn the parameters Â, Ĉ, K̂, R̂ and bound the
corresponding parameter uncertainties by (εA, εC , εK , εR). Second, we use these approximate
parameters to synthesize a filter from the following class:

x̃k = Âx̃k−1 +

k∑
t=1

Lt(yk−t − Ĉx̃k−t), J̃ ,

√√√√ lim
T→∞

1

T

T∑
k=0

‖x̃k − xk‖22 (3)

where {Lt}∞t=1 are to be designed and J̃ is the filter’s mean square prediction error as defined with
respect to the optimal KF. Note that the predictor class above includes the CE KF – see Section 3
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Sys. ID
Filter

Synthesis

y0, . . . , yN Â, Ĉ

K̂, R̂, ε

Lt

J̃

Figure 1: The proposed identification and filter synthesis pipeline. Using a single trajectory of N samples
{yt}Nt=0 generated by system (2), a system identification algorithm computes estimates of (Â, Ĉ, K̂, R̂)
with corresponding identification error bounds ε := max(εA, εC , εK , εR). Then, using these estimates, we
synthesize a filter defined by dynamic gains {Lt}∞t=1, which has mean square prediction error J̃ , defined in (3).

– and that if the the true system parameters are known, i.e., if Â = A, Ĉ = C, K̂ = K, then the
optimal mean squared prediction error J̃ = 0 is achieved.

Problem 1 (End-to-end Sample Complexity) Fix a failure probability δ > 0. Given a single
trajectory y0, . . . , yN of system (2), compute system parameter estimates Â, Ĉ, K̂, R̂, and design a
Kalman filter in class (3), defined by gains {Lt}∞t=1, such that with probability at least 1 − δ, we
have that J̃ ≤ εJ , so long as N ≥ poly(1/εJ , log(1/δ)).

To address Problem 1, we will: i) leverage recent results regarding the the sample complexity of
stochastic system identification, ii) provide estimation guarantees for certainty equivalent as well as
robust Kalman filter designed using the identified system parameters (see Problem 2 below), and (iii)
provide end-to-end performance guarantees by integrating steps (i) and (ii) (see Problem 1 above).

Recently Tsiamis and Pappas (2019) provided a finite sample analysis for stochastic system
identification which provides bounds on the identification error ε := max(εA, εC , εK , εR). Leverag-
ing these results, we focus next on solving the Filter Synthesis task described below using both a
certainty equivalent Kalman filter as well as a robust Kalman filter.

Problem 2 (Near Optimal Kalman Filtering of an Uncertain System) Consider system (2). Let
Â, Ĉ, K̂, R̂ be estimates satisfying1 ‖A−Â‖2 ≤ εA, ‖C−Ĉ‖2 ≤ εC , ‖K−K̂‖2 ≤ εK , ‖R−R̂‖2 ≤
εR. Design a Kalman filter in class (3), defined by gains {Lt}∞t=0, with mean square prediction error
decaying with the size of the parameter uncertainty, i.e., such that J̃ ≤ O(εA, εC , εK , εR).

3. Estimation Guarantees for Certainty Equivalent Kalman Filtering

For the certainty equivalent Kalman filter, we directly use the estimated state-space parameters from
the system identification step. Based on the estimated K̂, R̂ we compute the covariance:[

Q̂ Ŝ

Ŝ∗ R̂

]
, E

[
K̂ek
ek

] [
e∗kK̂

∗ e∗k
]

=

[
K̂R̂1/2

R̂1/2

] [
R̂1/2K̂∗ R̂1/2

]
.

Then, based on standard Kalman filter theory, we compute the stabilizing solution2 of the following
Riccati equation with correlation terms (Kailath et al., 2000):

P = ÂP Â∗ + Q̂− (ÂP Ĉ∗ + Ŝ)(ĈP Ĉ∗ + R̂)−1(ĈP Â∗ + Ŝ∗).

1. In practice, estimating the parameters of a partially observed system (2) is ill-posed, in that any similarity transformation
S can be applied to generate parameters (S−1AS,CS, S−1K,R) describing the same system, and the bounds
described hold for some similarity transformation S. All results in this paper apply nearly as is to the general case of
S 6= I under suitable assumptions – more details can be found in the extended version.

2. A stabilizing solution P to the Riccati equation defines a Kalman gain LCE such that ρ(Â− LCEĈ) < 1.
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Then, the CE Kalman filter gain is static and takes the form

L1 = LCE , (ÂP Ĉ∗ + Ŝ)(ĈP Ĉ∗ + R̂)−1, Lt = 0, for t = 2, . . . . (4)

Trivially, if ρ(Â − K̂Ĉ) < 1, then the stabilizing solution of the Riccati equation is P = 0 with
LCE = K̂; the solution does not depend on R̂. The next result shows that if the underlying true
Kalman filter is sufficiently robust, as measured by a spectral decay rate, and that estimation parameter
errors are sufficiently small, then the CE Kalman filter achieves near optimal performance.

Theorem 1 (Near Optimal Certainty Equivalent Kalman Filtering) Consider Problem 2 and
the CE KF (4). For any ρ(A−KC) ≤ ρ < 1, define τ(A−KC, ρ) , supt≥0

∥∥(A−KC)t
∥∥
2
ρ−t.

If the robustness condition 2τ(A−KC, ρ) · (εA + εC(‖K‖2 + εK) + εK ‖C‖2) ≤ 1−ρ is satisfied,
then LCE = K̂ and:

J̃ ≤
√

3C̄ε
∥∥∥∥[ RAK

I

]
R1/2

∥∥∥∥
H2

where ε = max {εA, εC , εK}, C̄ = 2 τ(A−KC,ρ)1−ρ (1 + ‖K‖2 + εK) and RA = (zI −A)−1.

When CE Kalman filtering fails. The transient behavior of the CE Kalman filter is governed by
the closed loop eigenvalues of Â−K̂Ĉ, with performance degrading as eigenvalues approach the unit
circle. This may occur if the estimation errors (εA, εC , εK) are large enough to cause ρ(Â−K̂Ĉ) ≈ 1
even if the true system has spectral radius ρ(A−KC) < 1. We show in the next section that this
undesirable scenario can be avoided by explicitly constraining the transient response of the resulting
Kalman filter to satisfy certain robustness constraints.

4. Estimation Guarantees for Robust Kalman Filtering

To address the possible poor performance of the CE Kalman filter when model uncertainty is large,
we propose to search over dynamic filters (3) subject to additional robustness constraints on their
transient response. Using the System Level Synthesis (SLS) framework (Wang et al., 2019; Anderson
et al., 2019) for Kalman Filtering (Wang et al., 2015), we parameterize the class of dynamic filters (3)
subject to additional robustness constraints in a way that leads to convex optimization problems.

For a given dynamic predictor L(z) =
∑∞

t=0 z
−tLt+1, we define the closed loop system re-

sponses:
Φw(z) , (zI − Â+ LĈ)−1, Φv(z) , −(zI − Â+ LĈ)−1L. (5)

In (Wang et al., 2015), it is shown that these responses are in fact the closed loop maps from process
and sensor noise (w,v) to state estimation error, and that the filter gain achieving the desired behavior
can be recovered via L = −Φ−1w Φv so long as the responses (Φw,Φv) are constrained to lie in an
affine space defined by the system dynamics. By expressing the mean squared prediction error of the
filters (3) in terms of their system responses, we are able to clearly delineate the effects of parametric
uncertainty from the cost of deviating from the CE Kalman filter.

Lemma 2 (Error analysis) Consider system (2). Let ∆A , A− Â, ∆C , C − Ĉ, ∆K , K − K̂.
Any filter (3) with parameterization (5) has mean squared prediction error given by

J̃ =

∥∥∥∥[ Φw Φv

]{[ ∆A ∆K

∆C 0

] [
RAK
I

]
+

[
K̂
I

]}
R1/2

∥∥∥∥
H2
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Based on the previous lemma, we can upper bound the mean squared prediction error of filters (3) by

J̃ ≤
√

3ε
∥∥[ Φw Φv

]∥∥
H2

∥∥∥∥[ RAK
I

]
R1/2

∥∥∥∥
H∞︸ ︷︷ ︸

parameter uncertainty term

+
∥∥∥ΦwK̂ + Φv

∥∥∥
H2

∥∥∥R1/2
∥∥∥
2︸ ︷︷ ︸

suboptimality term

,

where ε = max {εA, εC , εK}. This upper bound clearly separates the effects of parameter uncertainty,
as captured by the first term, and the performance cost incurred by the filter L due to its deviation
from the CE Kalman gain K̂, as captured by the second. In order to optimally tradeoff between these
two terms, we propose the following robust SLS optimization problem:

min
Φw,Φv

∥∥∥ΦwK̂ + Φv

∥∥∥
H2

s.t.
∥∥[ Φw Φv

]∥∥
H2
≤ C,Φw(zI − Â)−ΦvĈ = I, Φw, Φv ∈

1

z
RH∞

(6)

where the constant C is a regularization parameter, and the affine constraint Φw(zI − Â)−ΦvĈ =
I, Φw, Φv ∈ 1

zRH∞ parameterizes all filters of the form (3) that have bounded mean squared
prediction error (see Wang et al. (2015) for more details). As we formalize in the following theorem,
for appropriately selected regularization parameter C and sufficiently accurate estimation errors
(εA, εC), the robust KF has near optimal mean square estimation error.

Theorem 3 (Robust Kalman Filter) Consider Problem 2 with Kalman filters from class (3) syn-
thesized using the robust SLS optimization problem (6). If the regularization parameter is chosen
such that C ≥ 2(1 + ‖K‖2) ‖RA−KC‖H2

, and further, the estimation errors (εA, εC) are such that

(εA + εC ‖K‖2) ‖RA−KC‖H∞ ≤ 1/2 (7)

then the robust SLS optimization problem is feasible, and the synthesized robust Kalman filter has
mean squared prediction error upper-bounded by

J̃ ≤
√

3Cε
∥∥∥∥[ RAK

I

]∥∥∥∥
H∞
‖R1/2‖2 + 2ε ‖RA−KC‖H2

‖R1/2‖2, (8)

where ε = max {εA, εC , εK}.

We further note that whenever the system responses induced by the CE Kalman filter Φ̃w ,
(zI − Â+ K̂Ĉ)−1, Φ̃v , −(zI − Â+ K̂Ĉ)−1K̂ are a feasible solution to optimization problem (6),
they are also optimal, resulting in a filter L = K̂ with performance identical to the CE setting.

5. End-to-End Sample Complexity for the Kalman Filter

Theorems 1 and 3 provide two different solutions to Problem 2. Combining these theorems with
the finite data system identification guarantees of Tsiamis and Pappas (2019), we now derive, to
the best of our knowledge, the first end-to-end sample complexity bounds for the Kalman filtering
of an unknown system. For both the CE and robust Kalman filter, we show that the mean squared
estimation error defined in (3) decreases with rate O(1/

√
N) up to logarithmic terms, where N is

the number of samples collected during the system identification step. The formal statement of the
following theorem which addresses Problem 1 can be found in the arXiv version of the paper.
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Theorem 4 (End-to-end guarantees, informal) Fix a failure probability δ ∈ (0, 1), and assume
that we are given a sample trajectory {yt}Nt=0 generated by system (2). Then as long as N ≥
poly(log(1/δ)), we have with probability at least 1 − δ that the identification and filter synthesis
pipeline of Fig. 1, with system identification performed as in Tsiamis and Pappas (2019) and filter
synthesis performed as in Sections 3, 4, achieves mean squared prediction error satisfying

J̃ ≤ CIDCKF Õ(

√
log 1/δ

N
), where CKF =

1

1− ρ(A−KC)

1

1− ρ(A)

and CID captures the difficulty of identifying system (2)(see Tsiamis and Pappas (2019) or extended
version). Here, Õ hides constants, other system parameters, and logarithmic terms.

The bound derived in Theorem 4 highlights an interesting tension between how easy it is to
identify the unknown system, and the robustness of the underlying optimal Kalman filter. The
constant CKF captures how robust the underlying open loop system A and closed loop Kalman filter
A−KC are, as measured by their spectral gaps 1− ρ(A) and 1− ρ(A−KC). In particular, we
expect CKF to be small for systems that admit optimal KFs with favorable robustness and transient
performance. In contrast, the constant CID captures how easy it is to identify a system: recent
results for the fully observed setting (Simchowitz et al., 2018; Sarkar and Rakhlin, 2018) suggest
that systems with larger spectral radius are in fact easier to identify, as they provide more “signal”
to the identification algorithm. In this way, our upper bound suggests that systems which properly
balance between these two properties, robust transient performance and ease of identification, enjoy
favorable sample complexity.

We also note that the degradation of our bound with the inverse of the spectral gap 1 − ρ(A)
appears to be a limitation of the proposed offline two step architecture – indeed, Lemma 2 suggests
that any estimation error in the state-space parameters (A,C) causes an increase in mean squared
prediction error as ‖RA‖ ∝ (1− ρ(A))−1 increases. It remains open as to whether other prediction
architectures would suffer from the same limitation.

6. Simulations

We perform Monte Carlo simulations of the proposed pipeline for the system

A =

 0.8 1 0
0 0.9 1
0 0 0.9

 , C =
[

1 0 0
]
, K =

[
1.5320 0.9401 0.1923

]∗
, R = 10.6414.

for varying sample lengths N . We simulate both the CE and robust Kalman filters, and set the
regularization parameter to C = 10 in the robust SLS optimization problem (6). For each iteration,
we first simulate system (2) to obtain N output samples. Then, we perform system identification to
obtain the system parameters, after which we synthesize both CE and robust Kalman filters. Finally,
we compute the mean prediction error of the designed filters. We refer the reader to the extended
version of the paper for a detailed description of our experimental implementation.

Figure 2 (a) and (b) show the empirically computed mean squared prediction errors of the CE
and Robust Kalman filters, with the mean, 95th, and 97.5th percentiles being shown. Notice that
both errors decrease with a rate of 1/

√
N , and that while the average behavior of both filters is quite

similar, there is a noticeable gap in their tail behaviors. We observe that the most significant gap
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Figure 2: The 95% and 97.5% empirical percentiles for the mean squared prediction error J̃ of the CE and
Robust Kalman filters. We run 1000 Monte Carlo simulations for different sample lengths N (x-axis, number
of samples).
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Figure 3: Performance improvement for the robust KF conditioned on the event that ρ(Â− LCEĈ) > 0.97.

between the CE and Robust Kalman filters occurs when the eigenvalues of the CE matrix Â−LCEĈ
are close to the unit circle. Fig. 3 shows the empirical distribution of mean squared prediction errors
conditioned on the event that ρ(Â− LCEĈ) > 0.97. In this case, the CE filter can exhibit extremely
poor mean squared prediction error, with the worst observed error (not shown in Fig. 3 in the interst
of space) approximately equal to 70 – in contrast, the worst error exhibited by the robust Kalman
filter was approximately equal to 5. Thus, we were able to achieve a 14x reduction in worst-case
mean squared error. For some simulations the robust KF can exhibit worse performance compared to
the CE Kalman Filter. However, over all simulations, the robust KF was at most 1.64x suboptimal
compared to the CE Kalman filter.

7. Conclusions & Future work

In this paper, we proposed and analyzed a system identification and filter synthesis pipeline. Lever-
aging contemporary finite data guarantees from system identification (Tsiamis and Pappas, 2019),
as well as novel parameterizations of robust Kalman filters (Wang et al., 2015), we provided, to the
best of our knowledge, the first end-to-end sample complexity bounds for the Kalman filtering of an
unknown LTI autonomous system. Our analysis revealed that, depending on the spectral properties
of the CE Kalman filter, that a robust Kalman filter approach may lead to improved performance.
In future work, we would like to explore how to improve robustness and performance by further
exploiting information about system uncertainty, as well as how to integrate our results into an
optimal control framework, such as Linear Quadratic Gaussian control. We would also like to explore
more options for the regularization parameter C, for example, let it depend on the data or the number
of samples.
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