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Abstract

We introduce MoNet, a novel functionally modu-
lar network for self-supervised and interpretable
end-to-end learning. By leveraging its functional
modularity with a latent-guided contrastive loss
function, MoNet efficiently learns task-specific
decision-making processes in latent space without
requiring task-level supervision. Moreover, our
method incorporates an online, post-hoc explain-
ability approach that enhances the interpretabil-
ity of end-to-end inferences without compromis-
ing sensorimotor control performance. In real-
world indoor environments, MoNet demonstrates
effective visual autonomous navigation, outper-
forming baseline models by 7% to 28% in task
specificity analysis. We further explore the in-
terpretability of our network through post-hoc
analysis of perceptual saliency maps and latent
decision vectors. This provides valuable insights
into the incorporation of explainable artificial in-
telligence into robotic learning, encompassing
both perceptual and behavioral perspectives. Sup-
plementary materials are available at https://
sites.google.com/view/monet-1lgc.

1. Introduction

One of the main objectives of end-to-end learning for au-
tonomous navigation is to develop complex policies through
human demonstrations. This is achieved by an end-to-end
network that learns the hierarchical pipeline of perception,
planning, and control in robotic systems via imitation learn-
ing (IL). Given that IL facilitates safe and efficient policy
learning in an offline, supervised manner, end-to-end net-
works have been widely used in the design of learning-based
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Figure 1: Our approach incorporates a functionally modular
end-to-end network architecture, which includes a post-hoc
method for an interpretable latent decision-making process.

applications (Tampuu et al., 2020).

However, although studies on IL have shown preliminary
successes, designing an end-to-end sensorimotor network
that can scale up to complex driving scenarios remains chal-
lenging. Traditional end-to-end networks often exhibit a less
clear decision-making process, which complicates learning
entangled tasks from demonstrations. To address this, recent
conditional learning methods (Huang et al., 2020) employ
multiple branching networks for each task, with outputs
that switch based on task-level conditional inputs. However,
this conditional input often corresponds to the outcome of
an internal decision-making process in human demonstra-
tions, which is typically implicit and difficult to identify. As
a consequence, this approach necessitates extra task-level
annotations (e.g., go-straight, turn-left), making it more
demanding than simply collecting sensorimotor pairs.

Moreover, conventional networks, which directly compute
control commands from sensory inputs, lack a transparent
inference process. This obscurity makes it unclear what
behavioral decision was intended for the resulting control
output without direct execution. Several studies have sought
to enhance interpretability by reconstructing various modal-
ities (Chen et al., 2021; Zeng et al., 2019), or by visualizing
attention maps (Kim & Canny, 2017). However, they mainly
focus on perceptual insights, still leaving the high-level de-
cisions behind sensorimotor outputs largely obscure. This
lack of clarity leads to insufficient task specificity and in-
terpretability during the sensorimotor process, ultimately
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diminishing the reliability and trustworthiness of end-to-end
networks in practical applications.

In this paper, we present a modular network, MoNet, a
functionally modularized end-to-end architecture (Meunier
et al., 2010) for autonomous navigation. MoNet is divided
into perception, planning, and control modules, which are
functionally separated but explicitly connected to form a
single end-to-end structure (Fig. 1). Our network includes
an internal latent decision process to facilitate task-oriented
guidance for behaviorally relevant sensory-motor processes.
Simultaneously, it employs a self-attention mechanism to
extract salient spatial features from sensory input.

Leveraging the modularity in MoNet, we design a novel
self-supervised, latent-guided contrastive (LGC) loss func-
tion. Directed by latent features from the perception module
with task-oriented contexts, this loss function encourages
the planning module to make consistent decisions in similar
driving contexts while differentiating responses in varied
situations. The internal hierarchy, combined with our con-
trastive learning scheme, not only promotes functional spe-
cialization but also enables the emergence of a task-relevant
decision-making mechanism through self-supervision.

Furthermore, we integrate a post-hoc technique from the
field of explainable artificial intelligence (XAI) with our
modular end-to-end network to transform task-relevant la-
tent decisions into understandable representations. We im-
plement a multi-class pattern classifier to predict the high-
level task intent derived from these latent decisions. Sub-
sequently, we calibrate the posterior probabilities of the
classification results to achieve a more interpretable rep-
resentation. These probabilities are then converted into an
entropy value, which quantifies the uncertainty of the end-
to-end model’s inference from a task-level perspective.

In our evaluation, our method effectively demonstrates vi-
sual autonomous driving across multiple tasks, including
corridor navigation, intersection navigation, and collision
avoidance. We present empirical experiments conducted on
a real-world robotic RC platform, showcasing the network’s
capability to perform task-specific sensorimotor inference
without requiring task-level labeling. We further explore
spatial saliency maps and latent decisions during end-to-end
navigation in the real world. Specifically, by decoding la-
tent decisions into explainable posterior probabilities, we
gain the ability to visualize sequential high-level internal
decisions alongside task uncertainty during continuous end-
to-end sensorimotor control. These analyses highlight the
significant interpretability and transparency of our end-to-
end model, showcasing its effectiveness from both percep-
tual and behavioral perspectives in real-world continuous
control applications.

Our main contributions can be summarized as follows:

* We propose MoNet, a modular end-to-end network
that incorporates a post-hoc explainability method, en-
abling interpretable sensorimotor control.

* We design a self-supervised, latent-guided contrastive
learning scheme to enhance the task-relevant decision-
making mechanism within the end-to-end architecture.

* We examine the perceptual and behavioral interpretabil-
ity, as well as the sensorimotor performance of our net-
work, showcasing the potential benefits of integrating
the explainability method into robotic learning.

2. Related Works

End-to-End Sensorimotor Learning: In autonomous
driving, end-to-end methods employ single neural networks
to directly map sensory inputs to control outputs. ALVINN,
the initial model for steering angle inference, utilized a mul-
tilayer perceptron (Pomerleau, 1988). This approach has
evolved to include convolutional neural networks (CNNs),
mainly focused on lane-following tasks (Bojarski et al.,
2016). Recent advancements have incorporated conditional
imitation learning to cover a broader range of driving
tasks (Gao et al., 2017; Codevilla et al., 2018; Huang et al.,
2020; Zhang et al., 2023). These methods use multiple
branched layers switched by conditional inputs for navi-
gating environments, such as ’go-straight’, 'turn-left’, or

‘turn-right’. While such methods reduce task-level ambigu-

ity, they necessitate additional human-engineered labeling
for the navigational inputs and are constrained to predefined
tasks. Moreover, interpreting the perceptual and behavioral
processes within end-to-end networks remains a challenge,
which affects confidence in the network’s reliability for real-
world deployment.

Interpretable Methods: Recent studies have concen-
trated on designing interpretable end-to-end networks to
address existing limitations. In this context, researchers us-
ing segmentation methods (Chen et al., 2021; Teng et al.,
2022) have indirectly shown how a network can comprehend
surrounding contexts by generating semantic masks from
hidden features. Similarly, studies involving multi-head net-
works (Zeng et al., 2019) have evaluated the effectiveness
of their planning methods by examining interpretable repre-
sentations across various modalities, such as object detec-
tion or cost map generation. In contrast, attention mecha-
nisms (Vaswani et al., 2017; Kim & Canny, 2017) in recent
studies have explicitly facilitated a deeper understanding
of the areas within given feature elements where the net-
work predominantly focuses during feedforward processing.
Specifically, in the realm of autonomous driving, methods
leveraging attention aim to accentuate critical aspects in
driving scenarios, such as lane following (Shi et al., 2020),
lane changing (Chen et al., 2019), or navigating intersec-
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Figure 2: Overview of our method. While the entire end-to-end network is optimized by the supervised imitation loss L,
the planning module is updated by the latent-guided contrastive loss L1.cc, which is directed by the latent vector zP.

tions (Seong et al., 2021). However, the majority of research
has primarily focused on the cognitive interpretations of
how networks perceive contexts. Our work takes this a step
further by investigating how to interpret the task-oriented in-
tentions of the network in an explainable way. This approach
enables both perceptual and behavioral interpretations on-
line during end-to-end inference.

3. Modular End-to-End Network
3.1. Latent Functional Modularity

Our main idea is to embed functional modularity with in-
ternal hierarchy into an end-to-end network, allowing func-
tionalities of the robotic sub-modules in latent space. As
shown in Fig. 1, our modular end-to-end network, MoNet,
has three distinct neural modules: Perception (P), Planning
(Q), and Control (R), which are the major components of
the robotics system (Schwarting et al., 2018). Each module
1) encodes raw observations o into a fused perception feature
vector zP, 2) infers a latent decision A%, and 3) computes a
sensorimotor command a®, respectively. The modules are
functionally separated yet structurally connected in latent
space, enabling them to constitute an end-to-end policy net-
work 7, parameterized by 6:

Perception: 2P =P(0;0)
Planning: hd = Q(=;0) 1
Control: a® = R(z*,h%;0)

To encourage functional specialization of the modules in
the network, we utilize two distinct mechanisms: bottom-
up and top-down neural processes (Baluch & Itti, 2011;
Anderson et al., 2018). Specifically, the bottom-up mech-
anism is a stimulus-driven, exogenous process, while the
top-down mechanism is a behavior-relevant endogenous
process (Katsuki & Constantinidis, 2014). Considering their
properties, the perception (Pg) and planning (Qp) modules
configure with self-attention mechanisms (Vaswani et al.,
2017) to extract salient spatial features from sensory input

o and to obtain contextual importance from the features
zP, respectively. In contrast, the control (Rg) module is de-
signed with a top-down mechanism to internally modulate
the sensory-motor signals based on the context-oriented be-
havioral decision 2% from the planning module. This internal
hierarchy enables the network to generate spatial attention
maps and high-level latent decisions that are explicitly ac-
cessible during end-to-end inference. Employing a post-hoc
approach allows these to be transformed into interpretable
salient maps and behavioral decisions, respectively.

3.2. Network Details

Perception module: Our network receives a high-
dimensional observation o = [I, M] that includes a front
camera image | € R?24%224X1 and a topology map M €
R64x64x3 "This observation includes visual sensory data
with navigational information, providing driving contexts in
the ego-centric area for navigating complex environments,
such as corridors with intersections. To effectively process
high-dimensional camera images, we employ a hybrid ar-
chitecture that combines the Vision Transformer encoder
with CNN blocks (Dosovitskiy et al., 2020). In the per-
ception module, the image I and the topology map M are
first encoded into a hidden image feature z; € RE*6x64
and a hidden route feature z); € RY*1X64 respectively,
using ResNet-inspired CNN blocks (He et al., 2016). The
image feature is first reshaped into a flattened embedding
Mt ¢ R(6x6)x64 "serving as a tokenized embedding for
N = 6x6 image patches. This reshaped embedding is then
concatenated with a positional embedding and fed into a
Transformer encoder network (see Appendix B.1). Subse-
quently, the Transformer model processes this input to pro-
duce an attention matrix A(-,-), which integrates with the
global context of the image feature z; via the self-attention
mechanism. The attention matrix is computed as follows:

T

AQ,K) = softmam(c\g/@ ) 2)

Q7K7V:ZWQ7ZWK7ZWV (3)
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where Q, K,V € RVN*Pk refer to queries, keys, and val-
ues consisting of N data nodes with Dy, dimension size by
following common terminology (Dosovitskiy et al., 2020).
W, Wi, Wy € RPXD are weight matrices for an arbi-
trary input feature Z € RV*P with D dimension size to
compute @, K, V. The attention matrix A € RV*V dis-
cerns the spatial significance of feature elements in the in-
put image, offering valuable information to interpret the
module’s bottom-up neural processing from a perceptual
standpoint. Finally, by applying mean pooling, we derive
the attention-integrated feature 23 € R with reduced
dimensionality. This feature is then concatenated with the
flattened route feature 24 € R%, yielding a latent feature
fusion vector 27 = [z3 214 The fused feature is then fed
into the planning and control modules without nonlinearity.

Planning module: This module extracts contextual fea-
tures from the fused vector 2P and produces a latent decision
h? to modulate the neural signals of the control module in a
top-down manner. We construct the planning module using
another Transformer network, mirroring the encoder of the
perception module. Here, the fusion vector is expanded and
tokenized into an input embedding z¢™? € R(65+64)x64 ¢or.
responding to the embedding 21 in perception. This input
embedding is then concatenated with a positional embed-
ding, following the same process as that in the perception
module. To derive the latent decision in continuous space,
we apply a linear layer to the output of the Transformer
encoder without using a nonlinear activation function.

Control module: The control module computes a low-
level control command incorporating the high-level deci-
sion through bottom-up and top-down processes (Fig. 2).
The module initially extracts a pre-sensory-motor feature
Tpre € RN« from a given perceptual feature 2P using the
MLP,,.. block (Eq. 4). The motor feature is then passed
through a linear fully-connected layer (FC) and modulated
in a top-down fashion via elementwise addition with the
task-oriented latent decision h¢ € RN¢ (Eq. 5). The mod-
ule finally converts the modulated feature into the control
command a¢ € R? through the MLP,,: block followed by
a tanh activation function (Eq. 6).

LTpre = MLPpre(Zp) 4

Tmod = FC(2pre) + b ©)

a® = tanh(MLPyos: (Zimod)) 6)

Here, the command a® = [6¢, 7¢] contains a normalized

steering angle J¢ and throttle value 7¢. This self-modulated
hierarchy facilitates the independent computation of sensori-
motor and contextual data from perceptual inputs, resulting
in a control signal guided by latent decision-making. As a
result, MoNet is capable of learning task-specific sensori-
motor policies even from task-agnostic demonstrations.
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Figure 3: Our self-supervised contrastive learning scheme
assesses the similarity of the perceptual features to decide
on positive and negative latent decision samples.

3.3. Training Details

To train the network, we first introduce the supervised loss
function £, defined as the absolute deviation (L1) between
the network’s prediction and the demonstration data:

Lr(a® a) =0 =6 + A |7¢ — 7] @)

where the loss term for throttle control 7¢ is weighted by the
parameter A, € [0,1]. This weighting aims to emphasize
supervision on steering control in visual autonomous navi-
gation (Codevilla et al., 2018). Given that we collect noisy
demonstrations from a real robot platform, we choose the
L1 loss to reduce the penalty for large errors and be more
robust to outliers compared to the L2 loss.

Furthermore, to enhance the distinctiveness of top-down la-
tent decisions, we design a latent-guided contrastive (LGC)
loss function using a self-supervised approach, leverag-
ing the modular characteristics of our end-to-end network
(Fig. 3). Generally, the output of planning is influenced by
the context of the driving scene. This implies that similar sit-
uations lead to analogous decisions, while different scenar-
ios result in distinct plans. Building on the observation that
planning outputs are context-dependent, we define the latent-
guided contrastive loss, denoted as Lige(2f, 2}, h, h).
Here, the latent decision h¢ is guided by the feature fusion
2P of the perception module as follows:

1- cos(hf,h?)
Lige = 0 1 1Y) if
max (0, cos(h{, h{)) if cos(2, 2) < Kk

where cos(a, 8) = % is cosine similarity that is widely
used for similarity and clustering analysis in data sci-
ence (Larose & Larose, 2014). It calculates the distance
between two vectors based on their relative orientations,
rather than their absolute distance, within the bounded range
[-1, +1]. The subscript j represents the index of a sample
within a mini-batch, different from the current sample index
1. By minimizing Eq. 8, we aim to reduce the intra-cluster
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Figure 4: Overview of our post-hoc behavior interpretation process.

distance for latent decisions in demonstrations where per-
ceptual feature similarity exceeds x. Conversely, we strive
to increase the inter-cluster distance when the similarity is
below . This approach incentivizes the planning module
to generate more consistent latent decisions for scenarios
with comparable perceptual contexts, while ensuring diverse
decisions for scenarios with differing contexts. Moreover,
by leveraging perceptual features, our method eliminates the
need to define positive or negative samples, thereby enabling
contrastive learning through a self-supervised approach.

The overall per-sample loss function is given by the
weighted summation:
L=L, (af, ai) + )\Lgc,CLgc(Z 2P hd hd) )

R )
where AL gc is a weight parameter. During the training phase,
the supervised loss function £, propagates the gradient
flow across all modules (P, Q, R), while the latent-guided
loss function £ g¢ targets only the planning and perception
modules (P, Q), promoting functional distinction between
the planning and control modules (Q, R).

3.4. Interpretation Details

Perceptual Interpretation: We use the attention matrix
of the perception module to create a saliency map S, which
highlights the spatial regions in the current driving scene
that the network focuses on from a perceptual perspective.
The module generates the attention matrix A € RV*N
corresponding to the flattened vector of the encoded feature
map z; € RP*%X¢ where N = h x w is a resulting size
of attention, (h,w) is a reduced resolution of the image
I € R224%x224x1 apd ¢ is the feature dimension of z;. Thus,
we initially aggregate weights along the first dimension of
A to obtain the averaged attention weights A € R/ :

- 1 N ‘
Aj = Nzi:ﬂ‘lzj for j=1,..,N  (10)

where flj represents the central tendency of the weights
in each column. Subsequently, we reshape the averaged
weights into a two-dimensional matrix S € R"**_ This is
then upscaled to form the saliency map S € R?24x224,

Behavioral Interpretation: Considering that the latent
decision contains task-oriented features, we decode the deci-
sion vector h¢ into an understandable, task-wise probability

score vector to facilitate the behavioral interpretation of
our network. We employ a multiclass linear Support Vec-
tor Machine (SVM) classifier (Suthaharan, 2016) that is
computationally efficient and less prone to overfitting. Uti-
lizing sample decisions and their corresponding task labels
(h¢,y;), linear SVM is designed to learn binary classifica-
tion through the following optimization (Tang, 2013):

1 S T1d

mll£12w w—}—C;mamO 1—y;(wPnd +0))2  (11)
where w is the weight vector, b is the bias, and C'is the reg-
ularization parameter. The SVM is extended to multiclass
classification using the one-vs-rest scheme. This adaptation
enables SVMs to maximize the margin between input data
belonging to different classes. After training the multiclass
SVMs, we transform their output into a posterior proba-
bility score vector P(y; = k|h{) for each class k, using a
calibration method (Niculescu-Mizil & Caruana, 2005):

1
1+ exp(By fx(h{) + Fy)

where f, = w,{hf + b is the SVM’s output for class k,
and F, Fj, are parameters fitted using maximum likelihood
estimation from sample data set [f;(h%), y;].

We carry out behavior interpretation in a post-hoc manner.
Initially, we generate sample latent decisions for each task
that human engineers aim to interpret, using the trained
modular network. Subsequently, we train the multiclass
SVMs, along with parameters Fj, and F}, for the calibra-
tion method. Finally, during sensorimotor inferencing, we
transform MoNet’s latent decisions into score vectors using
Eq. 12 (Fig. 4). This approach allows us to interpret the end-
to-end model without sacrificing sensorimotor performance.

P(y; = k|h{) =

(12)

Our approach is comparable to concept-based interpreta-
tion methods in explainable artificial intelligence (Ghorbani
et al., 2019). These studies focus on understanding how
high-level concepts are represented and utilized by models
in decision-making. In our case, the concept vector corre-
sponds to the latent decision that encapsulates the driving
situation. Consequently, to interpret the decision intent dur-
ing the sensorimotor process, we quantify the alignment
of a given decision vector with the specific tasks’ concept
(driving situation). This is performed by decoding the latent
decision into the understandable posterior probabilities.
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Figure 5: Hardware and experimental setup.

4. Experiments
4.1. Experimental Setup

Fig. 5 shows the overall setup for hardware, environ-
ment, and scenarios in this work. We apply MoNet on a
wheeled, car-like platform, modeled after the FITENTH ve-
hicle (O’Kelly et al., 2020). Our platform consists of a 1/10
scale racing car chassis (TT-02) equipped with an embedded
computer (Jetson Xavier NX) and a controller (Arduino).
The Xavier NX receives front camera images and range
measurements from sensors mounted on the platform. The
range measurements are utilized to estimate the current pose
of the ego vehicle and compute ego-centric coarse topology
map (Amini et al., 2019). Detailed hardware setup and the
coarse map processing are provided in Appendix C.2.

Our platform performs visual autonomous navigation with
multiple driving tasks such as straight (ST), straight-
intersection (SI), left-turn (LT), right-turn (RT), and col-
lision avoidance (CA). Data collection is carried out under
controlled conditions in two indoor environments: Corridor
Environment 1 (Env. 1, 71m x 16m) and Environment 2
(Env. 2, 88m x 35m). Box-shaped obstacles are randomly
positioned within specific areas in these environments. The
training dataset comprises data from scenarios that feature
either a single obstacle or no obstacles. However, scenarios
involving multiple obstacles are introduced as new, unseen
challenges during the evaluation phases. Our method is eval-
uated in Env. 1, characterized by more frequent intersection
situations during autonomous navigation. For further details
on data collection and processing, we refer to Appendix C.3.

4.2. Quantitative Evaluation

Baseline Models In addition to our method, we have im-
plemented ViTNet, a baseline model designed as a Vision
Transformer-based end-to-end architecture comprising only
perception (P) and control (R) modules. This design al-
lows us to investigate the necessity of the planning module
(Q). For comparison with the latent decision, we select
the perceptual (2P) and the control-level hidden features
(2°) of ViTNet. Here, z¢ is the output of Eq. 5, computed
without involving the internal decision process. Addition-
ally, we introduce MoNet-based methods, MoNet-MUL,

MoNet-Iden, and MoNet-NoLGC, for the ablation study. To
analyze latent decision computation, MoNet-MUL is con-
figured to perform element-wise multiplication instead of
an additive process in Eq.5. MoNet-Iden, whose planning
module acts as an identity function, is developed to assess
the impact of neural processing within the planning module.
MoNet-NoLGC is trained without the LGC loss function
to investigate the impact of our self-supervised contrastive
learning approach on the task specificity of the network.

Planning Performance To assess the planning-level per-
formance of the end-to-end network, we quantify the task
specificity during sensorimotor inference using a t-SNE
map (Van der Maaten & Hinton, 2008) and a Representa-
tional Similarity Matrix (RSM) (Popal et al., 2019). These
analyses provide the user with a clear understanding of the
network’s performance in discriminating between different
tasks. In consideration of the data distribution, we sampled
318, 64, 59, 59, and 67 pieces of data, respectively, for the
five tasks (ST, SI, LT, RT, CA) for these assessments.

The t-SNE visualization (Fig. 6 (A)) demonstrates that our
planning module generates distinct and well-structured de-
cisions in the latent space for various tasks. It effectively
differentiates between the LT and RT tasks from the ST sce-
nario and recognizes the directional variations in navigating
intersections. The decisions for CA are positioned between
the ST, LT, and RT clusters, indicating a need for mod-
erate planning that involves both intersection-turning and
corridor-following behaviors in collision avoidance scenar-
ios. Furthermore, the data for SI exhibits a high similarity to
that of ST, reflecting similar driving contexts, despite their
differing inputs from topological maps. This result high-
lights that our network is adept at capturing the common
driving context found in straight driving, whether it occurs
in corridors or intersections. Given these findings, and to
ensure a clearer distinction of task classes, we have decided
to classify ST and SI as the same task, designated as ST, in
the experiments discussed later in this manuscript.

For a more quantitative analysis of latent planning, we fur-
ther examine the RSM of the learned decisions across dif-
ferent baseline models (Fig. 6 (B)). We measure the cosine
similarity between the latent decisions of each task using
the average linkage method. The similarities among the four
classes are then normalized to a range of [0, 1] through a
row-wise softmax operation. The results demonstrate that
MoNet effectively differentiates between various tasks while
clustering similar situations. The matrix shows strong diag-
onal values, indicating that the latent decisions effectively
distinguish various driving tasks based on contextual fea-
tures derived from sensory data, without task-level inputs.
While the three models—MoNet-MUL, MoNet-Iden, and
ViTNet(zP)—show high similarity values sufficient to sep-
arate multiple tasks, they struggle to distinguish between
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the directional characteristics of LT and RT. ViTNet(z¢),
which relies solely on control-level features, fails to rep-
resent discriminative task specificity among the four tasks.
Interestingly, in the absence of our LGC loss, the modular
network MoNet-NoLGC also fails to learn task-specific fea-
tures, reminiscent of the ’collapse’ issue mentioned in (Mit-
tal et al., 2022). This underscores the effect of our LGC loss
in preventing collapse, significantly increasing the special-
ization of latent planning within the end-to-end network,
even in a self-supervised manner.

Learning Curves We evaluate the learning curves of the
baseline models based on their control and planning perfor-
mance (Fig. 6 (C)). For control performance, we calculate
the L1 loss using the validation dataset. To assess planning-
level performance, we compute a similarity score, which is
the sum of the diagonal values in the RSM results. We skip
the model MoNet-NoLGC because it does not show a mean-
ingful similarity score compared to other baseline models
(near 1.0). Our approach achieves notable improvement in
latent planning over other models, without compromising
sensorimotor learning capabilities. The L1 loss curves show
minimal changes with the addition of an extra planning
module or a contrastive learning scheme. This indicates
that our method substantially enhances the task-specificity
of end-to-end inferences without affecting policy learning.
Meanwhile, in the similarity score curves, our method out-
performs other approaches, demonstrating 7%-28% higher
final performance than ViTNet-based methods. The latent
decision (h%) of MoNet, utilizing the self-supervised con-
trastive scheme, achieves a terminal score of 1.47, outper-
forming the perception-level (1.37) and control-level (1.15)
hidden features from ViTNet. Even when utilizing the iden-
tity function, the latent decision-making of MoNet-Iden
shows better improvement in task specificity (1.29) com-
pared to the control-level features. This reveals that our

Success Rate (Count/Total)

Method ST SI LT RT CA

MoNet 1.00 1.00 1.00  1.00 0.95
(76/76)  (32/32) (8/8) (8/8) (18/19)

ViTNet 1.00 1.00 1.00  0.63 0.89
(76/76)  (32/32) (8/8) (5/8) (17/19)

Table 1: Success rate results for each driving task.

latent decision-based approach embeds contextual character-
istics more effectively compared to perceptual or low-level
control features. Although MoNet-MUL achieves the high-
est terminal score (1.58), based on the results of the RSM
analysis, we have chosen MoNet with the additive process
as our primary approach. This approach is selected for its
ability to clearly address the four multiple driving tasks.

Sensorimotor Performance We evaluate the sensorimo-
tor performance of MoNet by measuring the success rate
of each task within the evaluation environment, comparing
it with ViTNet, which features a perception-control-based
end-to-end architecture. Under the same hardware and envi-
ronmental conditions, each model performed 16 episodes
in the real-world environment, totaling 143 driving tasks.
Table 1 summarizes the performance results. These results
demonstrate that our model exhibits stronger generaliza-
tion ability across multiple sensorimotor tasks compared
to the baseline model. Both models show safe navigation
performance in straight driving scenarios. However, ViTNet
often struggles to overcome unseen obstacle scenarios and
particularly fails in turning right at intersections, where it
records its lowest success rate of 63%. Although there was
a situation where our model had a mild touch with a wall
while avoiding cluttered obstacles, MoNet succeeded in all
trials of navigating intersections and generally performed
well in obstacle avoidance scenarios.
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Figure 7: Quantitative results showing given sensory inputs (front camera images with topological maps), latent decisions,
decoded interpretable decisions, entropy, and control output during an autonomous navigation episode.

4.3. Analysis of Interpretability

We investigate the interpretability and transparency of our
model while performing end-to-end sensorimotor process-
ing by decoding the top-down latent decisions. Fig. 7 il-
lustrates the quantitative results, including latent decisions,
decoded interpretable decisions, and control output, during
an autonomous navigation episode encompassing multiple
tasks. Since the decoded decisions are represented as prob-
abilistic score vectors, we further compute the entropy of
these decisions. This entropy represents the confidence level
of the internal decision-making during end-to-end process-
ing. The results show that our method can provide inter-
pretable sensorimotor processes through decoded decisions
that validly reflect the driving situation based on sensory
inputs. In the early phase, our robot followed a straight cor-
ridor using minimal steering control, demonstrating strong
probability scores for the task decision ST. However, when
navigating intersections, our model produced latent deci-
sions that were decoded as high scores for corresponding
turns (LT, RT), necessitating large steering commands. In
the case of approaching a wall or obstacle, our network
generates different patterns of neural activations (CA), re-
sulting in unique decision responses compared to straight
driving and turns (LT, RT). These results highlight that our
approach enables a novel investigation of latent decision
transitions during end-to-end inferences, thereby enhancing
the transparency of online sensorimotor processes.

Moreover, by analyzing the entropy of the probability
score vector, we can assess the confidence level of inter-
nal decision-making during end-to-end control. Whenever
the robot needed to alter its current driving decisions, such
as when approaching intersections or obstacles, the entropy
of the decision increased to more than 1.0, indicating mid-
level uncertainty values. Since latent decision-making is the
causal process leading to robot control, our method can pro-
vide the internal confidence of the end-to-end inference prior
to executing the robot’s actions. This shows the significant
interpretability of our model from a behavioral perspective
in practical, real-world applications.

We further delve into perceptual and behavioral interpreta-
tion across various tasks by visualizing spatial saliency maps
and interpretable decisions. We include these supplementary
results in Appendix C.4 for brevity.

5. Conclusion and Limitations

We introduced MoNet, a modular network for self-
supervised and interpretable end-to-end learning. Our
method leverages functional modularity to enable a novel
latent-guided contrastive learning scheme. This scheme al-
lows the network to learn task-specific sensorimotor control
without the need for task-level supervision. Furthermore,
our network incorporates a self-attention mechanism and
an internal decision process, both of which can be decoded
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into a spatial saliency map and an explainable decision. In
real-world autonomous navigation, our model demonstrates
effective sensorimotor performance with interpretability
among multiple driving tasks.

Our approach to interpretable end-to-end learning with func-
tional modularity offers several advantages for the use of
end-to-end network architectures. Firstly, it enables more
reliable and less uncertain end-to-end processes in robotics.
Our method allows human engineers to comprehend the net-
work’s intent and the rationale behind control outputs from
perspectives beyond control-level observation, including
perception and planning. Such enhancement is particularly
valuable in real-world deployments where safety is criti-
cal. Secondly, our approach facilitates the integration of
learning-based, black-box modules with nonlearning-based,
white-box ones into a hybrid architecture. By leveraging
decoded interpretable decisions from our modular network,
it becomes feasible to conditionally apply either network-
based policies or conventional controllers during deploy-
ment. We hope our work contributes to integrating explain-
able artificial intelligence with end-to-end learning schemes,
thereby enhancing the interpretability and transparency of
learning-based robotic applications.

While MoNet shows promising results in real-world indoor
environments, our method needs further extension to nav-
igate more complex and dynamic environments, such as
outdoor scenarios. Since these scenarios contain dynamic
and varying features (e.g., moving objects, brightness), tem-
poral features are crucial. An avenue for future work is to
incorporate temporal network layers, such as LSTM, into
our Vision Transformer-based perception module to learn
temporally consistent features in dynamic driving scenes.
We believe such a spatio-temporal module will enable our
method to capture distinct task-level features with temporal
consistency from a perceptual feature perspective. This will
be one of the primary focuses of our future work.
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A. Supplementary Materials

A demo video, codes, and dataset for quantitative re-

sults and interpretation are available at https://sites.

google.com/view/monet-1gc.

B. Method Details

B.1. Perception Module in Details

The perception module utilizes the Transformer encoder to
generate a saliency map, which is then integrated with the
global context of the input image I through the self-attention
mechanism. Following the description in (Dosovitskiy et al.,
2020), the encoder network comprises: 1) a multi-head self-
attention block (MSA), and 2) an MLP block, both equipped
with layer normalizations (LN) and residual connections.
After feature extraction by the CNN block (Eq. 13), the in-
put embedding undergoes preprocessing (Eq. 14-15) before
being fed into the Transformer encoder process (Eq. 16-18).

Zi :CNNi(Oi), 1= {I,M} (13)
[_'lat ZIﬁat c RNPXDP Z%zt c RDP (14)
pOS] c RN,JX(DP-‘t-l) 25)08 c Rprl (15)

Zé = [21; 2]
2 = MSA(LN(z_1)) + 2.1, 1=1,..,L (16)

z; " = reshape; (%;),

2 =MLP(LN(z))) + 2, 1=1,..,L (17)
2P = 23 28 where 23" = MeanPool(zz)  (18)

where IV, = 6 x 6 and D), = 64. The MLP block includes
ReLU for nonlinearity. Considering the limited computing
resources available for on-board implementation, we con-
struct a single-stack Transformer encoder (L = 1) for each
module.

Batch size 512

Total training iterations 650k

Optimizer Adam
Similarity factor x 0.5

Weight for the LGC loss term Apgo Se-4
Learning rate 3e-4

Learning rate scheduler LambdalLR

Scheduler factor 3e-4

Table 2: Hyperparameter configuration

C. Experimental Details
C.1. Hyperparameter Setting

Table C.3 shows the hyperparameter setting for our experi-
ments. The batch size is 512, and the total training iteration
is 650k. We use Adam optimizer (Kingma & Ba, 2014) with
an initial learning rate of 3e-4. For self-supervised learning,

we set the similarity factor « to 0.5 to ensure that the LGC
loss function conservatively identifies positive samples in
the early phase of training.

C.2. Hardware System and Coarse Topology Map

Our platform consists of a 1/10 scale racing car chassis
equipped with an embedded computer, Jetson Xavier NX,
and a microcontroller, Arduino Nano. The Xavier NX re-
ceives front camera images with the Realsense D435i cam-
era sensor and acquires range measurements using a 2D
LiDAR sensor (Hokuyo UST-20LX). These measurements
are utilized to estimate the current pose of the ego vehicle
through onboard localization (Hess et al., 2016) in GPS-
denied indoor environments. The Xavier NX then computes
an ego-centric coarse topology map (Amini et al., 2019),
which includes a highlighted routed map alongside an un-
routed map, based on the ego vehicle’s pose and a globally
routed path. This path is planned using the Dijkstra algo-
rithm, utilizing a sparse topological roadmap of the indoor
corridor environments. The Arduino Nano receives com-
mands from either the Xavier NX or a human driver, con-
verting them into PWM signals for the steering and speed
control motors of the platform.

Jetson Xavier NX Hokuyo

Arduino Nano
P UST-20LX

Receiver
(TRU-08) Realsense
D435i

%

¢ Speed Controller Servo Motor

Transmitter

Tamiya TT-02 Chassis

Figure 8: Hardware system setup.

C.3. Data Collection and Processing

While collecting data, we record camera images, topology
maps, and corresponding command signals for steering and
throttle control from the human driver. These control signals
are normalized to a range of [-1, +1]. We collect data for
a total of 2 hours, amounting to 88,326 pairs of sensory
input and labels in the environments of Env. 1 and Env.
2. The data is split into training and validation sets at a
ratio of 80 : 20. The camera image is cropped to a size of
440 x 240 pixels and then resized to 224 x 224 pixels for use
in our network. For data augmentation, we apply random
image shifts and corresponding steering angle adjustments,
as outlined in (Bojarski et al., 2016).
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Figure 9: Results of the spatial saliency maps, latent decisions, and decoded interpretable decisions, corresponding to given
sensory inputs from various driving tasks. Latent decisions are plotted to represent their distribution, while the decoded
decisions are presented as posterior probabilities between ST, LT, RT, and CA.

C.4. Perceptual and Behavioral Interpretability

Fig. 9 illustrates the results of perceptual and behavioral
interpretation among various driving tasks. Using the spatial
saliency map, we can explicitly interpret where the network
focuses during autonomous navigation in real-world indoor
environments. While the network does not specifically fo-
cus on any areas when driving straight through corridors, it
shows strong spatial attention on the boundaries of intersec-
tions during turns, areas crucial for navigating the desired
route. Similarly, upon encountering obstacles, the network
generates spatial attention on the obstacle regions, further
emphasizing critical areas for avoiding collisions. These re-
sults show that our network effectively identifies the regions
with spatial importance in the visual sensory input during
end-to-end autonomous driving, offering human engineers
understandable insights into its perceptual processes.

Our model can also provide explainable decisions while
performing end-to-end sensorimotor processing by decoding
task-specific top-down latent decisions. In the experiments,
our method yields explainable decoded decisions, which are
validly recognized as corresponding to the driving situation
based on the sensory inputs (Fig. 9). Even with varying
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environmental conditions in the driving scene, the top-down

latent decision produces a similar distribution of neural
values when the task-level context is analogous, resulting in

accurate interpretations of behavioral intents.

Moreover, our method demonstrates both flexibility and scal-
ability in interpretability. Drawing on previous quantitative
results, we have consolidated straight driving tasks (ST, SI)
into a single category, ST, by reconfiguring samples for the
refitting of the SVMs. This underscores our method’s ability
to tailor the interpretation method to meet the specific needs
of human engineers without having to retrain the original
end-to-end network. Additionally, during navigation, we
observe transition zones when the robot approaches inter-
sections (Inter. Approach), shifting from straight driving
(ST) to turning (LT/RT). This transition presents a unique
pattern, with both ST and LT/RT exhibiting high posterior
probabilities simultaneously. Standing apart from the five
predefined tasks (ST, SI, LT, RT, CA), this pattern suggests
our method’s capacity to uncover new behavioral tasks not
previously identified by human engineers. As mentioned,
SVM samples can be restructured if necessary to facilitate
interpretation of these newly identified tasks.



