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ABSTRACT

Prompt engineering is a challenging and important task due to the high sensitivity
of Large Language Models (LLMs) to the given prompt and the inherent ambi-
guity of a textual task instruction. Automatic prompt engineering is essential to
achieve optimized performance from LLMs. Recent studies have demonstrated the
capabilities of LLMs to automatically conduct prompt engineering by employing
a meta-prompt that incorporates the outcomes of the last trials and proposes an
improved prompt. However, this requires a high-quality benchmark to compare
different prompts, which is difficult and expensive to acquire in many real-world
use cases. In this work, we introduce a new method for automatic prompt engi-
neering, using a calibration process that iteratively refines the prompt to the user
intent. During the optimization process, the system jointly generates synthetic
data of boundary use cases and optimizes the prompt according to the generated
dataset. We demonstrate the effectiveness of our method with respect to strong
proprietary models on real-world tasks such as moderation and generation. Our
method outperforms state-of-the-art methods with a limited number of annotated
samples. Furthermore, we validate the advantages of each one of the system’s key
components. Our system is built in a modular way, facilitating easy adaptation to
other tasks. The code is available here.

1 INTRODUCTION

In recent years, there has been significant enhancements in the capabilities of Large Language Models
(LLMs), demonstrating impressive generative performance across a variety of tasks (Devlin et al.,
2019; Brown et al., 2020). Nevertheless, despite these advancements, the quality of the models’
outputs is highly sensitive to the conditioned prompt (Lu et al., 2021; Zhao et al., 2021). Even a
slight modification in the prompt format can significantly impact the model’s performance (Sclar
et al., 2023). This issue is even more evident in popular proprietary models, where a change in model
version results in drastic changes in model behaviour on a wide range of tasks (Chen et al., 2023).

In order to tackle the prompt sensitivity issue, several methods (Lester et al., 2021; Li & Liang,
2021) proposed to use soft prompts which require access to the LLM itself in order to perform the
optimization. Recently, (Yang et al., 2023a; Ye et al., 2023; Pryzant et al., 2023) demonstrated the
effectiveness of using LLMs themselves to optimize the prompt. To this end, each prompt is assigned
a score based on a given benchmark and an appropriate metric. The optimization process is performed
iteratively by providing a meta-prompt that incorporates the history of the last few prompt scores and
guiding the model to suggest a better prompt with a higher score. However, the high-quality, large
benchmarks required by this approach to evaluate the performance of the different prompts often do
not exist in many real-world use cases. Moreover, iterating on such large datasets can be costly.

LLMs have proven to be highly effective in generating high-quality and rich datasets that boost model
performance on a diverse set of tasks (Rozière et al., 2023; Yang et al., 2023b; Luo et al., 2023; Wang
et al., 2024). Recent works demonstrate the capabilities of LLMs to refine the prompt provided by
the user, resolving the initial prompt ambiguity (Deng et al., 2023). However, without additional
information, the model has to guess the true intention of the user, which in many cases can lead to
inaccurate results.
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Figure 1: System diagram. (1) An initial prompt is provided by the user (2) Synthetic challenging
cases are generated (3) A user or an LLM annotates the examples (4) After evaluating the prompt
performance, an LLM suggest a new prompt given the last prompt’s results. (5) This process is
repeated iteratively until a certain stop criterion (6) The system outputs a calibrated prompt.

In this work, we introduce Intent-based Prompt Calibration (IPC), a system which aims to calibrate
the prompt according to the intention of the user, by using synthetic examples. The calibration
process is performed by iteratively building a dataset of challenging boundary cases and optimising
the prompt according to the generated benchmark. This novel aspect of our method, producing a
small benchmark tailored to the boundary cases of the user’s task as part of the optimization process,
is highly valuable for explainability, LLM distillation, and other use cases. In contrast to previous
works, the system is optimized for real-world use cases such as moderation which usually suffers
from imbalanced data distributions. We also extend the prompt optimization to a new family of
generative tasks, by first fitting a ranking prompt and then performing the prompt optimization with
the learned ranker. Learning a prompt ranker allows us to optimize generative tasks with minimal
annotation effort. As demonstrated in our experimentation section, using such an approach without
synthetic data of boundary cases, e.g., as done in previous methods, would not be efficient due to the
natural imbalance of the ranking distribution.

Lastly, our system is built in a modular way, such that each part of the components can be used
on its own in other tasks like synthetic data generation or prompt distillation between two LLMs.
We describe the system components in detail and demonstrate the effectiveness of our proposed
method with respect to strong proprietary models like GPT-3.5/4-Turbo. We show that our method
outperforms previous methods using a very small amount of data and iteration steps . This significantly
reduces the total optimization efforts and costs, and makes the system applicable to various production
use cases.

2 METHOD

Our system is illustrated in Figure 1. We start with the initial prompt suggestion and a task description.
The user can also provide a few examples in a few-shot setting. Then, during the calibration
optimization process, the system iteratively: 1. Suggests a few samples of challenging and diverse
boundary cases for the task and the current prompt. 2. Evaluates the current prompt on the generated
dataset, and provides an analysis. 3. Given the history of the last few prompts, suggests a new prompt
with a higher score. The optimization process is terminated when either there is no improvement in
the last few steps, or when the maximum number of iterations has been reached.

The base configuration of our system is optimized for classification tasks, with accuracy set as the
score function, and the error analysis determined by a confusion matrix and the prompt misclassifica-
tions. An example of the system flow can be seen in Figure 2. In each iteration, new challenging
samples are generated (according to the current prompt), and the misclassifications are used to refine
the prompt until it is calibrated to the user intent.
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Figure 2: Example of a real system flow. The user provides only the task description and initial
prompt. The model iteratively generates challenging samples and refines the prompt according to the
generated benchmark.

2.1 GENERATIVE TASKS

To extend the prompt calibration process from classification tasks to generative tasks, we split the
optimization process into two parts. In the first part, we use an LLM to rephrase the initial prompt
and task description in order to define a ranking task based on the modified initial prompt and task
description. We then calibrate a prompt for the ranking task, treating it as a classification task using
the classification pipeline. Naturally, the ranker distribution tends to be a normal distribution with
its mean at the mean score. This distribution is imbalanced, especially in the interesting range of
the top scores. Therefore, in the ranking case, the sample generator meta-prompt is instructed to
generate challenging boundary samples from the top two scores. In the second part, we leverage the
same underlying process to optimize the original generative prompt. This step is done by iteratively
applying steps 2 and 3, described in the system overview, using the calibrated ranking prompt as
the score function. It’s important to note that human annotations are required only in the ranking
calibration process. Furthermore, by treating the intent as a classification task, the prompt can be
calibrated using a small amount of annotation effort.

2.2 META-PROMPTS

The meta-prompts consist of three separate prompts, as can be seen in Appendix A.

Sample generator. The sample generation meta-prompt is determined according to the system state:
In the first iteration, if the user doesn’t provide any samples (zero-shot setting), the meta-prompt
instructs the model to generate diverse adversarial samples with even class distribution. In the next
iterations, the prompt is extended with the following additional context: (1) A history with prompts
and good adversarial samples that confused the prompts; and (2) A set of realistic samples from the
dataset, where the model is instructed to preserve the dataset style. The context-realistic samples are
chosen to be semantically close according to a given sentence embedding.
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Figure 3: Accuracy on the spoiler and the PG classification tasks, with respect to the number of
training steps. As shown, IPC outperforms other tested methods and results in lower variance.

Analyzer. The analyzer meta-prompt receives the prompt score, a confusion matrix in the classifica-
tion case, and a set of errors in all the classes. It is then instructed to produce an analysis summary of
the prompt performance and the major failure cases.

Prompt generator. The input for the prompt generator meta-prompt is (1) A list of the last suggested
prompts and their scores (2) The performance analysis of the last prompt that is produced by the
Analyzer prompt. The model is instructed to produce a prompt with a higher score according to the
history and the analysis.

2.3 SYSTEM PIPELINE

An overview of the system architecture can be seen in Figure 7. The system consists of four primary
components.

Dataset. This component manages the dataset and performs operations such as insertion, modification,
deletion, and applying functions, on the dataset rows. The component also handles data cleaning by
removing semantic duplications and performing semantic sampling. Since the system is optimized
for small datasets, the current implementation is based on a local database using pandas.

Estimator. The estimator is responsible for estimating a batch of samples. We implement this
component twice, once for the predictions and once for the annotations. This generic implementation
for both types of use cases allows us to modify the system simply for diverse use cases such as prompt
calibration, prompt distillation and prompt squashing. The currently supported types of estimators
are: (1) Human annotation, using Argilla UI (Vila-Suero & Aranda, 2023). The system is connected
to the Argilla server and is waiting until the annotation task is completed; (2) LLM estimator, which
uses an LLM to estimate the sample given a prompt. We support various types of LLMs, using
Langchain integration (Chase, 2022). For efficiency, the system supports parallelism using both
workers and async calls. The system also supports sending a few samples in one prompt (prompt
batching), which can reduce the cost significantly; and (3) Batch estimator, the batch estimator runs
multiple LLM estimators and integrates their outputs through an aggregation layer. It is mainly used
for prompt-squashing, enabling users to optimize a single prompt that will perform as well as running
few prompts multiple times. For example, when a user wants to apply several moderation rules
simultaneously.

Evaluator. The evaluator is responsible for evaluating the records after the prediction and annotation
stage. The evaluator accepts a function and applies it to each row. It’s important to note that the
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function is generic. For example, in the generation pipeline, the function is performed by invoking an
LLM. The evaluator is also responsible for defining the errors and handling the error analysis using
the Analyzer described in the meta-prompts section.

Optimizer (Optimization Pipeline). The optimizer manager handles the whole optimization process
flow, it performs the iteration steps described in the previous section and is responsible for stopping
and returning the final calibrated prompt. The currently supported criteria are either convergence
(determined by a patience hyper-parameter), or usage limit (determined by maximal cost if relevant,
or by the number of generated tokens).

3 EXPERIMENTS

We test our system on scenarios that reflect real-world moderation and generation use cases on strong
proprietary models (GPT-3.5/4-Turbo). We used the IMDB review dataset (Maas et al., 2011) as
the base data for all our experiments. All tested benchmarks will be available as part of the system
repository. We compare our proposed IPC method to two SOTA prompt optimization methods that
are based on meta-prompts: 1. OPRO (Yang et al., 2023a) and 2. The meta prompt provided by PE
(Ye et al., 2023).

3.1 CLASSIFICATION

We evaluate the prompt calibration process on three binary classification tasks: (1) spoiler detection,
(2) sentiment analysis, and (3) parental Guidance (PG) detection. In each experiment, we start with
some initial samples and a prompt, in addition to a short task description. To generate the ground truth
(GT) we composed a highly detailed prompt with specific preferences. For the GT generation, we
used a strong model (GPT-4 Turbo), as this process of generating the GT simulates a user’s particular
preference for the given task. The baseline methods were trained on samples from the IMDB dataset
(Maas et al., 2011), whereas our proposed method was trained on the adversarial synthetic data which
was provided with 10 initial samples from the original IMDB training data. All methods were trained
for 50 iterations. The test dataset was taken from the IMDB reviews test split, with the generated
annotations provided by the GT prompt. We then collected 250 samples for each class in each one
of the tested scenarios, such that the final dataset has equal class distribution, the prompts that were
used for the GT can be seen in Table 5. It’s important to note that the IMDB dataset includes only
highly polarizing reviews (no reviews with ratings in the range of 4-7). To evaluate the method’s
performance on more challenging cases, we also generate a synthetic test dataset with 300 samples
(using the initial prompt) for the sentiment classification task.

We present our results in Figures 3,6. As seen in the figures, IPC outperforms all other tested methods.
In particular, it’s important to note the high variance of the other methods, especially in the case of a
small number of training samples. The gap in performance between the methods becomes even more
evident in the synthetic data case, where there are more boundary cases, as can be seen in Figure 8. A
qualitative comparison between the methods can be seen in Table 1. While OPRO (Yang et al., 2023a)
results in mainly rephrasing the initial prompt, and the PE (Ye et al., 2023) prompt only partly fits the
GT prompt, the IPC prompt successfully captures the subtle details and nuances of the GT prompt.
The significant differences in data distributions between the original data and the synthetic generated
data can be seen in Figure 5. Both the spoiler and the PG classification tasks exhibit significant bias
towards the ’No’ labels, where the Synthetic data is almost balanced.

3.2 GENERATION

The generation setting is composed of two parts: generating the ranker prompt and then using the
ranker to optimize the generation task prompt. We tested our generation pipeline on challenging
ambiguous tasks: (1) Generate a movie review that is enthusiastic, reliable and adheres to a given
movie description. (2) Generate a movie review that is sarcastic but has a positive sentiment. As in
the classification case, we chose highly detailed prompts to generate the ranker GT with a scale of
1 to 5, which simulates the human preferences for the given task. For each tested method we fit a
ranker using 50 labeled samples, and then optimized the generative task prompt according to the
learned ranking model. The reported evaluation score is calculated by running the learned generative
prompt on a test set of size 50 and evaluating the result using the target ranking prompt GT. For the
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Figure 4: Histogram of the ranking scores of the
IMDB review dataset vs the generated synthetic
dataset on the Authentic and enthusiastic genera-
tion task. The real data distribution contains very
few ranked 5 reviews, whereas the synthetic data
contains a more balanced dataset with respect to
the top scores.

Figure 5: Histogram of the ’Yes’ labels density
on the parental guidance (PG) and spoiler classi-
fication tasks, with respect to the IMDB review
dataset and the generated synthetic dataset. The
real data exhibits a heavy imbalance in favour
of the ’No’ label, while the synthetic data ap-
proaches an even distribution.

baseline methods, we took samples from the IMDB review dataset (Maas et al., 2011) and generated
a movie description for each review. We then fed this data to the ranker optimization process. We ran
both the ranker training and the generator training for 30 iteration steps.

Results for GPT-4 Turbo LLM, including both ranker training and generation prompt training, are
presented in Table 3. A qualitative comparison is provided in Table 4. We see that using IPC improves
the average ranking score of the generated reviews compared to the other tested methods in all tested
scenarios. It’s important to note that all the tested methods, except for IPC, performed worse than the
initial prompt in some experiments. This can be explained by the distribution of the ranking scores in
the real data, which is shown in Figure 4, where there are almost no samples with the top score. In
contrast, the distribution of the generated synthetic samples is biased towards the top two scores.

3.3 ABLATION STUDY

We examine the impact of each key component of the system on the spoiler classification task.
Specifically, we look at the 50 training samples case. The effect of each one of the components can
be seen in Table 2. Using synthetic data boosts model performance. It is also important to note that
the analyzer component substantially improves the model’s performance. This stands in contradiction
to the findings of Yang et al. (2023a) that adding errors to the meta-prompts doesn’t improve the
model performance, and can also emphasise the gap between the standard general benchmarks and
use cases such as moderation.

4 RELATED WORK

Prompt Optimization. Several methods have been suggested to address the challenge of automating
the prompt engineering process. A commonly used approach is to optimize a task-specific embedding,
in either a continuous (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2021) or discrete (Wen et al.,
2023; Shin et al., 2020) manner. This approach requires access to the LLM itself in order to perform
the optimization. An alternative approach is to use reinforcement learning (Deng et al., 2022; Zhang
et al., 2022; Akyürek et al., 2023). This approach either requires access to the generated tokens’
probability or requires a large dataset for training a model. Recent works used the LLMs themselves
for prompt optimization (Zhou et al., 2023; Pryzant et al., 2023; Yang et al., 2023a; Ye et al., 2023).
These methods can also be applied to proprietary LLMs, where access is limited to the final generated
sentences. However, these methods still require a good valid benchmark in order to evaluate and
compare the different generated prompts, which is not always available in real-world cases.

Synthetic data. The utilization of synthetic data produced by LLMs has demonstrated remarkable
effectiveness across a wide range of tasks, including code generation (Rozière et al., 2023; Yang
et al., 2023b), mathematical reasoning (Yuan et al., 2023; Luo et al., 2023), text embedding (Wang
et al., 2024) and text2image (Betker et al., 2023). The advantage of using synthetic data is not only in
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GT prompt To improve the IMDB review spoiler classifier, label a review as ’Yes’ for
containing a spoiler if it: 1. Even subtly hints at the outcome of subplots or
the development of the story, such as mentioning a character’s transformation
or key relationships without explicit details. 2. Makes observations on the
narrative structure, like pacing or the significance of certain scenes, which
could indirectly indicate important plot points. 3. Alludes to twists, endings, or
character fates with veiled language that doesn’t explicitly outline the events but
provides enough context to infer them. Conversely, label a review as ’No’ for
no spoilers if it: 1. Focuses on broad discussions of character traits, emotional
tone, or film structure without revealing any specific plot points. 2. Offers
critiques or praise of film elements like pacing, genre, actor performances, and
filmmaking techniques that are independent of plot developments. 3. Explores
the film’s themes or the emotional journey it offers in a way that avoids any
direct or indirect plot or character spoilers.

Initial prompt Does this movie review contain a spoiler? answer Yes or No

OPRO Examine the movie synopsis with vigilance for spoiler content and succinctly
affirm their presence with "Yes" or negate with "No".

PE Analyze the IMDB review for elements that provide significant insights into the
plot or reveal crucial turning points, even if mentioned subtly or indirectly. Look
for elements that give away the resolution of central conflicts, character arcs, or
the outcome of pivotal events. Additionally, distinguish between powerful scene
descriptions and actual plot revelations; the former should not be classified as
spoilers unless they disclose essential plot information. Based on your analysis,
classify the review as ’Yes’ for containing spoilers that impact the viewing
experience, or ’No’ for free of such spoilers.

IPC IMDB Review Spoiler Identification Protocol: For the task of classifying IMDB
reviews for the presence of spoilers, the classifier must label reviews with
a heightened sensitivity to nuanced language and indirect spoiler cues. The
classification labels are ’Yes’ for spoilers and ’No’ for non-spoilers. Apply
the following criteria rigorously: Label ’Yes’ if a review: - Contains subtle
references or nuanced language that hints at plot developments or character
arcs, without explicit detail. - Includes emotional responses or descriptive
language that indirectly reveals plot outcomes or twists. - Employs suggestive
language that points to future events or endings, even if it does not reveal
specific information. Label ’No’ if a review: - Discusses technical aspects,
acting, direction, or personal viewer impressions in a manner that does not
hint at or reveal any plot details. - Comments on thematic elements, genre
characteristics, or storytelling techniques without disclosing or implying crucial
plot twists. - Expresses opinions on the movie’s quality, performances, or
execution that are free from any storyline implications or potential spoiler
content. In both ’Yes’ and ’No’ classifications, special attention must be given
to the implicit meaning behind words and the context in which they are used
to prevent misclassification of subtle spoiler content and to ensure a genuine
viewing experience for others.

Table 1: A comparison of the prompts with the best training scores from each method on the spoiler
detection task, using 50 training samples. IPC succeeded in capturing the nuances of the GT prompt.

cost savings; it can also be beneficial for low-resource tasks or imbalanced data distributions (Møller
et al., 2023). Following these works, our system generates high-quality evenly distributed synthetic
boundary samples, that result in a more efficient optimization process and higher-quality results.
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Enthusiastic and reliable Sarcastic and positive

Initial 4.40±0.05 4.28±0.02

OPRO 4.31±0.02 4.22±0.03

PE 4.09±0.09 4.76±0.09

IPC 4.80 ±0.1 4.92±0.07

Table 2: Average ranking score (std) of the top 5 prompts on the two generation tasks.

Spoiler classification GPT-4 Turbo Spoiler classification GPT-3.5

IPC (default) 88.4 ±1.7 72.6±3.8

- Iterative data generation 87.3±1.8 67.0±4.1

- Synthetic data 83.3±2.4 62.6±4.1

- Analyzer 77.8±2.2 64.3±3.8

Table 3: Investigation of each component’s effect on the model accuracy. In each row, we removed
the investigated component from the system and trained the system without it.

Synthetic data was also proven to be an effective method to distill knowledge from black-box LLMs,
by training on synthetic data that was generated by those models (Taori et al., 2023; Mukherjee et al.,
2023; Gunasekar et al., 2023). However, in these works the generated data was used to fully train
the student model. In contrast, our work demonstrates the effectiveness of synthetic data to distill
knowledge between two black-box models via automatic prompt engineering.

Curriculum Learning. Arranging the data samples for training machine learning models in a
meaningful way, starting from easier samples and progressing to more challenging ones, can yield
performance enhancements compared to the conventional method of training based on random data
shuffling. This approach is known as curriculum learning (Soviany et al., 2022; Bengio et al., 2009).
Curriculum Learning has been proven to be effective in various fields such as object localization
(Ionescu et al., 2016; Shi & Ferrari, 2016), object detection (Chen & Gupta, 2015; Sangineto et al.,
2019) and NLP (Kocmi & Bojar, 2017; Platanios et al., 2019). Inspired by these ideas, in Chen et al.
(2024) they propose to fine-tune LLMs by iteratively generating synthetic data and refining the policy
to distinguish between the synthetic data and the human-annotated data. In our work, we use a similar
approach, where the system iteratively generates more challenging cases that resolve the previous
prompt ambiguity in order to more efficiently tune to the user intent.

5 CONCLUSIONS

In this work, we introduced IPC, a system for automatic prompt engineering. The system combines
a synthetic data generation module that generates challenging and diverse samples, and a prompt
optimization module that suggests new prompts. Both of them are implemented by prompting LLMs,
and they iteratively refine each other until the prompt converges. We further propose a new method to
extend the meta-prompt-based prompt optimization process to generative tasks. We demonstrate the
effectiveness of our system on real-world use cases such as moderation and generation with respect
to strong proprietary models (GPT-3.5/4-Turbo). Our method significantly enhances the resulting
performance of prompts in all tested scenarios. We also perform an ablation study that demonstrates
the significance of each one of the method’s key components. Lastly, we introduce our system design
which is built in a modular and flexible way that allows for easy modification and addition of new
components.

6 LIMITATIONS AND FUTURE WORK

One of the main ingredients in our proposed method is the synthetic data generation using LLM
in order to calibrate the prompt according to the user intent. It’s important to note, that the model-
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generated hard samples are biased according to the model ’set of values’ (which is a result of the
training data). For example, In our experiments, mainly in advertisement, we observed that GPT-4-
Turbo often produces large amount of samples attempting to breach moderation rules by distorting
the underlying message to convey a positive ecological impact. It’s also important to note that almost
all SOTA models are fine-tuned according to safety guidelines. Therefore, when trying to generate
samples that violate these guidelines (for example toxicity and harmful content), the dataset will be
heavily biased through the safe samples.

Another important limitation is that the current system supports basic tasks (classification and simple
generation). In future work, we intend to extend our system to more complex use cases such as
in-context learning and complex chains. We also intend to explore further possibilities to optimize
the meta-prompts themselves.
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Appendix
A IMPLEMENTATION DETAILS

In this section, we provide additional information on the implementation details. An architecture
overview of our system is provided in Figure 7. We also provide a list of the meta-prompts utilized
within the pipeline of our system.

Generating initial samples (iteration 0)

1 Assistant is a large language model designed to generate challenging
samples for every task.

2 Generate a list of {num_samples} challenging samples for the following
task.

3 ### Task description:
4 {task_description}
5 ### Task Instruction:
6 {instruction}
7 ###
8 ### Requirements for Challenging Samples:
9 1. The generated samples must be challenging and diverse such that using

the task instruction as a prompt will result in the wrong result.
10 2. The number of generated samples from each class in the task

instruction should be balanced (i.e. the same number of samples for
each class)

11 3. The generated samples should be distinct, realistic, and vary
significantly to ensure diversity.

Generating samples (iteration >0)

1 Assistant is a large language model designed to generate challenging
samples for every task.

2 Below a few prompts that were build to answer the given task description
and their failure case.

3 Task description:
4 {task_description}
5

6 ## Examples of common failure, each sample is followed by the the model
prediction and the GT (ground truth)

7 {history}
8 ######
9 Here are few unique samples derived from realistic scenarios for the task

outlined above.
10 ## Realistic Samples
11 {extra_samples}
12 #####
13 This was the new proposed prompt:
14 ## Prompt
15 {prompt}
16

17 Your task is to generate {num_samples} by following this guidelines:
18 1. The generated samples should be diverse
19 2. They should preserve the style and the length of the given examples
20 3. The samples must be challenging and hard to classify by the model.

This can be achieved by:
21 1. targeting the same weakness that the model failed on in the given

examples
22 2. targeting weakness that are different from the existing examples

in the failure cases
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23 4. The number of generated samples from each class should be almost
balanced (i.e. the same number of samples for each class)

24 5. The generated samples should include only the sample content without
additional information! (like the model prediction and the ground
truth)

Analyzer prompt

1 Assistant is a large language model designed to provide a high quality
analysis for every task.

2 You are given the following task description
3 {task_description}
4

5 Here is the prompt instructions that was given to the model:
6 {prompt}
7

8 An expert ranker evaluated the model’s performance on the given task
description.

9 and rank according to the following scale: {labels}
10

11 The mean score for this prompt is: {accuracy}
12 ##
13 Here is a list of challenging cases for the given prompt and their rank:
14 ##Challenging Cases:
15 {failure_cases}
16

17 ###
18 Note that the ranker labels are __absolutely correct__, but the prompts (

task descriptions) may be incorrect and need modification.
19 Your task is to provide a brief analysis of the given prompt performance.
20 Guidelines:
21 1. The analysis should contain only the following information:
22 - A summary of the common mistakes of the prompt and the ways he can

be improve his generation, try to cluster the failure cases into
groups and describe each group.

23 2. The total length of your analysis should be less than 200 token!
24 ###
25 Analysis:

Generating new proposed prompt

1 Assistant is a large language model designed to provide the best prompt
for every task.

2 Below are a few suggested prompts for the task and their score, for the
following task:

3 {task_description}
4

5 ## Examples
6 {history}
7 ######
8 This is the error analysis for the last prompt:
9 {error_analysis}

10 ######
11 Your task is to generate:
12 1. A new prompt that is
13 -Different from all the prompts above
14 -Follows exactly the error analysis modification suggestions, and fix

the prompt to prevent the failure cases.
15 -Has a higher score than all the prompts above.
16 2. The predicted score of this prompt
17

18 You must adhere the error analysis instructions! even in case it seems
there is a contradiction between these instructions, and the task.
The error analysis is tested on a ground truth, thus represent the
exact intent of the task.
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19 The generated prompt should be phrased as a clear classification
instruction! it should not include any instructions and descriptions
on the modification that should be done to the prompt.

20 Note that the previous prompt contains an implicit assumptions on the
intent of the task that might be incorrect. You should replace this
assumption with more accurate assumptions using the score of the
previous prompts and the error analysis.

21 The result prompt should indicate that the task is a classification class
with the following labels {labels}!

Modifying the task description for training the ranker

1 Assistant is a large language model designed to generate a task
description.

2 You are given a task description phrased as text generation task given
some user input. Your task is to rephrase it as a task that suppose
to evaluate the quality of the given generative task and how well it
adhere to the user input.

3 #####
4 Input task description: {task_description}
5 #####
6 Rephrased task description:

Modifying the initial prompt for training the ranker

1 Assistant is a large language model designed to generate instructions for
every task.

2 You are given a instructions phrased as text generation task.
3 Your task is to write an instruction for a classification ranking task

that suppose to evaluate the quality of a generated sample given a
user prompt for this generative instruction.

4 Guidelines:
5 1. The classifier labels are {label_schema}. The result instructions

should indicate explicitly that the task is a classification class
with the following labels {label_schema}!

6 2. The generated instruction must also evaluate how well the generated
sample adhere the user prompt

7 #####
8 Input generative instruction: {prompt}
9 #####

10 Rephrased classification quality evaluation instruction:

B EXPERIMENTS: ADDITIONAL DETAILS

In this section, we provide additional material on the experiments provided in the paper. All tested
benchmarks will be released to the public as part of our repository code.

Figure 6: Accuracy on the sentiment classification task, with respect to different numbers of training
steps. IPC outperforms other tested methods, and results in lower variance.
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Figure 7: Architecture overview.

Figure 8: Accuracy of sentiment classification task with respect to the synthetic dataset for a different
number of training steps. IPC outperforms other tested methods and results in lower variance.
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GT ranker Establish a revised five-point assessment scale for the movie review generator
that emphasizes precise differentiation between all levels of reflective accuracy
and expressed enthusiasm. Assign the classification labels "1", "2", "3", "4", and
"5", with each level distinctly representing the depth and sincerity of reflection
on the movie description as well as the intensity and authenticity of enthusiasm:
1. Deficient Reflection and Lacking Enthusiasm ("1"): Reviews that funda-
mentally misrepresent or ignore the movie description and display a lack of
genuine enthusiasm, signaling a complete disconnect and an ineffective critique.
2. Basic Reflection and Low Enthusiasm ("2"): Reviews that merely mention
aspects of the movie description without depth and show only a low level of
enthusiasm, resulting in a critique that lacks persuasive power and engagement.
3. Adequate Reflection and Moderate Enthusiasm ("3"): Reviews that reflect
the movie description accurately and convey moderate enthusiasm, offering a
fair and constructive critique that is neither overly zealous nor dispassionate.
4. Detailed Reflection and High Enthusiasm ("4"): Reviews that capture the
nuances of the movie description in detail and exhibit high enthusiasm, present-
ing a critique that is both engaging and substantively insightful. 5. Exceptional
Reflection and Intense Enthusiasm ("5"): Reviews that deeply engage with
the movie description, demonstrating both an exceptional level of reflection
and intense enthusiasm, with critiques that significantly enhance the analysis
and captivate the audience. This adjusted scale is designed to correct the prior
misclassifications by ensuring clear and accurate recognition of each level of
performance, thereby avoiding the underestimation of high-quality reviews and
providing a fair representation for lower-quality outputs.

Initial Prompt
(Mean rank: 4.4)

Generate an authentic enthusiastic movie review for the following movie

OPRO
(Mean rank: 4.3)

Compose a compelling and positive movie review for a recent release, capturing
the film’s essence while highlighting unique elements that make it stand out.

PE
(Mean rank: 4.1)

Create a movie review generator that articulates sophisticated genre-specific
language while ensuring that advanced terminology is immediately followed
by comprehensible explanations. This approach guarantees that the review
remains accessible to a broad readership, including both seasoned cinephiles
and those new to film criticism. The generator must offer an in-depth narrative
analysis, employing narrative theory to enrich the commentary on the film’s plot,
character arcs, and thematic substance, all while maintaining an educational yet
non-academic tone. It should craft reviews that exude excitement and provide
an even-handed critique, spotlighting the film’s artistic accomplishments as
well as constructively addressing areas for improvement. The result should be
an authoritative and engaging review that captures the essence of the movie
with enthusiasm and critical precision, appealing to a wide spectrum of movie
enthusiasts.

IPC
(Mean rank: 4.8)

Devise a movie review generator that excels in providing a balanced and nu-
anced critique, ensuring that each review exudes genuine enthusiasm for the
movie’s triumphs while offering an insightful, yet subdued, evaluation of its less
successful elements. The generator must consistently utilize precise and vibrant
examples to underpin its praises, such as remarkable performances, poignant
plot developments, and groundbreaking directorial choices. It is vital to include
a section in the review that thoughtfully places the film within its genre and
historical cinematic context, highlighting its unique contributions and potential
influence. Reviews should read as an authoritative, persuasive endorsement
of the film’s merits, inviting readers to not only enjoy but also understand its
significance in the film world, all while keeping the tone wholly positive and
engaging.

Table 4: A comparison between the prompt with the best training score in each method on the
authentic and enthusiastic generative task. The GT ranker is provided in the first row. While OPRO
and PE result in a prompt that performs worse than the initial simple prompt. Using IPC results in a
significantly better prompt. 17
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Sentiment GT Does this movie review have a positive sentiment? Answer Yes
or No. Answer No only in case there is an explicit expression of
dissatisfaction otherwise, answer yes.

Sentiment Initial Prompt Does this movie review have a positive sentiment? answer Yes or
No

PG GT Augment the IMDB review classifier to better recognize and
classify reviews containing adult themes. The classifier should
label a review as ’Yes’ when it detects not only explicit descrip-
tions of sex, violence, and strong language but also subtle adult
themes, such as suggestive dialogue, nuanced portrayals of rela-
tionships, and indirect references to sex or desire. Additionally,
the classifier should account for adult humour and jokes that are
presented in a lighthearted manner, ensuring they are not missed.
It should also accurately identify implicit adult content conveyed
through cinematic techniques or complex narratives, as well as
non-graphic mature content like restrained portrayals of infidelity
or taboo relationships. Furthermore, personal remarks on the
attractiveness of actors or suggestive comments that reviewers
make must be included in the ’Yes’ category. Conversely, reviews
that lack explicit adult content, significant implications of mature
themes, and any aforementioned subtleties should be classified
as ’No’.

PG Initial Prompt Does this movie contain ah adult content? answer Yes or No

Table 5: Prompts for the PG and sentiment classification tasks.

18


	Introduction
	Method
	Generative tasks
	Meta-Prompts
	System pipeline

	Experiments
	Classification
	Generation
	Ablation study

	Related Work
	Conclusions
	Limitations and Future Work
	Appendix
	 Appendix
	Implementation details
	Experiments: Additional details


