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Abstract
Distractors as part of multiple-choice question001
(MCQ) are vital in learning evaluation and are002
commonly used in education across a variety003
of domains such as Science, English, and Math-004
ematics. The advancement of artificial intel-005
ligence (AI) has enabled the Distractor Gen-006
eration (DG) problem to progress from tradi-007
tional methods into advanced neural networks008
and pre-trained models. This survey paper re-009
views DG tasks using English MCQ datasets010
for textual and multi-modal contexts. In partic-011
ular, this paper presents a thorough literature012
review of the recent methods on DG tasks, dis-013
cusses multiple choice components and their014
characteristics, analyzes the related datasets,015
summarizes the evaluation metrics, reveals cur-016
rent findings discovered from exiting bench-017
marks and methods, and highlights the chal-018
lenges and open issues.019

1 Introduction020

Distractor Generation (DG) (Chen et al., 2022),021

the process of generating an erroneous plausible022

candidate answer in MCQ (Zhang et al., 2021b),023

is essential in education and assessment due to its024

objectivity and usability. Objective questions (Das025

et al., 2021) such as fill-in-the-blank, true-false026

and multiple-choice questions require an examinee027

to select one valid answer from a set of invalid028

options (Kurdi et al., 2020). It contributes into fair029

evaluation in several domains (e.g., Science (Liang030

et al., 2018), English (Panda et al., 2022), Math031

(McNichols et al., 2023), and Medicine (Yaneva032

et al., 2018)). It is also beneficial for educators in033

assessing large capacity of students with non-bias034

results.035

Creating MCQs manually is one of the most036

labor-intensive task for educators (Ch and Saha,037

2018), since questions need to include plausible038

false options, known as distractors, that are able to039

confuse the examinee. To generate distractors, var-040

ious approaches are utilized, including similarity-041

based methods (Guo et al., 2016), learning-based 042

approaches (Liang et al., 2018) that rank options 043

according to a set of features, advanced deep 044

neural networks (Maurya and Desarkar, 2020), 045

transformer-based models (Chiang et al., 2022), 046

and recently prompting methods (Bitew et al., 047

2023) in a large language models. These methods 048

are applied to distractors in multiple-choice ques- 049

tions, reading comprehension (Gao et al., 2019) 050

and multi-modal domains (Lu et al., 2022a). 051

Despite the emerging interest in the DG research, 052

there is no literature review in this field, to the best 053

of our knowledge. Existing relevant surveys focus 054

on generating MCQ (Ch and Saha, 2018; Kurdi 055

et al., 2020; Das et al., 2021; Zhang et al., 2021b) 056

without discussing DG tasks. A recent work (Chen 057

et al., 2022) discussed DG as a subtask of natural 058

language generation (NLG) in the text abbreviation 059

tasks, rather than MCQ task. We aim to fill the gap 060

and conduct the first survey for DG in MCQ. To 061

this end, we collected over 100 high-quality papers 062

from top conferences such as ACL, AAAI, IJCAI, 063

ICLR, NAACL, and EMNLP and journals such as 064

ACM Computing Surveys, ACM Transactions on 065

Information System, IEEE Transactions on Learn- 066

ing Technologies and IEEE/ACM Transactions on 067

Audio, Speech, and Language Processing. 068

From these collected papers, we explored En- 069

glish DG tasks, taxonomies, datasets and evaluation 070

metrics to provide a comprehensive understanding 071

of text and multi-modal research studies. Our main 072

contributions include: (1) conducting a detailed re- 073

view of the DG tasks and the recent related studies; 074

(2) examining the existing datasets and multiple 075

choice components used on each task to assist in 076

choosing between selecting an available dataset or 077

creating a new one; (3) presenting a comprehensive 078

comparison of MCQ datasets used in DG tasks; (4) 079

summarizing the evaluation metrics; and (5) dis- 080

cussing the main findings and open issues in DG 081

methods. 082
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The rest of this paper is organized as follows.083

Section 2 overviews the recent studies on DG. Sec-084

tion 3 introduces multiple choice components and085

their characteristics. Section 4 discusses MCQ086

datasets in DG. Section 5 summarizes the evalua-087

tion metrics and Section 6 discusses the findings in088

DG benchmarks and methods. Finally, Section 7089

offers some concluding remarks.090

2 An Overview of Distractor Generation091

Distractor Generation (Ch and Saha, 2018) is time-092

consuming and non-trivial in MCQ, yet promising093

in text generation (Chen et al., 2022). Recent major094

developments in text fields include multiple-choice095

distractor generation (MC-DG) and reading com-096

prehension distractor generation (RC-DG). Mul-097

timodal distractor generation (M-DG) is also pro-098

posed as a novel task to generate textual distractors099

in visual question answering (VQA). This section100

will provide an overview of research methods and101

Table 1 summarizes recent studies, methods and102

datasets1.103

2.1 Multiple-Choice DG104

Generating MCQ, including cloze queries (e.g., fill-105

in-the-blank) (Das and Majumder, 2017) and Wh-106

questions (e.g., who, when, what) (Das et al., 2021)107

with distractors has been of interest in the commu-108

nity for decades (Miller, 1995; Mitkov et al., 2003;109

Agarwal and Mannem, 2011). Several methodolo-110

gies are used for generating plausible yet incor-111

rect distractors, including similarity-based meth-112

ods, ranking-based approaches, transformer-based113

models, candidate generation ranking framework114

and prompt-based methods.115

Similarity-based methods select distractors116

based on their similarity to the answer, using Word-117

Net (Miller, 1995). This graph-based method118

is used in studies (Pino et al., 2008; Mitkov119

et al., 2009; Kumar et al., 2023), while ontology-120

based strategies (Stasaski and Hearst, 2017; Yaneva121

et al., 2018; Faizan and Lohmann, 2018) are used122

in domain-specific (e.g., biology and medicine).123

Corpus-based methods demonstrate similarity as124

part-of-speech (Coniam, 1997), high co-occurrence125

likelihood (Hill and Simha, 2016), phonetic and126

morphological features (Pino and Eskenazi, 2009),127

context sensitive inference (Zesch and Melamud,128

2014), syntactic similarity (Chen et al., 2006), and129

1We provide Table 5 in Appendix B to summarize all the
collected studies in this survey.

semantic similarity based on embedding models 130

like word2vec (Mikolov et al., 2013), Glove (Pen- 131

nington et al., 2014), and fasttext (Bojanowski et al., 132

2017), which are common in several studies (Jiang 133

and Lee, 2017; Guo et al., 2016; Kumar et al., 2015; 134

Susanti et al., 2018). These techniques however 135

lack contextual information support and long sen- 136

tence distractors. 137

Ranking-based approaches use learning-based 138

models (Liu et al., 2016) to rate the existing dis- 139

tractor candidate pool, allowing high-quality dis- 140

tractors to receive high ranking scores. Liang et al. 141

(2018) compared feature-based machine learning 142

classifiers to neural generative adversarial networks 143

(Goodfellow et al., 2014; Liang et al., 2017) for dis- 144

tractors ranking, Sinha et al. (2020) proposed a 145

semantically aware single-encoder ranking model, 146

and Wang et al. (2023c) used dual-encoder frame- 147

work to improve the ranking models. 148

Transformer-based models, including large-scale 149

pre-trained language models (PLMs) (Zhang et al., 150

2023a) with fine-tuning abilities, are also used 151

in ranking models. Gao et al. (2020) improved 152

model performance by combining hand-crafted and 153

context-sensitive features using the masked lan- 154

guage modelling (MLM) task in BERT (Kenton 155

and Toutanova, 2019) and ELMo (Peters et al., 156

2018). Bitew et al. (2022) also utilized context- 157

aware multilingual BERT to score distractors by 158

reusing comparable question contexts across sub- 159

jects and languages. These studies support context- 160

awareness in distractor ranking, but they are not 161

used to generate new distractors. 162

Some transformer-based models are text-to-text 163

(Text2Text) models, such as BART (Lewis et al., 164

2020) and T5 (Raffel et al., 2020). Several studies 165

(Vachev et al., 2022; Rodriguez-Torrealba et al., 166

2022; Lelkes et al., 2021; Foucher et al., 2022) 167

utilized T5 in MCQ generation. Also, Wang et al. 168

(2023a) used Text2Text generative models (e.g., 169

T5 and BART), data augmentation technique, and 170

Kullback Leibler Divergence (PKL) to generate 171

distractors with different levels of difficulty. 172

The candidate generation and ranking frame- 173

work (CGR) involves two key steps: candidate 174

set generator (CSG) and distractor selector (DS). 175

Ren and Zhu (2021) introduced a context-based 176

candidate generator using general-purpose knowl- 177

edge base (KB) (Leacock, 1998; Wu et al., 2012), 178

context-dependent conceptualisation (Kim et al., 179

2013; Blei et al., 2003), and ranking models to 180
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Models Approaches Datasets
Multiple-Choice DG

(Liang et al., 2018) Feature-based vs Neural-based Ranking Models SciQ, MCQL
(Yeung et al., 2019) Word Embedding + MLM (BERT) Small-Scale
(Ren and Zhu, 2021) Knowledge Base + LDA + Ranking Model MCQ
(Chiang et al., 2022) MLM (BERT) + Ranking Features CLOTH, MCQ
(Panda et al., 2022) Machine Translation (MT) and Alignment Small-Scale
(Bitew et al., 2022) MLM (mBERT) Televic
(Gomez et al., 2023) Machine Translation (MT) and Alignment Small-Scale
(Yoshimi et al., 2023) Word Embedding + MT + MLM (BERT) Small-Scale
(Wang et al., 2023a) Transformer (T5, BART) + MLM (BERT) + PKL CLOTH, MCQ
(Bitew et al., 2023) LLM (ChatGPT) + Prompting Televic
(Doughty et al., 2024) LLM (GPT-4) + Prompting Small-Scale

Reading Comprehension DG
(Sutskever et al., 2014) RNN + Global Attention RACE
(Gao et al., 2019) RNN (HRED + Static Attention) RACE
(Zhou et al., 2020) RNN (HRED + Co-Attention) RACE
(Maurya and Desarkar, 2020) RNN (HRED(s) + SoftSel + Gate) + Transformer RACE, RACE-C
(Qiu et al., 2020) RNN + Attention + Fusion + Reforming Module RACE
(Chung et al., 2020) MLM (BERT) RACE
(Offerijns et al., 2020) Transformer (GPT2) RACE
(Shuai et al., 2021) RNN (HRED + TMCA + LDA + Static Attention) RACE, DREAM
(Xie et al., 2021) Transformer (T5) RACE, CosmosQA
(Shuai et al., 2023) GCN + RNN (HRED + Fusion-Attention Layers) RACE

Multi-Modal DG
(Lu et al., 2022a) Generative Adversarial Network (GAN) + RL Visual7w

Table 1: Distractor Generation (DG) tasks with recent studies and the datasets.

select distractors. Chiang et al. (2022) explored181

BERT in candidate generation step, while Ye-182

ung et al. (2019) proposed to re-rank distractors183

achieved through similarity-based approach (Jiang184

and Lee, 2017) with BERT language model in at-185

tempts to achieve plausible and difficult distractors.186

In English test, round trip machine translation187

methods (Panda et al., 2022; Gomez et al., 2023)188

with alignment computation (Sabet et al., 2020)189

can detect a variety of distractors. Yoshimi et al.190

(2023) applied different methods (Jiang and Lee,191

2017; Yeung et al., 2019; Panda et al., 2022) on192

different cloze English questions.193

Large language models (LLMs) (Chang et al.,194

2023), including GPT-models (Floridi and Chiri-195

atti, 2020; Ouyang et al., 2022) with prompt-based196

methods, have demonstrated promising results (Tan197

et al., 2022; Sarsa et al., 2022). In DG, Zu et al.198

(2023) proposed cloze DG using a fine-tuned GPT-199

2 model and five different prompts. Bitew et al.200

(2023) compared the ChatGPT model with zero-201

shot and few-shot examples to a ranking-based202

model (Bitew et al., 2022). McNichols et al. (2023)203

explored DG and feedback message generation in204

math using few-shot prompting. Doughty et al.205

(2024) compared GPT-4 for programming ques-206

tions to human-crafted ones. Maity et al. (2024) ex-207

plored multi-stage prompting approach using GPT-208

4 in multiple languages. Other studies discussed209

the efficacy and errors of LLMs. For instance, Tran210

et al. (2023) showed that GPT-4 generates isomor-211

phic MCQs better than GPT-3, yet both models 212

can provide many correct answers. Olney (2023) 213

evaluated other LLMs like Macaw and Bing Chat. 214

2.2 Reading Comprehension DG 215

Reading Comprehension (Zhang et al., 2021b) is 216

a dual-task in natural language understanding and 217

answering, yet RC-DG is a NLG task (Chen et al., 218

2022) introduced by (Gao et al., 2019). In terms of 219

approaches, deep neural networks and transformer- 220

based models are recently proposed. 221

In deep neural networks, basic sequence-to- 222

sequence model (Sutskever et al., 2014) with atten- 223

tion mechanism (Luong et al., 2015) can generate 224

distractors, but not for long passage inputs as in 225

the RACE (Lai et al., 2017) datasets. Thus, Gao 226

et al. (2019) used a hierarchical encoder decoder 227

framework (HRED) (Li et al., 2015) and static at- 228

tention (Chen et al., 2019) to generate plausible 229

and incorrect n-distractors through beam search 230

and Jaccard distance during decoding. The atten- 231

tion helps the framework learn passage sentence 232

distribution relevant to the query but not relevant 233

to the answer. 234

Zhou et al. (2020) used HRED with co-attention 235

mechanism (Seo et al., 2016) to allow encoder bet- 236

ter learn the semantic interaction between article 237

and query. Shuai et al. (2021) proposed topic infor- 238

mation (Zhang et al., 2021a), using latent Dirichlet 239

allocation (LDA) to enhance topic multi-head co- 240

attention network (TMCA). 241
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Without beam search and Jaccard distance in de-242

coding, Maurya and Desarkar (2020) used HRED243

with three decoders and SoftSel operation (Tang244

et al., 2019) to find suitable sentence candidates for245

DG. Without HRED, Qiu et al. (2020) proposed a246

model recurrent neural network (RNN) (Rumelhart247

et al., 1986) (i.e., Bi-LSTM), attention and fusion248

layer for reforming modules to guarantee incor-249

rectness and plausibility in generating distractors.250

Shuai et al. (2023), as a first work, proposed an end-251

to-end question-distractor joint generation frame-252

work, using graph convolutional network (GCN)253

(De Cao et al., 2019) and attention mechanisms254

(Cao et al., 2019; Gao et al., 2019).255

In transformer-based models, Chung et al.256

(2020); Offerijns et al. (2020) used BERT (Kenton257

and Toutanova, 2019) and GPT2 (Radford et al.;258

Raffel et al., 2020) for RC-DG. Also, Xie et al.259

(2018) suggested a multi-selector generation net-260

work (Cho et al., 2019) with the T5 model for di-261

verse distractor generation. The network uses ques-262

tion and answer aware mechanisms to ensure plau-263

sibility (i.e., options related to article and query)264

and reliability (i.e., options not similar to answer).265

2.3 Multimodal DG266

Visual Question Answering (VQA) (Zellers et al.,267

2019; Zhu et al., 2016) has gained recent inter-268

est, leading to textual distractor generation (DG-269

VQA) (Lu et al., 2022a). This task generates con-270

textual distractors based on image, question, and271

correct answer, inspired by reinforcement learning272

(LR) and adversarial generation (Moosavi-Dezfooli273

et al., 2016; Goodfellow et al., 2014). It is also re-274

lated to reasoning in real-world videos (Wu et al.,275

2021; Wang et al., 2023e).276

3 Multiple Choice Components277

The fundamental elements of a multiple-choice278

data item consist of: a stem, the query or ques-279

tion, an answer, the only true option, and a set of280

distractors, the set of false options. A supported281

content can be a passage (i.e., mainly in reading282

comprehension), a sentence, an image or a video.283

3.1 Stem284

A stem, known as a query or question, can be285

formed as a complete declarative sentence, a declar-286

ative sentence or passage with placeholders, a fac-287

toid query such as a deep level (why? how?) or288

shallow level (who? where?) in Bloom’s taxonomy,289

or other non-factoid queries. It can also be formed 290

as an image or a video in multi-modal domain. 291

Fill-in-the-Blank (FITB): selecting an appropriate 292

word, sentence or an image to complete a given 293

content is known as cloze or FITB. In textual data, 294

CLOTH (Xie et al., 2018) shown in (1) describes 295

stem passage, and DGen (Ren and Zhu, 2021) in 296

(2) indicates stem sentence. In multi-modal data, 297

RecipeQA (Yagcioglu et al., 2018) outlines a stem 298

image where one image is missing from the re- 299

quired set to complete the recipe. 300

(1) Stem: Nancy had just got a job as a secretary 301

in a company. Monday was the first day she went 302

to work, so she was very – 1 – and arrived early. 303

She – 2 – the door open and found nobody ... 304

Options -1-: (A) excited, (B) depressed, (C) en- 305

couraged, (D) surprised 306

Options -2-: (A) turned, (B) pushed, (C) knocked, 307

(D) forced 308

Answer: (1-A) (2-B) 309

(2) Stem: the main organs of the respiratory sys- 310

tem are _________ 311

Options: (A) carbon, (B) oxygen, (C) hydrogen, 312

(D) nitrogen 313

Answer: (B) 314

Multiple Choice Question (MCQ): forming a 315

question as Wh-Q or declarative sentence is com- 316

mon in MCQ. SciQ (Welbl et al., 2017) in (3) and 317

MCQL (Liang et al., 2018) in (4) illustrate textual 318

factoid questions and declarative sentence stems, 319

respectively. 320

(3) Passage: All radioactive decay is dangerous 321

to living things, but alpha decay is the least dan- 322

gerous. 323

Stem: What is the least dangerous radioactive 324

decay? 325

Options: (A) zeta decay, (B) beta decay, (C) 326

gamma decay, (D) alpha decay 327

Answer: (D) 328

(4) Stem: Light energy is absorbed by pigment 329

molecules present on 330

Options: (A) carbon, (B) oxygen, (C) sugar, (D) 331

hydrogen 332

Answer: (C) 333

3.2 Answer 334

An answer, also known as correct option, must be 335

unique for each query to satisfy reliability. It can 336
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be formed as textual short phrase or sentence. It337

can also be extractive from given passage or free-338

form generated from supported passage or prior339

knowledge. In multi-modal DG, it can be form as340

an image as shown in RecipeQA.341

Short or Long Phrase: MCQL in (4) describes342

word level answer, while RACE (Lai et al., 2017)343

in (5) describes long sentence answer.344

(5) Passage: Homework can put you in a bad-345

mood ... Researchers from the University of Ply-346

mouth in England doubted whether mood might347

affect the way kids learn ...348

Stem: Researchers did experiments on kids in349

order to find out ___ .350

Choices (AD):(A) how they really feel when they351

are learning, (B) whether mood affects their learn-352

ing ability, (C) what methods are easy for kids to353

learn, (D) the relationship between sadness and354

happiness355

Answer: (B)356

Extractive or Free-Form: SciQ in (3) describes357

extractive answer type as the answer is span on the358

supported content, while MCQL in (4) is free form.359

3.3 Option360

All options, also known as distractors or false candi-361

dates, must be incorrect candidates to satisfy objec-362

tivity. Similar to answer, options may be formed as363

word or sentence, mostly are separated with each364

query but SCDE (Kong et al., 2020) introduced365

shared options across all queries. candidates can366

also be a set of images as mentioned in RecipeQA.367

Separated or Shared: CLOTH in (1) describes368

separated options, while SCDE in (6) shows shared369

options.370

(6) Stem: – 1 – Now it becomes popular and371

people are dyeing their hair to make it different.372

Dyeing hair ... Since the base of hair is the scalp,373

you may have allergic reaction. – 2 – You can374

follow them even when you are applying dye on375

your hair at home. – 3 – ...376

Options: (A) Colorful hair speaks more about377

beauty, (B) While dyeing your hair it is important378

to take some safety measures, (C) Don’t forget to379

treat grandparents with respect because they’re380

an essential part of your family, (D) It is better to381

apply hair dye for a few minutes...382

Answer: (1-A) (2-B) (3-D)...383

Figure 1: An Example of Visual7W in Multimodal DG.

3.4 Supported Content 384

A supported content can take the textual form (e.g., 385

sentence or passage) or visual form (e.g., image or 386

video). Passages are essential in the reading com- 387

prehension task, or optional in question answering. 388

Textual Form: OpenBookQA (Mihaylov et al., 389

2018) in (7) describes supported sentence text 390

while RACE (Lai et al., 2017) in (5) describes pas- 391

sage content. 392

(7) Sentence: the sun is the source of energy for 393

physical cycles on Earth 394

Stem: The sun is responsible for 395

Options:(A) puppies learning new tricks, (B) chil- 396

dren growing up and getting old, (C) flowers wilt- 397

ing in a vase, (D) plants sprouting, blooming and 398

wilting 399

Answer: (D) 400

Visual Form: Visual7W in Figure 1 shows image 401

as supported content and MovieQA (Tapaswi et al., 402

2016) describes movie as supported content. 403

4 Datasets 404

Table 2 describes dataset properties and classi- 405

fications2, including related domain, generation 406

method, source of data, corpus size with unit, multi- 407

ple choice components such as passage, query, and 408

options. We determine the most common query 409

type for each dataset, using heuristic rules3. We 410

also list the average length and vocabulary size for 411

each component, and provide an overview of each 412

dataset availability and usability in terms of DG. 413

2We count sub-datasets (CLOTH, RACE, ARC, MCTest).
3https://github.com/

Distractor-Generation/DG_Survey
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Dataset Domain Source Creation Corpus Unit SC #Q #O Pavg Qavg Oavg Pvcb Qvcb Ovcb MFQ Used AV

FITB Datasets

CLOTH (Xie et al., 2018) English exam ER Expert 7,131 passage ✔ 99,433 4 329.8 — 1 22,360 — 7,455 B Yes ✔

CLOTH-M (Xie et al., 2018) English exam ER Expert 3,031 passage ✔ 28,527 4 246.3 — 1 9,478 — 3,330 B Yes ✔

CLOTH-H (Xie et al., 2018) English exam ER Expert 4,100 passage ✔ 70,906 4 391.5 — 1 19,428 — 6,922 B Yes ✔

SCDE (Kong et al., 2020) English exam ER Expert 5,959 passage ✔ 29,731 7 248.6 — 13.3 21,410 — 12,693 B — ✉

DGen (Ren and Zhu, 2021) Multi domain M.S Auto 2,880 sentence ✗ 2,880 4 — 19.5 1 — 4,527 3,630 B Yes ✔

CELA (Zhang et al., 2023b) English Exam M.S Auto 150 passage ✔ 3,000 4 408.5 — 1.3 3,500 — 3,716 B Yes ✔

MCQ Datasets

SciQ (Welbl et al., 2017) Science exam ER Crowd 28 book ✽ 13,679 4 78 14.5 1.5 20,409 7,615 9,499 Q Yes ✔

AQUA-RAT (Ling et al., 2017) Math Web Crowd 97,975 problem ✽ 97,975 5 52.7 37.2 1.6 127,404 31,406 76,115 Q — ✔

OpenBookQA (Mihaylov et al., 2018) Science exam ER, WT Crowd 1,326 WT fact ✽ 5,957 4 9.4 11.5 2.9 1,416 4,295 6,989 S — ✔

ARC (Clark et al., 2018) Science exam ER, Web Expert 14M sentence ✗ 7,787 4 — 22.5 4.6 — 6,079 6,164 Q — ✔

ARC-Challange (Clark et al., 2018) Science exam ER, Web Expert 14M sentence ✗ 2590 4 — 24.7 5.5 — 4,057 4,245 Q — ✔

ARC-Easy (Clark et al., 2018) Science exam ER, Web Expert 14M sentence ✗ 5197 4 — 21.4 4.1 — 4,998 5,021 Q — ✔

MCQL (Liang et al., 2018) Science exam ER, Web Crawl 7,116 query ✗ 7,116 4 — 9.4 1.2 — 5,703 7,108 S Yes ✔

CommonSenseQA (Talmor et al., 2019) Narrative CN Crowd 236,208 triplets ✗ 12,102 5 — 15.1 1.5 — 6,844 6,921 Q — ✔

MathQA (Amini et al., 2019) Math Web Crowd 37,297 problem ✽ 37,297 5 63.3 38.2 1.7 16,324 10,629 11,573 Q — ✔

QASC (Khot et al., 2020) Science exam ER, WT Crowd 17M sentence ✗ 9,980 8 — 9.1 1.7 — 3,886 6,407 Q Yes ✔

MedMCQA (Pal et al., 2022) Medicine exam ER Expert 2.4K topics ✽ 193,155 4 92.7 14.3 2.8 370,658 53,010 65,773 S Yes ✔

Televic (Bitew et al., 2022) Multi domain ER Expert 62,858 query ✗ 62,858 >2 — * * — * * * Yes ✔

EduQG (Hadifar et al., 2023) Education ER Expert 13/283 book/chapter ✽ 3,397 4 209.3 16.3 4.2 21,077 5,311 8,632 MF Yes ✔

Reading Comprehension-FITB Datasets

ChildrenBookTest (Hill et al., 2016) Story PG Auto 108 book ✔ 687,343 10 474.2 31.6 1 34,611 32,912 23,253 B Yes ✔

Who Did What (Onishi et al., 2016) News GIG Auto 10,507 book ✔ 205,978 2..5 * 31.4 2.1 * 70,198 82,397 B — ✉

Reading Comprehension-MCQ Datasets

MCTest-160 (Richardson et al., 2013) Story FS Crowd 160 story ✔ 640 4 241.8 9.2 3.7 1,991 802 1,481 Q Yes ✔

MCTest-500 (Richardson et al., 2013) Story FS Crowd 500 story ✔ 2,000 4 251.6 8.9 3.8 3,079 1,436 23,34 Q Yes ✔

RACE (Lai et al., 2017) English exam ER Expert 27,933 passage ✔ 97,687 4 352.8 12.3 6.7 88,851 20,179 32,899 B Yes ✔

RACE-M (Lai et al., 2017) English exam ER Expert 7,139 passage ✔ 28,293 4 236 11.1 5 21,566 6,929 11,379 B Yes ✔

RACE-H (Lai et al., 2017) English exam ER Expert 20,784 passage ✔ 69,394 4 361.9 12.4 6.9 81,887 18,318 29,491 B Yes ✔

RACE-C (Liang et al., 2019) English exam ER Expert 4,275 passage ✔ 14,122 4 424.1 13.8 7.4 34,165 10,196 15,144 B Yes ✔

DREAM (Sun et al., 2019) English exam ER Expert 6,444 dialogue ✔ 10,197 3 86.4 8.8 5.3 8,449 2,791 5,864 Q Yes ✔

CosmosQA (Huang et al., 2019) Narratives Blog Crowd 21,866 narrative ✔ 35,588 4 70.4 10.6 8.1 36,970 10,685 18,173 Q Yes ✔

ReClor (Yu et al., 2019) Standard exam ER Expert 6,138 passage ✔ 6,138 4 75.1 17 20.8 15,095 3,370 13,592 Q — ✔

QuAIL (Rogers et al., 2020) Multi domain M.S Crowd 800 passage ✔ 12966 4 395.4 9.7 4.4 13,750 6,341 9,955 Q — ✔

Multi-Modal Dataset

MovieQA (Tapaswi et al., 2016) Movie Movies Crowd 408 movie ✽ 14,944 5 — 10.7 5.6 — 7,440 15,242 Q — ✉

Visual7W (Zhu et al., 2016) Visual Images Crowd 47,300 image ✽ 327,939 4 — 8 2.9 — 12,168 15,430 Q Yes ✔

TQA (Kembhavi et al., 2017) Science exam ER Expert 1,076 lesson ✽ 26,260 2..7 241.1 10.5 2.3 8,304 7,204 9,265 Q — ✔

RecipeQA (Yagcioglu et al., 2018) Cooking Recipes Auto 19,779 recipe ✔ 36,786 4 575.1 10.8 5.7 78,089 5,587 71,369 B — ✔

ScienceQA (Lu et al., 2022b) Science exam ER Expert 21,208 query ✽ 21,208 >2 — 14.2 4.9 — 7,373 7,638 Q — ✔

Table 2: Multiple choice datasets. SC: supported content availability (✔: passage, ✗: no, ✽: text, image or video); (P
| Q | O | B | S): (passage, question, option, blank, sentence); (P |Q|O)avg: (P | Q | O) average token; (P |Q|O)vcb: (P
| Q | O) vocabulary size; MFQ: most frequent query; Used: usability in distractor generation (Yes, —: suitable); (MF
| ER | MS | FS): (multi-format, educational source, multi sources, fiction story); (WT | CN | PG | GIG): (WorldTree,
CONCEPTNET, Project Gutenberg, Gigaword); K/M: thousands/millions; AV: public available (✔: yes, ✉: upon
request); *: require licence; —: not found.

4.1 Data Domains414

In our collection, 10 of 36 datasets are from English415

exam sources and 9 from Science exam sources.416

ReClor is for standardized tests and 4 datasets417

(i.e., DGen, EduQG, QuAIL, Televic) are for multi-418

domain fields. One dataset from the medicine do-419

main and 2 datasets focus on math word problems.420

Three datasets designed for children stories, two421

datasets for narratives, and one dataset for news.422

Three multi-modal datasets are domain specific423

such as movie, visual answering and cooking.424

4.2 Data Sources425

22 datasets are from educational materials such426

as educational websites, textbooks or WorldTree427

corpus (Jansen et al., 2018), and 14 are from blogs,428

stories, movies, images, or recipes sources.429

4.3 Data Creation 430

30 out of 36 datasets are mostly created by human. 431

For these 30 datasets, 18 are created by experts and 432

12 are created by crowd workers. Some datasets 433

are web-crawled such as MCQL and others (i.e., 434

CBT, WDW, RecipeQA, DGen, CELA) are auto- 435

generated. 436

4.4 Data Corpus 437

The corpuses of 31 datasets are text-based and 5 438

are multi-modal. 15 out of 36 corpuses are pas- 439

sages, also known as story, narratives and dialogue. 440

5 datasets are based on sentence units, 2 datasets 441

have math word problems, and 3 datasets are based 442

on queries. 5 datasets corpuses are books, chap- 443

ters, or medical topics, and 2 datasets are based 444

on WorldTree facts. One dataset is based on CON- 445

CEPTNET triplet (i.e., knowledge graph with com- 446

monsense relationships). 447
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5 Evaluation Methods448

DG evaluation focuses on: plausibility (i.e., op-449

tions that are semantically comparable to the an-450

swer, grammatically correct with query), reliability451

(i.e., options that are incorrect), and diversity (i.e.,452

options with varying difficulty levels) under two453

main categories: automatic and manual (Haladyna454

et al., 2002; Pho et al., 2014).455

5.1 Automatic Evaluation456

Automatic evaluation metrics are divided into457

ranking-based metrics (Valcarce et al., 2020) and458

natural language generation (NLG) based metrics459

(Sai et al., 2022).460

5.1.1 Ranking-based Metrics461

Ranking-based models in several studies as shown462

in Table 3 use ranking metrics to assess the per-463

formance of the models in retrieving relevant dis-464

tractors to the question and the answer. The used465

metrics are divided into order-unaware metrics,466

order-aware metrics, and semantic-based metrics.467

Order-unaware metrics, including precision468

(P@k), recall (R@k), and F1 score (F1@k), evalu-469

ate a model in retrieving relevant distracters across470

k-top locations without considering order, yet they471

cannot explain the location of relevant distractors.472

Precision (P@k) calculates the ratio of correctly473

identified relevant distractors to the total number474

of options ranked within top-k positions.475

P@k =
Total Correct Distractors in Top-k

Number of Options in k
476

Recall (R@k) calculates the ratio of correctly iden-477

tified relevant distractors to the total number of478

relevant distractors in the ground truth.479

R@k =
Total Correct Distractors in Top-k

Number of Distractors in Ground-Truth
480

F1-score(F1@k) is the harmonic mean of precision481

and recall482

F1@k =
2× P@k ×R@k

P@k +R@k
483

On the other hand, order-aware metrics, includ-484

ing mean reciprocal rank (MRR) (Craswell, 2009),485

normalized discounted cumulative gain (NDCG)486

(Järvelin and Kekäläinen, 2002), and mean average487

precision (MAP) (Baeza-Yates and Ribeiro-Neto,488

1999), evaluate a model in retrieving relevant dis-489

tractor across k-top positions with considering or-490

der.491

MRR@k considers the first relevant item and is 492

calculated by taking the average of the reciprocal 493

ranks across all instances where N is the total num- 494

ber of queries and ranki is reciprocal rank of the 495

first correct distractor in query u: 496

MRR@k =
1

N

N∑
u=1

1

ranki
497

NDCG@k compares rankings to an ideal order 498

where all relevant items are at the top of the list and 499

is calculated by dividing discounted cumulative 500

gain (DCG) by ideal discounted cumulative gain 501

(IDCG) where DCG@k measures the quality of 502

the ranked list up to position k: 503

NDCG@k =
DCG@k

IDCG@k
504

MAP@k considers the number of relevant distrac- 505

tors and their positions in the list (at the top) and is 506

calculated by taking the mean of average precision 507

(AP@k) at k across all queries, where AP@k is 508

computed as an average precision for given ranking 509

list, and N is the total number of queries: 510

MAP@k =
1

N

N∑
i=1

AP@ki 511

In semantic-based metric, cosine similarity is 512

used (Ren and Zhu, 2021) to evaluate plausibility. 513

Cosine similarity measures the similarity between 514

two vectors A and B in a multidimensional space, 515

by using the dot product of the vectors divided by 516

the product of their magnitudes: 517

Cosine Similarity(A,B) =
A ·B

∥A∥ · ∥B∥
518

5.1.2 NLG-based Metrics 519

Several studies as shown in Table 4 use NLG model 520

metrics that are based on word-based (n-gram) met- 521

rics and static-embedding metrics. 522

In word-based (n-gram) metrics, bilingual eval- 523

uation understudy (BLEU) (Papineni et al., 2002) 524

(i.e., machine translation precision-based metric) 525

computes n-gram overlap between the reference 526

and the hypothesis. ROUGE (Lin, 2004) computes 527

n-gram matching based on recall. ROUGE-L mea- 528

sures the longest common subsequence (LCS) be- 529

tween a pair of sentences. These metrics have lim- 530

itations in covering semantic similarity and com- 531

monsense reasoning (Novikova et al., 2017; Sulem 532
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Model Recall Precision F1 MAP NDCG MRR CS

(Sinha et al., 2020) ✗ ✔ ✗ ✔ ✔ ✔ ✗

(Gao et al., 2020) ✔ ✔ ✔ ✗ ✗ ✗ ✗

(Ren and Zhu, 2021) ✔ ✔ ✔ ✗ ✔ ✔ ✔

(Bitew et al., 2022) ✔ ✔ ✗ ✔ ✗ ✔ ✗

(Chiang et al., 2022) ✔ ✔ ✗ ✔ ✔ ✗ ✗

(Yoshimi et al., 2023) ✗ ✗ ✔ ✗ ✗ ✗ ✗

(Wang et al., 2023c) ✔ ✔ ✗ ✔ ✔ ✔ ✗

(Wang et al., 2023a) ✔ ✔ ✔ ✗ ✔ ✔ ✗

(Zu et al., 2023) ✗ ✗ ✗ ✗ ✗ ✗ ✔

(McNichols et al., 2023) ✗ ✗ ✗ ✗ ✗ ✗ ✔

Table 3: Evaluation metrics on ranking-based models
MAP: mean average precision; NDCG: normalized
discounted cumulative gain; MRR: mean reciprocal
rank; CS: cosine similarity; ✔: used; ✗: not used.

Model BLUE ROUGE ROUGE_L METEOR E.A G.M V.E CS S.B

(Gao et al., 2019) ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Zhou et al., 2020) ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Maurya and Desarkar, 2020) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗

(Qiu et al., 2020) ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Chung et al., 2020) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Offerijns et al., 2020) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Xie et al., 2021) ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✗ ✔

(Shuai et al., 2021) ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(Rodriguez-Torrealba et al., 2022) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗

(Shuai et al., 2023) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗

(Maity et al., 2024) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗

(Wang et al., 2023b) ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 4: Evaluation metrics on NLG-based models E.A:
embedding average; G.M: greedy matching; V.E: vector
extrema; CS: cosine similarity; ✔: used; ✗: not used.

et al., 2018; Xie et al., 2021). Two studies (Maurya533

and Desarkar, 2020; Xie et al., 2021) used ME-534

TEOR (Lavie and Denkowski, 2009) F-score based535

metric. It is unigram lexical-similarity-based ma-536

chine translation metric that captures lexical over-537

lap, semantic and relevance. Static-embedding538

metrics such as Greedy Matching (Rus and Lin-539

tean, 2012), Embedding Average (John et al., 2016)540

and Vector Extrema (Forgues et al., 2014) are also541

used for semantic similarity evaluation. Self-BLEU542

(Caccia et al., 2019) is used for measuring the diver-543

sity (Xie et al., 2021) of distractors by calculating544

the average BLEU score545

In the RC-DG task, accuracy score (Lan et al.,546

2019a) is applied (Xie et al., 2021; Shuai et al.,547

2021) with BERT and ALBERT (Lan et al., 2019b)548

as reading comprehension systems.549

5.2 Human Evaluation550

Human judgments (Ghanem and Fyshe, 2023) are551

essential in DG. In multiple-choice studies, relia-552

bility and plausibility are the most common metrics553

(Ren and Zhu, 2021). Participants use a 3-point554

scale for plausibility, and a binary mode for reliabil-555

ity of given generated and ground-truth distractors.556

In reading comprehension studies, Comparative557

methods (Gao et al., 2019) involve the selection of558

distractors based on specific objectives: Confusion559

assesses the number of times a distractor being cho- 560

sen as the best option without providing the correct 561

answer and Non-error metric measures the number 562

of correct answers to a question via distractors. 563

Quantitative (Maurya and Desarkar, 2020) meth- 564

ods rely on numerical scales within specific ranges: 565

Fluency assesses if the distractor follows proper En- 566

glish grammar, human logic, and common sense, 567

Coherence evaluates distractors key phrases for rel- 568

evance to the article and question, Distractibility 569

measures the likelihood of a candidate being cho- 570

sen as a distractor in real exams, Diversity measures 571

semantic difference between multiple distractors, 572

and finally Difference measures the proportion of 573

distractors and answer with the same semantics. 574

Bitew et al. (2022) proposed two metircs, good 575

distractor rate (GDR@K) and nonsense distractor 576

rate (NDR@K), to calculate the percentage of good 577

rated distractors and nonsense (i.e., completely out 578

of context) distractors at top K positions. 579

6 Discussion and Findings 580

After reviewing these DG studies, we discovered 581

several interesting findings. Specifically, multi- 582

modal DG is limited but becoming a novel task in 583

VQA. Open domain datasets are crucial in under- 584

standing the LLM performance. Although LLMs 585

have shown comparable performance to human- 586

crafted texts, these models still face challenges 587

in generating good distractors (i.e., plausible but 588

incorrect). Exploring the effectiveness of auto- 589

generated questions by large models in schools may 590

be beneficial in education assessments. The de- 591

tailed discussion of each key finding can be found 592

in Appendix A and a comprehensive survey liter- 593

ature tree is presented in Figure 2 at the end of 594

Appendix. 595

7 Conclusion 596

Distractor Generation (DG) is critical in educa- 597

tion assessment and has recently received signif- 598

icant attention in the research community. This 599

paper surveys the current research activities on 600

DG tasks, the related DG datasets, and the eval- 601

uation methods. We classify the recent DG de- 602

velopments into multiple choice, reading com- 603

prehension, and multi-modal tasks. We analyze 604

the characteristics of the multiple choice compo- 605

nents, compare the DG datasets, collect the eval- 606

uation methods, and discuss the main findings. 607

Reading list is on https://github.com/ 608

Distractor-Generation/DG_Survey. 609
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8 Limitations610

We report the following limitations for our DG sur-611

vey. The survey covers contemporary research in612

advanced neural networks and LLM, but it may not613

cover the field history. Despite a concise review614

of the methods, datasets, and evaluation metrics,615

we did not cover qualitative and quantitative com-616

parison between models and benchmark datasets.617

Our discussion did not address whether existing618

approaches are suitable in deployment for educa-619

tion. Despite these limitations that could consider620

as future work, our survey is the first contribution621

in exploring distractor generation tasks and gives a622

concise summary in main findings and challenges,623

which can serve as a valuable resource for scholars624

working in this field.625
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A Discussion and Findings1426

Multimodal distractor generation is limited but be-1427

coming a novel task in visual question answering1428

(Lu et al., 2022a).1429

Benchmark datasets for DG typically focus on1430

textual-only modality, with datasets mainly focus-1431

ing on Science (Welbl et al., 2017) and English1432

(Xie et al., 2018), with recent datasets (Bitew1433

et al., 2022; Hadifar et al., 2023) focusing on multi-1434

domain fields. In education, textual questions and1435

supported content, such as figures (Wang et al., 1436

2021; Lu et al., 2021), charts (Kafle et al., 2018), 1437

and tables (Lu et al., 2023), are used in real assess- 1438

ments, including science (Kembhavi et al., 2017; 1439

Lu et al., 2022b) and mathematics (Verschaffel 1440

et al., 2020). Despite the availability of datasets, 1441

there is limited work in multi-modal distractor gen- 1442

eration. 1443

Open-domain datasets are crucial for under- 1444

standing the performance of pre-trained large lan- 1445

guage models in distractor generation. 1446

SciQ, CLOTH, and RACE are recent DG 1447

datasets that are mostly used. SciQ handles textual 1448

science questions, while CLOTH and RACE han- 1449

dle textual English questions. These datasets have 1450

been significantly used to compare DG methods in 1451

specific domains, but recent open-domain datasets 1452

like Televic (Bitew et al., 2022) and EduQG (Had- 1453

ifar et al., 2023) have significantly contributed to 1454

understanding the performance of advanced pre- 1455

train large language models (Bitew et al., 2023). 1456

Pre-trained large language models still face con- 1457

cerns about generating nonsense distractors, which 1458

are the same as answers or previous generated dis- 1459

tractors. 1460

Generating repeated incoherent or factual incon- 1461

sistent results are commonly concerns in NLG 1462

(Ji et al., 2023). In generative models such as 1463

T5, Wang et al. (2023a) emphasized that candi- 1464

date augmentation strategy with generative models 1465

contributes in reducing the occurrence of gener- 1466

ated nonsense distractors, yet still a problem. In 1467

ranking-based approach (Bitew et al., 2022), two 1468

metrics were used to measure the number of correct 1469

distractors compared to non-correct ones in man- 1470

ual evaluation stage. The models with prompting 1471

showed greater performance in reducing nonsense 1472

distractors compared to fine-tuning models (Bitew 1473

et al., 2023). In particular, nonsense distractor rate 1474

reduced from 50% in ranking-based model (Bitew 1475

et al., 2022) to 16%. GPT-4 with prompting in pro- 1476

gramming domain (Doughty et al., 2024) demon- 1477

strated superior performance in generating MCQ 1478

with quality language and logical syntax compara- 1479

ble to human-crafted once. 1480

One of the most important goals in distractor 1481

generation is how to generate diverse distractors. 1482

In cloze questions, Wang et al. (2023a) proposed 1483

using the pseudo Kullback-Leibler Divergence 1484

(PKL) technique to regulate the inter-correlation 1485

between generated distactors in attempt to generate 1486
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difficult distractors like human-created exam (i.e.,1487

one may be easily eliminated while the other two1488

put a greater challenge in identifying the correct1489

answer), though it does not perform well. Two1490

studies (Panda et al., 2022; Gomez et al., 2023) dis-1491

cussed diversity of distractors based on back neural1492

machine translation (MT) systems which showed1493

noticeable results with some drawbacks, including1494

producing inadequate candidates and being compu-1495

tationally more expensive than previous methods.1496

Also, high-quality machine translation systems are1497

crucial for language pairs without English pivot,1498

and Gomez et al. (2023) raises a question about1499

MT benefits for first language learners.1500

In reading comprehension, early RNN models1501

(Gao et al., 2019; Zhou et al., 2020; Qiu et al., 2020;1502

Shuai et al., 2021) had limitations in beam search1503

for generating n-distractors using Jaccard distance,1504

treating the problem as a one-to-many task (i.e.,1505

same input generates multiple distractors). Two1506

studies proposed diversity as characteristic for DG.1507

Maurya and Desarkar (2020) adopted mixture of1508

decoders and Xie et al. (2021) adopted mixture1509

content selection (Cho et al., 2019) with T5 model.1510

Mixture of decoders still produced lexically diverse1511

but semantically similar distractors. Mixture con-1512

tent selection produced diverse distractors from1513

different sentences in passage, coherent with the1514

question and not equivalent to the answer.1515

One of the current tasks in distractor generation1516

by large models is assessing the effectiveness of1517

auto-generated multiple-choice questions in evalu-1518

ating students learning.1519

Because the quality of multiple choice questions1520

generated by large language models regardless of1521

nonsense problems is similar to human-generated1522

questions (Doughty et al., 2024), it is essential to1523

explore the effectiveness of using auto-generated1524

in the field of education and pedagogical studies.1525

Tran et al. (2023) proposed a future study to assess1526

students by conducting an experiment using human-1527

created MCQs and auto-generated questions. The1528

experiment is expected to contribute in understand-1529

ing the effectiveness of evaluating students by auto-1530

generated questions and the possibility of using1531

LLMs in real educational assessments.1532

B Datasets1533

Table 2 describes dataset properties and classifica-1534

tions.1535

B.1 Data Sources 1536

Out of 36 datasets, 22 are from educational materi- 1537

als and 14 are from blogs, stories, movies, images, 1538

or recipes sources. 1539

• Educational Resources: CLOTH, SCDE, 1540

RACE, RACE-C, DREAM are collected from 1541

educational public websites in China. SciQ 1542

is extracted from 28 textbooks. TQA and 1543

ScienceQA are collected from CK-12 foun- 1544

dation website and school science curricula, 1545

respectively. MCQL and AQUA-RAT are 1546

Web-crawled. OpenBookQA is derived from 1547

WorldTree corpus (Jansen et al., 2018). QASC 1548

has 17 million sentences from WT and CK-12. 1549

ReClor is generated from open websites and 1550

books. EduQG, Televic, and MedMCQA are 1551

collected from Openstax website, Televic ed- 1552

ucation platform, and medical exam sources, 1553

respectively. 1554

• Multi-Sources: QuAIL is collected from fic- 1555

tion, news, blogs and user stories. DGen 1556

contents are from SciQ, MCQL, and other 1557

websites. CELA is constructed from CLOTH 1558

dataset and four auto-generated techniques 1559

(i.e., randomized, one feature -part of speech 1560

POS (Hill et al., 2016), several features - POS, 1561

word frequency, spelling similarity (Jiang 1562

et al., 2020), and neural round trip translation 1563

(Panda et al., 2022)). 1564

• Other Sources: CBT is built based on Project 1565

Gutenberg books, MCTest is crowd sourced, 1566

and CommonSenseQA used CONCEPTNET 1567

(Speer et al., 2017). CosmosQA uses personal 1568

narratives (Gordon and Swanson, 2009) from 1569

the Spinn3r Blog Dataset (Burton et al., 2009) 1570

and crowd-sourcing to promote commonsense 1571

reasoning (Sap et al., 2019). MovieQA, Vi- 1572

sual7W, and RecipeQA are built utilizing 408 1573

movies, COCO images (Lin et al., 2014), and 1574

cooking websites, respectively. 1575

B.2 Passage/Query/Options Components 1576

The only dataset introduced as multi-format by 1577

labeling and forming a query as cloze and normal 1578

is EduQG. Thus, to find the most common query 1579

types (i.e., blank, sentence or question) as shown 1580

in Table 2, we utilized dataset analysis as proposed 1581

by Dzendzik et al. (2021) to process our heuristic 1582

rules and statistics. Using spaCy4 tokenizer we 1583

4https://spacy.io/.
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determined the average length and vocabulary size1584

of queries, passages, and options.1585

• Passage: all datasets contain supported1586

text except DGen, ARC, CommonSenseQA,1587

MCQL, QASC and Televic in textual datasets.1588

In multi-modal, some datasets such as1589

RecipeQA and TQA contain supported text1590

and images. Other datasets such as MovieQA1591

contains movies as supported content and (Vi-1592

sual7W, ScienceQA) contain images.1593

• Query Size: CLOTH has the largest num-1594

ber of questions among the FITB datasets.1595

In MCQ datasets, the largest number of sci-1596

ence questions found is SciQ (14K) and in1597

math dataset is AQUA-RAT (98K). Televic1598

contains (63K) questions, yet it is multi-1599

lingual datasets (i.e., 50% in Dutch then1600

French and English next common) and the au-1601

thors provided sample test with 198 questions1602

(Qavg14.9,Oavg 1.9) token in GitHub. In read-1603

ing comprehension, the most usable dataset is1604

RACE (98K). The largest number of questions1605

in multi-model is Visual7W (327.9K).1606

• Options: most datasets have 4 to 5 separated-1607

options, but SCDE average is 7 shared-1608

options. QASC contains 8 choices. Televic1609

and ScienceQA start with 2 choices. CBT has1610

10 and DREAM 3 options. TQA is ranged1611

between 2 to 7 options.1612

• Average Length: queries range from 8.8 to1613

19.5, and passages from 9.4 to 408 tokens.1614

Word-to-phrase token options have 1 to 4,1615

while sentence-long options have more than 41616

tokens. ReClor has the longest option tokens1617

(20.8).1618

• Vocabulary Size: The vocabulary for pas-1619

sages ranges from 1.4K to 371K based on the1620

number of unique lowercased token lemmas1621

for each component in MCQs. The vocabu-1622

lary for the queries spans from 802 to 70.2K,1623

and the options span from 1.5K to 82.4K.1624

B.3 Data Usability and Availability1625

CLOTH, DGen, SciQ, and MCQL are benchmark1626

datasets used in several studies (Ren and Zhu, 2021;1627

Chiang et al., 2022; Wang et al., 2023a; Liang et al.,1628

2018; Sinha et al., 2020; Sun and Wang, 2023).1629

Televic (Bitew et al., 2022), EduQG (Hadifar et al.,1630

2023), and MedMCQA (Wang et al., 2023d) are1631

studied in the DG task. RACE is also a bench- 1632

mark dataset in the RC-DG task. CosmosQA and 1633

DREAM are used in recent studies (Shuai et al., 1634

2021; Xie et al., 2021). MCTest (Wang et al., 1635

2023b) is utilized for data augmentation. CBT, 1636

QuAIL and ReClor (Sharma Mittal et al., 2018; 1637

Ghanem and Fyshe, 2023) are also studied in part 1638

of DG and Visual7W (Lu et al., 2022a) is used for 1639

textual DG in visual question answering. 1640

The majority of datasets are public except upon 1641

request datasets (i.e., SCDE, MovieQA) and upon 1642

payment of a licence fee to access part of dataset 1643

(i.e., WDW) or whole dataset (i.e., Televic the 1644

whole dataset requires IEEE DataPort subscrip- 1645

tion). 1646
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Model Task DG Approach Dataset Query Domain Automatic Manual

(Mitkov et al., 2003) Multiple-choice DG Graph-based Small-scale MCQ English ✗ ✔

(Chen et al., 2006) Multiple-choice DG Corpus-based Web Crawl Cloze English ✗ ✔

(Pino et al., 2008) Multiple-choice DG Graph-based REAP database Cloze English ✗ ✔

(Pino and Eskenazi, 2009) Multiple-choice DG Corpus-based Small-scale Cloze English ✗ ✔

(Mitkov et al., 2009) Multiple-choice DG Graph-based Small-scale MCQ English ✗ ✔

(Zesch and Melamud, 2014) Multiple-choice DG Corpus-based Small-scale Cloze English ✗ ✔

(Sutskever et al., 2014) Reading Comprehension DG RNN and Attention RACE MCQ English ✔ ✔

(Kumar et al., 2015) Multiple-choice DG Semantic-Similarity Text-book Cloze Biology ✗ ✔

(Hill and Simha, 2016) Multiple-choice DG Corpus-based Small-scale Cloze English ✗ ✔

(Guo et al., 2016) Multiple-choice DG Semantic-Similarity Wikipedia MCQ Wikipedia ✗ ✔

(Stasaski and Hearst, 2017) Multiple-choice DG Graph-based K-12 Biology concepts MCQ Biology ✗ ✔

(Jiang and Lee, 2017) Multiple-choice DG Similarity-based Chinese Data MCQ Chinese ✗ ✔

(Liang et al., 2017) Multiple-choice DG Learning-based Small-scale Cloze Biology ✗ ✔

(Faizan and Lohmann, 2018) Multiple-choice DG Graph-based SlideWiki MCQ Open-Domain ✗ ✔

(Susanti et al., 2018) Multiple-choice DG Semantic-Similarity English Wikipedia MCQ English ✗ ✔

(Liang et al., 2018) Multiple-choice DG Ranking-based SciQ, MCQL MCQ Science ✔ ✔

(Yeung et al., 2019) Multiple-choice DG CGR Small-scale Cloze English ✗ ✔

(Gao et al., 2019) Reading Comprehension DG HRED RACE MCQ English ✔ ✔

(Zhou et al., 2020) Reading Comprehension DG HRED RACE MCQ English ✔ ✔

(Maurya and Desarkar, 2020) Reading Comprehension DG HRED(s) RACE, RACE-C MCQ English ✔ ✔

(Qiu et al., 2020) Reading Comprehension DG RNN RACE MCQ English ✔ ✔

(Chung et al., 2020) Reading Comprehension DG Transformer-based RACE MCQ English ✔ ✗

(Sinha et al., 2020) Multiple-choice DG Ranking-based SciQ, RACE MCQ Open-domain ✔ ✗

(Offerijns et al., 2020) Reading Comprehension DG Transformer-based RACE MCQ English ✔ ✔

(Xie et al., 2021) Reading Comprehension DG Transformer-based RACE , CosmosQA MCQ Open-Domain ✔ ✔

(Shuai et al., 2021) Reading Comprehension DG HRED RACE, DREAM MCQ English ✔ ✔

(Dave et al., 2021) Multiple-choice DG RNN Mathematics Dataset MCQ Math ✔ ✔

(Lelkes et al., 2021) Multiple-choice DG Transformer-based NewsQuizQA MCQ News ✔ ✔

(Ren and Zhu, 2021) Multiple-choice DG CGR DGen Cloze Open-Domain ✔ ✔

(Chiang et al., 2022) Multiple-choice DG CGR CLOTH, DGen Cloze Open-Domain ✔ ✔

(Panda et al., 2022) Multiple-choice DG MT ESL Lounge Website Cloze English ✔ ✔

(Vachev et al., 2022) Multiple-choice DG Transformer-based RACE MCQ News ✔ ✗

(Rodriguez-Torrealba et al., 2022) Multiple-choice DG Transformer-based RACE MCQ Wikipedia ✔ ✔

(Foucher et al., 2022) Multiple-choice DG Transformer-based Small-scale MCQ Open-domain ✗ ✔

(Lu et al., 2022a) Multi-modal DG GAN and RL Visual7w MCQ Multi-modal ✔ ✗

(Bitew et al., 2022) Multiple-choice DG Transformer-based Televic , WeZooz MCQ Open-domain ✔ ✔

(Shuai et al., 2023) Reading Comprehension DG GCN and HRED RACE MCQ English ✔ ✔

(Kumar et al., 2023) Multiple-choice DG Similarity based Text-book MCQ Computing ✗ ✔

(Wang et al., 2023b) Multiple-choice DG Ranking-based RACE, MCTest MCQ Open-domain ✔ ✗

(Wang et al., 2023c) Multiple-choice DG Ranking-based RACE, MCTest MCQ Open-domain ✔ ✔

(Wang et al., 2023a) Multiple-choice DG Transformer-based CLOTH, DGen Cloze Open-domain ✔ ✔

(Gomez et al., 2023) Multiple-choice DG MT Small-scale Cloze English ✔ ✔

(Yoshimi et al., 2023) Multiple-choice DG Multiple Methods Small-scale Cloze English ✔ ✔

(Zu et al., 2023) Multiple-choice DG LLM and Prompt Large-scale Cloze English ✔ ✔

(Bitew et al., 2023) Multiple-choice DG LLM and Prompt Televic, Wezooz MCQ Open-domain ✗ ✔

(Tran et al., 2023) Multiple-choice DG LLM and Prompt Small-scale MCQ Computing ✗ ✔

(McNichols et al., 2023) Multiple-choice DG LLM and Prompt Eedi Repository MCQ Math ✔ ✔

(Olney, 2023) Multiple-choice DG LLM and Prompt Small-scale MCQ Anatomy and Physiology ✗ ✔

(Hadifar et al., 2023) Multiple-choice DG Transformer-based EduQG Multi-format Open-domain ✗ ✔

(Doughty et al., 2024) Multiple-choice DG LLM and Prompt Small-scale MCQ Computing ✗ ✔

(Maity et al., 2024) Multiple-choice DG LLM and Prompt SQuAD and others MCQ Multi-lingual ✔ ✔

Table 5: A summary of the studies in DG tasks. DG: distractor generation; MCQ: multiple choice question; CGR:
candidate generation and ranking framework; RNN: recurrent neural network; HRED: hierarchical encoder decoder
framework; MT: round-trip machine translation; GAN: generative adversarial network; RL: reinforcement learning;
GCN: graph convolutional network; LLM: pre-trained large language model; ✔: used in evaluation; ✗: not used in
evaluation.
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Evaluation (5)

Human (5.2) E.g Plausibility (Ren and Zhu, 2021) - Fluency (Maurya and Desarkar, 2020) ...etc

Automatic (5.1)

NLG-based (5.1.2)
Static Embedding E.g. Greedy Matching (Rus and Lintean, 2012) Vector Extrema (John et al., 2016) ...etc

Word-based (n-gram) E.g. BLUE (Papineni et al., 2002) METEOR (Lavie and Denkowski, 2009) ...etc

Ranking-based (5.1.1)

Semantic-based E.g. Cosine Similarity (Mikolov et al., 2013)

Order Unaware E.g. Precision (Wang et al., 2023c) ...etc

Order Aware E.g. NDCG (Järvelin and Kekäläinen, 2002) MRR (Craswell, 2009) ...etc

Datases (4)

Multi-Modal
Text and Image E.g. RecipeQA (Yagcioglu et al., 2018) ...etc

Text and Video E.g. visual7w (Zhu et al., 2016)

RC
MCQ E.g. Race (Lai et al., 2017) CosmosQA (Huang et al., 2019) ...etc

FITB E.g. CBT (Hill et al., 2016) ...etc

MCQ

Multi-Form E.g. EduQG (Hadifar et al., 2023)

Declarative Sentence E.g. OpenBookQA (Mihaylov et al., 2018) MCQL (Liang et al., 2018) ...etc

Question (Wh-Q) E.g. QASC (Khot et al., 2020) SciQ (Welbl et al., 2017) ...etc

Cloze
FITB - Passage E.g. CLOTH (Xie et al., 2018) ...etc

FITB - Sentence E.g. DGen (Ren and Zhu, 2021)

Components (3)

Supported
Content (3.4)

Textual Form
Supported Sentence E.g. OpenBookQA (Mihaylov et al., 2018) ...etc

Supported Passage E.g. RACE (Lai et al., 2017) ...etc

Visual Form
Supported image E.g. Visual7W (Zhu et al., 2016) ...etc

Supported Video E.g. MovieQA (Tapaswi et al., 2016)

Options (3.3)

Multi-Modal E.g. RecipeQA (Yagcioglu et al., 2018)

Textual
Separated E.g. CLOTH (Xie et al., 2018) ...etc

Shared E.g. SCDE (Kong et al., 2020)

Answer (3.2)

Multi-Modal E.g. RecipeQA (Yagcioglu et al., 2018)

Textual

Extractive E.g. SciQ (Welbl et al., 2017)

Free-Form E.g. MCQL (Liang et al., 2018)

Short E.g. MCQL (Liang et al., 2018) ...etc

Long E.g. RACE (Lai et al., 2017) ...etc

Stem (3.1)

Multiple Choice
Query - MCQ

Textual E.g. SciQ (Welbl et al., 2017) MCQL (Liang et al., 2018) ...etc

Cloze Query (fill-
in-the-blank) Multi-Modal E.g. RecipeQA (Yagcioglu et al., 2018)

Textual E.g. CLOTH (Xie et al., 2018) DGen (Ren and Zhu, 2021) ...etc

Tasks and Methods (2)

Multi-modal (2.3) Reinforcement
Learning

E.g. Textual Distractor Generation in Visual Question Answering (DG-VQA) (Lu et al., 2022a)

Reading Compre-
hension - RC (2.2)

Transformer based Tex2Text Model E.g. MSG-Net (Xie et al., 2021)

Deep Neural Network
Hierarchical Encoder

Decoder (HRED)
E.g. HSA (Gao et al., 2019) CHN (Zhou et al., 2020) ...etc

Encoder Decoder E.g. seq2seq (Sutskever et al., 2014) with attention (Luong et al., 2015)

Multiple Choice
Question - MCQ (2.1)

Prompt-based

Chain-of-Thought E.g. recent study (Maity et al., 2024)

Few-Shot E.g. recent study (Zu et al., 2023)

Zero-Shot E.g. recent study (Bitew et al., 2023)

CGR Framework
Transformer-based E.g CDGP (Chiang et al., 2022)

Knowledge-based E.g DGEN (Ren and Zhu, 2021)

Transformer-based
E.g. Text-to-Text Models (Text2Text) (Wang et al., 2023a)

E.g. Masked Language Modeling (MLM) (Bitew et al., 2022)

Ranking-based Learning-based
E.g. Deep Neural Network (Wang et al., 2023c)

E.g. Machine Learning (Liang et al., 2018)

Similarity-based

Corpus-based
E.g. Syntactic Similarity (Chen et al., 2006)

E.g. Semantic Similarity (Kumar et al., 2015)

Graph-based
E.g. Ontology (Stasaski and Hearst, 2017)

E.g. Word-NET (Pino et al., 2008)

Figure 2: The literature survey tree.

20


