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Abstract001

Most datasets used for supervised machine learning002

consist of a single label per data point. However, in003

cases where more information than just the class la-004

bel is available, would it be possible to train models005

more efficiently? We introduce two novel model ar-006

chitectures, which we call hybrid concept-based mod-007

els, that train using both class labels and additional008

information in the dataset referred to as concepts. In009

order to thoroughly assess their performance, we in-010

troduce ConceptShapes, an open and flexible class of011

datasets with concept labels. We show that the hy-012

brid concept-based models can outperform standard013

computer vision models and previously proposed014

concept-based models with respect to accuracy. We015

also introduce an algorithm for performing adversar-016

ial concept attacks, where an image is perturbed in017

a way that does not change a concept-based model’s018

concept predictions, but changes the class prediction.019

The existence of such adversarial examples raises020

questions about the interpretable qualities promised021

by concept-based models.022

1 Introduction023

Understanding model behavior is a crucial chal-024

lenge in deep learning and artificial intelligence [1–4].025

Deep learning models are inherently chaotic, and026

give little to no insight into why a prediction was027

made. In computer vision, early attempts of ex-028

plaining a model’s prediction consisted of assigning029

pixel-wise feature importance, referred to as saliency030

maps [5–8]. Despite gaining popularity and being031

visually appealing, a large number of experiments032

show that saliency maps perform a poor job at ac-033

tually explaining model behavior [2, 3, 9–13].034

Recently, several concept-based models have been035

proposed as inherently interpretable [14–18]. These036

models are restricted to perform the downstream037

prediction only based on whether it thinks some038

predefined concepts are present in the input or not,039

where concepts are defined as human meaningful040

features. This way, the downstream predictions can041

be interpreted by which concepts the model thought042

were in the data.043

However, recent experiments have highlighted is-044

sues with concept-based models’ interpretability.045

This is mainly due to the concept predictions encod-046

Figure 1. Adversarial Concept Attack. Images
are perturbed in a way that does not change a concept-
based model’s concept predictions, but change the class
prediction. This brings into question the interpretable
qualities of these models.

ing more information than just the concepts, referred 047

to as concept leakage [19, 20]. We further add evi- 048

dence to the lack of interpretability in concept-based 049

models by introducing adversarial concept attacks 050

(see Figure 1). 051

Due to the evidence demonstrating the limitations 052

of interpretability in concept-based models, we will 053

shift our focus away from interpretability and in- 054

stead use the framework of concept-based models to 055

improve the performance of the models. We present 056

two new model architectures aimed to achieve this. 057

Our proposed model architectures use both con- 058

cept predictions and information not interfering with 059

the concepts to make the downstream prediction. 060

This way, the models can use the concept predictions 061

if they are helpful for the downstream task, but can 062

also rely on a skip connection to encode information 063

about the data not present in the concepts. We 064

propose these models to better utilize the available 065

information in datasets with concepts. 066

A challenge in this research area is that the most 067

popular datasets used for benchmarking concept- 068

based models have shortcomings that we argue 069

make them unsuitable to use as benchmarks, and 070

we therefore developed a new class of flexible con- 071

cept datasets. The Caltech-USCD Birds-200-2011 072

dataset (CUB) [21] is the most widely used concept 073

dataset, where the downstream task is to classify im- 074
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ages among 200 classes of bird species, and is widely075

used to benchmark concept-based models [14–18,076

22–24]. Despite its popularity, there are various077

problems with the concept labeling, which was done078

by non-experts. Therefore, the dataset is processed079

with a class-wise majority vote of the concept labels,080

so every class has the exact same concept labels [15].081

Unfortunately, not only has this led to mistakes082

where instances of a class have different concepts083

[18], but ambiguity of concepts is very common. For084

instance, there are images of birds where one can085

not see its tail, belly or wings properly, but it may086

still be labeled with concepts relating to those body087

parts [18].088

Another popular concept dataset is Osteoarthritis089

Initiative (OAI) [15, 17, 24, 25]. The main problem090

with this dataset is the lack of availability. Since it091

uses medical data, access to the dataset needs to be092

requested, and the processed version is not directly093

available. Moreover, the computational resources094

used to process it was “several terabytes of RAM095

and hundreds of cores” [26], which is not available096

for many researchers.097

Our contributions are as follows:098

• Novel model architectures: We propose099

novel model architectures which we call hy-100

brid concept-based models. Unlike previously101

proposed concept-based models, ours are moti-102

vated by performance, not interpretability. We103

conduct experiments that show that they can104

outperform other computer vision and concept-105

based models.106

• New concept datasets: In order to properly107

assess the performance of concept-based mod-108

els, we propose a new set of openly available109

datasets with concepts called ConceptShapes.110

• Adversarial concept attacks: We propose an111

algorithm for generating adversarial examples112

specifically for concept-based models. These ex-113

amples further question concept-based models’114

interpretable qualities.115

2 Related Work116

2.1 Concept-based Models117

Concept-based models first predict some predefined118

concepts in the dataset, then use those concept pre-119

dictions to predict the downstream task. This way,120

the final prediction can be interpreted by which con-121

cepts the model thought were present in the input.122

One of the first and most popular concept-based123

models is the concept bottleneck model (CBM) [15],124

which is a neural network with a bottleneck layer125

that predicts the concepts. The model is trained126

both using the concept labels and the target labels.127

Figure 2. Architecture of a CBM-Res used for com-
puter vision. The model uses both concept predictions
and a skip connection that hops over the bottleneck layer
to perform the output prediction. The architecture can
be adapted to a CBM-Skip by performing concatenation
instead of addition before the output layer.

Several alternatives to the CBM architecture have 128

been proposed. Concept-based model extraction 129

(CME) [14] may use a different hidden layer for 130

the various concepts. Post-hoc concept bottleneck 131

models (PCBM) [23] first learn the concept activa- 132

tion vectors (CAVs) [27] of the concepts, and then 133

project embeddings down on a space constructed by 134

CAVs. Concept embedding models (CEM) [22] pro- 135

duces vectors in a latent space of concepts that are 136

different for presence and absence of a concept and 137

predicts the probabilities of concepts being present. 138

Several experiments show that the concept pre- 139

dictions encode more information than just the con- 140

cepts, and therefore that they are unsuitable to use 141

as interpretation of the models’ behavior [19, 20]. It 142

has also been shown that concept-based models are 143

susceptible to adversarial attacks that change the 144

concept predictions [24], but not the class predic- 145

tions. 146

3 Methods 147

3.1 New Model Architectures 148

We propose two novel model architectures. The first 149

is based on a CBM [15], but uses an additional skip 150

connection that does not go through the concept 151

bottleneck layer (see Figure 2). The skip connection 152

can be implemented either as a residual connection 153

[28] or a concatenation [29], and we refer to the mod- 154

els as CBM-Res and CBM-Skip, respectively. This 155

way, the model can use both the concept prediction 156

and information not interfering with the concepts 157

to make the final downstream prediction. 158

The other proposed architecture predicts the con- 159

cepts sequentially throughout the neural network’s 160

layers, instead of all at once (see Figure 3). All of 161

the concept predictions are concatenated together, 162

along with the final hidden layer, and given as input 163

to the output layer. We refer to this model as the 164

Sequential Concept Model (SCM). 165

We use a loss function constructed by a weighted 166

sum of a concept loss and a task loss, similarly to 167

2



NLDL
#3

NLDL
#3

NLDL 2025 Full Paper Submission #3. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Architecture of a Sequential Bottleneck
Model (SCM). The concepts are predicted sequentially
throughout the layers, and concatenated together with
the final hidden layer before the output layer, which
produces the downstream predictions.

the joint bottleneck proposed for the CBM [15].168

All of the proposed models are compatible with169

transfer learning, where the first part of the model170

can be a large pre-trained network. We present171

the models in the domain of classification, but they172

can easily be adapted to regression by replacing the173

output layer with a single node.174

3.2 Introducing ConceptShapes175

To accurately assess the performance of concept-176

based models, we have developed a class of flexible177

synthetic concept datasets called ConceptShapes.178

The input images consist of two shapes, where179

the position and orientation are random, and the180

downstream task is to classify which combination181

of shapes that are present (see Figure 4). Some182

examples of target classes are “triangle-rectangle“,183

“triangle-triangle“ and “hexagon-pentagon“. Depend-184

ing on how many shapes that are used, the dataset185

contains 10, 15 or 21 classes.186

The key feature of the datasets are that various187

binary concepts are present, such as the color of188

the shapes, outlines and background. Given a class,189

some predefined concepts are drawn with a high190

probability s ∈ [0.5, 1], and the others with a low191

probability 1 − s. The hyperparameter s can be192

chosen by the user. When s = 0.5, the concepts193

are drawn independently of the classes, and when194

s = 1, the concepts are deterministic given the class.195

The datasets can be created with either five or nine196

concepts.197

The datasets are flexible with regards to the rela-198

tionship between the concepts and the classes, and199

the number of concepts, classes and data. This200

way, the difficulty of correctly classifying the im-201

ages can be tuned by the amount of classes and the202

amount of data, and the information in the concepts203

can be tuned by the amount of concepts and the204

value of s. Further details about the dataset can be205

found in Appendix B. The code for generating the206

ConceptShapes datasets can be found at https://207

anonymous.4open.science/r/ConceptShapes/.208

Figure 4. Images from different classes of two Con-
ceptShapes datasets. Left: Nine different images from a
10-class 5-concept dataset. Right: Nine different images
from a 21-class 9-concept dataset.

Although synthetic datasets may have less com- 209

plex patterns than datasets with real images, there 210

are also clear benefits of using them. They are pre- 211

cisely labeled, there is no ambiguity in the concepts 212

and they have many flexible parameters. Therefore, 213

we believe that ConceptShapes can provide a use- 214

ful addition to the existing benchmark datasets for 215

concept-based models. 216

3.3 Adversarial Concept Attacks 217

We propose an algorithm for producing adversarial 218

concept attacks, which given a concept-based model 219

and input images, produces identically looking im- 220

ages that give the same concept predictions, but 221

different output predictions. The algorithm is based 222

on projected gradient descent (PGD) [30], which it- 223

eratively updates an input in the direction which 224

maximizes the classification error of the model, and 225

projects the alteration on an L-infinity ball around 226

the original input. In each iteration, we add a step 227

where we check if the alteration causes the model to 228

almost change the predictions of the concepts. If so, 229

we check which pixels that are altered in a direction 230

that changes the concept predictions, and multiply 231

those pixels’ alterations by a number in [−1, 0]. The 232

complete algorithm is covered in Appendix C. 233

Our approach differs from the adversarial attacks 234

for concept-based models done by Sinha et al. [24], 235

which altered the concept predictions, and not the 236

class predictions. 237

4 Experiments 238

We show that the hybrid concept-based models 239

achieve the highest test set accuracy on multiple 240

datasets. In order to examine how the models per- 241

form with different amounts of data, we train and 242

test the models on various smaller subsets of the 243

datasets. We also investigate how well the concepts 244

are learned. 245
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4.1 Datasets246

4.1.1 Caltech-USCD Birds-200-2011 (CUB)247

The CUB dataset [21] consists of N = 11, 788 images248

of birds, where the target is labeled among 200 bird249

species. The original dataset contains 28 categorical250

concepts, which makes 312 binary concepts when251

one-hot-encoded. The processed version used for252

benchmarking concept-based models [15] removed253

sparse concepts and used a majority vote on the254

concepts labels, so that every class has the exact255

same concepts, ending up with 112 binary concepts.256

The dataset is split in a 50%-50% training and test257

split, and we use 20% of the training images for258

validation. We train and evaluate on six different259

subset sizes.260

4.1.2 ConceptShapes261

We experiment with many different ConceptShapes262

configurations. First, we set the probability s to263

be 0.98, in order to make the concepts useful, but264

not deterministic given the class, and experiment265

with different amounts of classes. Additionally, we266

use different values of s to explore how the correla-267

tion between the concepts and the classes influence268

the models’ performance. We explore even more269

configurations of ConceptShapes in Appendix A.2.270

The datasets are generated with 1000 images in271

each class, and we split them into 50%-30%-20%272

train-validation-test sets. We train and evaluate on273

subsets sizes with 50, 100, 150, 200 and 250 images274

in each class, drawn from the 1000 images created.275

4.2 Setup276

We compare our proposed models against a CBM,277

which we refer to as vanilla CBM, and a convo-278

lutional neural network (CNN) [31] not using the279

concepts at all, referred to as the standard model.280

Additionally, we also include an oracle model, which281

is a logistic regression model trained only on the282

true concept labels, not using the input images. We283

call it an oracle since it uses true concept labels at284

test time, which are usually unknown, and do this285

in order to measure how much information there is286

in the concepts alone.287

The models’ accuracies are evaluated on a held-out288

test set, which is the same for every subset config-289

uration. We perform a hyperparameter search for290

each model and each subset configuration using the291

validation sets. The details of the hyperparameter292

settings are covered in Appendix D.293

The models trained on CUB use a pre-trained294

and frozen ResNet 18 [28] as the convolutional295

part of the model, while the models trained on296

ConceptShapes are trained from scratch. The de-297

tails about the setup are explained in Appendix E.298

The code for running the experiments can be299
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Figure 5. Test set accuracies on the CUB dataset.
The x-axis indicates the average amount of images in-
cluded in the training and validation dataset for each
class, where the rightmost point corresponds to the full
dataset. The results are averaged over three runs and
include 95% confidence intervals. The oracle model con-
sistently got 100% accuracy and is omitted.
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Figure 6. MPO scores on the CUB dataset. The
y-axis indicates the proportion of images with m or more
concept prediction mistakes. The results are averaged
over three runs and include 95% confidence intervals.
We used the full dataset.

found at https://anonymous.4open.science/r/ 300

Hybrid-Concept-based-Models-22C3. 301

We also record the Misprediction overlap (MPO) 302

[14] to measure the quality of the concept predictions. 303

The MPO measures the ratio of images that had 304

m or more concept mispredictions. We use m = 305

1, 2, . . . , k, where k is the amount of concepts in the 306

dataset. 307

We run a grid search to find the most successful 308

adversarial concept attack ratio, meaning the ratio 309

of images that changes the model’s class prediction, 310

but not the concept predictions. We use the best 311

vanilla CBM found in the hyperparameter searches. 312

and compare the results to PGD [30]. 313
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Figure 7. Test set accuracy on ConceptShapes with nine concepts and s = 0.98. The plots show that the
hybrid concept-based models perform better than the benchmark models. The x-axis denotes how many training
and validation images that were included in each class. The metrics are averaged over ten runs and include 95%
confidence intervals.
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Figure 8. MPO scores on ConceptShapes. All three plots shows that the concepts are properly learned by
all models, where about 85% of the images has no concept mispredictions, and only about 2% has more than two.
We used 250 training and validation images in each class. The metrics are averaged over ten runs and include 95%
confidence intervals.

5 Results and Discussion314

5.1 Improved Accuracy315

The test set accuracies can be found in Figure 5, 7316

and 9. We observe that the hybrid concept-based317

models generally have the best performance. When318

s = 0.5 (Figure 9), the concepts provide no addi-319

tional information that helps predict the classes.320

However, the hybrid concept-based models do not321

perform worse than the CNN, suggesting they are322

able to assign low weights to the bottleneck layer323

when the concepts are irrelevant. When s increases,324

the performance of all models does as well, and the325

gap between the hybrid concept-based models and326

the benchmark models becomes larger.327

The oracle model, using only the true concept la-328

bels at test time, serves as a baseline for how much329

information there is in the concepts alone. When330

s = 0.5 (Figure 9), the oracle model has a test set331

accuracy of about 10%, similarly to random guess-332

ing. The oracle model’s accuracy increases when s333

increases, but decreases when there are more classes.334

Since s controls the information in the concepts, and335

an increase in the number of classes also increases336

the difficulty of classifying, this behavior is expected.337

With a low s or a large number of classes, the hy- 338

brid concept-based models perform better than the 339

oracle model (see Figure 7, 9). 340

5.2 CUB Concepts are not Learned 341

When inspecting the MPO plots for CUB in Fig- 342

ure 6, we see that none of the concept-based models 343

learn the concepts properly. About 50% of the im- 344

ages are predicted with 15 or more mistakes in the 345

concept predictions for all models, which is about 346

as good as random guessing, since the labels are 347

one-hot-encoded and sparse. Because earlier work 348

has pointed out that the concepts in CUB are am- 349

biguous and sometimes wrong [18], this might not 350

be surprising. 351

When inspecting the MPO plot for ConceptShapes 352

in Figure 8 and 10, we do however see that the con- 353

cepts are properly learned, even when s = 0.5 and 354

the concepts are useless for predicting the class. This 355

suggests that the concepts in ConceptShapes are not 356

ambiguous, and the datasets therefore serve as bet- 357

ter benchmark datasets for concept-based models. 358
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Figure 9. Test set accuracy on ConceptShapes with different values of s, using ten classes and nine concepts.
Higher values of s means more correlation between the concepts and the classes.
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Figure 10. MPO scores on ConceptShapes with different values of s using ten classes and nine concepts.
The majority of images are have less than two concept mispredictions, even when the concepts are irrelevant for
the classes (s = 0.5). The SCM performs better than the other models.

Adversarial Concept PGD
Attack Success Rate Success Rate

CUB
112 concepts 57.4% 16.2%

ConceptShapes with
10 classes and 5 concepts 35.5 % 31.4%

ConceptShapes with
21 classes and 9 concepts 26.6% 22.5%

Table 1. Success rate of adversarial concept attacks
on images in the test sets. An attack is considered a
success when the class prediction is changed, but not
the concept predictions.

5.3 Adversarial Concept Attacks359

The results of the adversarial concept attacks can360

be found in Table 1. We see that a substantial361

amount of images are perturbed with success, and362

the algorithm is more effective than PGD.363

Since the concept predictions are used as the in-364

terpretation of the model behavior, but the same365

interpretation can lead to vastly different model be-366

havior, we suggest that this experiment questions367

the interpretable qualities of concept-based models.368

6 Conclusions369

We proposed new hybrid concept-based models moti-370

vated by improving performance, and demonstrated371

their effectiveness on CUB and several Concept- 372

Shapes datasets. The proposed models train using 373

both the class label and additional concept labels. 374

In all of the datasets we experimented with, the 375

hybrid concept-based models performed better than 376

previously proposed concept-based models and the 377

standard computer vision models. 378

We also introduced ConceptShapes, a flexible 379

class of synthetic datasets for benchmarking concept- 380

based models. Finally, we demonstrated that 381

concept-based models are susceptible to adversarial 382

concept attacks, which we suggest are problematic 383

for their promised interpretable qualities. 384

In future work, we would like to apply hybrid 385

concept-based models in the domain of reinforce- 386

ment learning, where concepts such as agent ro- 387

tation, position and velocity can be automatically 388

calculated, and do not need manual labeling. 389
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Figure A.1. Test set accuracies on the CUB
dataset with a hard bottleneck. The vanilla CBM
suffers from substantially lower performance, while the
hybrid concept-based models’ performances are not
changed much. The metrics are averaged over three
runs and contains 95% confidence intervals.
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A More Experiments 558

A.1 Hard Bottleneck 559

We also conducted experiments where we rounded 560

off the concept predictions to binary values in the 561

concept-based models, referred to as a hard bottle- 562

neck. The results can be seen in Figure A.1 and 563

Figure A.2. We see that the vanilla CBM’s perfor- 564

mance is reduced, while the hybrid concept-based 565

models are not changed much. Comparing the MPO 566

plots (Figure A.2 and Figure 6) shows little change 567

in how well the concepts were learned. 568

A.2 ConceptShapes Experiments 569

We experiment with using five concepts instead of 570

nine, with the results plotted in Figure A.3. We see 571

that the oracle model has a lower accuracy, indicat- 572

ing there is less information in the concepts alone. 573

Thus, the gap between the standard model and the 574

hybrid concept-based models is a little narrower, 575

although the hybrid concept-based models still per- 576

form the best in general. When inspecting the MPO 577

plot in Figure A.4, we see that the concepts are still 578

learned by all the models. 579

B ConceptShapes Details 580

We now explain the ConceptShapes datasets in 581

greater detail. The crucial feature of the datasets 582
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Figure A.2. MPO scores on the CUB dataset
with a hard bottleneck. There is little to no change
in how well the concepts are predicted when using a
hard bottleneck. We used the full dataset.

are the concepts. All of them are binary and inde-583

pendent, meaning any combination of concepts are584

possible. The five first concepts are based on the585

two shapes in the image, while the last four optional586

concepts are based on the background. We now587

describe the concepts one-by-one, and visualizations588

are available in Table B.1 and Table B.2. We start589

with the five concepts that influence the shapes:590

1. Big shapes. Every shape had two intervals of591

sizes to be randomly drawn from. One interval592

corresponded to the small figures, and the other593

to big ones.594

2. Thick outlines. The outlines of the shapes595

were drawn from one of two intervals. One596

corresponded to a thin outline, and the other597

to a thick one.598

3. Facecolor. There were two possible colors for599

the shapes, blue and yellow.600

4. Outline color. The shapes had two possible601

outline colors, red and white.602

5. Stripes. Some shapes were made with stripes,603

and some were not. The stripes were in the604

same color as the outline.605

All of the concepts apply to the whole image. For606

instance, if the image gets the thick outline concept,607

both shapes in the image get a thick outline.608

The datasets that use nine concepts have all five609

of the concepts above, in addition to four more.610

While all of the five-concept datasets have black611

backgrounds, the nine-concept datasets split the612

background in two and use the color and stripes as613

concepts.614

6. Upper background color. The upper-half615

of the background would either be magenta or616

pale-green.617
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Table B.1. Overview of the five concepts regard-
ing the shapes. Each row corresponds to one concept.
The two leftmost columns of images have the concept,
and the two rightmost columns do not have the concept.
All of the images are from a 5-concept dataset, hence the
black background. These five concepts are also present
in the 9-concept datasets.

7. Lower background color. The lower-half 618

of the background would be either indigo or 619

dark-sea-green. 620

8. Upper background stripes. This repre- 621

sented whether there were black stripes present 622

in the upper background or not. 623

9. Lower background stripes. This represented 624

whether there were black stripes present in the 625

lower background or not. 626

To summarize, some of the image’s visuals are 627

determined by the concepts, some by the classes and 628

some by randomness. The two shapes (from triangle, 629

square, pentagon, hexagon, circle and wedge) are 630

determined by the class. The shapes’ size, color 631

and outline are determined by the concepts. If the 632

dataset uses nine concepts, the background color 633

and stripes are also determined by the concepts. 634

The shapes’ position and rotation are determined 635

randomly, regardless of which class or concepts they 636

have. 637

C Adversarial Concept At- 638

tacks 639

We describe a high level overview of the algorithm 640

for performing adversarial concept attacks, while 641

the full algorithm can be found in Table 1. We do 642

PGD [30] with an additional step. For each concept, 643
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Figure A.3. Test set accuracy on ConceptShapes with five concepts and s = 0.98. The metrics are averaged
over ten runs and include 95% confidence intervals.
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Figure A.4. MPO scores on ConceptShapes with s = 0.98. We used 250 images in each class. The metrics
are averaged over ten runs and include 95% confidence intervals.

if the concept prediction for the perturbed image is644

close to changing compared to the original image,645

we consider the concept as sensitive. We control646

this with a sensitivity threshold γ ∈ [0,∞), so that647

a concept is considered sensitive if its logits is in the648

interval [−γ, γ]. We get an initial perturbation in649

each iteration from following the gradient of the loss650

with respect to the pixels of the images, similar to651

PGD. The perturbation is multiplied with a mask652

M , which is constructed so that it is 1 for pixels that653

do not influence sensitive concepts to be even closer654

to a change of prediction, and β ∈ [−1, 0] for pixels655

that do. We loop over the sensitive concepts and656

iteratively update M , and use the notation Iβ(A =657

B) to denote an elementwise indicator function, so658

that it is 1 if elements in the same place in A and659

B are equal, and β if not. The Hadamard product660

⊙ represent elementwise multiplication.661

The algorithm might terminate with failure due662

to several reasons. In any steps, if the concept663

predictions are changed, we terminate. If the mask664

M has only β as elements, the perturbation will665

not go in a direction that changes the class, and we666

therefore stop. Finally, if the maximum amount of667

steps are taken, we also terminate.668

The algorithm can be improved in many ways, but669

our intention is to demonstrate that such adversarial670

examples are possible and easy to generate, not to671

make the best algorithm to do so. One possible672

improvement might for instance be to be able to 673

backtrack if the concept predictions are changed. 674

When tuning hyperparameters for the adversarial 675

concept attacks, we chose to tune the step size α, 676

which is multiplied with the perturbation in each 677

step, and the sensitivity threshold γ, which deter- 678

mines how close a concept prediction needs to be to 679

change before we try to cancel out its changes. 680

For the ConceptShapes datasets, we used a grid 681

search with step size α ∈ {0.003, 0.001, 0.00075} and 682

sensitivity threshold γ ∈ {0.1, 0.05, 0.01}. For CUB, 683

the values were α ∈ {0.0001, 0.000075, 0.00005} and 684

γ ∈ {0.1, 0.075, 0.05, 0.02}. These values were cho- 685

sen after some initial experimentation. The best val- 686

ues were α = 0.001, γ = 0.1 and α = 0.000075, γ = 687

0.1, respectively. In order to reduce the running 688

time, we sampled 200 images from the training set 689

that was correctly predicted. We used 800 max steps 690

for ConceptsShapes and 300 for CUB. 691

We ran the grid search with β = −0.3, which is 692

the weight multiplied with pixels that would make 693

concept predictions change, and ϵ = 1, which deter- 694

mines where the adversarial images get projected 695

back on. After the grid search, we performed a line 696

search on β ∈ {0.1, 0,−0.1,−0.3,−0.5,−0.7,−1}. 697

The results were very similar, but slightly better for 698

β = −0.1. The success rates were calculated using 699

all of the images in the test set where the model 700

originally predicted the correct class. 701
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Algorithm 1: Adversarial Concept Attack
Algorithm

Result: Perturbed image x̃ of x, such that
CMB h misclassifies x̃, but the
concept predictions are the same for
x̃ and x, or 0 for a failed run.

Input: Input image x ∈ Rd.
Class label y ∈ [1, . . . , p].
CBM h : Rd → Rp with input-to-concept
function g : Rd → Rk, such that
argmax(h(x)) = y.
Sensitivity threshold γ ∈ [0,∞).
Step size α ∈ (0, 1).
Deviation threshold ϵ ∈ Rd.
Max iterations tmax ∈ N1.
Gradient weight β ∈ [−1, 0].
Valid pixel range [xmin, xmax].
x̃0 ← x // Adversarial example

ĉ = g(x) // Original concept logits

ĉb = I(σ(ĉ) > 0.5) // Original binary

predictions

for t = 0 to tmax do
c̃← g(x̃t)
c̃b = I(σ(c̃) > 0.5) // New concept

predictions

if c̃b ̸= ĉb then
return 0 // Changed concept

predictions

if argmax(h(x̃t)) ̸= y then
return x̃t // Success

p̂t = sign(∇x̃t
L(h(x̃t),y)) // Initial

perturbation

Initialize Mt ∈ Rd with all elements as
ones

for j = 0 to k do
if c̃j in [−γ, γ] then

qj = sign(∇x̃t
g(x̃t)j)

Mt,j ← Iβ(p̂t ⊙ qj ̸= sign(g(x)j))
Mt ← min(Mt,Mt,j)

if All entries in Mt equal β then
return 0 // All β mask

pt = p̂t ⊙Mt // Final perturbation

x̃′ = Π[x−ϵ,x+ϵ](x̃t + αpt) // Projection

x̃t+1 = clamp(x̃′, xmin, xmax)

return 0 // Max iterations exceeded
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Table B.2. Overview of the four concepts that re-
late to the background. These four concepts are only
present in the 9-concept datasets. Each row corresponds
to one concept. The two leftmost columns of images
have the concept, while the two rightmost columns have
not.

D Hyperparameter Details 702

For the ConceptShapes datasets, the learn- 703

ing rates were sampled from values in 704

{0.05, 0.01, 0.005, 0.001}, and dropout proba- 705

bilities from {0, 0.2, 0.4}. The standard model also 706

searched for an exponential decay parameter to 707

the linear learning scheduler in {0.1, 0.5, 0.7, 1}, 708

applied every five epochs. The concept-based 709

models set the decay parameter to 0.7 and 710

searched for a weight balancing the concept loss 711

function and the class loss function. They were 712

{(100, 0.8), (100, 0.9), (5, 1), (10, 1)}, where the 713

first element in the tuples represents the weight 714

multiplied with the concept loss, and the second 715

is an exponential decay parameter, applied to the 716

weight every epoch. All of the models had an equal 717

amount of hyperparameter trials. 718

For the CUB dataset, we sat the dropout prob- 719

ability to 0.15 and searched for learning rates 720

in {0.001, 0.0005, 0.0001}. The standard model 721

searched for the exponential learning rate decay 722

parameter in {0.1, 0.7}, applied every ten epochs. 723

The concept-based models set this 1 and searched 724

for concept weight in {10, 15}. 725

The oracle models had a learning rate of 0.01 for 726

ConceptShapes and 0.001 for CUB. They quickly 727

converged and did not require further hyperparame- 728

ter tuning. The grid search was implemented with 729

the python library Optuna [32]. 730
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Model Total Parameters Trainable Parameters Frozen Parameters

ConceptShapes models with 10 classes and 5 concepts

Standard model 139 578 139 578 0
Vanilla CBM 137 583 137 583 0
CBM-Res 138 527 138 527 0
CBM-Skip 138 399 138 399 0
SCM 152 849 152 849 0

ConceptShapes models with 21 classes and 9 concepts

Standard model 139 941 139 941 0
Vanilla CBM 138 053 138 053 0
CBM-Res 139 758 139 758 0
CBM-Skip 139 614 139 614 0
SCM 167 579 167 579 0

CUB models

Standard model 11 425 032 248 520 11 176 512
Vanilla CBM 11 371 880 195 368 11 176 512
CBM-Res 11 416 952 240 440 11 176 512
CBM-Skip 11 428 088 251 576 11 176 512
SCM 11 786 488 609 976 11 176 512

Table E.1. Amount of parameters in the different
models. There are many variations of the Concept-
Shapes datasets, here we show the one resulting in the
fewest parameters (top) and the most parameters (mid-
dle).

E Training Details731

We used the Adam optimizer [33] with a linear learn-732

ing rate scheduler and the Pytorch deep learning733

library [34]. The standard model was constructed to734

be as similar as possible to the concept-based mod-735

els. Instead of a bottleneck layer, it had an ordinary736

linear layer. We added dropout [35] after the convo-737

lutional part of the models. The amount of model738

parameters can be found in Table E.1. We used a739

cross entropy loss function as the class loss and a740

binary cross entropy loss function for the concepts.741

The models trained on CUB used a frozen742

Resnet 18 [28], pre-trained on Imagenet [36], as743

the base model, while the ConceptShapes models744

were trained from scratch. We used three layers of745

3× 3 convolutional blocks, with padding and 2× 2746

maxpooling. We used 256 nodes in the first linear747

layer for the models trained on CUB, and 64 nodes748

for the models trained on ConceptShapes.749

The pixel values were scaled down to [0, 1] and750

normalized. The models trained on CUB used Ima-751

genet [36] normalization parameters, and the models752

on the ConceptShapes datasets used means of 0.5753

and standard deviations of 2 for all channels. We754

performed random cropping on the training images,755

and center cropping when evaluating and testing.756

We did not perform any data augmentation that757

changed colors of the images, in order to not inter-758

fere with the concepts relating to colors.759
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