
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEEDNORM: SELF-RESCALED DYNAMIC
NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Normalization layer constitutes an essential component in neural networks. In
transformers, the predominantly used RMSNorm constrains vectors to a unit hyper-
sphere, followed by dimension-wise rescaling through a learnable scaling coeffi-
cient γ to maintain the representational capacity of the model. However, RMSNorm
discards the input norm information in forward pass and a static scaling factor γ
may be insufficient to accommodate the wide variability of input data and distribu-
tional shifts, thereby limiting further performance improvements, particularly in
zero-shot scenarios that large language models routinely encounter. To address this
limitation, we propose SeeDNorm, which enhances the representational capability
of the model by dynamically adjusting the scaling coefficient based on the current
input, thereby preserving the input norm information and enabling data-dependent,
self-rescaled dynamic normalization. During backpropagation, SeeDNorm retains
the ability of RMSNorm to dynamically adjust gradient according to the input
norm. We provide a detailed analysis of the training optimization for SeedNorm
and proposed corresponding solutions to address potential instability issues that
may arise when applying SeeDNorm. We validate the effectiveness of SeeDNorm
across models of varying sizes in large language model pre-training as well as
supervised and unsupervised computer vision tasks. By introducing a minimal
number of parameters and with negligible impact on model efficiency, SeeDNorm
achieves consistently superior performance compared to previously commonly used
normalization layers such as RMSNorm and LayerNorm, as well as element-wise
activation alternatives to normalization layers like DyT.

1 INTRODUCTION

Normalization layers have become a fundamental building block in modern deep neural networks,
playing a key role in stabilizing training and accelerating convergence (Ioffe & Szegedy, 2015). By
enforcing statistical regularity on activations, normalization techniques help prevent issues such as
exploding or vanishing gradients, thereby enabling deeper and more expressive models. Over the
past decade, normalization has proven indispensable, especially in large-scale architectures for both
language modeling (Vaswani et al., 2017) and computer vision (He et al., 2016) fields.

However, this stability comes at a cost: conventional normalization methods (such as LayerNorm (Ba
et al., 2016) and RMSNorm (Zhang & Sennrich, 2019)) tend to discard or diminish information about
the input norm, which can restrict the expressive capacity of the network and hinder the preservation of
crucial scale-related features. Although modern normalization layers introduce learnable parameters
to restore some network expressivity, these parameters are static and input-independent, which
presents challenges in scenarios such as zero-shot generalization.

Alternatively, saturation activation functions such as tanh or its dynamic variants (Zhu et al., 2025b)
offer the potential to retain norm information by constraining outputs within a fixed range. While
these functions can preserve the relative scale or norm of the input, they inevitably suffer from the
vanishing gradient problem in extreme cases, and these functions are unable to dynamically adjust
gradients based on input norm during backpropagation like RMSNorm (Zhang & Sennrich, 2019),
which leads to inefficient optimization and slow convergence.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

100 200 300 400 500
Tokens (Billions)

2.54

2.56

2.58

2.60

2.62

2.64

Tr
ai

ni
ng

 L
os

s

x1.6 0.021

Training Loss w.r.t Tokens
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

50

51

52

53

54

55

Ac
cu

ra
cy

 (%
)

x1.5
gap=0.578

Downstream Avg. ACC.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500 600
Steps (10K)

0.151

0.152

0.153

0.154

0.155

Tr
ai

ni
ng

 L
os

s

x1.9
4.6e-04

Training Loss w.r.t Steps
DiT-B/4_DyT
DiT-B/4_SeeDNorm

50 100 150 200 250
Steps (K)

0.405

0.410

0.415

0.420

0.425

0.430

0.435

Tr
ai

ni
ng

 L
os

s

x1.3
0.006

Training Loss w.r.t Steps
ViT-B_DyT
ViT-B_SeeDNorm

Figure 1: Comparisons between SeeDNorm and prior methods across diverse tasks in language modeling
and vision. The first two figures respectively depict training loss curve comparisons and average downstream
task1accuracy between the OLMoE-1.3B (Muennighoff et al., 2024) baseline (using RMSNorm (Zhang &
Sennrich, 2019)) and the SeeDNorm-equipped model, following training on 500B tokens. The latter two figures
show training loss comparisons between DyT-based (Zhu et al., 2025b) baseline models and SeeDNorm-based
models in image generation and MAE (He et al., 2022) pre-training. All loss curves are smoothed with a 0.99
EMA.

This dilemma raises a fundamental question: Is it possible to design a method that combines the
training stability, the optimization efficiency, and the ability to preserve input norm information?

In this work, we answer this question affirmatively by introducing Self-Rescaled Dynamic Normal-
ization (SeeDNorm). SeeDNorm achieves stable and efficient training while explicitly retaining
norm information throughout the network. Extensive experiments demonstrate that SeeDNorm
consistently accelerates convergence and improves performance across both language modeling
and vision tasks, offering a simple yet effective alternative to existing normalization and activation
approaches. As illustrated in Figure 1, integrating SeeDNorm into language and vision models leads
to faster convergence and consistently improved performance across a variety of downstream tasks.
In summary, our main contributions are as follows:

• We propose SeeDNorm, a dynamic normalization layer that generalizes RMSNorm and
adaptively adjusts its scaling coefficient based on the current input, preserving the input
norm information and offering improved adaptability to data variability and distributional
shifts.

• We conduct a detailed and comprehensive analysis of the forward pass and gradients in
the backpropagation of SeeDNorm, demonstrating the advantages of our method over
existing normalization and dynamic activation alternatives, while also proposing techniques
to enhance training stability.

• Extensive experiments on large language models with both dense and MoE (Du et al., 2022)
structure, as well as computer vision tasks, show that SeeDNorm consistently accelerates
convergence and improves performance over RMSNorm, LayerNorm and DyT baselines,
with minimal additional parameters and computational cost.

We believe SeeDNorm offers a simple yet effective path towards more robust and flexible normaliza-
tion in large-scale neural networks, especially for scenarios requiring strong generalization across
diverse or shifting data distributions.

2 RELATED WORK

Normalization layers. Normalization layers are widely employed in modern deep neural networks,
and the formulation of most normalization layers can be described as:

Norm(x) = γ
x− µ√
σ2 + ϵ

+ β. (1)

ϵ is an extremely small value to prevent division by zero. Given x ∈ RB×N×D, normalization
layers enforce to transform the distribution over specific dimensions of the input to a standard normal
distribution, ensuring that data distributions across network layers remain stable during training and
accelerating model convergence. Subsequently, learnable parameters γ and β are used to adjust the

1All downstream tasks are evaluated in zero-shot manner, all tasks are shown in Table 5

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

distributions of each layer, enabling diversity in the distributions across network layers and alleviating
the degradation of the expressive capacity.

Batch normalization (BN) (Ioffe & Szegedy, 2015) operates by normalizing all elements within
each channel across the batch dimension, where the channel-specific mean µ and variance σ are
calculated as µc =

1
BN

∑
b,n xb,n,c and σ2

c = 1
BN

∑
b,n(xb,n,c − µc)

2, respectively. BN has gained
prominence in computer vision tasks, particularly in convolutional neural networks (He et al., 2016),
due to its alignment with convolutional operations: identical kernels process features within the same
channel across all spatial positions and batch samples. As discussed in (Santurkar et al., 2018), BN
effectively smooths the loss landscape and enables more stable training of the model. However, BN
is not suitable for sequence modeling tasks and may leak context information across samples within a
batch. As a result, BN is seldom adopted in large language models or generative models.

Layer Normalization (LN) (Ba et al., 2016) addresses the limitations of BN in sequence modeling.
Instead, LN normalizes the input across the feature dimension for each individual sample, where µ
and σ2 in Eq equation 1 denote the mean and variance computed along the last dimension of x. LN
is widely adopted in language modeling and Transformer architectures due to its independence from
batch size.

Root Mean Square Layer Normalization (RMSNorm) (Zhang & Sennrich, 2019) further simplifies
LN by omitting the mean subtraction and normalizing only by the root mean square of the input:

RMSNorm(x) = γ ⊙ x

RMS(x)
,where RMS(x) =

√√√√ 1

D

D∑
i=1

x2
i + ϵ (2)

⊙ is element-wise multiplication along channel dimension. RMSNorm has been shown to provide
stable training and competitive performance, especially in large-scale Transformer models (Touvron
et al., 2023). Despite the effectiveness, a fundamental limitation shared by these normalization
methods is that stability is obtained by sacrificing information related to the scale of the input, which
potentially restrict the network’s expressive capacity.

Saturation activation functions. Recent works have also attempted to use saturation activation
functions to replace normalization layers. For instance, Zhu et al. (2025b) proposes using dynamic
tanh (DyT) to substitute normalization, which can be formulated as:

DyT(x) = γ ⊙ tanh(αx) + β (3)

The input-dependent statistics are replaced with activation function and learnable scalar parameter α.
The scaling coefficient γ and shift coefficient β is also preserved. DyT explicitly preserves the norm of
the input vector x in the forward pass and constrains extreme values via tanh, thereby mapping input
vector within a hypersphere with a radius of

√
D to enhance training stability. However, DyT exhibits

a vanishing-gradient problem in its extreme regions. Since ∇xDyT(x) = αsech2(αx) · diag(γ),
when γ is too small, α is either too small or too large, or x is excessively large, the gradient tends
to approach 0. Since sech2(x) is a higher-order infinitesimal of 1

x , it still leads to the problem of
gradient vanishing when backpropagating to the preceding layers. Furthermore, in Proposition A.1,
we demonstrate that under the assumption of constant input norm, RMSNorm is equivalent to DyT in
terms of gradient w.r.t x, which also indicates that DyT lacks the ability of RMSNorm to adaptively
adjust gradients based on input norm during backpropagation.

Motivated by the limitations of existing normalization layers and saturating activation functions, we
present SeeDNorm. SeeDNorm incorporates input norm information during the forward pass and
mitigates the gradient vanishing issue in backpropagation observed in DyT, while can also adjust
gradients based on input like RMSNorm.

3 SELF-RESCALED DYNAMIC NORMALIZATION (SEEDNORM)

The core design of SeeDNorm lies in dynamically adjusting the scaling factor of normalization layer
based on the input, while incorporating input norm information. Building upon RMSNorm (Zhang
& Sennrich, 2019), we implement dynamic adjustment of the scaling parameter γ. Given the input
x ∈ RN×D, SeeDNorm can be formulated as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SeeDNorm(x) = [σ(x · βT) ·α+ γ]⊙ x

RMS(x)
, where RMS(x) =

√√√√ 1

D

D∑
i=1

x2
i + ϵ (4)

where γ ∈ R1×D denotes the learnable scaling factor in RMSNorm, β ∈ R1×D represents the self-
rescaling parameter. SeeDNorm performs matrix multiplication between the input x and βT , then
activates the result using the nonlinear function σ to obtain an intermediate output σ(x ·βT) ∈ RN×1.
To further enhance the dynamic adjustment capability of SeeDNorm, the intermediate output is
subsequently multiplied with another learnable parameter α ∈ R1×D, producing an element-wise
rescaling matrix [σ(x · βT) · α] ∈ RN×D. This rescaling matrix is conditioned on x itself and
modulates the static scaling factor γ, thereby incorporating input norm information and endowing
SeeDNorm with the ability to dynamically adjust the rescale factor for diverse inputs. In our
implementation, the σ function is instantiated using the tanh activation, which inherently constrains
the output range to [−1, 1], ensuring that large outliers in the input x do not exert a significant
influence on the scaling coefficient.

SeeDNorm can be used to replace all normalization layers in current Transformer-based models,
including QueryNorm and KeyNorm (Henry et al., 2020) that is commonly employed in the attention
modules in LLMs. Algorithm 1 presents the PyTorch-style pseudocode for the SeeDNorm imple-
mentation. The initialization method of γ is consistent with that of RMSNorm, using 1-initialization,
while β is initialized with zero. The initialization of α can be adjusted via hyperparameters. In the
following sections, we will also discuss parameter initialization methods combined with the analysis
of SeeDNorm.

During the training process, for the parameter γ, we maintain the same regularization scheme as
the baseline model; otherwise, by default, we do not apply weight decay or other regularization
techniques. For α and β, however, we apply regularization, which is more beneficial for model
training, and alleviating overfitting.

3.1 ANALYSIS OF SEEDNORM

In this section, we present a detailed analysis of the forward and backward propagation of SeeDNorm.
For forward propagation, our primary focus is on its scale invariance, specifically whether it can
maintain numerical stability when the input scale or norm undergoes significant changes. As for
translation invariance, it has already been demonstrated in RMSNorm that this does not impact model
performance, so we will not pursue further analysis on this aspect. For backward propagation, we
concentrate on the gradients of SeeDNorm with respect to each parameter α, β, γ and the input x.
Invariance Analysis. While SeeDNorm does not exhibit the same strict scale invariance as RMSNorm,
it demonstrates insensitivity to input scaling.

Since ϵ is an extremely small value, for ease of notation, we will omit it by default in the subsequent
discussion. For a given input x ∈ R1×D, when x is scaled by multiplying a factor of k, SeeDNorm
can be expressed as:

[
σ(kx · βT) ·α+ γ

]
⊙ kx√

1
D

∑D
d=1(kxd)2

=
[
σ(kx · βT) ·α+ γ

]
⊙ x√

1
D

∑D
d=1(xd)2

(5)

Therefore, when x is scaled by a factor of k, the only component in SeeDNorm that changes is the self-
rescaling matrix, which transforms from f(x) = [σ(x ·βT) ·α+γ] to f(kx) = [σ(kx ·βT) ·α+γ].
The derivative of f with respect to x is: ∇xf = sech2(x·βT)(αT ·β) = (1−tanh2(x·βT))(αT ·β).

For very large values of x, sech2(x) approaches 0 and ∇xf approaches 0, indicating that f(x)
undergoes minimal change. Conversely, as x approaches 0, ∇xf reaches its maximum value αT · β.
Therefore, to preserve insensitivity of SeeDNorm to input scaling, we initialize β to 0 to make ∇xf
is initialized with 0, and we also add weight decay to α and β. Additionally, when x is close to 0,
f(x) is primarily dominated by γ. Consequently, SeeDNorm is not significantly affected by the scale
of the input magnitude.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Gradient Analysis. Since SeeDNorm operates on each token individually, we assume by default
that x ∈ R1×D. For notational convenience, let s = σ(x · βT) ·α. The gradients of the output of
SeeDNorm with respect to α ∈ R1×D, β ∈ R1×D, γ ∈ R1×D and x are as following:

∂ SeeDNorm(x)

∂ γ
= diag(

x

RMS(x)
)

∂ SeeDNorm(x)

∂ α
=

x

RMS(x)
·
[
σ(x · βT

)ID×D

]
∂ SeeDNorm(x)

∂ β
= σ

′
(x · βT

)

((
α ⊙

x

RMS(x)

)T

· x
)

∂ SeeDNorm(x)

∂ x
= σ

′
(x · βT

)(α⊙
x

RMS(x)
)
T · β +

1

RMS(x)

(
diag(s + γ) −

(s + γ)T 11×D

D · RMS2(x)
⊙ (x

T · x)
)

(6)

Detailed derivations of the gradients are provided in Appendix B.

Gradient of γ. As demonstrated in Equation 5, the term x
RMS(x) is scale-invariant. Therefore, the

gradient of γ is not affected by samples of x that are abnormally large or abnormally small. This
property contributes to the stability of the training of γ.

Gradient of α. The gradient of α also includes the scale-invariant term x
RMS(x) , but it is multiplied

by σ(x ·βT). When σ(·) is implemented using tanh, for abnormally large values of x, the value can
be constrained within 1, thereby preventing gradient explosion. If an abnormally small input occurs,
the gradient of α will similarly become small, but γ can still update normally. Additionally, since α
directly multiplies in the gradient of β, and β also directly influences the gradient of α, α and β
cannot both be initialized to 0 simultaneously.

Gradient of β. σ′(x · βT) = 1
cosh2(x)

. When x is abnormally large, cosh(x) is a higher-order
infinitesimal of x, so the gradient of β approaches 0. Similarly, when x is abnormally small, the
gradient of β also approaches 0, thus avoiding the risk of gradient explosion. Since β is often
encapsulated within σ or σ′ in the gradient, which constrains its range, while α is directly multiplied,
we initialize β to zero, ensuring that the gradient of α starts from 0 in the early stages of training,
thereby enhancing training stability. At the same time, given that almost all gradients involve α and
β, we need to control the scale of α and β to prevent them from continuously increasing and causing
excessively large gradients. Therefore, we apply weight decay to both parameters during the training
process.

Gradient of x. Unlike the gradients of other parameters, x is the activation output of the preceding
layer, and its gradient is propagated to the previous layer for parameter updates. Therefore, when x
is excessively large, SeeDNorm should output proportional small gradient w.r.t. x, and vice versa.
Assuming x is scaled to an abnormally large kx, the first term approaches 0, and in the second term,
s approaches 1, while (kx)T ·(kx)

RMS2(kx)
= xT ·x

RMS2(x)
remains unchanged. Therefore, the gradient of kx is

primarily dominated by 1
RMS(kx) =

1
kRMS(x) . Therefore, the gradient of SeeDNorm with respect to

kx decreases by the same factor k. Thus, during backpropagation, SeeDNorm can dynamically adjust
gradients based on the input norm like RMSNorm. Similarly, when kx is abnormally small, the
second term is significantly larger than the first term and is also dominated by 1

RMS(kx) . Therefore,
SeeDNorm exhibits favorable adaptive gradient adjustment properties during backpropagation. More
analysis regarding gradients can refer to Appendix B.

3.2 MULTI-HEAD SEEDNORM

The σ(x ·βT) and σ′(x · βT) term affects the gradients of α, β, and x. In our previous analysis, we
focused only on extreme values, but in the actual training optimization process, such situations are
rare. To further ensure training stability under non-extreme conditions, our strategy is to reduce the
variance of this term, specifically, to decrease the variance of x · βT .
Theorem 3.2. In high-dimensional space, the variance of the dot product of two random vectors is
inversely proportional to their dimension D.

The proof of Theorem 3.2 can be found in the Appendix B.6. Therefore, we propose a multi-head
form of SeeDNorm, which splits x and β into multiple sub-vectors and computes the dot product

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

between these sub-vectors. This operation reduces the dimensionality of each dot product, and the
results are then concatenated back to the original dimension, thereby achieving the goal of reducing
variance. The process can be formally described as:

x =[xh1 ,xh2 , ...,xhn], β = [βh1 ,βh2 , ...,βhn]

MHSeeDNorm =
[
σ
([

xh1 · β
T
h1
, ...,xhn · β

T
hn

])
·α+ γ

]
⊙ x

RMS(x)
(7)

Under the multi-head form, the gradients of SeeDNorm with respect to each parameter and the input
are also analyzed in detail in Appendix B. And Algorithm 2 is the pseudocode. The primary change
is that σ(·) and σ′(·) are also transformed into a multi-head form, thereby achieving the goal of
reducing gradient variance.

4 EXPERIMENTS

To validate the effectiveness and generality of SeeDNorm, we conduct comprehensive experiments
across both language and vision tasks. During the experimental process, we systematically replace
all normalization layers or saturation activation functions in the baseline models with our proposed
SeeDNorm. All experiments are conducted using PyTorch 2.3.0 on NVIDIA A800.

4.1 LARGE LANGUAGE MODELS

Our experiments on language modeling primarily focus on the pretraining of large language models.
We conduct experiments under both dense and mixture-of-experts (MoE) (Shazeer et al., 2017; Fedus
et al., 2022) model architectures. We selected OLMoE (Muennighoff et al., 2024) as the baseline
for MoE architectures and OLMo2 (OLMo et al., 2024) as the baseline for dense model. To ensure
experimental consistency, We utilize the identical training corpus OLMoE-mix-0924 (Muennighoff
et al., 2024) as specified in the original OLMoE implementation, and employ the OLMo-mix-
1124 (OLMo et al., 2024) dataset identical with OLMo2.

Both OLMoE and OLMo2 adopt RMSNorm as normalization layer. In addition to attention layers
and FFNs, RMSNorm are also applied in output normalization, QueryNorm, and KeyNorm. In
our experiments, we replace all normalization layers in the models with SeeDNorm, and perform
QueryNorm and KeyNorm in each attention head. In the experiments of language modeling, the
parameter α of SeeDNorm is initialized to 1.

400 600 800 1000
Tokens (Billions)

2.26

2.28

2.30

2.32

Tr
ai

ni
ng

 L
os

s

x1.4 0.014

Training Loss w.r.t Tokens
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

60

61

62

63

64

Ac
cu

ra
cy

 (%
)

x1.5

gap=0.842

Downstream Avg. ACC.
OLMoE-7B
OLMoE-7B-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.76

2.78

2.80

2.82

2.84

2.86

2.88

2.90

Tr
ai

ni
ng

 L
os

s

x1.1

Training Loss w.r.t Tokens
OLMo2-550M
OLMo2-550M-SeeDNorm

300 350 400 450 500
Tokens (Billions)

2.63

2.64

2.65

2.66

2.67

Tr
ai

ni
ng

 L
os

s

x1.1

Training Loss w.r.t Tokens
OLMo2-1B
OLMo2-1B-SeeDNorm

Figure 2: The first two subplots respectively show a comparison of training loss and average downstream task
accuracy between OLMoE-7B baseline and the counterparts with SeeDNorm. The last two subplots show a
comparison of training loss of OLMo2-550M and OLMo2-1B baseline models and their counterparts with
SeeDNorm incorporated. All curves are smoothed using EMA with a coefficient of 0.99.

Downstream Tasks and Evaluation Metrics. Beyond evaluating each model based on the con-
vergence behavior of the cross-entropy loss during training in Figure 2, we also report the average
accuracy curves for the downstream tasks listed in Table 5. Table 1 presents several representa-
tive dataset metrics, we report the average perplexities (PPL) and losses on the c4 en-validation
dataset, and simultaneously evaluate accuracy metrics on ARC-Challenge (Clark et al., 2018), ARC-
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU-Var (Hendrycks et al.), and
PIQA (Bisk et al., 2020).

MoE Models. We conduct experiments on OLMoE-1.3B and OLMoE-7B, with activated parameter
counts of 260M and 1B, respectively. All experiments based on OLMoE-1.3B and OLMoE-7B are

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of dense model and MoE models of different sizes on the c4 en-validation
dataset and multiple downstream datasets, where all metrics for downstream tasks are reported as Acc. %.

Models Training c4 en-validation Downstream Evaluation
Tokens (B) Loss ↓ PPL ↓ ARC-C ↑ ARC-E↑ HellaSwag↑ MMLU-Var↑ PIQA↑

MoE Models

OLMoE-1.3B 500 2.922 18.63 32.3 62.2 55.2 32.4 72.6
OLMoE-1.3B-DyT 500 2.968 19.45 30.4 61.9 53.2 30.5 70.6
OLMoE-1.3B-SeeDNorm 500 2.900 18.12 34.5 65.4 56.8 33.2 73.1
OLMoE-7B 1000 2.644 14.07 40.8 73.7 71.2 38.8 76.6
OLMoE-7B-SeeDNorm 1000 2.631 13.88 44.5 76.1 71.8 40.2 79.1
Dense Model

OLMo2-550M 400 3.011 20.30 30.0 62.7 52.3 31.5 71.5
OLMo2-550M-SeeDNorm 400 3.008 20.24 31.4 63.4 52.0 31.6 71.5
OLMo2-1B 500 2.884 17.88 35.6 68.7 60.4 33.9 74.5
OLMo2-1B-SeeDNorm 500 2.879 17.79 37.8 70.0 61.0 34.8 74.5

trained on 500B tokens and 1T tokens using the corresponding corpus datasets. Detailed configura-
tions of additional experiments are provided in the Appendix C. As illustrated in Figure 1 and Figure
2, applying SeeDNorm to both the OLMoE-1.3B and OLMoE-7B models significantly accelerates
the convergence during training. Furthermore, as the number of training tokens increases, models
using SeeDNorm exhibit increasingly larger improvements in training loss compared to their baseline
counterparts. Moreover, Table 1 and Figure 1 shows that both the 1.3B and 7B models achieve
comprehensive improvements in various validation metrics and accuracy in downstream tasks. In
contrast, replacing the normalization layers of the OLMoE-1.3B model with saturation activation
function like DyT (Zhu et al., 2025b) leads to slow convergence and a degradation in performance.

40 50 60 70 80 90 100 110
Training Steps (10K)

32

34

36

38

40

42

44

46

48

FI
D

FID (CFG=1.5) w.r.t Steps
DiT-B/4
DiT-B/4-SeeDNorm

40 50 60 70 80 90 100 110
Training Steps (10K)

4

5

6

7

8

9

FI
D

FID (CFG=1.5) w.r.t Steps
DiT-XL/2
DiT-XL/2-SeeDNorm

400 600 800 1000
Steps (K)

0.1440

0.1445

0.1450

0.1455

0.1460

0.1465

0.1470

Tr
ai

ni
ng

 L
os

s

Training Loss w.r.t Steps
DiT-XL/2_DyT
DiT-XL/2_SeeDNorm

50 100 150 200 250
Steps (K)

0.390

0.395

0.400

0.405

0.410

0.415

0.420

0.425

0.430

Tr
ai

ni
ng

 L
os

s

x1.2
0.004

Training Loss w.r.t Steps
ViT-L_DyT
ViT-L_SeeDNorm

Figure 3: The first two subplots show FID comparison at different training steps wich CFG=1.5, and the last two
subplots show loss curves of DiT-XL/2 in image generation and ViT-L in MAE. All models are respectively
augmented with our proposed SeeDNorm and DyT.

Dense Models. Although MoE-based model architectures currently dominate LLMs, we also evaluate
the performance of SeeDNorm in dense model. Our experiments are primarily conducted based
on OLMo2-550M and OLMo2-1B, training on 400B and 500B tokens, respectively. Detailed
configurations of additional experiments are provided in the Appendix C. As shown in Figure 2 and
Table 1, SeeDNorm continues to yield benefits in dense models, with the training loss improvement
over baselines still widening as the number of tokens increases. But the advantage of SeeDNorm in
terms of training loss is reduced compared to MoE models. This may be because dense models do
not require dynamic activation parameters, leading to more stable training, and each parameter is
sufficiently trained, which diminishes the accelerated convergence advantage brought by SeeDNorm.
However, in zero-shot evaluation tasks, such as ARC-C and ARC-E, the application of SeeDNorm
can still significantly enhance performance. And the dynamic architectures of MoE models are better
able to amplify the advantages of SeeDNorm.

4.2 COMPUTER VISION TASKS

We conducted experiments on supervised, unsupervised, and generative visual tasks, using the multi-
head version of SeeDNorm across all tasks except image generation. More details are provided in
Appendix C.

Image Generation. We evaluate the effectiveness of SeedNorm using Diffusion Transformer
(DiT) (Peebles & Xie, 2023) as the baseline. Experiments are conducted on two model sizes: DiT-B/4
and DiT-XL/2, where 4 and 2 denote the patch sizes. It is noteworthy that SeeDNorm cannot directly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

replace AdaLN, the normalization layer within DiT. This limitation stems from the mechanism of
AdaLN that incorporates class-specific information by predicting scaling parameter γ(c) and shifting
parameter β(c) conditioned on class label c. Therefore, we retain the shift and scale terms of AdaLN,
removed the γ inside SeeDNorm, and adopted the following form that includes label conditions:

AdaSeeDNorm(x, c) =

[(
σ(x · βT

) · α + 1
)
⊙

x

RMS(x)

]
(1 + γ(c)) + η(c), where c is the condition (8)

We train DiT on the ImageNet-1K (Krizhevsky et al., 2012) dataset and evaluate on the ImageNet
validation set, which comprises a total of 50,000 images. Since DyT (Zhu et al., 2025b) has already
achieved better results than DiT baseline, we directly compare SeeDNorm with DyT in Figure 1 and
Figure 3. We present comparisons of the loss curves and FID (Heusel et al., 2017) across different
training steps. During evaluation, the cfg-scale is set to 1.5, consistent with the optimal value used
for DiT (Peebles & Xie, 2023). Additional configuration details are provided in the Appendix C.4.

Table 2: Acc@1 on ImageNet-1K classifica-
tion; (MAE) denotes fine-tuning MAE pre-
trained models.

Model LayerNorm DyT SeeDNorm
ViT-B 82.3 82.5 82.7
ViT-L 83.1 83.6 83.6

ConvNeXT-B 83.7 83.7 83.7
ConvNeXT-L 84.3 84.4 84.6
ViT-B (MAE) 83.2 83.2 83.5
ViT-L (MAE) 85.5 85.4 85.5

Supervised Learning. We conduct image classifica-
tion experiments on two representative architectures,
ViT (Dosovitskiy et al., 2021) and ConvNeXt (Liu
et al., 2022). All models are trained on the ImageNet-
1K (Krizhevsky et al., 2012) training set and evaluated on
the test set. Additional configuration details are provided
in the Appendix C.2. The results in Table 2 demonstrate
that applying SeeDNorm achieves better performance com-
pared to both DyT and LayerNorm.

Self-Supervised Learning. We select the representative self-supervised mask reconstruction task
MAE (He et al., 2022) for experiments, which are conducted on ViT (Dosovitskiy et al., 2021).
All models are initially pre-trained on the ImageNet-1K (Krizhevsky et al., 2012) dataset, and then
fine-tuned on ImageNet-1K. Additional configuration details are provided in the Appendix C.3.
Figures 1 and Figure 3 demonstrate that SeeDNorm significantly accelerates convergence during the
pre-training stage, while Table 2 shows that it also holds an advantage during fine-tuning.

4.3 ABLATION STUDY

In our ablation studies presented in this section, we primarily focus on language modeling, conducting
experiments with OLMoE-1.3B as the baseline. Additional ablation experiments are detailed in the
Appendix.

100 200 300 400 500
Tokens (Billions)

2.55

2.60

2.65

2.70

2.75

2.80

Tr
ai

ni
ng

 L
os

s

Training Loss w.r.t Tokens
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm
OLMoE-1.3B-SeedNorm-HardTanh
OLMoE-1.3B-SeedNorm-Sigmoid
OLMoE-1.3B-SeedNorm-Swish
OLMoE-1.3B-SeedNorm-GeLU

100 200 300 400 500
Tokens (Billions)

2.55

2.60

2.65

2.70

2.75

2.80

2.85

Tr
ai

ni
ng

 L
os

s

Training Loss w.r.t Tokens
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm alpha 1
OLMoE-1.3B-SeeDNorm alpha 0.1
OLMoE-1.3B-SeeDNorm alpha 10

Figure 4: Two subplots present training loss curves of
SeeDNorm with different activation functions, and with
various α initialization strategies. The loss curves are
smoothed using EMA with a coefficient of 0.99.

Activation Function in SeeDNorm. In SeeD-
Norm, the activation function σ is tanh by
default. In Figure 4, we conduct experi-
ments with different implementation choices
for σ. When employing activation func-
tions with an unbounded output range, such
as GeLU (Hendrycks & Gimpel, 2016) and
Swish (Ramachandran et al., 2017), the model
fails to converge properly. In contrast, us-
ing bounded functions like sigmoid, tanh, and
hardtanh allows the model to converge suc-
cessfully. All bounded functions achieve per-
formance superior to the baseline, with tanh
yielding the best results.

Initialization of α. As depicted in Figure 4, experiments are conducted with α initialized to 0.1, 1,
and 10, respectively. Figure 4 indicates that excessively large values of α adversely degrade training
stability and lead to poorer final performance. In contrast, smaller initial α can maintain training
stability, and a suitably larger initial α can accelerate model convergence.

Whether α a vector or scalar. In SeeDNorm, α is designed as a vector, which is used to generate an
element-wise self-rescaling matrix of the same shape as the input x. Table 4 presents our evaluation
of the performance impact when replacing α with a single scalar parameter. With α as a scalar, the
self-rescaling matrix of SeeDNorm can only adjust each input vector uniformly, rather than providing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

element-specific scaling. As shown in Table 4, substituting the D-dimensional vector α with a scalar
leads to a degradation in model performance, but it still surpasses the baseline.

The type of multiplication between β and x. SeeDNorm uses the dot product between β and x by
default. We further experimented with element-wise multiplication between β and x. Although this
does not affect the shape of the self-rescaling matrix, the results in Table 4 indicate that using the dot
product method offers better expressive power and performance.

Impact of Different Parameters in SeeDNorm. SeeDNorm incorporates three learnable parameters:
α, β, and γ, all of which are D-dimensional vectors. Table 4 presents an ablation study evaluating
the impact on model performance when each of these parameters is removed. When α is removed,
similar to the case where α is a scalar, the self-rescaling matrix is no longer element-wise; when
β is removed, SeeDNorm loses the ability to adjust the shape of the nonlinear function σ, and the
computation with α becomes a matrix multiplication; removing γ makes SeeDNorm equivalent to
directly replacing scaling factor of RMSNorm with the self-rescaling matrix.

Table 3: Ablation Study on whether to apply weight
decay to α and β and the number of heads in SeeDNorm
in ImageNet-1K classification.

Model Acc@1 Acc@5
ViT-B-SeeDNorm (16Head) 82.7 96.1
ViT-B-SeeDNorm (1Head) Fail to converge
ViT-B-SeeDNorm (8Head) 82.5 96.0

ViT-B-SeeDNorm (32Head) 82.5 96.0
ViT-B-SeeDNorm (w/o Weight Decay) 82.4 95.9

ViT-L-SeeDNorm (8Head) 83.4 96.3
ViT-L-SeeDNorm (32Head) 83.6 96.5

Impact of Multihead SeeDNorm. In vision
tasks, we employ multi-head SeeDNorm to re-
duce gradient variance and enhance training sta-
bility. In Table 3, we experiment with varying
the number of heads for the image classification
task. When the number of head is 1, the model
fails to converge. And the results indicate that
increasing the number of heads contributes to
improve performance, but an excessively high
number can lead to reduced gradient diversity,
thereby degrading performance. On larger models with greater hidden dimensions, SeeDNorm can
similarly utilize a higher number of heads.

Whether to apply weight decay to α and β. Our previous analysis suggests that regularizing α and
β enhances gradient stability. Thus, we test omitting weight decay for α and β in supervised image
classification task. Results in Table 3 indicate that removing weight decay of α and β will lead to
inferior performance. And the result validates our theoretical analysis.

Table 4: Ablation studies of SeeDNorm based on OLMoE-1.3B, all experiments are training for 500B tokens.
We evaluate various models based on validation loss and PPL on the c4 en-validation dataset, and Acc.% on
different downstream tasks. “←” denotes initialization, and “x⊙β” indicates that x and β perform element-wise
multiplication in SeeDNorm.

Models c4 en-validation Downstream Evaluation
Loss ↓ PPL ↓ ARC-C ↑ ARC-E↑ HellaSwag↑ MMLU-Var↑ PIQA↑

OLMoE-1.3B 2.922 18.63 32.3 62.2 55.2 32.4 72.6
OLMoE-1.3B-SeeDNorm (α← 1) 2.900 18.12 34.5 65.4 56.8 33.2 73.1
OLMoE-1.3B-SeeDNorm (α← 0.1) 2.912 18.39 31.2 63.7 55.6 32.3 72.8
OLMoE-1.3B-SeeDNorm (α← 10) 3.154 23.42 27.8 53.0 43.0 28.6 68.2
OLMoE-1.3B-SeeDNorm (scalar α) 2.909 18.33 32.6 62.2 55.9 32.4 72.6
OLMoE-1.3B-SeeDNorm (x⊙ β) 2.909 18.33 36.5 64.9 55.7 32.0 72.7
OLMoE-1.3B-SeeDNorm (w/o α) 2.907 18.29 32.1 67.0 56.5 32.9 73.2
OLMoE-1.3B-SeeDNorm (w/o β) 2.911 18.37 31.9 63.7 55.4 31.7 72.9
OLMoE-1.3B-SeeDNorm (w/o γ) 2.913 18.41 33.7 65.4 56.0 32.5 72.8

5 CONCLUSION

In this paper, we propose a novel normalization method SeeDNorm. SeeDNorm dynamically adjusts
the scaling factor based on the input as a condition, thereby incorporating input norm information
during the forward pass, which is overlooked in previous normalization layers like RMSNorm, while
also enhancing the model’s adaptability to diverse inputs. During backpropagation, SeeDNorm
retains the capability to dynamically adjust gradients based on input magnitude. Experimental results
demonstrate that SeeDNorm achieves faster convergence and superior performance compared to
previously commonly used normalization layers or saturated activation functions across various tasks
in language modeling and vision. We hope that this work will draw more attention to try to improve
current normalization layers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the code of ethics.

REPRODUCIBILITY STATEMENT

In Section 3, we present a detailed, equation-level specification of the proposed method, and we
provide PyTorch implementation pseudocode in the Appendix D to facilitate faithful reproduction.
The Appendix C further details the configuration of each experiment and all optimization hyperpa-
rameters, thereby ensuring result reproducibility. We also include comprehensive loss curves on
various validation sets and accuracy curves on downstream tasks for side-by-side comparison.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Sidney Greenbaum and Gerald Nelson. The international corpus of english (ice) project, 1996.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

10

https://proceedings.mlr.press/v162/du22c.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers. arXiv preprint arXiv:2010.04245, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, pp. 1106–1114, 2012.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S2ORC: The semantic
scholar open research corpus. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 4969–4983, Online, July 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.acl-main.447. URL https://www.aclweb.org/
anthology/2020.acl-main.447.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious,
2024. URL https://arxiv.org/abs/2501.00656.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, October 2023.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems, 34:1256–1272, 2021.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://www.aclweb.org/anthology/2020.acl-main.447
https://www.aclweb.org/anthology/2020.acl-main.447
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2501.00656

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated activation function. arXiv
preprint arXiv:1710.05941, 7(1):5, 2017.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94–106, 2017.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Defa Zhu, Hongzhi Huang, Jundong Zhou, Zihao Huang, Yutao Zeng, Banggu Wu, Qiyang Min,
and Xun Zhou. Frac-connections: Fractional extension of hyper-connections. arXiv preprint
arXiv:2503.14125, 2025a.

Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

USAGE OF LLM

During the writing process, we use LLMs only to assist in checking English spelling and grammar, as
well as to standardize academic writing.

APPENDIX

A GRADIENT RELATIONSHIP BETWEEN RMSNORM AND DYT

Notably, dynamic tanh (Zhu et al., 2025b) and RMSNorm exhibit profound theoretical connections
with regrad to the gradient in backpropagation.
Proposition A.1. In backpropagation, DyT is an approximate element-wise operation of RMSNorm
under the assumption that the norm of the input vector is constant.

Prof. Let r = x
RMS(x) , where x ∈ R1×D; it has been proven in (Zhang & Sennrich, 2019) that

∇xr = I
RMS(x) −

xTx
D·RMS3(x)

. Since RMS(x) = 1√
D
||x||, we conduct the derivation from the

perspective of gradient equivalence:

∇xr =

√
D

||x||

(
I − xTx

||x||2

)
=

1

RMS(x)

(
I − (

√
DxT)(

√
Dx)

D||x||2

)
=

1

RMS(x)

(
I − rTr

D

)
(9)

Given RMS(x) that is a constant, let it be denoted as c. The operation rd = xd

RMS(x) at each position
can be treated as an independent computation, and Equation 9 can be written as an element-wise
differential equation as follow:

drd
dxd

=
1

c

(
1− r2d

D

)
(10)

The steps to solve this differential equation are as follows:

drd
dxd

=
1

c

(
1− r2d

D

)
⇒ D

D − r2d
drd =

1

c
dxd (11)

We integrate both sides of the equation, for notational convenience, we set all integration constants in
the differential equation to zero by default:∫

rd

D

D − r2d
drd =

∫
x

1

c
dxd

D · 1

2
√
D

ln

∣∣∣∣∣
√
D + rd√
D − rd

∣∣∣∣∣ = 1

c
xd

ln

∣∣∣∣∣
√
D + rd√
D − rd

∣∣∣∣∣ = 2xd

c
√
D∣∣∣∣∣

√
D + rd√
D − rd

∣∣∣∣∣ = e
2xd
c
√

D

(12)

Since −
√
D < rd <

√
D, the left side of the Equation 12 is necessarily greater than 0, the absolute

value symbol can be removed. Then we have:

√
D + rd√
D − rd

= e
2xd
c
√

D

⇒ rd =
√
D · e

2xd
c
√

D − 1

e
2xd
c
√

D + 1

(13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since tanh(z) = ez−e−z

ez+e−z , we have:

rd =
√
D · e

2xd
c
√

D − 1

e
2xd
c
√

D + 1

=
√
D · e

xd
c
√

D − e
− xd

c
√

D

e
xd

c
√

D + e
− xd

c
√

D

=
√
D · tanh

(
xd

c
√
D

)
(14)

Since DyT includes a learnable scaling coefficient γ, the constant
√
D can be absorbed into γ.

Similarly, 1
c
√
D

can also be incorporated into α.

Consequently, although DyT preserves the input norm in the forward pass, it loses the ability to
dynamically adjust the gradient scale based on the magnitude of x during backpropagation, compared
to RMSNorm. In contrast, our method retains norm information in both the forward and backward
phases, endowing the model with data-dependent, self-rescaling gradients throughout the entire
optimization.

B DETAILS OF GRADIENT ANALYSIS

B.1 DETAILS OF GRADIENT ANALYSIS OF γ

Given the standard form of SeeDNorm as presented in Equation 15:

SeeDNorm(x) = [σ(x · βT) ·α+ γ]⊙ x

RMS(x)
, where RMS(x) =

√√√√ 1

D

D∑
i=1

x2
i (15)

we primarily investigate its gradient with respect to each token x ∈ R1×D. For the input sequence
X = [x1,x2, ...,xN] ∈ RN×D, since the computation of SeeDNorm for each token xi does not
interfere with others, the gradient calculation can be performed by simply concatenating the results
computed for each token.

The gradient of the SeeDNorm output with respect to γ can be expressed as:

∂ SeeDNorm(x)

∂ γ
=

∂ ([σ(x · βT) ·α]⊙ x
RMS(x))

∂ γ
+

∂ (γ ⊙ x
RMS(x))

∂ γ

= diag(
x

RMS(x)
)

(16)

Here, x
RMS((x)) ∈ R1×D, and diag refers to the generation of a D×D diagonal matrix, where the di-

agonal elements (i, i) correspond to the i-th element of x
RMS((x)) . During the actual backpropagation

update of γ, assuming the overall loss of the network is L, the gradient of γ is given by:

∇γL =
∂ L

∂ SeeDNorm(x)
· ∂ SeeDNorm(x)

∂ γ
(17)

where ∂ L
∂ SeeDNorm(x) ∈ R1×D, ∂ SeeDNorm(x)

∂ γ ∈ RD×D, and · denotes matrix multiplication. The
final result ∇γL ∈ R1×D is the update tensor for γ.

Gradient of Multihead SeeDNorm. When employing the multi-head variant of SeeDNorm, since
γ does not participate in the per-head computation of the dynamic component σ(x · βT) · α, the
gradient with respect to γ remains identical to that of the standard (single-head) SeeDNorm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 DETAILS OF GRADIENT ANALYSIS OF α

For simplicity, we denote F = SeeDNorm(x) ∈ R1×D, s = [σ(x · βT) · α] ∈ R1×D and
r = x

RMS(x) ∈ R1×D. The gradient of the SeeDNorm output with respect to α can be expressed as:

∂ SeeDNorm(x)

∂ α
=

∂ F

∂ α
≜

(
∂Fk

∂αl

)
k,l=1..D

=
∂

∂αl
[(sk + γk)rk]k,l=1..D

=

(
rk ·

∂sk
∂αl

+ rk ·
∂γk
∂αl

)
k,l=1..D

=

(
rk · σ(x · βT) · ∂αk

∂αl
+ 0

)
k,l=1..D

=
(
σ(x · βT)rk · δkl

)
k,l=1..D

= r ·
[
σ(x · βT)ID×D

]
=

x

RMS(x)
·
[
σ(x · βT)ID×D

]

(18)

Here, δkl is the Kronecker delta function, which equals 1 when k = l and 0 otherwise; ID×D

represents the D × D identity matrix, Fk, sk, and rk represent the k-th elements of F , s, and r,
respectively, while αl denotes the l-th element of α. Similar to the gradient of γ, the final gradient of
the SeeDNorm output with respect to α is ∂ SeeDNorm(x)

∂ α ∈ RD×D, and during backpropagation,
∇αL = [∂ L

∂ SeeDNorm(x) ·
∂ SeeDNorm(x)

∂ α] ∈ R1×D.

Gradient of Multihead SeeDNorm. When adopting the multi-head formulation, the derivation in
Equation 18 begins to differ from ∂sk

∂αl
in the third line onward. We define the number of split heads as

n, with x = [xh1
, ...,xhn

], where xhi
∈ R1×D

n . Similarly, α = [αh1
, ...,αhn

], β = [βh1
, ...,βhn

].
Assuming k-th element and l-th element belong to the i-th head and j-th head, respectively, when
i ̸= j, ∂sk

∂αl
= 0; when i = j, ∂sk

∂αl
= σ(αhi · βT

hj
). The derivation is as follows:

(
rk ·

∂sk
∂αl

+ rk ·
∂γk
∂αl

)
k,l=1..D

=

(
rk · δijσ(xhi · β

T
hj
) · ∂αk

∂αl
+ 0

)
k,l=1..D

=
(
δijσ(xhi · β

T
hj
)rk · δkl

)
k,l=1..D

=
(
σ(xhi · β

T
hj
)rk · δkl

)
k,l=1..D

= r ·


σ(xh1 · βT

h1
)ID

n
×D

n

. . .
σ(xhn · βT

hn
)ID

n
×D

n



=
x

RMS(x)
·


σ(xh1 · βT

h1
)ID

n
×D

n

. . .
σ(xhn · βT

hn
)ID

n
×D

n



(19)

B.3 DETAILS OF GRADIENT ANALYSIS OF β

The gradient of the SeeDNorm output with respect to β can be expressed as:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

∂ SeeDNorm(x)

∂ β
=

∂ F

∂ β
≜

(
∂Fk

∂βl

)
k,l=1..D

=
∂

∂βl
[(sk + γk) rk]k,l=1..D

=

(
rk ·

∂sk
∂βl

+ rk ·
∂γk
∂βl

)
k,l=1..D

=

(
αkrk ·

∂σ(x · βT)

∂βl
+ 0

)
k,l=1..D

=

[
αkrk ·

∂

∂βl
σ

(
D∑
t=1

xtβt

)]
k,l=1..D

=

[
αkrk · σ′(x · βT) · ∂

∂βl

(
D∑
t=1

xtβt

)]
k,l=1..D

=
(
αkrk · σ′(x · βT) · xl

)
k,l=1..D

= σ′(x · βT)
(
(α⊙ r)

T · x
)

= σ′(x · βT)

((
α⊙ x

RMS(x)

)T

· x

)

(20)

where σ′(·) denotes the derivative of σ(·), when σ(·) is tanh, the above expression can also be written
as:

∂ SeeDNorm(x)

∂ β
=
(
1− tanh2(x · βT)

)((
α⊙ x

RMS(x)

)T

· x

)
(21)

Similar to the gradients with respect to α and γ, the gradient of the SeeDNorm output with respect
to β is also a D ×D matrix, and the final gradient for updating β in backpropagation is given by
∇βL = [∂ L

∂ SeeDNorm(x) ·
∂ SeeDNorm(x)

∂ β] ∈ R1×D.

Gradient of Multihead SeeDNorm. Similar to the derivation for α, the main difference in the
gradient of β under the multi-head form also lies in ∂sk

∂βl
in the third line of Equation 20. We also

define that the k-th element and the l-th element belong to the i-th and j-th heads, respectively. The
derivation under the multi-head form is as follows:

(
rk ·

∂sk

∂βl

+ rk ·
∂γk

∂βl

)
k,l=1..D

=

αkrkδij ·
∂σ(xhi

· βT
hj

)

∂βl

+ 0


k,l=1..D

=

αkrkδij ·
∂

∂βl

σ


D
n∑

t=1

xhi,t
βhj,t




k,l=1..D

=

αkrkδij · σ′
(xhi

· βT
hj

) ·
∂

∂βl

σ


D
n∑

t=1

xhi,t
βhj,t




k,l=1..D

=
(
αkrkδij · σ′

(xhi
· βT

hj
) · δijxl

)
k,l=1..D

=
(
αkrk · δijσ′

(xhi
· βT

hj
) · xl

)
k,l=1..D

=

(
α ⊙

x

RMS(x)

)T

·
[
σ′(xh1

· βT
h1

)xh1
... σ′(xhn · βT

hn
)xhn

]

(22)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 DETAILS OF GRADIENT ANALYSIS OF x

Beyond the update of learnable parameters in SeeDNorm, in this section, we also analyze the impact
of SeeDNorm as a component in the overall backpropagation of the network by deriving the gradient
of the SeeDNorm with respect to its input x. The gradient of the SeeDNorm output with respect to x
can be expressed as:

∂ SeeDNorm(x)

∂ x
=

∂ F

∂ x
≜

(
∂Fk

∂xl

)
k,l=1..D

=
∂

∂xl
[(sk + γk) rk]k,l=1..D

=

[
rk ·

∂sk
∂xl

+ (sk + γk) ·
∂rk
∂xl

]
k,l=1..D

=

[
αkrk ·

∂σ(x · βT)

∂xl
+ (sk + γk) ·

∂rk
∂xl

]
k,l=1..D

(23)

For the first term, we have the following derivation:

∂σ(x · βT)

∂xl
=

∂

∂xl
σ

(
D∑
t=1

xtβt

)

= σ′(x · βT)
∂

∂xl

(
D∑
t=1

xtβt

)
= σ′(x · βT)βl

(24)

For the second term, we have the following derivation:

∂rk
∂xl

=
∂

∂xl

(
xk

RMS(x)

)
=

δkl · RMS(x)− xk · xl

D·RMS(x)

RMS2(x)

=
δkl

RMS(x)
− xkxl

D · RMS3(x)

(25)

By substituting Equations 24 and 25 into Equation 23, we obtain:

∂ SeeDNorm(x)

∂ x
≜
[
αkrkσ

′
(x · βT

)βl + (sk + γk)

(
δkl

RMS(x)
−

xkxl

D · RMS3(x)

)]
k,l=1..D

= σ
′
(x · βT

)(α ⊙ r)
T · β +

1

RMS(x)
diag(s + γ) −

(s + γ)T 11×D

D · RMS3(x)
⊙ (x

T · x)

= σ
′
(x · βT

)(α ⊙
x

RMS(x)
)
T · β +

1

RMS(x)
diag(s + γ) −

(s + γ)T 11×D

D · RMS3(x)
⊙ (x

T · x)

(26)

Gradient of Multihead SeeDNorm. Consistent with the previous derivations, the main difference in
the gradient of SeeDNorm with respect to x in the multi-head form lies in the part corresponding to
Equation 24. In the multi-head form, we have:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

∂sk
∂xl

= δij
∂σ(xhi

· βT
hj
)

∂xl

= δij
∂

∂xl
σ

 D
n∑

t=1

xhi,tβhj ,t


= δijσ

′(xhi
· βT

hj
)
∂

∂xl

 D
n∑

t=1

xhi,tβhj ,t


= δijσ

′(xhi · βT
hj
)βl

(27)

The final form of the gradient in the multi-head setting is:

(α ⊙
x

RMS(x)
)
T ·

[
σ′(xh1

· βT
h1

)βh1
... σ′(xh1

· βT
hn

)βhn

]
+

1

RMS(x)
diag(s + γ) −

(s + γ)T 11×D

D · RMS3(x)
⊙ (x

T · x) (28)

B.5 DISCUSSION ABOUT GRADIENTS

Gradients of γ. From Equation 16, it can be observed that the gradient magnitude of SeeDNorm
with respect to γ is not influenced by the scale of the input x. Because kx

RMS(kx) =
kx√

1
D

∑D
i (kxi)2

=

x
RMS(x) . Therefore, the gradient of γ exhibits scale invariance, remaining fundamentally stable
without requiring additional processing.

Gradients of α. By contrast, as shown in Equation 18, the gradient of α incorporates σ(x · βT),
which introduces scale-related information from x and consequently deprives the α gradient of the
scale invariance observed in γ. Therefore, to ensure training stability, we need to constrain its range
within a fixed interval using an activation function σ. Ultimately, we adopt the tanh function for
this purpose. Additionally, α directly multiplies with other terms in the gradients of both β and x
without constraints. Therefore, we prefer the model to be more cautious when initiating updates for
α. To achieve this, we initialize β to 0, ensuring that α starts with a smaller gradient during the
update process.

Gradients of β. The gradient with respect to β further depends on x and α. When x is abnormally
large, since 1− tanh2(x) is a higher-order infinitesimal of 1

x , the gradient of β approaches 0 at this
point. When x is abnormally small, the gradients of α and β also approaches 0. This situation is
rare in practice, and even if it occurs, γ can still be updated normally. And subsequent analysis also
indicates that anomalous values of x do not have a catastrophic impact on the gradient of preceding
layers during backpropagation when SeeDNorm is applied. Therefore, our primary concern is to
prevent gradient explosion. Since α directly affects the gradient of β, we apply weight decay to α.
Similarly, because β also influences the gradient of x, we apply weight decay to β as well, to control
their numerical stability.

Gradients of the input x. Regarding the gradient of x, the first term is similar to the gradient of β,
it incorporates information about the norm of x and uses σ′ to keep the values bounded. When x is
abnormally large, σ′(x) = 1 − tanh2(x) approaches 0, and since 1 − tanh2(x) is a higher-order
infinitesimal of 1

x , this ensures that the gradient does not explode. At this point, the gradient of
SeeDNorm with respect to the input x is primarily dominated by the last two terms. Conversely, when
x is abnormally small, σ′(x) approaches 1, and numerical stability of this term can be maintained
by constraining the values of α and β, and the gradient with respect to x is again dominated by the
latter two terms.

For the last two terms of Equation 26, they can be expressed as
1

RMS(x)

(
diag(s+ γ)− (s+γ)T 11×D

D·RMS2(x)
⊙ (xT · x)

)
. When the sample x undergoes scaling,

assuming x′ = kx, the expression becomes:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1

RMS(kx)

(
diag(σ(kx · βT) ·α+ γ)− (σ(kx · βT) ·α+ γ)T11×D

D · RMS2(kx)
⊙ (kxT · kx)

)
=

1

kRMS(x)

(
diag(σ(kx · βT) ·α+ γ)− k2(σ(kx · βT) ·α+ γ)T11×D

k2D · RMS2(x)
⊙ (xT · x)

)
=

1

kRMS(x)

(
diag(σ(kx · βT) ·α+ γ)− (σ(kx · βT) ·α+ γ)T11×D

D · RMS2(x)
⊙ (xT · x)

) (29)

When k is abnormally large, σ(·) approaches 1 when σ is implemented with tanh, and the numerator
and denominator of xT ·x

RMS2(x)
are of the same order of magnitude. Therefore, the above expression

is primarily influenced by 1
kRMS(x) , and it scales down by a factor of k. Therefore, this achieves a

form of adaptive stability. When the output scale of the previous layer x is abnormally large, the
corresponding gradient in backpropagation decreases, thereby ensuring training stability.

When k is abnormally small, tanh(kx ·βT) and k ·RMS(x) are equivalent infinitesimals. Therefore,
the above expression is primarily influenced by γ

kRMS(x) . As k decreases, γ
kRMS(x) increases

proportionally, thus also achieving adaptive gradient stability.

Table 5: All validation datasets and downstream test datasets used in OLMoE and OLMo2. For the validation
set, our primary metrics are validation loss and perplexity (PPL). For downstream tasks, we conduct zero-shot
evaluation and report answer accuracy (Acc%) as the key metric.

Validation Datasets
c4 en-validation (Raffel et al., 2020)

dolma books-validation (Soldaini et al., 2024)
dolma common-crawl-validation (Soldaini et al., 2024)

dolma pes2o-validation (Soldaini et al., 2024)
dolma reddit-validation (Soldaini et al., 2024)
dolma stack-validation (Soldaini et al., 2024)
dolma wiki-validation (Soldaini et al., 2024)
ice-validation (Greenbaum & Nelson, 1996)
m2d2 s2orc-validation (Lo et al., 2020)

pile-validation (Gao et al., 2020)
wiki 103-validation (Merity et al., 2016)

Downstream Tasks
PIQA (Bisk et al., 2020)

HellaSwag (Zellers et al., 2019)
ARC-Challenge (Clark et al., 2018)

ARC-Easy (Clark et al., 2018)
MMLU-Var (Hendrycks et al.)

Winogrande (Sakaguchi et al., 2021)
Openbook-QA (Mihaylov et al., 2018)

SCIQ (Welbl et al., 2017)
COPA (Roemmele et al., 2011)
BoolQ (Clark et al., 2019)

Commonsense QA (Talmor et al., 2019)
Social IQA (Sap et al., 2019)

B.6 VARIANCE OF THE DOT-PRODUCT OF TWO RANDOM VECTORS

Theorem 3.2. In high-dimensional space, the variance of the dot product of two random vectors is
inversely proportional to their dimension D.

Prof. Suppose there are two D-dimensional random vectors x = [x1, x2, ..., xD] and y =
[y1, y2, ..., yD]. Their components are independent and identically distributed (i.i.d.) random vari-
ables, and they satisfy:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E(xi) = E(yi) = 0

Var(xi) = Var(yi) = σ2
(30)

Then Var(x · yT) = Var(
∑D

i=1 xiyi), let s = x · yT , we have:

Var(s) = E(s2)− E2(s) = E(s2)

E[s2] = E

(D∑
i=1

xiyi

)2
 = E

 D∑
i=1

D∑
j=1

(xiyi)(xjyj)

 =

D∑
i=1

D∑
j=1

E[xiyixjyj]

D∑
i=1

D∑
j=1

E[xiyixjyj] =

D∑
i=1

D∑
j=1

δijE[xiyixjyj] = DE[x2
i y

2
i] = DE[x2

i]E[y2i]

(31)

Therefore, E[s2] = Dσ4 is proportional to the dimension size.

C DETAILS OF EXPERIMENTS AND MODEL SETTINGS

In this section, we will provide more experimental results, a detailed description of the different
model configurations and hyperparameter settings used for each task, as well as the parameter settings
for SeeDNorm.

C.1 OLMOE AND OLMO2 IN LANGUAGE MODELING

C.1.1 VALIDATION DATASETS AND DOWNSTREAM TASKS

The validation datasets and downstream task datasets used for OLMoE and OLMo2 in the language
modeling task are presented in Table 5. For the validation datasets, we primarily focus on the
validation loss and perplexity (PPL). Since the trends of PPL and loss are consistent, we mainly report
the loss results. For the downstream task datasets, we report the answer accuracy rate of the model.

C.1.2 MODEL AND TRAINING SETTINGS

OLMoE. The model configurations and hyper-parameters used in our OLMoE-1.3B and OLMoE-7B
models are presented in Table 6. The training and optimization parameters for both models are shown
in Table 7.

Table 6: Configuration and hyperparameters for
OLMoE-1.3B and OLMoE-7B.

Model OLMoE-1.3B OLMoE-7B
Num Layer 12 16
Hidden Dim 1024 2048
Num Head 16 16

Position Embed RoPE (θ = 10000)
Context Length 4096 4096

MoE Top-k 8 8
MoE Experts 64 64
Weight Tying Yes Yes

Table 7: Hyperparameters for the optimizer of
OLMoE-1.3B and OLMoE-7B.

Model OLMoE-1.3B OLMoE-7B
Optimizer AdamW (β1 = 0.9, β2 = 0.95)

Learning Rate 4.0e-4 4.0e-4
Weight Decay 0.1 0.1
LR Schedule Cosine Cosine

Warm up Tokens 10B 10B
Balance Loss Weight 0.01 0.01
Router z-loss Weight 0.001 0.001

Gradient Clip 1.0 1.0
Micro BatchSize 6 4
Global BatchSize 768 1024

OLMoE baseline employs a PreNorm-based structure, where normalization is applied at the input of
both the attention and MoE layers. Additionally, there are query norm and key norm layers within the
attention layer. A normalization layer is also present at the Transformer output. We replaced all these
normalization layers from RMSNorm to our proposed SeeDNorm. Specifically, for QueryNorm and
KeyNorm, we perform SeeDNorm in each attention head.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

OLMo2. The model configurations and hyper-parameters used in our OLMo2-550M and OLMo2-1B
models are presented in Table 8. The training and optimization parameters for both models are shown
in Table 9. The application of the SeeDNorm is consistent with that in OLMoE.

Table 8: Configuration and hyperparameters for
OLMo2-550M and OLMo2-1B.

Model OLMo2-550M OLMo2-1B
Num Layer 16 16
Hidden Dim 1536 2048
Num Head 16 32

Num KV Head 4 8
Position Embed RoPE (θ = 500000)
Context Length 4096 4096
Weight Tying Yes Yes

Table 9: Hyperparameters for the optimizer of
OLMo2-550M and OLMo2-1B.

Model OLMo2-550M OLMo2-1B
Optimizer AdamW (β1 = 0.9, β2 = 0.95)

Learning Rate 3.0e-4 4.0e-4
Weight Decay 0.1 0.1
LR Schedule Cosine Cosine

Warm up Tokens 8B 8B
Gradient Clip 1.0 1.0

Micro BatchSize 8 4
Global BatchSize 1024 1024

C.1.3 EXPERIMENT RESULTS

OLMoE. Figure 5 summarizes the downstream-task comparison between OLMoE-1.3B equipped
with SeeDNorm and the RMSNorm baseline. SeeDNorm yields consistent and often substantial gains
across almost every task, delivering > 2× speed-up on multiple datasets such as ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), and Social-IQA (Sap et al., 2019). Figure 6 reports
the analysis on all validation splits and shows equally pronounced advantages. Figure 7 summarizes
the downstream-task comparison between OLMoE-7B equipped with SeeDNorm and the RMSNorm
baseline. SeeDNorm also yields consistent and often substantial gains across almost every task in
OLMoE-7B, delivering > 2× speed-up on multiple datasets such as ARC-Challenge (Clark et al.,
2018), Social-IQA (Sap et al., 2019) and PIQA (Bisk et al., 2020). Figure 8 reports the analysis on
all validation splits and shows equally pronounced advantages.

OLMo2. Figure 9 illustrates the comparison of validation loss between SeeDNorm and the baseline
RMSNorm for OLMo2-550M across all validation sets. And Figure 10 illustrates the comparison
of accuracy of downstream tasks between SeeDNorm and the baseline RMSNorm for OLMo2-1B
across all validation sets. Our method similarly achieves consistent improvements in most validation
datasets and downstream tasks.

C.2 VIT AND CONVNEXT IN IMAGE CLASSIFICATION

In the image classification task, we conduct training on the ImageNet-1K (Krizhevsky et al., 2012)
training set and performed evaluation on the test set. The model configurations and hyper-parameters
in our used ViT-B and ViT-L models in image classification task are presented in Table 10. The
training and optimization parameters for both models are shown in Table 11.

Table 10: Configuration and hyperparameters for ViT-
B and ViT-L.

Model ViT-B ViT-L
Num Layer 12 24
Hidden Dim 768 1024
Num Head 12 16
Patch Size 16× 16

EMA 0.9999 0.9999
Input Resolution 224× 224

DropPath 0.1 0.6
Global Pool Average Pooling

SeeDNorm Dropout Yes Yes
SeeDNorm Head 16 32

Table 11: Hyperparameters for the optimizer of ViT-B
and ViT-L in image classification task.

Model ViT-B ViT-L
Optimizer AdamW(β1 = 0.9, β2 = 0.999)

Learning Rate 4e-3 4e-3
Weight Decay 0.05 0.1
LR Schedule Cosine Schedule

Warm up 20 Epochs
Gradient Clip 1.0 1.0

Global Batch Size 4096 4096
Training Epochs 300 300

In all ViT classification experiments, we employ the multi-head variant of SeeDNorm to enhance
training stability, because the classification task requires hundreds of training epochs, models are
prone to overfitting and can easily result in excessively high gradient variance (Pezeshki et al., 2021).
When Multihead SeeDNorm is not used, larger models like ViT-L cannot even converge. To further

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100 200 300 400 500
Tokens (Billions)

68

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

x1.8
gap=-1.591

COPA Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

70

71

72

73

74

Ac
cu

ra
cy

 (%
) x1.4

gap=0.428

PIQA Acc.
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

82

83

84

85

86

87

88

89

Ac
cu

ra
cy

 (%
)

SciQ Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

48

50

52

54

56

58

60

62

Ac
cu

ra
cy

 (%
) x7.9

gap=-1.421

BoolQ Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

56

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

x2.3

gap=3.439

ARC easy Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

26

28

30

32

34

36

38

Ac
cu

ra
cy

 (%
)

x2.3

gap=2.383

ARC Challenge Acc.
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

42.5
43.0
43.5
44.0
44.5
45.0
45.5
46.0

Ac
cu

ra
cy

 (%
)

x2.8

gap=0.723

Social Iqa Acc.
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

52

53

54

55

56

57

58

Ac
cu

ra
cy

 (%
)

WinoGrande Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

32

34

36

38

Ac
cu

ra
cy

 (%
)

Openbook QA Acc.
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

44

46

48

50

52

54

56

Ac
cu

ra
cy

 (%
)

x1.4
gap=1.307

HellaSwag Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

26

27

28

29

30

Ac
cu

ra
cy

 (%
)

MMLU hum. Var Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

25

26

27

28

29

30

31

Ac
cu

ra
cy

 (%
)

MMLU stem Var Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

36

38

40

42

Ac
cu

ra
cy

 (%
)

x1.8
gap=0.891

MMLU other Var Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

28

30

32

34

Ac
cu

ra
cy

 (%
)

MMLU soc. sci. Var Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

36

38

40

42

44

Ac
cu

ra
cy

 (%
)

x2.8

gap=1.563

Commonsense QA Acc.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

50

51

52

53

54

55

Ac
cu

ra
cy

 (%
) x1.5

gap=0.578

Downstream Avg. ACC.

OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

Figure 5: Comparisons of the accuracy of all downstream tasks from Table 5 in OLMoE-1.3B when using
SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the evolution of
downstream task accuracy as the total training tokens increase during training, with transparent lines indicating
unsmoothed results and solid lines denoting 0.99 EMA-smoothed results.

100 200 300 400 500
Tokens (Billions)

2.65

2.70

2.75

2.80

2.85

2.90

Lo
ss

x2.3 gap=-0.015

Ice val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.20

2.25

2.30

2.35

2.40

Lo
ss

x1.7 gap=-0.025

Pile val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.90

2.95

3.00

3.05

3.10

Lo
ss

x1.7 gap=-0.024

C4 en val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

3.00

3.05

3.10

3.15

Lo
ss

x1.9 gap=-0.025

Dolma cc val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.50

2.55

2.60

2.65

2.70

Lo
ss

x1.7 gap=-0.029

Dolma wiki val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

3.25

3.30

3.35

3.40

3.45

Lo
ss

M2D2 s2orc val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.85

2.90

2.95

3.00

3.05

Lo
ss

x1.7 gap=-0.031

Dolma books val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.35

2.40

2.45

2.50

2.55

Lo
ss

x1.9 gap=-0.025

Dolma pes2o val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

1.125

1.150

1.175

1.200

1.225

1.250

Lo
ss

x1.6 gap=-0.016

Dolma stack val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.60

2.65

2.70

2.75

2.80

2.85

2.90

Lo
ss

x1.7 gap=-0.030

Wikitext 103 val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

3.100
3.125
3.150
3.175
3.200
3.225
3.250

Lo
ss

x1.8 gap=-0.022

Dolma reddit val. Loss
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

2.54

2.56

2.58

2.60

2.62

2.64

Tr
ai

ni
ng

 L
os

s

x1.6 0.021

Training Loss w.r.t Tokens
OLMoE-1.3B
OLMoE-1.3B-SeeDNorm

Figure 6: Comparisons of the validation CrossEntropy loss of all validation datasets from Table 5 in OLMoE-
1.3B when using SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the
evolution of the validation loss as the total training tokens increase during training.

stabilize the training, we additionally divide α · βT by the dimension and apply dropout to the whole
dynamic coefficient σ(x · βT) ·α of SeeDNorm; the dropout rate of SeeDNorm is set equal to the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
Tokens (Billions)

78

80

82

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

x1.5
gap=2.246

COPA Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

76

77

78

79

80

Ac
cu

ra
cy

 (%
)

x2.6
gap=0.545

PIQA Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

90.5
91.0
91.5
92.0
92.5
93.0
93.5

Ac
cu

ra
cy

 (%
)

SciQ Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
) x1.4 gap=0.396

BoolQ Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

70

72

74

76

Ac
cu

ra
cy

 (%
)

ARC easy Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

x1.8
gap=0.845

ARC Challenge Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

45

46

47

48

49

Ac
cu

ra
cy

 (%
)

x2.2

gap=1.352

Social Iqa Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

60

62

64

66

Ac
cu

ra
cy

 (%
)

x1.6
gap=0.746

WinoGrande Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

38

40

42

44

Ac
cu

ra
cy

 (%
)

Openbook QA Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

67

68

69

70

71

72

Ac
cu

ra
cy

 (%
) x1.5

gap=0.838

HellaSwag Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

31

32

33

34

35

36

Ac
cu

ra
cy

 (%
)

x2.2
gap=0.769

MMLU hum. Var Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

28

30

32

34

Ac
cu

ra
cy

 (%
)

x2.3
gap=0.764

MMLU stem Var Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

44

46

48

50

52

Ac
cu

ra
cy

 (%
)

x1.9
gap=0.852

MMLU other Var Acc.

OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

38
39
40
41
42
43
44
45

Ac
cu

ra
cy

 (%
)

MMLU soc. sci. Var Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

45

46

47

48

49

50

51

Ac
cu

ra
cy

 (%
)

x1.4 gap=0.090

Commonsense QA Acc.
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

60

61

62

63

64

Ac
cu

ra
cy

 (%
)

x1.5

gap=0.842

Downstream Avg. ACC.
OLMoE-7B
OLMoE-7B-SeeDNorm

Figure 7: Comparisons of the accuracy of all downstream tasks from Table 5 in OLMoE-7B when using
SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the evolution of
downstream task accuracy as the total training tokens increase during training, with transparent lines indicating
unsmoothed results and solid lines denoting 0.99 EMA-smoothed results.

200 400 600 800 1000
Tokens (Billions)

2.4

2.5

2.6

2.7

2.8

2.9

Lo
ss

x1.5 gap=-0.019

Ice val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

1.96

1.98

2.00

2.02

2.04

2.06

2.08

Lo
ss

x1.5 gap=-0.013

Pile val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.64

2.66

2.68

2.70

2.72

Lo
ss

x1.4 gap=-0.016

C4 en val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.70

2.72

2.74

2.76

2.78

Lo
ss

x1.4
gap=-0.013

Dolma cc val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.20

2.22

2.24

2.26

2.28

2.30

Lo
ss

x1.5 gap=-0.016

Dolma wiki val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

3.00

3.02

3.04

3.06

3.08

Lo
ss

M2D2 s2orc val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.48

2.50

2.52

2.54

2.56

2.58

Lo
ss

Dolma books val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.08

2.10

2.12

2.14

2.16

Lo
ss

x1.5 gap=-0.014

Dolma pes2o val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

0.96

0.97

0.98

0.99

1.00

1.01

Lo
ss

Dolma stack val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.25

2.30

2.35

2.40

2.45

2.50

Lo
ss

x1.4 gap=-0.025

Wikitext 103 val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

200 400 600 800 1000
Tokens (Billions)

2.86

2.88

2.90

2.92

Lo
ss

x1.3
gap=-0.010

Dolma reddit val. Loss
OLMoE-7B
OLMoE-7B-SeeDNorm

400 600 800 1000
Tokens (Billions)

2.26

2.28

2.30

2.32

Tr
ai

ni
ng

 L
os

s

x1.4 0.014

Training Loss w.r.t Tokens
OLMoE-7B
OLMoE-7B-SeeDNorm

Figure 8: Comparisons of the validation CrossEntropy loss of all validation datasets from Table 5 in OLMoE-7B
when using SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the
evolution of the validation loss as the total training tokens increase during training.

drop-path rate of the model. Notably, ViT-L, when augmented with SeeDNorm, exhibits strong fitting

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

100 150 200 250 300 350 400
Tokens (Billions)

2.96

2.98

3.00

3.02

3.04

3.06

3.08

Lo
ss

x1.4gap=-0.016

Ice val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.34

2.36

2.38

2.40

2.42

2.44

2.46

2.48

Lo
ss

Pile val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

3.00

3.02

3.04

3.06

3.08

3.10

3.12

Lo
ss

C4 en val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

3.12

3.14

3.16

3.18

3.20

3.22

3.24

Lo
ss

Dolma cc val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70

Lo
ss

Dolma wiki val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

3.28

3.30

3.32

3.34

3.36

Lo
ss

M2D2 s2orc val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.925

2.950

2.975

3.000

3.025

3.050

3.075

Lo
ss

Dolma books val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.30

2.32

2.34

2.36

2.38

2.40

2.42

Lo
ss

Dolma pes2o val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

1.44

1.46

1.48

1.50

1.52

1.54

1.56

1.58

Lo
ss

Dolma stack val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.625

2.650

2.675

2.700

2.725

2.750

2.775

Lo
ss

Wikitext 103 val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

3.26

3.28

3.30

3.32

3.34

3.36

Lo
ss

Dolma reddit val. Loss
OLMo2-550M
OLMo2-550M-SeeDNorm

100 150 200 250 300 350 400
Tokens (Billions)

2.76

2.78

2.80

2.82

2.84

2.86

2.88

2.90

Tr
ai

ni
ng

 L
os

s

x1.1

Training Loss w.r.t Tokens
OLMo2-550M
OLMo2-550M-SeeDNorm

Figure 9: Comparisons of the validation CrossEntropy loss of all validation datasets from Table 5 in OLMo2-
550M when using SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the
evolution of the validation loss as the total training tokens increase during training.

100 200 300 400 500
Tokens (Billions)

67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0

Ac
cu

ra
cy

 (%
)

COPA Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

70

71

72

73

74

75

76

Ac
cu

ra
cy

 (%
)

PIQA Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

SciQ Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ac
cu

ra
cy

 (%
)

x2.9
gap=1.824

BoolQ Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
) x1.5gap=0.257

ARC easy Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

28

30

32

34

36

38

40

Ac
cu

ra
cy

 (%
)

x1.6
gap=1.507

ARC Challenge Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

43.5

44.0

44.5

45.0

45.5

46.0

46.5

Ac
cu

ra
cy

 (%
)

x1.4gap=-0.073

Social Iqa Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

52

54

56

58

60

62

Ac
cu

ra
cy

 (%
)

WinoGrande Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

33

34

35

36

37

38

39

40

Ac
cu

ra
cy

 (%
)

Openbook QA Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

48

50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

HellaSwag Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

26

27

28

29

30

31

32

Ac
cu

ra
cy

 (%
)

x2.5

gap=1.598

MMLU hum. Var Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

26

28

30

32

Ac
cu

ra
cy

 (%
)

x3.3

gap=1.258

MMLU stem Var Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

MMLU other Var Acc.
OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

30

32

34

36

38

Ac
cu

ra
cy

 (%
)

x2.2

gap=1.393

MMLU soc. sci. Var Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

Commonsense QA Acc.

OLMo2-1B
OLMo2-1B-SeeDNorm

100 200 300 400 500
Tokens (Billions)

52

54

56

58

Ac
cu

ra
cy

 (%
)

Downstream Avg. ACC.

OLMo2-1B
OLMo2-1B-SeeDNorm

Figure 10: Comparisons of the accuracy of all downstream tasks from Table 5 in OLMo2-1B when using
SeeDNorm as the normalization layer versus the default RMSNorm. The figure illustrates the evolution of
downstream task accuracy as the total training tokens increase during training, with transparent lines indicating
unsmoothed results and solid lines denoting 0.99 EMA-smoothed results.

capabilities, necessitating a further increase in its drop path rate to 0.6. For all models, the final
classification accuracy is evaluated using the EMA model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: Configuration and hyperparameters for
ConvNeXT-B and ConvNeXT-L.

Model ConvNeXT-B ConvNeXT-L
Depth [3, 3, 27, 3] [3, 3, 27, 3]

Dims

 128
256
512
1024


 192

384
768
1536


EMA 0.9999 0.9999

Input Resolution 224× 224
DropPath 0.5 0.5

SeeDNorm Dropout No No
SeeDNorm Head 16 32

ls init value 1e-6 1e-6
head init scale 1.0 1.0

Table 13: Hyperparameters for the optimizer of
ConvNeXT-B and ConvNeXT-L in image classifi-
cation task.

Model ConvNeXT-B ConvNeXT-L
Optimizer AdamW(β1 = 0.9, β2 = 0.999)

Learning Rate 4e-3 4e-3
Weight Decay 0.05 0.1
LR Schedule Cosine Schdule

Warm up 20 Epochs
Gradient Clip 1.0 1.0

Global Batch Size 4096 4096
Training Epochs 300 300

The model configurations and hyper-parameters in our used ConvNeXT-B and ConvNeXT-L models
in image classification task are presented in Table 12. The training and optimization parameters for
both models are shown in Table 13. The configuration of ConvNeXT is largely consistent with that
of ViT. The main difference lies in the ConvNeXT model, which is structured into four stages, each
with varying depths and dimensions. The detailed configuration is presented in Table 12.

C.2.1 EXPERIMENT RESULTS

In the main text, we have already reported the accuracy results for the image classification task.
Figure 11 and Figure 12 present detailed comparisons of the loss curves during training. With the
application of SeeDNorm, our method demonstrates a clear advantage over DyT in the training curves.
When scaling up to ViT-L, despite using a higher drop path rate, the loss advantage becomes even
more pronounced. This also reflects an enhanced fitting capability of the model under the influence
of SeeDNorm, although this gap is not effectively reflected in the accuracy data on the test set.

100 125 150 175 200 225 250 275 300
Epochs

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Tr
ai

ni
ng

 L
os

s

x1.1

Training Loss w.r.t Epochs
ViT-B_DyT
ViT-B_SeeDNorm

100 125 150 175 200 225 250 275 300
Epochs

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Tr
ai

ni
ng

 L
os

s

x1.2

Training Loss w.r.t Epochs
ViT-L_DyT
ViT-L_SeeDNorm

Figure 11: Comparison of the Cross Entropy loss curves for ViT-B and ViT-L on the ImageNet image classifica-
tion task using DyT and SeeDNorm, plotted against the number of training epochs. The loss curves have been
smoothed using a 0.99 EMA.

C.3 VIT IN MAE

In the MAE pre-training and fine-tuning task, we also employed ViT-B and ViT-L as the primary
research models. The model structures of ViT-B and ViT-L are consistent with those presented in
Table 10, with the distinction that neither EMA is used during the pre-training nor the subsequent
fine-tuning processes for MAE, drop path and dropout is also not used in the pre-training phase. The
training and optimizer configurations for MAE pre-training and fine-tuning are detailed in Table 14
and Table 15, respectively. During the fine-tuning process, for ViT-L, we increase the drop path rate
to further prevent overfitting. For the remaining configurations, we maintained consistency with the
DyT (Zhu et al., 2025b) baseline.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.3.1 EXPERIMENT RESULTS

In Figure 13, we plot the loss comparison curves during the pre-training process. Whether for ViT-B
or ViT-L, the application of SeeDNorm significantly reduces the loss. In Figure 14, we illustrate the
loss variation curves during the fine-tuning process, where SeeDNorm similarly achieves a notable
reduction in loss during fine-tuning.

100 125 150 175 200 225 250 275 300
Epochs

2.6

2.8

3.0

3.2

3.4

3.6

Tr
ai

ni
ng

 L
os

s

x1.2

Training Loss w.r.t Epochs
ConvNeXT-B_DyT
ConvNeXT-B_SeeDNorm

100 125 150 175 200 225 250 275 300
Epochs

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Tr
ai

ni
ng

 L
os

s

x1.1

Training Loss w.r.t Epochs
ConvNeXT-L_DyT
ConvNeXT-L_SeeDNorm

Figure 12: Comparison of the Cross Entropy loss curves for ConvNeXT-B and ConvNeXT-L on the ImageNet
image classification task using DyT and SeeDNorm, plotted against the number of training epochs. The loss
curves have been smoothed using a 0.99 EMA.

50 75 100 125 150 175 200 225 250
Steps (K)

0.405

0.410

0.415

0.420

0.425

0.430

0.435

Tr
ai

ni
ng

 L
os

s

x1.3
0.006

Training Loss w.r.t Steps
ViT-B_DyT
ViT-B_SeeDNorm

50 75 100 125 150 175 200 225 250
Steps (K)

0.390

0.395

0.400

0.405

0.410

0.415

0.420

0.425

0.430

Tr
ai

ni
ng

 L
os

s

x1.2
0.004

Training Loss w.r.t Steps
ViT-L_DyT
ViT-L_SeeDNorm

Figure 13: Comparison of the MSE loss curves for ViT-B and ViT-L on the MAE self-supervised image masking
reconstruction task using DyT and SeeDNorm, plotted against the number of training epochs. The loss curves
have been smoothed using a 0.99 EMA.

0 20 40 60 80 100
Epochs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

x1.3

Training Loss w.r.t Epochs
ViT-B_DyT
ViT-B_SeeDNorm

0 10 20 30 40 50
Epochs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Tr
ai

ni
ng

 L
os

s

x1.2

Training Loss w.r.t Epochs
ViT-L_DyT
ViT-L_SeeDNorm

Figure 14: Comparison of the Cross Entropy loss curves against the number of training epochs for ViT-B and
ViT-L, using DyT and SeeDNorm with full-parameter fine-tuning initialized with MAE pre-trained weights on
the ImageNet image classification task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.4 DIT IN IMAGE GENERATION

In the image generation task, we conducted experiments based on DiT-B (Peebles & Xie, 2023)
and DiT-XL (Peebles & Xie, 2023), with the model configurations detailed in Table 16 and training
hyperparameters in Table 17, respectively. For the image generation task, because the random noise
and timestep sampling of diffusion greatly enrich sample diversity, it is harder for the model to overfit
compared to image classification tasks, and using the standard form of SeeDNorm is sufficient to
ensure stable training of the model. Therefore, we have not explored the multi-head form at this
stage.

Table 14: Hyperparameters for the optimizer of ViT-B
and ViT-L in MAE pre-training.

Model ViT-B ViT-L
Optimizer AdamW (β1 = 0.9, β2 = 0.95)

Learning Rate 2.4e-3 2.4e-3
LR Schedule Cosine Schedule
Weight Decay 0.05 0.05

Mask Ratio 0.75 0.75
Warm up 40 Epochs

Gradient Clip No No
Global Batch Size 4096 4096
Training Epochs 800 800

Table 15: Hyperparameters for the optimizer of ViT-B
and ViT-L in MAE fine-tuning.

Model ViT-B ViT-L
Optimizer AdamW (β1 =, β2 =)

Learning Rate 2e-3 4e-3
LR Schedule Cosine Schedule
Weight Decay 0.05 0.05

DropPath 0.1 0.2
Warm up 5 Epochs 5 Epochs

Gradient Clip No No
Global Batch Size 1024 1024
Training Epochs 100 50

Table 16: Configuration and hyperparameters for DiT-
B/4 and DiT-XL/2.

Model DiT-B/4 DiT-XL/2
Num Layer 12 28
Hidden Dim 768 1152
Num Head 12 16
Image Size 256× 256 256× 256
Latent Size 32× 32 32× 32
Patch Size 4 2
MLP Ratio 4 4

Table 17: Hyperparameters for the optimizer of DiT-
B/4 and DiT-XL/2 in image classification task.

Model DiT-B/4 DiT-XL/2
Optimizer AdamW (β1 = 0.9, β2 = 0.999)

Learning Rate 1e-4 1e-4
LR Schedule Constant
Weight Decay - -
class drop prob 0.1 0.1

Global Batch Size 256 256

D PYTORCH IMPLEMENTATION OF SEEDNORM

In Algorithm 1 and Algorithm 2, we implement our proposed SeeDNorm and its Multihead form
respectively, using a PyTorch-like style.

Algorithm 1 Pseudocode of SeeDNorm in a PyTorch-like style.

class SeeDNorm(Module):
def init (self, D, init):

super(). init ()
self.α = Parameter(ones(D) * init)
self.β = Parameter(zeros(D))
self.γ = Parameter(ones(D))

def forward(self, x):
rescale = tanh(x @ self.β)
x = x / RMS(x)
dynamic scale = rescale.unsqueeze(1) * self.α
return (dynamic scale + self.γ) * x

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Algorithm 2 Pseudocode of Multihead SeeDNorm in a PyTorch-like style.

class SeeDNorm(Module):
def init (self, D, init, num heads):

super(). init ()
self.α = Parameter(ones(D) * init)
self.β = Parameter(zeros(D))
self.γ = Parameter(ones(D))
self.num heads = num heads

def forward(self, x):
B, N, D = x.shape
x dtype = x.dtype
h = x.reshape(B, N, self.num heads, D // self.num heads).transpose(1, 2)
β = self.β.reshape(1, self.num heads, 1, D // self.num heads).repeat(B, 1, 1, 1).transpose(−1, −2)
activate = tanh(torch.matmul(h, β).float())
α = self.α.reshape(1, self.num heads, 1, D // self.num heads).repeat(B, 1, 1, 1)
dynamic scale = activate * α
dynamic scale = dynamic scale.to(x dtype)
x = x / RMS(x)
return (dynamic scale + self.γ) * x

E PARAMETERS AND COMPUTATION COST

Compared to RMSNorm, SeeDNorm introduces two additional D-dimensional parameters, α and
β. In the entire Transformer network, assuming each layer includes input normalization for the
attention layer and FFN, QKNorm within the attention layer, and normalization at the Transformer
output, the newly introduced parameters amount to (2 × 2D + 2 × 2 × D/H) × N + 2D =
(4N + 4N

H + 2)×D, where H is the number of attention heads. Since N is much smaller than D,
the increase in the overall parameter is much smaller than a linear layer, which can be considered
negligible. In terms of computational complexity, compared to RMSNorm, SeeDNorm introduces
two additional matrix multiplications, one element-wise activation, and one element-wise addition
along the channel dimension. For each token x ∈ R1×D, compared to RMSNorm, the number of
additional multiplications is 2D, and the number of additional additions is D +D − 1. The total
additional multiply-add operations for the entire network are (4D−1)×(2N+1)+(4DH −1)×2N =

(8N + 8N
H + 4) × D − 4N − 1 = O(D). In contrast, a D × D linear layer already involves a

computational complexity of O(D2). Therefore, the additional computational overhead introduced
by SeeDNorm remains negligible.

However, when using only the PyTorch implementation, SeeDNorm requires more memory access
operations and these operations are more fragmented compared to RMSNorm. This will affect
latency and overall efficiency to a certain extent. In practical applications, we recommend fusing the
operations into a single kernel function, thereby achieving comparable efficiency. The implementation
of triton kernel of the forward process is shown in Algorithm 3.

F MORE ABLATION STUDIES

Applying SeeDNorm in Each Attention Head. When applying SeeDNorm in QKNorm, we perform
normalization on each attention head, computing it in the same dimension as multi-head attention. In
Table 18, we experiment with retaining the original structure of OLMoE, performing normalization
across the entire hidden dimension. The results indicate that normalization on each attention head
yields slightly better performance, though the difference is not significant.

Multihead SeeDNorm in OLMoE. In OLMoE, we do not use multi-head SeeDNorm. On one
hand, training on a large corpus is less prone to overfitting and does not exhibit the high gradient
variance seen in vision tasks with multiple training epochs. On the other hand, MoE models require
appropriate gradient variance to dynamically train more experts. In Table 18, we also conducted
experiments using a 16-head SeeDNorm configuration. The application of multihead SeeDNorm
does not improve the performance.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 3 Triton Implementation of the forward process of SeeDNorm.

@triton.jit
def seednorm fwd kernel(

X, Y, W, alpha, beta, stride ml, stride n, L, N, eps, BLOCK SIZE: tl.constexpr,
):

row = tl.program id(0)
batch = tl.program id(1)

base idx = row * stride ml + batch * stride n
Y += base idx
X += base idx

rms = tl.zeros([BLOCK SIZE], dtype=tl.float32)
dot product = tl.zeros([BLOCK SIZE], dtype=tl.float32)

for off in range(0, N, BLOCK SIZE):
cols = off + tl.arange(0, BLOCK SIZE)
a = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
beta element = tl.load(beta + cols, mask=cols < N).to(tl.float32)
rms += a * a
dot product += a * beta element

rms = tl.sqrt(tl.sum(rms) / N + eps)
dot product = tl.sum(dot product)
neg two x = −2.0 * dot product
exp neg two x = tl.exp(neg two x)
dot product = (1.0 − exp neg two x) / (1.0 + exp neg two x)

for off in range(0, N, BLOCK SIZE):
cols = off + tl.arange(0, BLOCK SIZE)
mask = cols < N
w = tl.load(W + cols, mask=mask)
alpha element = tl.load(alpha + cols, mask=mask)
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
x hat = x / rms
y = x hat * (w + alpha element * dot product)
tl.store(Y + cols, y.to(X.dtype.element ty), mask=mask)

class SeeDNorm(Module):
def init (self, D, init):

super(). init ()
self.α = Parameter(ones(D) * init)
self.β = Parameter(zeros(D))
self.γ = Parameter(ones(D))

def forward(x):
y = torch.empty like(x)
M, L, N = x.shape
grid = (M, L)
seednorm fwd kernel[grid](

x, y, self.weight, self.alpha, self.beta, x.stride(0), x.stride(1), L, N, self.eps, BLOCK SIZE=1024
)
return y

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 18: More ablation studies of SeeDNorm based on OLMoE-1.3B and OLMoE-7B, training for 500B
tokens and 1T tokens, respectively. We evaluate various models based on validation loss and PPL on the
c4 en-validation dataset, and Acc.% on different downstream tasks.

Models c4 en-validation Downstream Evaluation
Loss ↓ PPL ↓ ARC-C ↑ ARC-E↑ HellaSwag↑ MMLU-Var↑ PIQA↑

OLMoE-1.3B 2.922 18.63 32.3 62.2 55.2 32.4 72.6
OLMoE-1.3B-SeeDNorm 2.900 18.12 34.5 65.4 56.8 33.2 73.1
OLMoE-7B-SeeDNorm 2.631 13.88 44.5 76.1 71.8 40.2 79.1

OLMoE-1.3B-QKNormAll 2.902 18.20 34.1 64.2 56.2 32.6 74.2
OLMoE-1.3B-MultiheadSeeDNorm 2.904 18.25 31.5 63.9 55.7 32.9 71.9
OLMoE-1.3B-FC×2 2.908 18.32 32.1 63.5 55.9 31.6 72.4
OLMoE-1.3B-SeeDNorm-FC×2 2.899 18.11 34.8 64.7 56.9 33.4 73.9
OLMoE-7B-FC×4 2.630 13.88 44.3 75.6 71.9 39.6 78.2
OLMoE-7B-SeeDNorm-FC×4 2.629 13.86 44.9 76.6 72.4 39.9 79.1

Figure 15: Input-output distribution comparison between SeeDNorm and RMSNorm on OLMoE-1B.

Figure 16: Input-output distribution comparison between SeeDNorm and DyT on ViT-B.

Combine with Advanced Structure. In Table 18, we also presents performance evaluations of
SeeDNorm on more advanced model architectures. For these experiments, we selected OLMoE
variants improved with Frac-Connection (Zhu et al., 2025a). We conduct experiments on models
with both 1.3B and 7B parameters, where the frac-rate is set to 2 for the 1.3B model and 4 for the
7B model, respectively. SeeDNorm can further enhance performance, with the effect being more
pronounced in downstream tasks.

G VISUALIZATIONS

To further understand the behavior of SeeDNorm in representation learning, we visualized the input-
output distribution of SeeDNorm. Specifically, we compared SeeDNorm with RMSNorm on the
OLMoE-1B model, and SeeDNorm with DyT on the ViT-B model respectively. The SeeDNorm
layers visualized here are all the final output normalization layers of the Transformer, and the two
figures in the same column share the same sample inputs. In all visualizations, the x-axis denotes
the input values of elements, the y-axis denotes the normalized values of SeeDNorm, and points

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

of the same color correspond to samples from the same token. Due to the large number of points,
we use JPEG images instead of vector graphics here. It can be observed that compared to DyT and
RMSNorm, the outputs of SeeDNorm show more distinct separation between different samples,
instead of being clustered together, all samples are more uniformly distributed across the entire space,
indicating that the features of different tokens are more discriminative.

32

	Introduction
	Related Work
	Self-Rescaled Dynamic Normalization (SeeDNorm)
	Analysis of SeeDNorm
	Multi-Head SeeDNorm

	Experiments
	Large Language Models
	Computer Vision Tasks
	Ablation Study

	Conclusion
	Gradient Relationship Between RMSNorm and DyT
	Details of gradient analysis
	Details of gradient analysis of
	Details of gradient analysis of
	Details of gradient analysis of
	Details of gradient analysis of x
	Discussion about Gradients
	Variance of the Dot-Product of Two Random Vectors

	Details of Experiments and Model Settings
	OLMoE and OLMo2 in Language Modeling
	Validation Datasets and Downstream Tasks
	Model and Training Settings
	Experiment Results

	ViT and ConvNeXT in Image Classification
	Experiment Results

	ViT in MAE
	Experiment Results

	DiT in Image Generation

	PyTorch Implementation of SeeDNorm
	Parameters and Computation Cost
	More Ablation Studies
	Visualizations

