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ABSTRACT

Understanding the ramifications of mutations at a protein level can have significant
implications in various domains such as drug development, understanding disease
pathways, and in the broader field of genomics. Despite the promise of data-driven
and deep learning (DL) strategies, existing algorithms still face a significant chal-
lenge in integrating the dynamic changes of biomolecules to accurately predict
protein-protein interaction binding affinity changes following mutations (∆∆G).
Within this study, we introduce an inventive approach aimed at capturing the equi-
librium fluctuations and discerning induced conformational changes at the inter-
face, which is particularly important for forecasting mutational effects on binding.
This novel technique harnesses probability density clouds (PDC) to describe the
magnitude and intensity of their movement during and after the binding process
and puts forth aligned networks to propagate distributions of the equilibrium of
molecular systems. To fully unleash the potential of PDC-Net, we further present
two physics-inspired pretraining tasks to employ the molecular dynamics (MD)
simulation trajectories and the extensive collection of static crystal protein struc-
tures. Experiments demonstrate that our approach surpasses the performance of
both empirical energy functions and alternative DL methods.

1 INTRODUCTION

Figure 1: The illustration of our proposed PDC
representations.

Proteins are the primary functional molecules
in cells, typically engaging in various life pro-
cesses such as biological signal transmission
and gene expression regulation through protein-
protein interactions (PPIs) (Phizicky & Fields,
1995; Du et al., 2016). Since PPIs govern
nearly all biochemical reactions in living cells,
investigating these interactions can foster a
deeper understanding of disease and pave the
way for novel treatments. A prime example
is antibody therapy. Specific monoclonal an-
tibodies can bind to corresponding target pro-
teins and disrupt the connection between cancer
cells and proteins that encourage cell growth,
thereby facilitating disease treatment.

Considering the potential of amino acid mu-
tations to alter the charge distribution and 3D
structure of protein surfaces, thereby influenc-
ing PPI, biologists have the ability to develop
and screen more effective drugs through the de-
sign of amino acid mutations. Nevertheless, the realm of possible mutation space is vast, posing a
risk of initiating a series of unknown and potentially unpredictable effects if mutations are not judi-
ciously selected (Li et al., 2023). Computational techniques can facilitate this process by analyzing
a substantial body of existing data on amino acid mutations. These techniques allow for a more
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accurate prediction of mutation’s impacts on protein structure and function. Furthermore, they can
consistently refine experimental designs and predictions by evaluating the expected consequences
of mutations on binding affinity, thereby identifying the mutation sites with the highest potential for
producing significant outcomes.

The impact of mutational effects on binding strength can often be computationally assessed by pre-
dicting changes in binding free energy (∆∆G). These calculation methods mainly comprise three
main categories: biophysics-based methods such as molecular dynamics (MD) simulations (Leman
et al., 2020)), statistics-based methods such as statistical potential energy functions (Park et al.,
2016; Alford et al., 2017), and deep learning (DL) methods (Rives et al., 2021; Wu et al., 2022a;
Min et al., 2022; Wu et al., 2022c). However, the first two methods are highly dependent on hu-
man expertise and existing datasets and require substantial computational resources, hindering their
ability to fully exploit the expanding availability of protein structures. Moreover, biophysics-based
approaches encounter a trade-off between efficiency and accuracy, as they depend on sampling from
energy functions. Though statistical ones offer greater efficiency, their capability is constrained by
the descriptors incorporated into the model. DL has made fruitful progress in predicting the binding
affinity, but there is a notable limitation among the existing mechanisms: they neglect to incorpo-
rate the crucial thermodynamic principle. It is broadly acknowledged that proteins exhibit inherent
dynamism, and their dynamic propertices play a vital role in their biological functionality and serve
as key targets for therapeutic interventions (Miller & Phillips, 2021).

The range of proteins’ conformational dynamics in nature can be generally divided into three classes
of increasing complexity and the difficulty of characterization (Zheng et al., 2023a). Local confor-
mational dynamics within a large well-defined native fold is the simplest case and includes atomic
thermal fluctuations around native structures that measure local rigidity. Such rigidity can usually be
inferred from the crystal B-factors (Sun et al., 2019) or derived readily from short MD simulations.
The second sort contains proteins that undergo large-scale conformational transitions between two
or more major states triggered by various cellular stimuli, such as ligand binding, post-translational
modifications, and changes in solution conditions (Orellana, 2019; Cai et al., 2020). The last class
encloses proteins that can remain partially or fully disordered under physiological conditions (Uver-
sky, 2019). In most PPI analyses, conformational dynamics mainly come from the first two cat-
egories, and a thermodynamic ensemble of a PPI system can represent a distribution of complex
conformations in equilibrium. Theoretically, these conformations, with varying probabilities of oc-
currence, collectively depict the free energy state of the system (Wei et al., 2016). Therefore, con-
formation snapshots sampled from the thermodynamic ensemble can approximate the distribution
of the conformation space and further reflect the free-energy state of the ligand binding.

Given the value of this conformation dynamics, it is necessary to develop suitable algorithms that
can capture equilibrium fluctuations and be notified of triggered conformational changes. Toward
this goal, we propose a new framework, called the probability density cloud network (PDC-Net)
with several distinct innovations (see Fig. 2). Firstly, we regard the complex structure ensembles
as probability density clouds (PDC), where each particle is no longer static but their appearance
complies with some well-defined distributions in the 3D space. Those distributions depict the mag-
nitude and intensity of their movement during and after the PPI binding process, underlying the
functional cycles of membrane proteins. Secondly, to align with this new and special representation
of PDC, we devise a new kind of DL architecture to propagate distributions throughout the neu-
ral network’s computation. Instead of receiving determinant geometric features, PDC-Net aims to
quantify the equilibrium distributions of each PPI pair, and most of its ideology can be universally
applied to the majority of other geometric neural networks (NNs). Last but not least, we propose
two physics-related pretraining tasks to capture the thermodynamic information in an unsupervised
way by restoring the fluctuation of MD trajectories and side-chain angles. This knowledge can then
be transferred to the ∆∆G prediction coherently.

2 METHOD

2.1 PRELIMINARY AND BACKGROUND

We characterize the binding structures as heterogeneous geometric graphs (Wu et al., 2022a), where
the nodes represent the ligand and receptor atoms for the fine-grained representation or the residues
for the coarse-grained representation. Explicitly, the complex GLR = (GL,GR, ELR, ERL) consists
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Figure 2: The upper subplot describes the workflow of PDC-Net to forecast ∆∆G. The bottom
subplot decpicts two physics-inspired pretraining tasks.

of a ligand graph GL = (VL, EL) with nL nodes and a receptor graph GR = (VR, ER) with nR
nodes . ELR and ERL are directed edges between the ligand and the receptor, and vice versa. For
undirected graphs, ERL = ELR. Each node vi ∈ VL ∪ VR has its corresponding 3D coordinates
xL ∈ RnL×3 and xR ∈ RnR×3 and the initial ψh-dimension roto-translational invariant features
hL ∈ RnL×ψh and hR ∈ RnR×ψh (e.g., atom types and electronegativity).

Conventionally, previous DL studies aim to explore the inaccessible function in terms of a parameter-
ized NN gθ : ΩG 7→ Y , which maps the static complex GLR ∈ ΩG to the associated binding property
y ∈ Y . θ involves all trainable parameters. It is worth noting that the sample space of ensemble
structures ΩG follows the Boltzmann distribution (Landau, 1986). The probability of a chosen con-
formation can be computed from its equilibrium distribution fGLR

as P(GLR) ∝ exp
(
−ED(GLR)

kBT

)
at the target temperature T , whereED stands for the energy function of the current molecular system
D and kB is the Boltzmann constant.

However, this target learning gθ has some intrinsic flaws, as proteins show dynamism in nature.
The most probable structure only reveals a small portion of the information needed to understand
a molecular system in equilibrium. In reality, molecules can be highly flexible and the equilib-
rium distribution is crucial for studying statistical mechanical properties. In other words, the chosen
biological functionality (i.e., affinity) is not a reflection of a single molecular structure but is de-
termined by the equilibrium distributions of structures (Zheng et al., 2023b). Therefore, we take
thermodynamics into account and attempt to learn a connection between the equilibrium distribu-
tion of complexes fGLR

and their corresponding binding property y. That is, the formula of our
DL algorithms becomes gθ : ΩfGLR

7→ Y . The input is no longer an isolated complex GLR but a
conformation distribution fGLR

that represents all potential binding poses.

2.2 PDC REPRESENTATION OF PROTEINS

The mainstream mechanism to cope with macromolecules is to represent them as 3D grids, 3D sur-
faces, or 3D graphs (Atz et al., 2021; Wu et al., 2022a; Isert et al., 2023). All require a microscopic
perspective to investigate the components (e.g., atoms or residues) of the complex conformation.
Ideally, the joint distribution of all nodes in the molecular system can be written as the product of
several conditional probabilities, where the movement locus of each particle is heavily dependent
on other particles. More precisely, since the force between remote entities is minimal, it is plausible
to deem that the location of each node is merely affected by its adjoining ones:

P(GLR) = P(xnR+nL
) ·ΠnR+nL−1

i=1 P(xi|xi+1, ...,xnR+nL
) (1)

≈ P(xnR+nL
) ·ΠnR+nL−1

i=1 P(xi|{xi+1, ...,xnR+nL
} ∩ N (i)) (2)

where N (i) is the set of all node i’s neighbors.
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However, as each particle is moving simultaneously, elucidating the explicit interdependence be-
tween neighboring nodes fxi|N (i) presents a considerable challenge. To better model the compli-
cated molecular system, we relinquish the stringent interdependency assumption and analyze the
PDC of each entity vi ∈ VL ∪ VR alone in the 3D space. In particular, we posit that the moving
trajectories of each atom or residue xi behave according to some unconditional distribution fxi

.
Therefore, the distribution of the entire molecule is as follows:

P(GLR) = Πvi∈VL∪VR
fxi(xi) (3)

Here, separating individual particles into isolated elements provides great convenience to model the
complex molecular system. More importantly, the interdependency between close entities will be
captured via the following message passing-based mechanism when training geometric networks.

Distinctly, it is also conceivable to leverage other categories of distributions to define the PDC in
this molecular system. For instance, xi can be assumed to obey the student’s t-distribution fνxi

(.),
where ν controls the amount of probability mass in the tails. It is similar to the normal distribution
with its bell shape but has heavier tails, suitable for small sample sizes.

Notwithstanding the strong biological evidence that thermodynamics is critical for binding, the equi-
librium distribution of the ground truth fGLR

is difficult or even impossible to attain. Practically, a
group of data points can be drawn from this distribution via some DL or conventional techniques

(e.g., MD simulations and X-ray crystallography) as
{
G(i)
LR

}n
i=1

∼ fGLR
. Hence, given the hypoth-

esis that the PDC of each node complies with a particular category of distribution fxi and a couple

of sampled complexes
{
G(i)
LR

}n
i=1

, we can induce a complete picture of post-distribution via estima-
tion. This is guaranteed due to the law of large numbers (LLN) (Erd, 1970) as long as we implement
an adequate sampling of the equilibrium distribution, such as running a medium or long-term MD
simulation with enough interval steps. In other words, for any ϵ > 0 and x̄i =

1
n

∑n
i=1 xi, we have:

lim
n→inf

P (|x̄i − µxi | < ϵ) = 1. (4)

This convergence of probability to 1 precisely states that as n increases, the sample average is
more likely to be as close to the real mean. Typically, n ≥ 1000 is large enough to ensure a high
probability that the proportion of heads x̄i is within a small interval of µxi

.

2.3 PROPOGATING DISTRIBUTIONS INTO NETWORKS

The above scenarios motivate considering NNs with different sources of conformations not as deter-
ministic feed-forward networks but as directed probabilistic graphical models. Nevertheless, little
effort has been paid to introducing the treatment of uncertainty into NNs, and existing DL algorithms
barely encode a distribution fGLR

but prefer a concrete sample GLR. A relevant line of research con-
centrates on modeling uncertainties analytically. They approximately propagate normal distributions
in individual training samples through the network to model the network response to perturbed in-
puts (Wang et al., 2016; Gast & Roth, 2018; Loquercio et al., 2020). However, their ultimate goal
is to quantify uncertainties in NNs’ decisions and improve their robustness against noise rather than
modeling a probability distribution of the dynamic molecular system in quantitative biology.

Traditionally, moment matching (Frey & Hinton, 1999), also known as assumed density filtering
(ADF), is the most common technique to pass distributions into NNs. They compute the first two
moments of a distribution such as the output distribution of activation functions (e.g., mean µ and
variance σ), and use them as parameters for the to-be-estimate distribution to approximate the real
distribution. In particular, it is adequate to leverage several key parameters {νi}nν

i=1 to describe
complex distributions fGLR

. For instance, a pair of mean and standard deviation (µ, σ) is sufficient
to express the Gaussian distribution, while a pair of shape and rate (α, β) can parameterize a Gamma
distribution. An exemplary pipeline of moment matching is illustrated in the Appendix A.

Nevertheless, moment matching is usually intractable and assumes diagonal covariances. In ad-
dition, it is infeasible when applied to a pretrained network. To overcome these drawbacks, we
borrow the idea from the distribution regression network (DRN) (Kou et al., 2018) and propose a
lightweight and scalable network to propagate distributions. In our framework, we employ affine
transformations to achieve exact computation of the parametric output distribution. Specifically, we
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use deterministic weight to linearly transform the natural parameters of distributions via:

o(l)
µ = a(l−1)

µ W(l)⊤ + b(l), o(l)
σ = W(l)a(l−1)

σ W(l)⊤, (5)

where o(l) and a(l) are the values of neurons in the layer l before and after the non-linear transforma-
tion, respectively, parameterized by W(l) and b(l). Notably, the success of DL cannot be achieved
without NNs’ capability to approximate functions that do not obey linearity. The non-linearity inside
NNs comes mainly from activation functions, convolution, or pooling operators. Here we concen-
trate on activation functions to handle non-linearities. We draw inspiration from Petersen et al.
(2022) and adopt local linearization to transform the mean and variance as:

a(l)µ = v
(
o(l)
µ

)
, a(l)σ = v′

(
o(l)
µ

)
o(l)
σ v

′
(
o(l)
µ

)⊤
, (6)

where v(.) is an elementwise nonlinear transformation. For univariate distributions, Equation 6 can
be simplified as a(l)µ = v

(
o
(l)
µ

)
and a(l)σ = v′

(
o
(l)
µ

)
· o(l)σ . We pick up the most common ReLU for

example. It resorts to the following transformation as
(
a
(l)
µ , a

(l)
σ

)
=

{(
o
(l)
µ , o

(l)
σ

)
o
(l)
µ ≥ 0

(0, 0) otherwise
. Re-

markably, this approximation to non-linearly propagate distributions is optimal because it minimizes
the total variation (TV) distance (Petersen et al., 2022) once f is a Gaussian or Cauchy distribution.
To be explicit, the TV distance between the approximation distribution f̂ and the ground truth dis-
tribution f is defined as:

TV (f̂ , f) = sup
W

∣∣∣∣∫
W

(p− q)dν

∣∣∣∣ = 1

2

∫
|p− q|dν. (7)

Consequently, the propagation behavior in our network is richer, enabling the representation of
distribution mappings with few parameters than mainstream NNs.

2.4 INTEGRATION WITH GEOMETRIC NETWORKS

Distributions of geometric variables. Geometric DL bears particular promise in molecular mod-
eling applications. The past few years have witnessed a growing number of cutting-edge architec-
tures to generalize NNs to Euclidean and non-Euclidean domains, including manifolds, meshes, or
strings. Since molecules can be naturally represented as graphs, graph-based approaches become
prevailingly for molecular modeling, including equivariant GNN (EGNN) (Satorras et al., 2021),
GVP-GNN (Jing et al., 2020), Molformer (Wu et al., 2023), and etc. In addition to alleviating the
inherent defects of GNNs such as over-smoothing and over-squashing, they are all devoted to in-
tegrating geometric priors. Symmetry is one of those crucial concepts and is often recast in terms
of equivariance and invariance, encompassing the properties of the system with respect to manipu-
lations. Remarkably, prior geometric methods for molecular science are all designed for static and
stable molecules, whose structures are deterministic and have no uncertainty. In this chapter, we
dive into more specific details on how to incorporate distributions within geometric NNs.

To begin with, we hypothesize that the coordinates of each particle xi follow the Gaussian distribu-
tion as N (µi,Σi). µi ∈ R3 is the place where node i is most likely to be located, and Σi ∈ R3×3 is
a diagonal covariance matrix indicating that different axes are independent of each other. Under this
assumption, we can induce a variety of invariant geometric features, which highlight the structural
information of molecules and are prerequisites to using the geometric GNNs mentioned above.

The first and most important one is the distance variable, noted as dij = ||xi − xj ||2. Since xi
and xj are independent of each other, their subtraction is also normally distributed as xi − xj ∼
N

(
µi − µj ,Σ

2
i +Σ2

j

)
(Lemons, 2003). Then its squared norm (i.e., d2ij) has a generalized chi-

squared distribution χ2(.) with a set of natural parameters, which consists of
(
µi − µj ,Σ

2
i +Σ2

j

)
.

Therefore, the mean and variance of this generalized chi-square distribution χ2(.), denoted as µdij
and σdij , are the following:

µdij = tr
(
Σ2
i +Σ2

j

)
+||µi−µj ||2, σdij = 2 tr

(
Σ2
i +Σ2

j

)
+4(µi−µj)

⊤ (
Σ2
i +Σ2

j

)
(µi−µj),

(8)
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where tr(.) calculates the trace of a matrix and the derivation can be found in Supplementary
Note D.1. Taking a step further, some other invariant geometries can also be depicted mathemati-
cally. We denote xab as the directed vector from xa to xb. Then, for any triangle nodes (i, j, k),
the distribution of the angle ∠xijxik is therefore the distribution of arccos (xi−xj)·(xj−xk)

|xi−xj ||xj−xk| . After
formulating the exact first and second moments of distributions of important geometric features, we
can finally elaborate on how to propagate this dynamic information into geometric GNNs.

PDC-EGNN. Here, we select EGNN for illustration, which abandons computationally exhausted
high-order representations in intermediate layers but achieves competitive performance in dynamical
systems modeling. The key difference in EGNN is that it no longer accepts deterministic values
dij and xi but take distributions fdij and fxi as ingredients. Its layer (PDC-L) takes the set of

node embeddings h(l) =
{
h
(l)
i

}nL+nR

i=1
, edge information E = {EL, ER, ELR, ERL}, and geometric

feature distributions ν(l) =
{
µ

(l)
xi ,σ

(l)
xi

}nL+nR

i=1
as input, and outputs a transformation on h(l+1) and

ν(l+1). Concisely, h(l+1),ν(l+1) = PDC-L
[
h(l),ν(l), E

]
, which is defined as follows:

mj→i = ϕe

(
h
(l)
i ,h

(l)
j , µ

(l)
dij
, σ

(l)
dij

)
, h

(l+1)
i = ϕh

h
(l)
i ,

∑
j

mj→i,

 , (9)

µ(l+1)
xi

= µ(l)
xi

+
1

|N (i)|
∑

j∈N (i)

(
µ(l)

xi
− µ(l)

xj

)
ϕµ(mj→i), (10)

σ(l+1)
xi

2
= σ(l)

xi

2
+

1

|N (i)|
∑

j∈N (i)

(
σ(l)
xi

2
+ σ(l)

xj

2
)
ϕσ(mj→i), (11)

It is worth mentioning that the mean position of each particle µxi
is updated by the weighted sum

of all relative differences
(
µxi − µxj

)
∀j∈N (i)

, while the variance σ2
xi

is updated by the weighted

sum of all additions
(
σ2
xi

+ σ2
xj

)
∀j∈N (i)

. These different strategies agree with the calculation of

the mean and variance of the difference between two normal random variables. Moreover, it can
be easily seen that PDC-EGNN maintains the equivariance property, and the proof can be found in
the Supplementary Note C.2. We also provide a more sophascated version of PDC-Net that acts on
heterogeneous graphs in Supplementary Note C.1.

2.5 THERMODYNAMICS-BASED PRETRAINING AND TRANSFER LEARNING

To enable PDC-Net’s awareness of thermodynamics during PPI, we devise two sorts of pretraining
tasks to leverage MD simulation trajectories and the abundant static crystal structures, separately.
Then the knowledge learned in the pre-training stage is properly transferred to the ∆∆G prediction.

Figure 3: Illustration of PDB
2onj, where the color represents
the RMSF values. A darker color
corresponds to a larger RMSF.

Physics-inspired Pretraining (PIP). Suppose we have col-
lected a sufficient amount of simulation data, spanning T
timesteps, which effectively characterize the equilibrium dis-

tribution for various systems, denoted as
{
G(t)
LR

}T
t=1

. Leverag-
ing these data is of utmost importance in enabling PDC-Net to
grasp the dynamic behavior and flexibility of protein-protein
pairs over a period of time. Towards this end, we utilize a
modified version of root-mean-square fluctuation (RMSF) as
the pretraining target. RMSF is a measure commonly used in
the study of MD and structural analysis to quantify the extent
of fluctuations in the positions of atoms or particles within a
system (Frenkel & Smit, 2023). It provides information about
the flexibility of different parts of a molecule. Higher RMSF
values suggest that those parts are more flexible and undergo larger fluctuations, while lower RMSF
values indicate relatively stable regions. RMSF is often visualized using plots or graphs, and these

6



Under review as a conference paper at ICLR 2024

plots (Fig. 3) help researchers identify regions of a molecule that exhibit significant motion or struc-
tural changes during simulation or experimental observations.

Specifically, we first define the average ensemble of this trajectory as x̄LR = 1
T

∑T
i=1 x

(t)
LR. Then

for the t-th snapshot, RMSF of the i-th residue is computed as

√∑T
t=1

∣∣∣x(t)
i − x̄i

∣∣∣2. However, the

standard RMSF is a non-directional scalar. Accordingly, We propose a vectorized fluctuation as
∆xLR = 1

T

∑T
i=1

(
x
(t)
LR − x̄LR

)
and require PDC-Net to recover this flexibility information:

max
θ

EGLR∼fGLR

[
P
(
∆xLR

∣∣GLR;θ)] , (12)

where GLR ∈
{
G(t)
LR

}T
t=1

is any interval snapshot within the entire simulated trajectory, includ-
ing the original PDB file that is used as the starting point of MD simulations. The goal of
this task is to forecast the long-term thermodynamics of the entire molecular system rather than
purely learning a specific force field, which is usually realized by denoising pretraining (God-
win et al., 2021; Feng et al., 2023). Noteworthily, PDC-Net requires an input of the equi-
librium distribution. To align with it, we force µ

(0)
xi = xi and make σ

(0)
xi learnable. The

model parameter is optimized using the following MSE (mean-squared error) loss function: θ =

argminθ EGLR∼fdata

[
MSE

(
diag

(
σ

(L)
x

)
,∆xLR

)]
.

Masked Rotamer Modeling (MRM). Recent studies (Luo et al., 2023) have demonstrated the
thermodynamic principle that protein-protein binding usually leads to entropy loss on the binding in-
terface, which can be used to determine binding affinity (Brady & Sharp, 1997). When two proteins
bind, the residues located at the interface tend to become less flexible (i.e., having lower entropy)
due to the physical and geometric constraints imposed by the binding partner. A higher amount of
entropy loss corresponds to a stronger binding affinity. Motivated by this insight, we introduce a
masked rotamer modeling (MRM) task to estimate amino acid sidechain conformations (rotamers)
and take advantage of static unlabeled proteins. Our pretraining strategy is as the following:

max
θ

P
(
{χi}nL+nR

i=1

∣∣ G̃LR;θ
)
, (13)

where χi is the torsion angle for each residue and G̃LR is the corrupted conformation with a portion
(e.g., 40%) of rotamers masked. Similar to PIP, the variance of each particle’s position σ

(0)
xi is

tunable. Since χi ∈ [0, 2π), a Sigmoid function is appended to transform h
(L)
i between 0 and 1.

Then, the loss function is written as argminθ EGLR∼fdata

[
MSE

(
2π · Sigmoid

(
MLP

(
h(L)

))
,χ

)]
.

3 RESULTS AND DISCUSSION

3.1 DATA AND EXPERIMENTAL SETUP

Pretraining data. The data for PIP contain MD trajectories of 7 selected complexes. The data for
MRM is derived from PDB-REDO, a database that contains refined X-ray structures in PDB. The
protein chains are clustered based on 50% sequence identity, leading to 38,413 chain clusters, which
are randomly divided into the training, validation, and test sets by 95%/0.5%/4.5% respectively.
More details regarding these two datasets are given in Appendix B.3.

Downstream data. The SKEMPI.v2 database (Jankauskaitė et al., 2019) contains data on changes
in thermodynamic parameters and kinetic rate constants after mutation for structurally resolved pro-
tein–protein interactions. The latest version contains manually curated binding data for 7,085 mu-
tations. We follow Luo et al. (2023) and split the dataset into 3 folds by structure, each containing
unique protein complexes that do not appear in other folds. Two folds are used for training and vali-
dation, and the remaining fold is used for testing. This approach yields 3 different sets of parameters
and ensures that every data point in SKEMPI.v2 is tested once.

Baselines. We assess the effectiveness of our PDC-Net against various categories of baseline tech-
niques. The initial kind encompasses conventional empirical energy functions such as Rosetta
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Table 1: Evaluation of ∆∆G prediction on the SKEMPI.v2 dataset.
Per-Structure Overall

Category Method Pearson Spearman Pearson Spearman RMSE MAE AUROC

Sequence ESM-1v 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414

Based PSSM 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
MSA Transf. 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
Tranception 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885

Energy Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
Function FoldX 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582

Supervised DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
End-to-End 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172

B-factor 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
ESM-IF 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899

Unsup. / MIF-∆logit 0.1585 0.1166 0.2918 0.2192 1.9092 1.3301 0.5749
Semi-sup. MIF-Net. 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329

RDE-Linear 0.2903 0.2632 0.4185 0.3514 1.7832 1.2159 0.6059
RDE-Net. 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454

MD-based PDC-Net 0.4522 0.4143 0.6477 0.5439 1.5746 1.1151 0.7486

Figure 4: Visualization of correlations between experimental ∆∆G and predicted ∆∆G.

Cartesian ∆∆G (Park et al., 2016; Alford et al., 2017) and FoldX (Delgado et al., 2019). The sec-
ond grouping comprises sequence/evolution-based methodologies, exemplified by ESM-1v (Meier
et al., 2021), PSSM (position-specific scoring matrix), MSA Transformer (Rao et al., 2021), and
Tranception (Notin et al., 2022). The third category includes end-to-end learning models such as
DDGPred (Shan et al., 2022) and another End-to-End model that adopts Graph Transformer (Luo
et al., 2023) as the encoder but employs a Multi-Layer Perceptron (MLP) to directly forecast ∆∆G.
The fourth grouping encompasses unsupervised/semi-supervised learning approaches, consisting of
ESM-IF Hsu et al. (2022) and Masked Inverse Folding (MIF) (Yang et al., 2022). Similar to our
PDC-Net, these methods pretrain a network on structural data and then employ the pretrained repre-
sentations to predict ∆∆Gs. MIF also leverages Graph Transformer as the encoder for comparative
purposes. There are two variations for ∆∆G prediction in MIF: MIF-∆logit, which uses the dis-
parity in log-probabilities of amino acid types to attain ∆∆G, and MIF-Network, which predicts
∆∆G based on the acquired representations. Besides, B-factors is the network that anticipates the
B-factor of residues and incorporate the projected B-factor in lieu of entropy for ∆∆G prediction.
Lastly, Rotamer Density Estimator (RDE) (Luo et al., 2023) employs a flow-based generative model
to estimate the probability distribution of rotamers and uses entropy to measure flexibility with two
variants containing RDE-Linear and RDE-Network.

Metrics. We follow Luo et al. (2023) and use five metrics to evaluate the accuracy of ∆∆G predic-
tions, including the Pearson and Spearman’s correlation coefficients, minimized RMSE, minimized
MAE (mean absolute error), and AUROC (area under the receiver operating characteristic). The cal-
culation of AUROC involves classifying mutations according to the direction of their ∆∆G values.
In practical scenarios, the correlation observed within a specific protein complex attracts heightened
interest. To account for this, we arrange mutations according to their associated structures. Groups
with fewer than 10 mutation data points are excluded from this analysis. Subsequently, correlation
calculations are performed for each structure independently. This introduces two additional metrics:
the average per-structure Pearson and Spearman correlation coefficients.
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Table 3: Ablation study of PDC-Net.

No. PDC PIP MRM Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

1 ✗ ✗ ✗ 0.3708 0.3353 0.6210 0.4907 1.6199 1.1933 0.7225
2 ✓ ✗ ✗ 0.4190 0.3634 0.6192 0.5016 1.6229 1.1818 0.7273
3 ✓ ✓ ✗ 0.4300 0.3943 0.6535 0.5592 1.5643 1.1127 0.7558

4 ✓ ✓ ✓ 0.4522 0.4143 0.6477 0.5439 1.5746 1.1151 0.7486

3.2 EXPERIMENTAL RESULTS

Comparison with prior studies and visualization. Table 1 exhibits the results, and it can be
seen that PDC-Net achieves the best performance. To be specific, it outweighs all baselines in
per-structure correlations, suggesting its heightened dependability for real-world implementations.
Moreover, the superior performance of PDC-Net over RDE-Network suggests that PDC is a more
effective mechanism than flow-based generative models to encode atomic distributions and consider
thermodynamics of molecular systems, particually for PPIs. Remarkbly, sequence-based models
exhibit subpar performance. This limitation can be attributed to their inability to grasp the flexible
and dynamic protein conformations, serving as additional proof that thermodynamics should hold
substantial importance when addressing the PPI problem. In addition, the correlation is envisioned
in Fig. 4. We also provide the comparison of evaluation on the single-mutation and multi-mutation
subsets of SKEMPI.v2 in Appendix 4 and 5.

Table 2: Performance of different mechanisms to
the noisy structural inputs.

Method No Noise Noisy Perturbation
Pearson Spearman Pearson Spearman

RDE-Net. 0.4448 0.4010 0.3667 0.3488
PDC-Net 0.4522 0.4143 0.4345 0.3959

Robustness to experimental errors. It is im-
portant to recognize that no experimental tech-
nique is completely error-free. Even though en-
tries in the Protein Data Bank (PDB) undergo
a meticulous quality control process, involving
expert validation before deposition, the reliabil-
ity of PDB data hinges on factors like structural
resolution and the specific methodology employed (such as X-ray crystallography, NMR spec-
troscopy, cryo-electron microscopy, etc.). To simulate these uncertainties in atomic coordinates,
we introduce random perturbations to the protein structure. The impact of these perturbations is
evident in Table 2. In particular, RDE-Net experiences a substantial decrease in performance, un-
derscoring its sensitivity to structural errors. Conversely, PDC-Net demonstrates greater resilience
to such errors. This further underscores the significant advantage of PDC-Net in effectively encod-
ing structural uncertainty, particularly when handling inputs originating from noisy experimental
conditions.

Ablation studies. We conduct several ablation studies to investigate the effectiveness of each com-
ponent of PDC-Net in Table 3. It can be found that without pretraining (No. 2), to encode uncertainty
(i.e., dynamics) of biomolecules has already brought significant benefits with an increase of 13.24%
and 8.38% in the spearman and pearson correlations, respectively. Additionally, PIP (No. 3) and
MRM (No.4) both contribute to the outstanding performance of PDC-Net. Notably, due to the ex-
pensive computational cost of MD simulations, we only run 7 proteins for PIP pretraining, which
reaches the best in five overall metrics. As demonstrated by ProtMD (Wu et al., 2022a), it can be
expected to see more improvements if MD trajectories of more complexes are provided for the PIP
stage and we leave this for future work.

4 CONCLUSION

In this paper, we propose a novel architecture dubbed PDC-Net, which represents the protein as a
cloud of probability density. To align with this special representation, we design an invariant of geo-
metric graph neural network and introduce two sorts of pre-training tasks to learn thermodyanmics.
Comprehensive experiments on predicting the change in binding free energy demonstrate the effec-
tiveness of our approach. This work provides adequate evidence that conformation dynamics should
be of greater significance for modeling macromolecules using machine learning-based algorithms.
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tian Nowozin, Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular
dynamics by learning time-coarsened dynamics. arXiv preprint arXiv:2302.01170, 2023.

Connie Kou, Hwee Kuan Lee, and Teck Khim Ng. Distribution regression network. 2018.

Lev Davidovitch Landau. Course of theoretical physics. Theory of elasticity, 10:32–35, 1986.

Julia Koehler Leman, Brian D Weitzner, Steven M Lewis, Jared Adolf-Bryfogle, Nawsad Alam, Re-
becca F Alford, Melanie Aprahamian, David Baker, Kyle A Barlow, Patrick Barth, et al. Macro-
molecular modeling and design in rosetta: recent methods and frameworks. Nature methods, 17
(7):665–680, 2020.

Don S Lemons. An introduction to stochastic processes in physics, 2003.

Lin Li, Esther Gupta, John Spaeth, Leslie Shing, Rafael Jaimes, Emily Engelhart, Randolph Lopez,
Rajmonda S Caceres, Tristan Bepler, and Matthew E Walsh. Machine learning optimization
of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries. Nature
Communications, 14(1):3454, 2023.

Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins
fold. Science, 334(6055):517–520, 2011.

Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for uncertainty
estimation in deep learning. IEEE Robotics and Automation Letters, 5(2):3153–3160, 2020.

Shitong Luo, Yufeng Su, Zuofan Wu, Chenpeng Su, Jian Peng, and Jianzhu Ma. Rotamer density
estimator is an unsupervised learner of the effect of mutations on protein-protein interaction.
bioRxiv, pp. 2023–02, 2023.

Laurent Maveyraud and Lionel Mourey. Protein x-ray crystallography and drug discovery.
Molecules, 25(5):1030, 2020.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. Advances in
Neural Information Processing Systems, 34:29287–29303, 2021.

Naveen Michaud-Agrawal, Elizabeth J Denning, Thomas B Woolf, and Oliver Beckstein. Mdanal-
ysis: a toolkit for the analysis of molecular dynamics simulations. Journal of computational
chemistry, 32(10):2319–2327, 2011.

Mitchell D Miller and George N Phillips. Moving beyond static snapshots: Protein dynamics and
the protein data bank. Journal of Biological Chemistry, 296, 2021.

Yaosen Min, Ye Wei, Peizhuo Wang, Nian Wu, Stefan Bauer, Shuxin Zheng, Yu Shi, Yingheng
Wang, Xiaoting Wang, Dan Zhao, et al. Predicting the protein-ligand affinity from molecular
dynamics trajectories. arXiv preprint arXiv:2208.10230, 2022.

11



Under review as a conference paper at ICLR 2024
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A PROPAGATING DISTRIBUTIONS INTO NETWORKS

Moment matching is a common practice to propagate distributions into NNs, and in this section
we give a brief introduction of natural-parameter networks (NPN) (Wang et al., 2016) to explain
how monent matching works. We use Φ(.) to denote the bijective function that maps the set of
natural parameters of a distribution (i.e., {νi}nν

i=1) into its mean µ and variance σ. Similarly, Φ−1(.)
represents the inverse transformation. Then linear transformation in moment matching-based NNs
takes the following form:
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where the weight and bias matrices W(l) and b(l) are also assumed to be factorized distribu-
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After that, o(l)
µ and o

(l)
σ will subsequently facilitate the feedforward calculation of the nonlinear

transformation.

To this end, an elementwise nonlinear transformation v(.) (with a well-defined inverse
function v−1(.)) will be imposed. The resulting activation distribution is Pa
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It is undeniable that the integrals are computationally challenging and closed-form solutions are
needed for efficiency. Prior works (Wang et al., 2016) have proved that closed-form solutions exist
for common activations such as tanh(.) and max(.) if Po is a Gaussian distribution.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL SETUP.

We train PDC-Net with an Adam optimizer without weight decay and with β1 = 0.9 and β2 =
0.999. A ReduceLROnPlateau scheduler is employed to automatically adjust the learning rate with
a patience of 10 epochs and a minimum learning rate of 1.e−6. All experiments are run on multiple
A100 GPUs, each with a memory storage of 80G. During pretraining, we use a batch size of 64 and
128 for PIP and MRM, respectively, and an initial learning rate of 1.e− 4. The maximum iterations
are 100K with a validation frequency of 1K iterations, and the loss weights for each chi-angle are all
set as 0.25 for the MRM stage. During ∆∆G fine-tunining, we use a batch size of 32 and an initial
learning rate of 1.e − 4. The maximum iterations are 50K and the validation frequency is also 1K
iterations. For the implementation of all baselines, please refer to Luo et al. (2023) for more details
and we directly copy the results from them. The code will be released upon acceptance.
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During PIP, we use the first 95% timesteps of the entire MD trajectories as a training set and the
remaining 5% as a validation set. During MRM, the data loader randomly selects a cluster and then
randomly chooses a chain from the cluster to ensure balanced sampling. We crop structures into
patches containing 128 residues by first choosing a seed residue and then selecting its 127 nearest
neighbors based on C-beta distances. To simulate mutations, we mask the rotamers of 40% of the
residues in the patch, and we add noise to the rotamers of residues whose C-beta distance from the
closest masked residue was less than 8 Å. The determination of graph connectivity varies between
different articles (Wu et al., 2022b) and is significant for the analysis of interactions between atoms
or residues. Here, we build a fully-connected graph to capture all potential interactions within a
patch. In addition to that, we used four backbone atoms as well as the C-beta for each residue. The
node feature dimension is 128, and the paiwise feature dimension is 64. The number of layers in
PDC-Net is 3, and we normalize the coordinates in PDC-EGNN. It is also worth mentioning that the
variance in PDC-Net is learnable rather than a pre-defined embedding.

In addition, we also investigate several types of loss function for MRM. For example, DiffPack (Zhan
et al., 2023) adopts a mod strategy to constrain the output of chi-angles between 0 and 2π. How-
ever, we did not discover any benefits in our pretraining for mutation effect prediction. We propose
that the mod function is discontinuous and that the gradient can be very sensitive to the break-
point. In particular, angular values are periodic, and an ideal output of the network should satisfy this
crucial condition. However, it has been proved that there is no continuous mapping that can transfer
from the disconnected angular space to the connected latent feature space (Zhou et al., 2019).

B.2 FINE-TUNING FOR ∆∆G.

After PIP and MRM, we utilize the same mechanism as RDE-PPI and freeze the weights of PDC-Net
and do not back-propagate gradients through h(L) to fully exploit the unsupervise representations
learned by PDC-Net. That is, the pre-trained model is used as a feature extractor. Alternatively, it is
straightforward to also fine-tune the weights of PDC-Net, but no further improvements are found.

B.3 IMPLEMENTATION DETAILS OF MD SIMULATIONS.

Related Works of Multi-conformation Generation. It is nontrivial to clarify how to generate a
series of complex structures that encode the desired thermodynamics. Existing mechanisms can be
classified into two types. The first relies on biophysics and statistics-based methodologies, such as
MD simulations and X-ray crystallography. MD simulations (Hollingsworth & Dror, 2018) seek to
approximate atomic motions by Newtonian physics. Enhanced sampling (Barducci et al., 2011) and
Markov state modeling (Chodera & Noé, 2014) can speed up rare event simulations, but depend on
system-specific choices such as collective variables along which the sampling is enhanced, and are
thus not easily generalizable. On the contrary, X-ray crystallography (Maveyraud & Mourey, 2020)
can provide exquisitely comprehensive structural information on the interaction of a ligand with a
pharmacological target.

These classic methods have achieved remarkable success in obtaining distributions, but are com-
putationally expensive and often intractable (Lindorff-Larsen et al., 2011). Emerging efforts have
been paid to developing advanced DL algorithms to alleviate these limitations. Boltzmann Genera-
tor (Noé et al., 2019) pioneeringly generates equilibrium distributions by constructing a probability
flow from an easy-to-sample reference state, but is poor in generalizing to different molecules due
to the flow architecture (Kingma & Dhariwal, 2018). Although generalization for flows has been
improved for small peptides with long timesteps, these tactics have not yet scaled to large pro-
teins (Klein et al., 2023). Succeedingly, other generative models such as adversarial generative
networks (GAN) (Janson et al., 2023), variational auto-encoder (VAE), and diffusion-based mod-
els (Zheng et al., 2023b) have been used to identify the energy landscape as well as collective vari-
ables and produce protein structure ensembles. Nevertheless, these attempts are more like proofs
of concept, and their accuracies are distant from those ranked with traditional techniques. For this
reason, we adopt MD simulations to sample equilibrium distributions.

Implementation of MD Trajectories. The initial structures were extracted from the PDB database
whose missing loops and atoms were patched with Modeller 10.4 (Eswar et al., 2008). The simula-
tion systems were then solvated in a periodic rectangular TIP3P water box in which protein atoms
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were away from the 1.2 nanometer (nm) box at lease and neutralized with extra K+ or Cl- ions.
The system’s interaction is described with the CHARMM36m force fields protein (Brooks et al.,
2009) in combination with the TIP3P water model. Non-bonded interactions were truncated at 12
Åwith a smooth switching from 10 Å, and electrostatic interactions were calculated using the particle
mesh Ewald (PME) method. After that, the systems were optimized and equilibrated at 300 K for 1
nanosecond (ns) followed by hundreds of nanosecond NPT simulations with pressure control under
1 bar. During MD simulation, bonds involving hydrogen atoms were constrained and timestep is
2 femtosecond (fs). Systems’ preparation and MD simulation were implemented with GROMACS
2022.5 (Van Der Spoel et al., 2005). With the generated MD trajectories, RMSF of protein C-alpha
atoms were calculated with MDAnalysis 2.2.0 (Michaud-Agrawal et al., 2011).

C PDC-NET

C.1 PDC-EGNN ON HETERGENEOUS GRAPHS

In the main text, we explain how to propagate distributions into EGNN for homogeneous geometric
graphs (Wu et al., 2021). However, a more challenging circumstance if that molecular systems are
constituted with different types of particles and edges. To extend our methodology, we build our
PDC-Net on the Equivariant Matching Network (Wu et al., 2022a) to handle this heterogeneity. In
this subsection, we present PDC-Net based on the naive version of EGNN, whose layers are defined
as below:

mj→i = ϕe

(
h
(l)
i ,h

(l)
j , µ

(l)
dij
, σ

(l)
dij

)
,∀eij ∈ EL ∪ ER, (21)

sj→i = aj→ih
(l)
j · ϕd

(
µ
(l)
dij
, σ

(l)
dij

)
,∀eij ∈ ELR, (22)

h
(l+1)
i = ϕh

h
(l)
i ,

∑
j

mj→i,
∑
j′

sj′→i

 , (23)

µ(l+1)
xi

= µ(l)
xi

+
1

|N (i)|
∑

j∈N (i)

(
µ(l)

xi
− µ(l)

xj

)
ϕµ(i, j), (24)

σ(l+1)
xi

2
= σ(l)

xi

2
+

1

|N (i)|
∑

j∈N (i)

(
σ(l)
xi

2
+ σ(l)

xj

2
)
ϕσ(i, j), (25)

where µ(l)
dij

and σ(l)
dij

are exactly computed via Equation 8 based on
(
µ

(l)
xi ,σ

(l)
xi

)
and

(
µ

(l)
xj ,σ

(l)
xj

)
.

Besides, ϕe(.) is the edge operation, which specially digests the mean and variance of the squared
distance distribution fd2ij . ϕh(.) denotes the node operation that aggregates the intra-graph messages

mi =
∑
jmj→i and cross-graph message si =

∑
j′ sj′→i as well as the node embeddings h(l)

i to

acquire the updated node embedding h
(l+1)
i . ϕx(.) varies according to whether the edge eij is

intra-graph or cross-graph. Particularly, ϕx =

{
ϕm (mi→j) , eij ∈ EL ∪ ER
ϕµ (si→j) , eij ∈ ELR

, where ϕm(.) and

ϕs(.) are two different functions to cope with different kinds of messages. It takes as input the
edge embedding mi→j or si→j as the weight to sum all relative distance x

(l)
i − x

(l)
j and output the

renewed coordinates x
(l+1)
i . ϕd operates on the inter-atomic distances µ(l)

dij
. aj→i is an attention

weight with trainable MLPs ϕq and ϕk, and takes the following form as:

aj→i =
exp

(〈
ϕq

(
hli
)
, ϕk

(
h
(l)
j

)〉)
∑
j′ exp

(〈
ϕq

(
hli
)
, ϕk

(
hlj′

)〉) . (26)

C.2 PROOF OF EQUIVARIANCE

In this part, we provide a proof that PDC-L achieves E(n)-equivariance on geometric features ν(l).
More formally and specifically, for any orthogonal matrix Q ∈ Rn×n and any translation matrix
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o ∈ Rn×3, the model should satisfy:

h(l+1), Qµ(l+1) + o,Qσ(l+1) = PDC-L
[
h(l), Qµ(l) + o,Qσ(l), E

]
. (27)

As assumed in the preliminary, h(0) is invariant to E(n)-transformation. In other words, we do not
encode any information about the absolute position or orientation of GLR into h(0). Moreover, since
σ represents the spatial variance of each particle, σ should be only affected by the rotation rather
than the translation. Then the proof is intuitive and very similar to the original EGNN and we omit
this simple explanation.

D MATHEMATICAL CALCULATION

D.1 DISTRIBUTION OF DISTANCES

Given ∆x = xi − xj ∼ N (µi − µj ,Σ
2
i + Σ2

j ) and ∆µ = µi − µj , the mean of the squared
Euclidean norm of the Gaussian vector ∆x can be easily calculated via:

E
[
∥∆x∥2

]
= E

[
3∑
k=1

∆x2k

]
=

3∑
k=1

E
[
∆x2k

]
=

3∑
k=1

(
σi

2
k + σj

2
k +∆µ2

k

)
=

3∑
k=1

σ2
i +

3∑
k=1

∆µ2
k = tr

(
Σ2
i +Σ2

j

)
+ ∥∆µ∥2.

(28)

where σ denotes the diagonal elements of the variance matrix Σ. As for the variance of this
squared norm, we rely on the theorem 1 that if z ∼ N (µ,Σ), then var

(
z⊤Az

)
= 2 tr

(
(AΣ)

2
)
+

4µ⊤AΣAµ Taking A as the identity matrix, the variance is therefore:

σ2
[
∥∆x∥2

]
= 2 tr (Σ) + 4(µ)⊤ (Σ) (µ). (29)

E ADDITIONAL RESULTS

Here we offer the statistics of each method’s performance on the single-mutation and multi-mutation
subsets of the SKEMPI.v2 dataset in Tables 4 and 5. It can be found that PDC-Net achieves stronger
results on multi-mutations, which is often required for successful affinity maturation (Shan et al.,
2022).

1 https://stats.stackexchange.com/questions/427332
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Table 4: Evaluation of ∆∆G prediction on the single-mutation subset of the SKEMPI.v2 dataset.

Method Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

ESM-1v 0.0422 0.0273 0.1914 0.1572 1.7226 1.1917 0.5492
PSSM 0.1215 0.1229 0.1224 0.0997 1.7420 1.2055 0.5659
MSA Transf. 0.1415 0.1293 0.1755 0.1749 1.7294 1.1942 0.5917
Tranception 0.1912 0.1816 0.1871 0.1987 1.7455 1.1708 0.6089

Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478

DDGPred 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
End-to-End 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019

B-factor 0.1884 0.1661 0.1748 0.2054 1.7242 1.1889 0.6100
ESM-IF 0.2308 0.2090 0.2957 0.2866 1.6728 1.1372 0.6051
MIF-∆logit 0.1616 0.1231 0.2548 0.1927 1.6928 1.1671 0.5630
MIF-Net. 0.3952 0.3479 0.6667 0.4802 1 .3052 0.9411 0.7175

RDE-Linear 0.3192 0.2837 0.3796 0.3394 1.5997 1.0805 0.6027
RDE-Net. 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367

PDC-Net 0.4568 0.4265 0.6658 0.5352 1.2978 0.9287 0.7381

Table 5: Evaluation of ∆∆G prediction on the multi-mutation subset of the SKEMPI2.v2 dataset.

Method Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

ESM-1v -0.0599 -0.1284 0.1923 0.1749 2.7586 2.1193 0.5415
PSSM -0.0174 -0.0504 -0.1126 -0.0458 2.7937 2.1499 0.4442
MSA Transf. -0.0097 -0.0400 0.0067 0.0030 2.8115 2.1591 0.4870
Tranception -0.0688 -0.0120 -0.0185 -0.0184 2.9280 2.2359 0.4874

Rosetta 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246 0.6207
FoldX 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478

DDGPred 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590
End-to-End 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532

B-factor 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186 0.5876
ESM-IF 0.2016 0.1491 0.3260 0.3353 2.6446 1.9555 0.6373
MIF-∆logit 0.1053 0.0783 0.3358 0.2886 2.5361 1.8967 0.6066
MIF-Net. 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735

RDE-Linear 0.1763 0.2056 0.4583 0.4247 2.4460 1.8128 0.6573
RDE-Net. 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749

PDC-Net 0.4438 0.3975 0.6041 0.5778 2.1503 1.5971 0.7810
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