

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CAN SPEECH LLMs THINK WHILE LISTENING?

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in speech large language models (speech LLMs) have enabled seamless spoken interactions, but these systems still struggle with complex reasoning tasks. Previously, chain-of-thought (CoT) prompting or fine-tuning has been shown to significantly improve the reasoning abilities of text-based LLMs. In this work, we investigate the effect of CoT fine-tuning for multi-stream speech LLMs, demonstrating that reasoning in text space **improves the accuracy of speech LLMs by 2.4x**, on average, over a suite of spoken reasoning tasks. Beyond accuracy, the latency of the spoken response is a crucial factor for interacting with voice-based agents. Inspired by the human behavior of “thinking while listening,” we propose methods to reduce the additional latency from reasoning by allowing the model to start reasoning before the user query has ended. To achieve this, we introduce an entropy-based metric, “question completeness,” which acts as an indicator to guide the model on the optimal time to start reasoning. This method provides greater **control** over the accuracy-latency trade-off compared with heuristic-based approaches and, under equivalent latency conditions, yields a 4% accuracy gain on ARC-Easy. Finally, we use Direct Preference Optimization (DPO) on preference data created using rejection sampling to push the accuracy-latency pareto frontier further, resulting in a **70% reduction in latency** without loss in accuracy.

1 INTRODUCTION

The traditional approach for building voice agents is to cascade several components: an automatic speech recognition (ASR) model, a text-based large language model (LLM), and a text-to-speech (TTS) model Huang et al. (2023); Lin et al. (2024); Likhomanenko et al. (2025); Chen et al. (2025). The recent emergence of speech large language models (Speech LLMs) (Cui et al., 2024) offers a promising alternative to this cascaded pipeline. These models are designed to directly process speech input or generate speech output, thereby eliminating the need for separate ASR or TTS modules. This integrated approach can seamlessly process both the semantic content and paralinguistic features of speech, and also reduces latency due to cascaded components. In addition to being used for specialized tasks such as speech understanding (Tang et al., 2024; Hu et al., 2024; Lu et al., 2024) and speech generation (Ye et al., 2025; Du et al., 2024), these models have shown promise in end-to-end spoken dialog Défossez et al. (2024); Huang et al. (2025). Nevertheless, while they work well for casual conversations, speech LLMs often fall behind their text-based counterparts on complex reasoning tasks (Peng et al., 2025; Wei et al., 2025; Lin et al., 2025). Consequently, the development of methods to enhance the reasoning capabilities of speech LLMs remains an underexplored and critical research problem to further their application as smart companions.

Several approaches have been explored to enhance reasoning capabilities in text-based LLMs, with the most popular being chain-of-thought (CoT) (Wei et al., 2022). In this method, the model generates a series of intermediate reasoning steps before producing its final answer. An LLM can be coerced to elicit reasoning traces either through zero-shot prompting (Kojima et al., 2022) or via supervised fine-tuning on a dataset of reasoning examples (Zelikman et al., 2022). Despite their strong performance, recent research highlights a critical trade-off with CoT: the length of the reasoning trace is a crucial factor in accuracy. While longer CoT sequences generally yield better performance, this comes at the cost of increased decoding latency and computational overhead (Jin et al., 2024). To tackle this problem, there are explorations about when and how long an LLM should reason (Sprague et al., 2025), resulting in a growing interest in “hybrid” reasoning models.

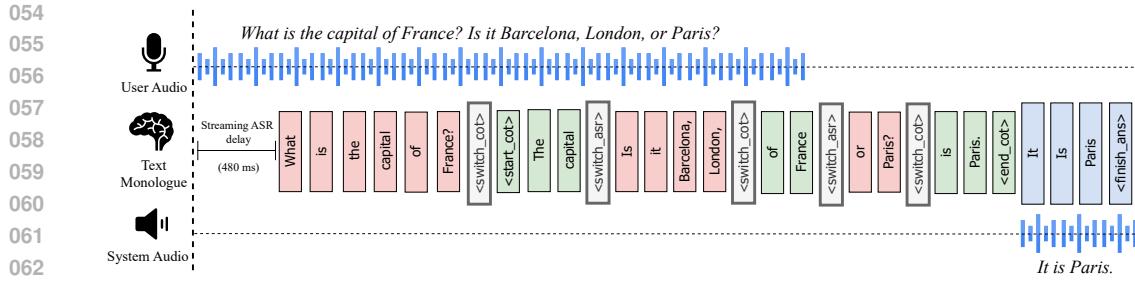


Figure 1: **Training token sequence arrangement.** We train the model to interleave reasoning tokens \mathcal{R}^T with streaming ASR tokens \mathcal{Q}^T on the text monologue channel, with special `switch` tokens for mode switching. After the CoT ends, the model generates text tokens which align with the spoken response \mathcal{R}^T . For simplicity, `[PAD]` and `[EPAD]` tokens are not shown here.

Although some recent work has adopted CoT in the speech domain, they focus primarily on applications such as speech translation Hu et al. (2025); Du et al. (2025); Gállego et al. (2025), dialogue Arora et al. (2025), or other detection tasks Mai et al. (2025); Park et al. (2025). The integration of CoT in speech LLMs requires answering two research questions: (i) should models reason using text or speech, and (ii) how do we maintain the responsiveness required for spoken interactions? To answer the first question, we investigate both alternatives, showing that text-based CoT is as performant as speech-based CoT for improving reasoning in speech LLMs, while being 2x more token-efficient.

The sequential process of listening, reasoning, and responding introduces considerable latency; consequently, previous research has proposed methods to overlap CoT tokens with speech to improve real-time conversational AI. Building upon the anthropomorphism of speech LLMs, concurrent works such as STITCH (Chiang et al., 2025) and Mini-Omni-Reasoner (Xie et al., 2025) have proposed “thinking while speaking,” i.e., the model begins its spoken response while its reasoning is still ongoing. This is achieved by interleaving chunks of reasoning tokens with spoken response tokens, and subsequent CoT chunks are generated in the time it takes for the audio decoder to synthesize the preceding response. Despite showing reasonable improvements, this approach has notable limitations. For instance, the optimal chunk size for interleaving requires careful tuning and is dependent on hardware limitations. Moreover, despite a reduction in the time to first word, the model may inadvertently vocalize too much of its reasoning, leading to a longer overall response time to a final, conclusive answer. In this paper, we draw inspiration from neuroscience (Donhauser & Baillet, 2019) to propose a novel “thinking while listening” paradigm, by enabling concurrent processing of text-based CoT and user speech.

Current speech LLM architectures may be broadly categorized into two types: single-stream and multi-stream. Single-stream architectures merge user/system speech and text into a unified token sequence (Kim et al., 2024; Veluri et al., 2024), while multi-stream architectures simultaneously model distinct streams for each token sequence (Défossez et al., 2024). In this work, we build upon a multi-stream architecture due to its superior capacity for the concurrent processing of user audio and reasoning tokens. This design provides significant flexibility by allowing the system’s text stream to be revised independently, a key advantage over single-stream models that lack this decoupling. Specifically, we fine-tune the publicly available Moshi model (Défossez et al., 2024) to generate CoT within its text monologue stream to improve its reasoning capabilities (Section 2). To enable the model to think while listening, we propose two methods: (i) a novel metric that estimates the completeness of the user’s question at each timestep, and (ii) a preference tuning scheme to update the model’s reasoning dynamically with new input (Section 3).

Since there are no existing standard reasoning evaluations for speech LLMs, we curated a suite of single-turn spoken reasoning tasks from well-known text-based reasoning benchmarks comprising mathematical reasoning, social/physical interactions, and other general reasoning tasks (Section 4.2). Overall, our contributions are summarized below.

1. **Text-based CoT improves reasoning in speech LLMs.** To the best of our knowledge, we are the first to explore text-based CoT fine-tuning on multi-stream speech LLMs. Our method obtains 2.4x improvement in accuracy, on average, over the Moshi baseline across the SRQA tasks.

108 2. **Thinking while listening reduces reasoning latency.** We demonstrate that auto-regressive
 109 models that can generate tokens in sync with streaming user input can be taught to “think early” using
 110 entropy-based selection of trigger points. We achieve this using a novel Question Completeness
 111 metric that results in more controllable accuracy-latency trade-offs.

112 3. **Preference tuning enables adaptive reasoning for early-CoT models.** We use rejection sam-
 113 pling to curate correctness-based and length-based preference data and use them for DPO training,
 114 pushing the accuracy-latency pareto further and reducing $\sim 70\%$ latency without loss in accuracy.
 115

116 2 MULTI-STREAM SPEECH LLMs WITH CHAIN-OF-THOUGHT

117 2.1 BACKGROUND: MOSHI

120 Moshi (Défossez et al., 2024) is a full-duplex multi-stream model that simultaneously processes
 121 three distinct token streams at each timestep: user audio, system audio, and system text (referred to
 122 as the “text monologue”). For the audio streams, a separate codec model, Mimi, is used to encode
 123 audio waveforms into discrete tokens and back, operating at a frame rate of 12.5 Hz with 8 code-
 124 books. Eventually, all three streams of inputs are represented as tokens:

$$125 \text{User Audio : } \mathbf{A}^U \in \{1, \dots, N_A\}^{L \times 8} \quad (1)$$

$$127 \text{System Audio : } \mathbf{A}^S \in \{1, \dots, N_A\}^{L \times 8} \quad (2)$$

$$128 \text{System Text : } \mathbf{T}^S \in \{1, \dots, N_T\}^L, \quad (3)$$

129 where $N_A = 2048$ is the size of each Mimi code-book and $N_T = 32000$ is the text vocabulary size.
 130 All streams have L time-aligned tokens; text tokens are interleaved with padding tokens ([PAD]
 131 and [EPAD]¹) to align with the corresponding audio tokens. Notably, since such aligned text token
 132 sequences are significantly shorter than the corresponding speech, the majority of text tokens in
 133 Moshi are simply padding tokens. The model architecture consists of a temporal transformer and a
 134 depth transformer, trained jointly using Negative Log Likelihood(NLL) loss. At each timestep t , the
 135 temporal transformer consumes \mathbf{A}_t^U and \mathbf{A}_t^S , and predicts \mathbf{T}_{t+1}^S ². This token is fed into the depth
 136 transformer, which generates \mathbf{A}_{t+1}^S . The model is trained to estimate the following probability:
 137

$$138 p(\mathbf{A}_{t+1}^S, \mathbf{T}_{t+1}^S | \mathbf{A}_{\leq t}^S, \mathbf{T}_{\leq t}^S, \mathbf{A}_{\leq t}^U). \quad (4)$$

139 Moshi was trained in multiple stages: (i) pre-training a text backbone LLM (Helium) using next
 140 token prediction, followed by (ii) post-training and fine-tuning with audio token sequences as well
 141 as multi-stream data, and (iii) fine-tuning with user-system dialogue data. Subsequent studies also
 142 showed the effectiveness of alignment training with direct preference optimization (DPO) to improve
 143 aspects such as factuality and safety (Wu et al., 2025). During inference, Moshi consumes user
 144 tokens and generates a system text and audio token per timestep. Due to the nature of the training
 145 sequences, we can force Moshi to generate a response by inserting an [EPAD] token on the text
 146 monologue stream. Conversely, inserting a [PAD] token forces it to remain silent.

147 2.2 FINETUNING WITH CoT

149 Given a user’s spoken question, \mathcal{Q}^A , our model predicts a spoken answer, \mathcal{A}^A , guided by a reasoning
 150 trace, \mathcal{R} . In the base Moshi model, all spoken responses \mathcal{A}^A are preceded by aligned text \mathcal{A}^T on
 151 the text monologue stream. To integrate CoT in this framework, we allow the model to additionally
 152 generate text-only reasoning tokens \mathcal{R}^T without corresponding audio. Since both \mathcal{R}^T and \mathcal{A}^T are
 153 generated on the text monologue channel, we demarcate them using special <start_cot> and
 154 <end_cot> tokens, as shown in Fig. 1.

155 To help the model learn the relationship between the user’s spoken question and the CoT, we also
 156 introduce a streaming ASR component into the text monologue, with the corresponding tokens de-
 157 noted by \mathcal{Q}^T (red tokens in Fig. 1). Previously, Arora et al. (2025) and Yuen et al. (2024) have
 158 suggested using the user’s audio transcript as an intermediate step in the CoT process for speech
 159 LLMs, but they focused on offline ASR. In contrast, our model naturally learns streaming ASR

160 ¹ [EPAD] is used for indicating end of consecutive pad tokens.

²For simplicity, we neglect the delay pattern of first audio codebook and system text in our notation.

162 Table 1: Examples of questions where it is feasible to start reasoning early without impacting the
 163 correctness of the answer.

#	Question	Reasoning	Answer
1	What is the capital of France ... <i>is it New York or Paris?</i>	The capital of France is Paris. It's Paris.	
2	If you flip a fair coin three times and get heads each time ... <i>what is the probability of heads/tails</i> <i>the fourth flip is heads?</i>	It's a fair coin, so probability of heads/tails is always 0.5.	

172 through word-aligned user transcripts right-shifted by k tokens for look-ahead. Based on our pre-
 173 preliminary experiments, we used $k = 6$ (equivalent to a 480 ms look-ahead), which was found to
 174 provide a good balance between latency and word error rate (WER). Finally, the text monologue
 175 contains the user transcript Q^T , the reasoning R^T , and the response text A^T . To ensure all three
 176 streams—user audio (A^U), system audio (A^S), and text monologue (A^U)—have the same length,
 177 we insert silent audio tokens as needed.

178 We fine-tune Moshi using the same NLL loss for next token prediction during the SFT stage, and use
 179 DPO loss for off-policy preference tuning. During inference, we apply force-decoding to our fine-
 180 tuned model and the baselines in two ways: (i) at the start of the user’s question, we force-decode
 181 k [PAD] tokens to accommodate the streaming ASR, and (ii) we force-decode the <start_cot>
 182 token after the user’s question ends if the model has not generated it already.

184 3 THINKING WHILE LISTENING

186 Since our text-based CoT does not generate any aligned audio, naively inserting it between the
 187 query and the response can increase the perceived latency, thus impacting the naturalness of the
 188 human-system interaction. To alleviate this issue, our objective is to reduce this additional latency
 189 by mimicking the common cognitive trait wherein humans begin processing and reasoning before a
 190 question is fully articulated.

192 There are two scenarios where a model can begin reasoning early and yet provide the correct answer,
 193 as illustrated in Table 1. The first scenario includes questions which can be considered “complete”
 194 before reaching the end. In such cases, the model can start reasoning early and simply ignore
 195 the remaining question. In the second scenario, sufficient information may be available to start
 196 reasoning before the question ends, but the model still needs the remaining information to provide
 197 a correct response. We propose two different methods to enable early thinking. To endow the
 198 model with the ability for early reasoning, we created training examples by using our proposed
 199 Question Completeness metric. This metric is designed to identify the optimal time for the model to
 200 begin generating its CoT. Subsequently, we fine-tuned the model on this dataset to teach it to follow
 201 the distribution of these early-reasoning examples. Finally, we apply preference tuning to further
 202 enhance the performance of the model under early thinking scenario.

203 3.1 MEASURING THE QUESTION COMPLETENESS

205 Let us define the *inflection point* of a question as the timestep where sufficient information is avail-
 206 able to begin reasoning. Our objective is to teach the model to identify such points in order to start
 207 its reasoning trace. A naive approach to identify the inflection point may be to shift the reasoning
 208 trace by a fixed number of frames or words, based on the heuristic that sufficient information is
 209 typically available a few words before the question concludes. However, this method is fundamen-
 210 tally limited by its lack of semantic awareness. For instance, in the query “What is the capital of
 211 France?”, a model cannot reasonably begin its reasoning process until the final word, “France,” has
 212 been received. Consequently, it is necessary to develop a method that instructs the model to initiate
 213 reasoning at the *appropriate* moment, informed by the semantics of the question. We do this through
 214 a novel metric, which we call Question Completeness, denoted as ζ .

215 Given a training sample that contains the question $Q_{1:N}$, the reasoning R , and the answer A , where
 N denotes the number of words in the question. Our goal is to find the index p that splits Q into two

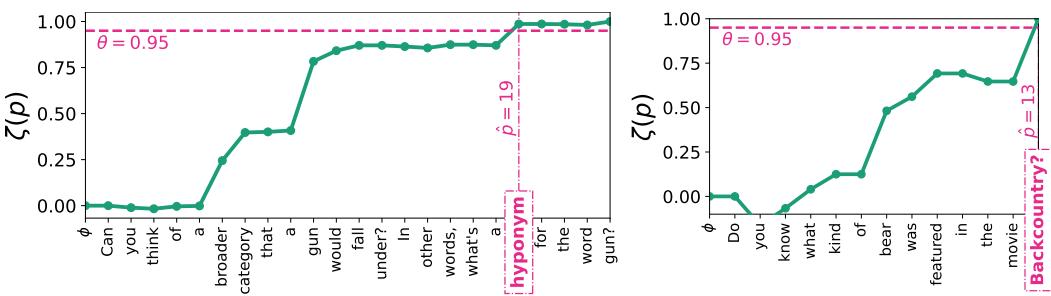


Figure 2: **Examples of the Question Completeness curve $\zeta(p)$.** In the first example, ζ reaches a high value at the end of the main question, at which point it is feasible to begin reasoning. In the second example, the word “Backcountry?” is critical to answer the question, and this is reflected in the corresponding ζ curve. More examples of the ζ curve are provided in Appendix A.1.

halves: $\mathbf{Q}_{1:p}$ and $\mathbf{Q}_{p+1:N}$ such that

$$\Pr[\mathbf{R}, \mathbf{A} | \mathbf{Q}_{1:p}] \approx \Pr[\mathbf{R}, \mathbf{A} | \mathbf{Q}_{1:N}]. \quad (5)$$

Let \mathbf{X}_p denote the joint probability of \mathbf{R} and \mathbf{A} given a partial question until the p -th word, i.e., $\mathbf{X}_p = \Pr[\mathbf{R}, \mathbf{A} | \mathbf{Q}_{0:p}]$. In practice, \mathbf{X}_p can be estimated using an external language model. We define Question Completeness, ζ , as:

$$\zeta(p) = 1 - \frac{D_{\text{KL}}(\mathbf{X}_N || \mathbf{X}_p)}{D_{\text{KL}}(\mathbf{X}_N || \mathbf{X}_0)}, \quad (6)$$

where D_{KL} denotes the Kullback-Leibler (KL) divergence. Here, \mathbf{X}_N and \mathbf{X}_0 represent the extreme cases where the full question and no question are given, respectively. By definition, $\zeta(0) = 0$ and $\zeta(N) = 1$, so we can regard ζ as a semantic completeness progress bar³. Figure 2 shows illustrative examples of the ζ curve, indicating that ζ can be a good proxy for the progressive semantic completeness of a question.

The inflection point for a training sample can be approximated using ζ by estimating \hat{p} s.t.

$$\hat{p} = \min\{p : \zeta(p) \geq \theta\}, \quad (7)$$

where θ is a hyperparameter. We then use \hat{p} to shift the CoT earlier in our training data and use the same loss (as in Sec 2.2 to do SFT). In our experiments, we set θ as 0.95. Further discussion and illustrative examples can be found in Appendix A.1.

3.2 PREFERENCE TUNING

While our question completeness metric allows for the creation of training samples that enable early reasoning, we observed that the model struggles to learn the distribution effectively via SFT and is often unable to update its CoT in response to new information in the user channel. Additionally, the CoT in our training data may be excessively long for simple questions, indicating a considerable opportunity to shorten the reasoning trace. To solve these issues, we created contrastive reasoning pairs, $\mathcal{D} = \left\{ \left(x^{(i)}, y_w^{(i)}, y_l^{(i)} \right) \right\}_{i=1}^N$, using rejection sampling and preference-tuned the SFT model using direct preference optimization (DPO) Rafailov et al. (2023). Fig. 3 illustrates our framework for preparing the preference dataset.

For a subset of prompts in the SFT training data, we generate K responses using an SFT model (fine-tuned with early CoT) where we force-decoded `<start_cot>` at $\zeta(p) = \theta$ completeness. From these generations, we select a preferred output y_w and a rejected output y_l . To improve adaptive reasoning, the preference is based on the correctness of the spoken response; for latency reduction, it is based on the both reasoning length and correctness. Kang et al. (2025) and Hao et al. (2024) have explored other techniques to reduce the length of reasoning trace in CoT-based models.

³ ζ is not guaranteed to be non-decreasing, and in practice, there are small local fluctuations in probability \mathbf{X}_p due to incomplete syntax. Nonetheless, the general trend of ζ is still increasing from 0 to 1.

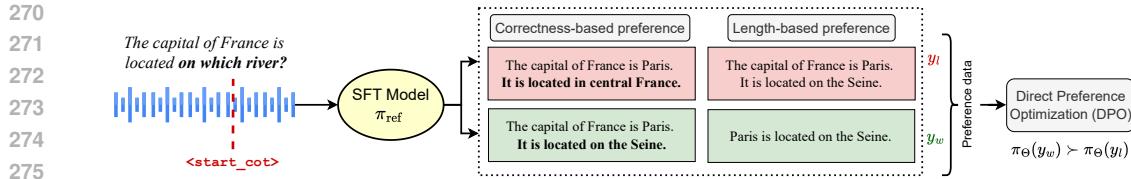


Figure 3: **The framework for curating preference data for DPO.** We generate outputs from the SFT model (π_{ref}) by force-decoding <start_cot> early (e.g., before “on which river” is spoken). The preferred response (y_w) is the one where the model is able to adaptively generate a correct and shorter reasoning trace.

Once we have the preference pairs, training is then performed using the DPO objective:

$$\mathcal{L}_{\text{DPO}}(\pi_{\Theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\Theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\Theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right], \quad (8)$$

where π_{Θ} and π_{ref} are the policy and reference model respectively, σ indicates sigmoid function and β is a hyperparameter. Practically, we initialize the policy model π_{Θ} and the reference model π_{ref} with the same weights from an SFT model π , but freeze the reference model during DPO training.

Following Wu et al. (2025), we calculate the token sequence probabilities exclusively using the text monologue stream \mathbf{T}^S for a more stable training process, rather than using the full policy probability from eq. 4. Additionally, we exclude user streaming ASR tokens \mathcal{Q}^T from this calculation to better differentiate between the probabilities of $\pi(y_w|x)$ and $\pi(y_l|x)$. We also adopt length-normalized DPO Meng et al. (2024) and add the NLL loss on y_w to further stabilize the training Xu et al. (2024). The overall loss is given as:

$$\mathcal{L}_{\text{pref}} = \mathcal{L}_{\text{DPO}} - \lambda \mathbb{E}_{(x, y_w) \sim \mathcal{D}} [\log \pi_{\Theta}(y_w|x)], \quad (9)$$

where λ is a hyperparameter that balances the two objectives.

3.3 INTERLEAVED REASONING WITH STREAMING ASR

In Section 2, we proposed that training the model to generate streaming user text tokens improves its textual reasoning capability. Predicting user text poses a challenge when left-shifting the reasoning trace to occur before the user’s question is finished, since the CoT tokens may overlap with the existing streaming user ASR token sequence. To address this issue, we introduce two special switching tokens, <switch_cot> and <switch_asr>, which enable the model to alternate between the two generation modes on the text monologue stream.

To prepare the interleaving pattern for training, we first insert the user’s streaming ASR tokens on the text channel as usual. Then, we identify available blank spaces ([PAD] and [EPAD] tokens) and insert the CoT tokens into these spaces. Whenever a mode switch occurs, we prepend the corresponding switching token. This approach preserves the time alignment between the user’s streaming ASR tokens and the audio input. A detailed illustration of the token arrangement can be found in Figure 1.

4 EXPERIMENTAL SETUP

4.1 TRAINING

Supervised fine-tuning for CoT based on the proposed modeling scheme requires training samples $(\mathcal{Q}, \mathcal{R}, \mathcal{A})$, where \mathcal{Q} and \mathcal{A} are in spoken formats, while \mathcal{R} is in text format. Since there are no suitable large-scale public spoken reasoning datasets available, we used text-based reasoning datasets for training by converting them into spoken format. Specifically, we used the CoT-Collection Kim et al. (2023) dataset as it contains samples from diverse sources along with reasoning traces, amounting to a total of 1.8M examples. The reasoning traces in this dataset are augmented by OpenAI Codex followed by some filtering to ensure quality.

Since the CoT-Collection was created for text LLM training, it is not readily applicable to voice-based models. For instance, several samples are instances of summarization problems containing

324 long-form text, which may not be applicable to natural conversations. We performed careful curation
 325 to obtain a spoken-friendly training dataset from this source:

326

- 327 1. Remove all samples where Q contains more than 60 words, resulting in ~690K samples.
- 328 2. Use an LLM to perform spoken-friendly rewriting for all questions, reasoning, and answers. The
 329 system prompt used for this rewriting is provided in Appendix A.6.
- 330 3. Convert the rewritten questions and answers into audio waveforms using an internal TTS engine
 331 that generates 24Khz mono audios.

332 We have provided fine-tuning hyper-parameters and other details in Appendix A.2.

333

334 4.2 EVALUATION

335 **Spoken reasoning question-answering (SRQA) benchmark.** We prepared a suite of spoken reasoning
 336 tasks from multiple domains, derived from popular text benchmarks: (i) AI2 Reasoning
 337 Challenge (ARC) (Clark et al., 2018), (ii) Physical Interaction QA (PIQA) (Bisk et al., 2019), (iii)
 338 Social Interaction QA (SIQA) (Sap et al., 2019), and (iv) Grade School Math (GSM8K) (Cobbe
 339 et al., 2021). For ARC, we prepared easy (ARC-E) and challenging (ARC-C) subsets, similar to
 340 previous work. Since these evaluation tasks are derived from text sources, we used the same method
 341 of LLM-rewriting and TTS as used for the Spoken CoT-Collection, to convert them into spoken
 342 forms. We designed customized rewriting prompts for each eval set to ensure that the rewritten
 343 questions and answers are reasonable. Since several of the tasks contain multiple-choice questions,
 344 these were rewritten such that the choices are listed in the spoken question. Additionally, we also
 345 tracked the accuracy on LLaMA-Questions (Nachmani et al., 2024) to measure the model’s perfor-
 346 mance for cases where reasoning may not be useful. The statistics and illustrative examples for all
 347 evaluation datasets can be found in Appendix A.3.

348 **Scoring.** Throughout this work, we used LLaMA-3.1 405B Grattafiori et al. (2024) as a text-based
 349 judge to assess the correctness of the response. Since the model generates a spoken response \mathcal{A} , we
 350 used Pyannote VAD (Bredin & Laurent, 2021; Bredin et al., 2020) to first detect speech presence,
 351 followed by Whisper (Radford et al., 2023) to transcribe the response. The LLM-judge is provided
 352 the question and ground-truth answer, along with the model’s transcribed response. It first deter-
 353 mines whether the model provided an answer and then evaluates its correctness. The system prompt
 354 for the judge can be found in Appendix A.6.

355

356 5 RESULTS

357

358 5.1 CHAIN-OF-THOUGHT FINE-TUNING IMPROVES ACCURACY

359 **Comparison with baselines.** Table 2 shows the accuracy of our CoT fine-tuned model on the SRQA
 360 tasks, compared to the Moshi baseline. We also include several publicly available text and speech
 361 LLMs of similar size for reference (Touvron et al., 2023; Mesnard et al., 2024; Chu et al., 2024;
 362 Ding et al., 2025). On average, our proposed method provided an absolute accuracy improvement of
 363 29.1%, with most eval tasks improving by 2-3x, showing the effectiveness of our approach. Among
 364 the speech LLMs, our fine-tuned model showed competitive performance across the board, placing
 365 top-2 on all reasoning tasks though the other speech LLMs are pretrained on much more pretraining
 366 data. The performance on LLaMA-QS also improved, but the gains were smaller.

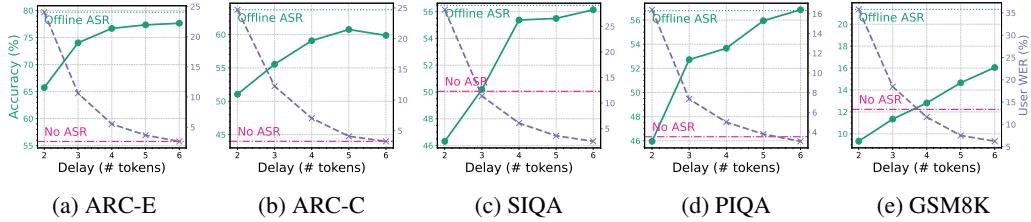
367 **Effect of streaming user ASR.** In Section 2, we conjectured that training the model to transcribe
 368 the user’s audio through aligned text tokens on the monologue stream would improve reasoning. To
 369 justify this choice, we designed an ablation experiment by removing these streaming user ASR to-
 370 kens in training, but otherwise retaining the same training sequences. We also measured the topline
 371 accuracy using “offline” ASR, by training the model to transcribe the user audio after the end of
 372 the question. Finally, we trained several models with streaming ASR where the user text tokens are
 373 delayed by different numbers of tokens (between 2 and 6). In Table 2, removing ASR significantly
 374 degrades accuracy on all reasoning tasks while remaining almost the same on factuality, corroborat-
 375 ing that ASR helps reasoning. In Fig. 4, we observe that both user WER and accuracy consistently
 376 improved for SRQA tasks with an increasing number of delay tokens. The accuracy gain saturated
 377 after 4 delay tokens, though GSM8K showed continued improvement. At a delay of 6 tokens, the
 378 streaming ASR showed comparable accuracy to offline ASR for the majority of tasks.

378
379
380
381
382 **Table 2: Performance of text and speech LLMs on the SRQA benchmark.** All models are
383 roughly 7B but vary in sizes of pretraining data. Our proposed method significantly enhanced the
384 reasoning abilities of Moshi baseline and got competitive results against other speech LLMs pre-
385 trained with much more pretraining data.

Model	# of pretraining text tokens	Reasoning					Factuality LLaMA-QS
		ARC-E	ARC-C	SIQA	PIQA	GSM8K	
<i>Text LLMs</i>							
Helium [†]	2.1T	79.6	55.9	51.0	79.4	—	—
LLaMA2-7b-Chat	2T	63.7	47.1	13.4	25.8	29.4	70.6
Gemma-7B-Instruct	6T	82.5	66.2	18.3	45.0	43.1	69.7
<i>Speech LLMs</i>							
Qwen2-Audio-7B-Instruct	2.4T	59.1	42.4	21.9	24.5	18.1	64.7
Kimi-Audio-7B-Instruct	18T	83.0	71.5	32.9	34.4	15.7	61.7
Moshi (baseline)	2.1T	30.2	21.5	22.8	23.8	8.7	42.8
Moshi + CoT (ours) [‡]	2.1T	<u>77.7</u>	<u>59.8</u>	56.1	56.9	<u>16.1</u>	57.8
w/o Streaming User ASR	2.1T	55.8	44.0	<u>50.1</u>	<u>46.3</u>	12.2	59.9

392 [†] We include Helium since it is the backbone for Moshi, but the results are not directly comparable. Since the model is
393 not publicly accessible, we report the metrics from Défossé et al. (2024), which measured accuracy by evaluating the
394 log-likelihood over the set of given options.

395 [‡] Contains streaming user ASR with a delay of 6 tokens.



401 (a) ARC-E (b) ARC-C (c) SIQA (d) PIQA (e) GSM8K

402 **Figure 4: Effect of streaming user ASR on accuracy for SRQA tasks.** As we increase look-ahead,
403 the accuracy improves and approaches the “offline ASR” topline.

404 **Reasoning in text v/s speech.** A design choice in our CoT fine-tuning is to perform reasoning in
405 text, since text is much more information-dense than speech tokens. To investigate the effect of this
406 decision, we conducted an ablation by performing CoT fine-tuning in speech. For this, we used our
407 internal TTS engine to synthesize the CoT into speech and prefixed it to the spoken response.

408 For these ablation studies, we used the train/test subsets of GSM8K, and the results are shown in Table 3. As expected, the Moshi baseline performed poorly on GSM8K since it was trained primarily for
409 casual dialog. CoT fine-tuning improved the overall accuracy from 8.7% to 17.5% and 17.2% for text-based and speech-based reasoning, respectively. While Speech CoT has zero latency but it comes with
410 the cost of 3x token length for the entire response. Direct fine-tuning on question-answer pairs (“No CoT”) degraded model performance,
411 indicating that the improvement for CoT models cannot be attributed to our training data alone. Qualitative analysis revealed that in several
412 cases where the Moshi baseline provided the correct answer, it actually performed some reasoning first. By directly fine-tuning it without CoT, we forced Moshi
413 “not to think” and therefore reduced its accuracy. More results are shown in Appendix A.4.

414 5.2 EFFECT OF EARLY REASONING

415 In Section 3, we proposed two methods to teach the model to think while listening: first, based
416 on Question Completeness (QC), ζ , and second, using DPO on reasoning traces generated with
417 rejection sampling. For the QC method, we can control the onset of CoT during training based on θ .
418 As a simple baseline, we trained the model by left-shifting the CoT by a fixed number of words of
419 the user question. We refer to this as WS- N , to denote shift by N words. Fig. 5 shows the accuracy
420 v/s latency curves for our proposed methods as well as the baseline. The latency metric is reported
421 in terms of the number of tokens between the end of the user question and start of system response.

422 **QC-based shifting outperforms word-count heuristic.** First, it is evident that all latency improvements
423 resulted in accuracy degradation, and different methods can only be compared based on their
424 pareto-frontiers on the accuracy-latency curve. The results for the WS baselines were mixed: while

425 **Table 3: Comparison of
426 text-based and speech-
427 based CoT on GSM8K, in
428 terms of accuracy (%).**

Model	Accuracy
LLaMA2-7b-Chat	29.4
Moshi (baseline)	8.7
Text CoT	17.5
Speech CoT	17.2
No CoT	3.5

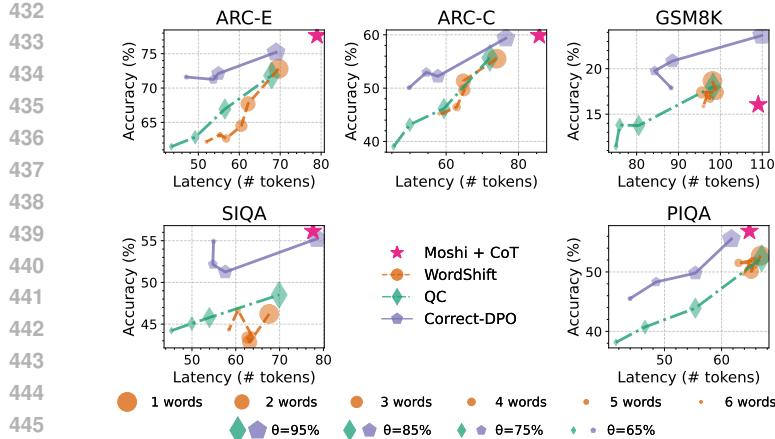


Figure 5: **Accuracy-latency curves for the proposed methods on SRQA reasoning tasks.** QC exhibits better controllability in trade-offs. DPO training with correctness-based preference further improves the accuracy of the QC models.

they showed gradual latency reduction on ARC, the performance on other tasks was haphazard. On PIQA and GSM8K, for instance, increasing N in training did not result in expected reduction in latency, indicating that the model was unable to learn any patterns for early reasoning. The proposed QC method, on the other hand, provided better control over the trade-off. On all eval sets, latency improved as we reduced the θ for selecting inflection point (see equation 7) from 0.95 to 0.65.

Correctness-based preference improves accuracy. On further DPO training with correctness-based preference data, we achieved consistent improvements on all evaluation sets, as shown by the purple curve in Fig. 5. The marginal increase in latency stems from the better alignment between our model’s behavior and the ground truth. We report the average gap between start CoT position of prediction and ground truth in Table 5. Negative sign indicates that the model generated CoT starts earlier than ground truth. Before applying Correct-DPO, SFT models tends to start CoT earlier than the ground truth.

Length-based preference improves latency. Next, we trained the model using the length-based preference data to further shorten the CoT length. For this experiment, we chose the SFT model trained with $\theta = 0.75$ as our base model. From Table 4, we found that our method successfully reduced latency across all tasks by 30 tokens on average, while maintaining or improving accuracy.

Illustrative examples showing the improvements of our methods are shown in Appendix A.5.

6 CONCLUSION

In this work, we integrate CoT into speech LLMs and proposed a novel “thinking while listening” paradigm. We showed that text-based CoT can dramatically improve the model’s performance, leading to 2-3x accuracy improvements over a suite of spoken reasoning tasks. A significant fraction of this improvement came from explicit user understanding by teaching the model to transcribe the user audio in a streaming manner. To avoid the latency cost of reasoning, we trained the multi-stream model to reason concurrently with incoming audio guided by our proposed “Question Completeness” metric. This metric offers a superior controllability over accuracy latency trade-off. We then performed preference tuning of this model with datasets created using rejection sampling. By curating correctness-based and length-based preference data, we were able to (i) improve the accuracy of the early-CoT model, and (ii) shorten the length of the reasoning trace, respectively. The resulting model demonstrated 70% lower latency without a significant loss in accuracy. Our work opens up a new direction for Speech LLMs: the ability to think while listening, a capability that brings them closer to the natural, responsive flow of human conversation.

Table 4: **Effect of DPO training with length-based preferences** on accuracy (%) and latency (# tokens). The base SFT model is trained with $\theta = 0.75$. With DPO training, we further reduced latency by 70% without compromising the accuracy.

Eval Set	Accuracy		Latency	
	SFT	DPO	SFT	DPO
<i>LLaMA-QS</i>	56.2	56.9	35.6	20.9
ARC-E	62.8	65.4	49.2	12.0
ARC-C	43.2	46.0	49.9	13.2
SIQA	45.1	45.3	50.0	12.9
PIQA	40.7	46.0	46.6	18.2
GSM8K	13.8	14.7	76.0	48.6

Table 5: **Start CoT Gap** (# tokens) on the validation set. The gap is calculated by subtracting the position of `<start_cot>` between model generation and ground truth.

θ	Gap (pred - gt)	
	SFT	Correct-DPO
0.95	-1.62	-0.60
0.85	-3.68	-0.76
0.75	-5.77	-1.56
0.65	-5.17	-0.32

486 7 ETHICS STATEMENT
487488 We acknowledge that we have read and adhered to the ICLR Code of Ethics. Our research on Speech
489 LLM reasoning is intended to advance the communication between human and machine. The data
490 source used is publicly available and has no personally identifiable information.
491492 8 REPRODUCIBILITY STATEMENT
493494 To ensure the reproducibility of our experiments, we provide comprehensive implementation details
495 in our paper. The overall pipeline for dataset preparation and evaluation is described in Section 4.1.
496 Additionally, all LLM prompt templates and evaluation benchmark statistics are included in Ap-
497 pendices A.6 and A.3, respectively. The detail of our model training parameters is provided in
498 Appendix A.2.
499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Siddhant Arora et al. Chain-of-thought training for open e2e spoken dialogue systems. *ArXiv*,
543 abs/2506.00722, 2025. URL [https://api.semanticscholar.org/CorpusID:
544 279075666](https://api.semanticscholar.org/CorpusID:279075666).

545 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
546 physical commonsense in natural language. In *AAAI Conference on Artificial Intelligence*, 2019.

547 Hervé Bredin and Antoine Laurent. End-to-end speaker segmentation for overlap-aware reseguen-
548 tation. In *Proc. Interspeech 2021*, Brno, Czech Republic, August 2021.

549 Hervé Bredin et al. pyannote.audio: neural building blocks for speaker diarization. In *ICASSP 2020*,
550 *IEEE International Conference on Acoustics, Speech, and Signal Processing*, Barcelona, Spain,
551 May 2020.

552 Junjie Chen et al. Fireredchat: A pluggable, full-duplex voice interaction system with cascaded and
553 semi-cascaded implementations, 2025. URL <https://arxiv.org/abs/2509.06502>.

554 Cheng-Han Chiang et al. Stitch: Simultaneous thinking and talking with chunked reasoning for
555 spoken language models, 2025. URL <https://arxiv.org/abs/2507.15375>.

556 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
557 Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report, 2024.
558 URL <https://arxiv.org/abs/2407.10759>.

559 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
560 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
561 *arXiv:1803.05457v1*, 2018.

562 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
563 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
564 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
565 2021.

566 Wenqian Cui, Dianzhi Yu, Xiaoqi Jiao, Ziqiao Meng, Guangyan Zhang, Qichao Wang, Yiwen Guo,
567 and Irwin King. Recent advances in speech language models: A survey. *ArXiv*, abs/2410.03751,
568 2024. URL <https://api.semanticscholar.org/CorpusID:273186873>.

569 Ding Ding et al. Kimi-audio technical report, 2025. URL <https://arxiv.org/abs/2504.18425>.

570 Peter Donhauser and Sylvain Baillet. Two distinct neural timescales for predictive speech process-
571 ing. *Neuron*, 105, 12 2019. doi: 10.1016/j.neuron.2019.10.019.

572 Yexing Du et al. Making llms better many-to-many speech-to-text translators with curriculum learn-
573 ing. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*,
574 pp. 12466–12478, 01 2025. doi: 10.18653/v1/2025.acl-long.610.

575 Zhihao Du et al. Cosyvoice 2: Scalable streaming speech synthesis with large language
576 models. *ArXiv*, abs/2412.10117, 2024. URL [https://api.semanticscholar.org/
577 CorpusID:274762932](https://api.semanticscholar.org/CorpusID:274762932).

578 Alexandre Défossez et al. Moshi: a speech-text foundation model for real-time dialogue, 2024.
579 URL <https://arxiv.org/abs/2410.00037>.

580 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL [https://arxiv.org/abs/
581 2407.21783](https://arxiv.org/abs/2407.21783).

582 Gerard I. Gállego, Oriol Pareras, Martí Cortada Garcia, Lucas Takanori, and Javier Hernando.
583 Speech-to-Text Translation with Phoneme-Augmented CoT: Enhancing Cross-Lingual Transfer
584 in Low-Resource Scenarios. In *Interspeech 2025*, pp. 31–35, 2025. doi: 10.21437/Interspeech.
585 2025-1954.

594 Shibo Hao et al. Training large language models to reason in a continuous latent space. *arXiv*
 595 *preprint arXiv:2412.06769*, 2024.
 596

597 Ke Hu et al. Chain-of-thought prompting for speech translation. In *ICASSP 2025 - 2025 IEEE*
 598 *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025.
 599 doi: 10.1109/ICASSP49660.2025.10890560.

600 Shujie Hu et al. Wavllm: Towards robust and adaptive speech large language model. In *Con-*
 601 *ference on Empirical Methods in Natural Language Processing*, 2024. URL <https://api.semanticscholar.org/CorpusID:268819260>.
 602

603 Ailin Huang et al. Step-audio: Unified understanding and generation in intelligent speech in-
 604 teraction. *ArXiv*, abs/2502.11946, 2025. URL <https://api.semanticscholar.org/CorpusID:276421776>.
 605

606 Rongjie Huang et al. Audiogpt: Understanding and generating speech, music, sound, and talk-
 607 ing head. *ArXiv*, abs/2304.12995, 2023. URL <https://api.semanticscholar.org/CorpusID:258309430>.
 608

609 Mingyu Jin et al. The impact of reasoning step length on large language models. In *Findings of the*
 610 *Association for Computational Linguistics ACL 2024*, pp. 1830–1842, 2024.
 611

612 Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: generating shorter chain-of-
 613 thought without compromising effectiveness. In *Proceedings of the Thirty-Ninth AAAI Con-*
 614 *ference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications*
 615 *of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial In-*
 616 *telligence, AAAI'25/IAAI'25/EAAI'25*. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi:
 617 10.1609/aaai.v39i23.34608. URL <https://doi.org/10.1609/aaai.v39i23.34608>.
 618

619 Heeseung Kim et al. Paralinguistics-aware speech-empowered large language models for natural
 620 conversation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 621 2024. URL <https://openreview.net/forum?id=NjewXJUDYq>.
 622

623 Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
 624 Seo. The cot collection: Improving zero-shot and few-shot learning of language models via chain-
 625 of-thought fine-tuning. In *The 2023 Conference on Empirical Methods in Natural Language*
 626 *Processing*, 2023. URL <https://openreview.net/forum?id=D7omx8QyFP>.
 627

628 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 629 language models are zero-shot reasoners. In *Proceedings of the 36th International Conference on*
 630 *Neural Information Processing Systems, NIPS '22*, Red Hook, NY, USA, 2022. Curran Associates
 631 Inc. ISBN 9781713871088.
 632

633 Tom Labiausse, Laurent Mazaré, Edouard Grave, Alexandre Défossez, and Neil Zeghidour. High-
 634 fidelity simultaneous speech-to-speech translation. In *Forty-second International Conference on*
 635 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=fqjN8B6xVX>.
 636

637 Tatiana Likhomanenko et al. Chipchat: Low-latency cascaded conversational agent in mlx. In *ASRU*,
 638 2025.
 639

640 Guan-Ting Lin, Cheng-Han Chiang, and Hung yi Lee. Advancing large language models to capture
 641 varied speaking styles and respond properly in spoken conversations. In *ACL*, 2024.
 642

643 Guan-Ting Lin et al. Align-SLM: Textless spoken language models with reinforcement learning
 644 from AI feedback. In *Proceedings of the 63rd Annual Meeting of the Association for Compu-*
 645 *tational Linguistics (Volume 1: Long Papers)*, pp. 20395–20411, Vienna, Austria, July 2025.
 646 Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
 647 acl-long.997. URL <https://aclanthology.org/2025.acl-long.997/>.
 648

649 Ke-Han Lu et al. Desta: Enhancing speech language models through descriptive speech-text
 650 alignment. *ArXiv*, abs/2406.18871, 2024. URL <https://api.semanticscholar.org/CorpusID:270764362>.
 651

648 Jialong Mai, Xiaofen Xing, Yangbiao Li, and Xiangmin Xu. Chain-of-Thought Distillation with
 649 Fine-Grained Acoustic Cues for Speech Emotion Recognition. In *Interspeech 2025*, pp. 5438–
 650 5442, 2025. doi: 10.21437/Interspeech.2025-1979.

651

652 Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
 653 reference-free reward. In *The Thirty-eighth Annual Conference on Neural Information Processing
 654 Systems*, 2024. URL <https://openreview.net/forum?id=3Tzcot1LKb>.

655 Thomas Mesnard et al. Gemma: Open models based on gemini research and technology, 2024.
 656 URL <https://arxiv.org/abs/2403.08295>.

657

658 Eliya Nachmani, Alon Levkovich, Roy Hirsch, Julian Salazar, Chulayuth Asawaroengchai, Soroosh
 659 Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and Michelle Tadmor Ramanovich. Spoken question
 660 answering and speech continuation using spectrogram-powered LLM. In *The Twelfth Interna-
 661 tional Conference on Learning Representations*, 2024. URL [https://openreview.net/
 662 forum?id=izrOLJov5y](https://openreview.net/forum?id=izrOLJov5y).

663 Chanwoo Park, Anna Seo Gyeong Choi, Sunghye Cho, and Chanwoo Kim. Reasoning-Based Ap-
 664 proach with Chain-of-Thought for Alzheimer’s Detection Using Speech and Large Language
 665 Models. In *Interspeech 2025*, pp. 2185–2189, 2025. doi: 10.21437/Interspeech.2025-1226.

666

667 Jing Peng, Yucheng Wang, Bohan Li, Yiwei Guo, Hankun Wang, Yangui Fang, Yu Xi, Haoyu Li,
 668 Xu Li, Ke Zhang, Shuai Wang, and Kai Yu. A survey on speech large language models for
 669 understanding, 2025. URL <https://arxiv.org/abs/2410.18908>.

670 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 671 Robust speech recognition via large-scale weak supervision. In *Proceedings of the 40th Interna-
 672 tional Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

673

674 Rafael Raffailov et al. Direct preference optimization: Your language model is secretly a reward
 675 model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 676 <https://openreview.net/forum?id=HPuSIXJaa9>.

677 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
 678 monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
 679 aojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 680 guage Processing and the 9th International Joint Conference on Natural Language Processing
 681 (EMNLP-IJCNLP)*, pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
 682 putational Linguistics. doi: 10.18653/v1/D19-1454. URL [https://aclanthology.org/
 683 D19-1454/](https://aclanthology.org/D19-1454/).

684 Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
 685 Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot?
 686 chain-of-thought helps mainly on math and symbolic reasoning. In *The Thirteenth Interna-
 687 tional Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?id=w6n1cS8Kkn](https://openreview.net/forum?

 688 id=w6n1cS8Kkn).

689

690 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
 691 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models.
 692 In *The Twelfth International Conference on Learning Representations*, 2024. URL [https://openreview.net/forum?id=14rn7HpKVk](https://openreview.net/forum?

 693 id=14rn7HpKVk).

694 Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.

695

696 Bandhav Veluri et al. Beyond turn-based interfaces: Synchronous llms as full-duplex dialogue
 697 agents. In *EMNLP*, 2024.

698

699 Chengwei Wei, Bin Wang, Jung-Jae Kim, and Nancy F. Chen. Towards spoken mathemati-
 700 cal reasoning: Benchmarking speech-based models over multi-faceted math problems. *ArXiv*,
 701 abs/2505.15000, 2025. URL [https://api.semanticscholar.org/CorpusID:
 278782499](https://api.semanticscholar.org/CorpusID:278782499).

702 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
703 Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
704 models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Ad-*
705 *vances in Neural Information Processing Systems*, 2022. URL [https://openreview.net/](https://openreview.net/forum?id=_VjQ1MeSB_J)
706 [forum?id=_VjQ1MeSB_J](https://openreview.net/forum?id=_VjQ1MeSB_J).

707 Anne Wu, Laurent Mazaré, Neil Zeghidour, and Alexandre Défossez. Aligning spoken dia-
708 logue models from user interactions. *ArXiv*, abs/2506.21463, 2025. URL <https://api.semanticscholar.org/CorpusID:280012148>.

710

711 Zhifei Xie et al. Mini-omni-reasoner: Token-level thinking-in-speaking in large speech models,
712 2025. URL <https://arxiv.org/abs/2508.15827>.

713

714 Haoran Xu et al. Contrastive preference optimization: Pushing the boundaries of llm performance
715 in machine translation. In *ICML*, 2024. URL <https://openreview.net/forum?id=51iwkioZpn>.

716

717 Zhen Ye et al. Llasa: Scaling train-time and inference-time compute for llama-based speech
718 synthesis. *ArXiv*, abs/2502.04128, 2025. URL <https://api.semanticscholar.org/CorpusID:276161207>.

719

720 Robin Shing-Hei Yuen, Timothy Tin-Long Tse, and Jian Zhu. Internalizing asr with implicit chain
721 of thought for efficient speech-to-speech conversational llm. *ArXiv*, abs/2409.17353, 2024. URL
722 <https://api.semanticscholar.org/CorpusID:272911262>.

723

724 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
725 reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Ad-*
726 *vances in Neural Information Processing Systems*, 2022. URL [forum?id=_3ELRdg2sgI](https://openreview.net/
727 <a href=).

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

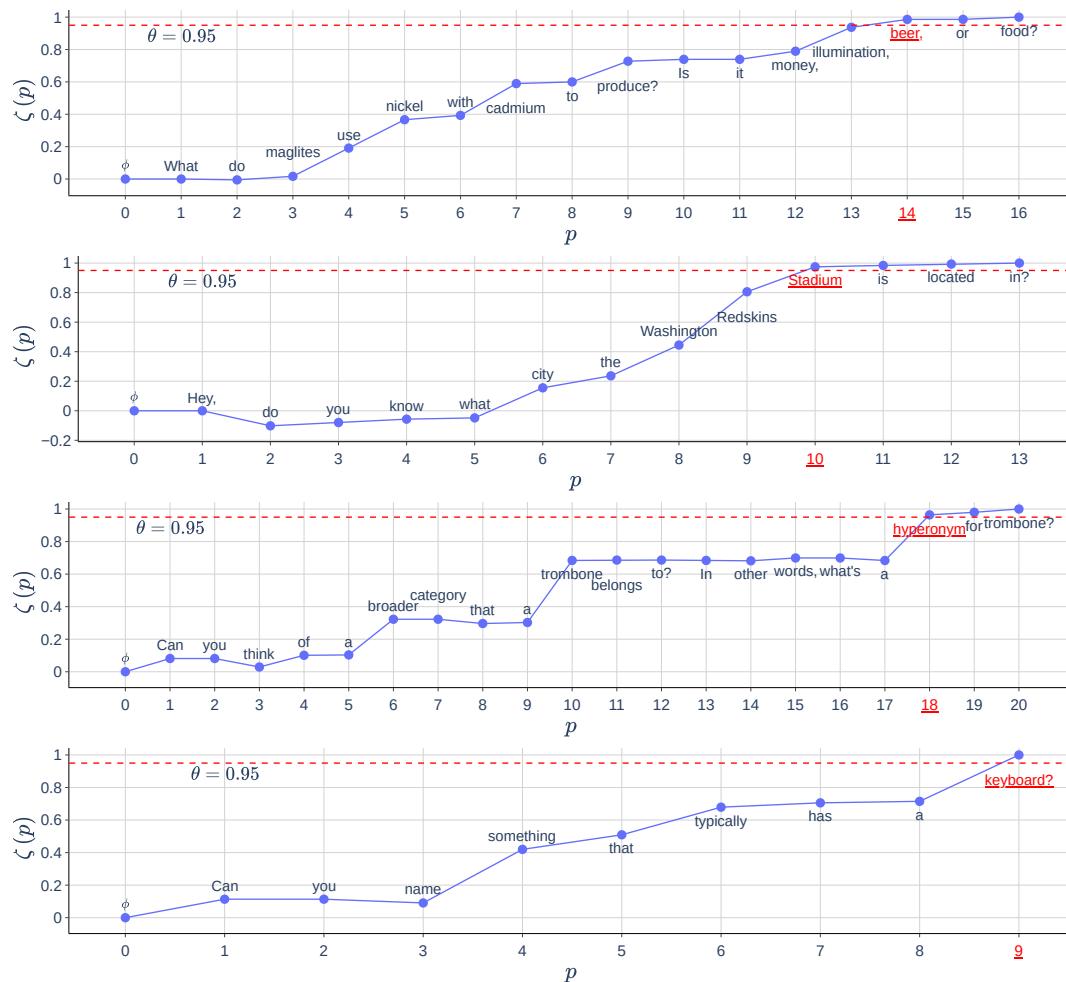
755

756 A APPENDIX
757758 A.1 THE “QUESTION COMPLETENESS” METRIC
759

760 In our preliminary experiments, we considered using entropy or log-probability as metrics for mea-
761 suring completeness. However, both were found to be less robust, as they were more susceptible to
762 noise from the incomplete syntax of partial questions. Consequently, we adopted Kullback–Leibler
763 (KL) divergence for this purpose.

764 For determining the inflection point, we set a specific percentage-based threshold rather than capturing
765 the largest jump in the curve, as suggested in prior work Labiausse et al. (2025). A large jump
766 may occur early in a user’s question when a key term is mentioned, but it does not mean that this
767 partial information is sufficient to answer the question correctly. We conjecture that a metric based
768 on a completeness percentage is more semantically reasonable. Furthermore, through manual exam-
769 ination of the QC curves on our training data, a 95% threshold was empirically found to align well
770 with human perception of question completeness, serving as a conservative and effective criterion.
771 We put more QC curves in the Appendix. Table 6 shows more examples of QC curves.

772
773 Table 6: Examples of the Question Completeness curve $\zeta(p)$. The word at inflection point \hat{p}
774 is shown as red and underlined. Each point on the horizontal axis corresponds to the cumulative
775 sequence of words in the partial question up to and including the current word.



864
865

A.2 TRAINING AND FINE-TUNING DETAILS

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

We fine-tuned the entire model with a learning rate (LR) of $4e-6$ and batch size 128 using fully-sharded data-parallel (FSDP) on 8 A100 GPUs. All models were trained for 8K steps with a warmup of 400 steps followed by LR annealing. We used Llama3-8B-Chat (Grattafiori et al., 2024) to estimate \mathbf{X}_p which is required for estimating the inflection point \hat{p} (§ 3.1). For preference tuning experiments, we selected models that are fine-tuned with different θ as the base models. We set learning rate to $5e-7$, $\beta = 0.1$, $\lambda = 0.1$, and trained with batch size 16 for 1200 steps. Final checkpoint was selected based on saturation of reward accuracy. To get a better monitor our model training, we curated a the validation set with a more strict filtering process. Specifically, we only keep examples with question length less than 80 words and the question shouldn't include keywords such as “paragraph”, “article”, ... etc. and no special character allowed. The rest of dataset preparation procedure is as same as the training set.

918 A.3 SPOKEN REASONING BENCHMARK
919920 Table 7 shows illustrative examples for each of the tasks in our SRQA benchmark. Since the source
921 prompts for ARC-E, ARC-C, PIQA, and SIQA are choice-based tasks, LLM rewriting includes the
922 vocalized options with the questions to make them suitable for spoken tasks.
923924 Table 7: Statistics and illustrative examples for each task in the Spoken Reasoning Question An-
925 swering (SRQA) benchmark
926

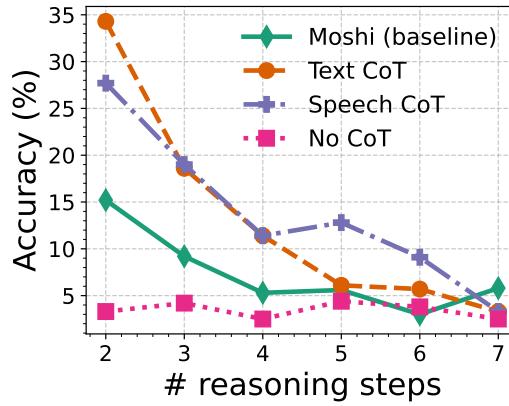
Task	Multiple choice	Size	\mathcal{Q} statistics		Example
			Dur. (s)	#words	
ARC-E	✓	2376	14.5±5.6	40.5±17.5	Q: Plants use sunlight to make something, but what is it? Is it soil, minerals, food, or water? A: <i>Food</i>
ARC-C	✓	1172	16.9±6.4	48.6±19.6	Q: What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6 electrons? Is it 6, 7, 13, or 19? A: <i>13</i>
PIQA	✓	1838	12.4±4.7	43.9±15.3	Q: I want to install some cabinet pulls and I'm considering two options: either gluing some old jewelry under the cabinet knob or gluing it on top of the cabinet knob. Which do you think would be the better idea? A: <i>I think gluing the old jewelry on top of the cabinet knob would be the way to go.</i>
SIQA	✓	1954	15.1±3.7	49.8±12.3	Q: Hey, I was just watching this game and Ash had a pretty rough moment. He tried to redeem himself after missing an open shot. How do you think he's feeling right now? Would he be feeling disappointed, frugal, or maybe trying hard to shake it off? A: <i>I think he'd be feeling disappointed.</i>
GSM8K	✗	1319	15.3±5.7	46.3±18.1	Q: A candle melts by 2 centimeters every hour that it burns. How many centimeters shorter will a candle be after burning from 1:00 PM to 5:00 PM? A: <i>8</i>
LLaMA-QS	✗	300	3.0±0.8	8.5±2.1	Q: Which river is the longest in South America? A: <i>Amazon</i>

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 A.4 COMPARISON OF TEXT-BASED AND SPEECH-BASED COT
973

974 In Table 3, we showed a comparison between text v/s speech modes of CoT, when trained and tested
975 on GSM8K. While the accuracies were similar, reasoning in text was much more token-efficient
976 than speech, with the token sequence lengths being 119.0 ± 54.4 and 368.8 ± 190.3 , respectively.
977 Speech-based CoT may still be useful as it introduces no additional latency compared to the baseline
978 Moshi model, while still yielding substantial reasoning gains. This characteristic is similar to recent
979 work such as STITCH (Chiang et al., 2025) that does “thinking while speaking”. Still, text-based
980 CoT results in shorter latency to the model’s final answer since model generates the reasoning trace,
981 without having to vocalize it.

982 Figure 6 shows the variation in accuracy for the different methods by the number of ground-truth
983 reasoning steps required for the solution. For all models, accuracy degraded with an increase in # of
984 steps, which indicates more complex questions.



999 Figure 6: Accuracy variation by number of reasoning steps for text-based and speech-based CoT,
1000 measured on GSM8K.

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A.5 QUALITATIVE EXAMPLES
10271028 Table 8: Examples generated by models. We show some examples of the model output. Words in
1029 blue shaded are the spoken from the model. Words in red shaded are the user audio ASR. Words in
1030 green shaded are the CoT generated by the system.
1031

1032	Example 1:	
1033	User Question:	Steve put together a puzzle that took 10 hours of hard work to complete. Anna put together the same puzzle in 2 hours more than half Steve's time. How long did it take Anna to finish the difficult puzzle?
1034	Ground Truth	7
1035	Moshi(Baseline):	Based on the information from the previous paragraph, we can infer that Anna took around six hours to complete the puzzle.
1036	Moshi+CoT:	Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in two hours more than half Steve's time. How long did it take Anna to finish the difficult puzzle? If Steve's time to complete the puzzle is 1 0 hours, then half of this time is 1 0 / 2 = 5 hours. 2 hours more than half of Steve 's time is 5 + 2 = 7 hours. Anna finished the puzzle in 7 hours. Anna took seven hours to finish the puzzle.
1037	QC($\theta=0.95$)	Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in 2 hours more than half Steve's time. First find half of How long did it take Anna to finish the difficult the puzzle? time it took Steve to put together the puzzle : 1 0 hours / 2 = 5 hours. Then add 2 hours to find Anna's time : 5 hours + 2 hours = 7 hours. It took Anna seven hours to finish the puzzle.
1038		
1039		
1040		
1041		
1042	Example 2:	
1043	User Question:	What would be best seen through a telescope? Would it be a moon, a cell, a light ray, or a molecule?
1044	Ground Truth:	a moon
1045	QC($\theta=0.75$) +CorrectDPO	What would be best seen through a telescope? Would it be a moon, The telescope a cell, is a device that uses a light ray, lenses or a molecule? or mirror s to mag n ify images of distant objects. The most common use for telescope s is in astronomy, where they are used to observe celestial bodies such as planets and stars. A telescope can be used to see the moon because it's an object located in space. However, a cell cannot be seen through a telescope because cells are too small (and therefore not visible) without some sort of magnification device like a microscope. Light rays also do not need to be viewed through telescope s ; instead they are just part of the process by which we see things with our eyes. Mol ec ules don't exist outside of chemical reactions so seeing them would require more than just looking at them through a lens. Therefore, " a moon " is the correct answer here you 'd be able to see the moon through a telescope.
1046	QC($\theta=0.75$) +LengthDPO	What would be best seen through a telescope? Would it be a moon, The correct answer a cell, is A, because you can a light see ray, or the a molecule? moon through a telescope. You 'd be able to see a moon through a telescope.
1047		
1048		
1049		
1050		
1051		
1052	Example 3:	
1053	User Question:	Hey, I've got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he's finally done, what do you think he'll want to do next? Will he want to enroll in college again, get a job next, or pay for college?
1054	Ground Truth:	I think he'll want to get a job next.
1055	QC($\theta = 0.75$):	Hey, I ' got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he 's finally done, what do you think he ' ll want to do next? Here's the rationale Will he want to enroll in : " college again, river s flow trough get a job valley next, s." or pay for college? Actually, that's an unexpected answer, although it seems unrelated. However, according to the answer, rivers flow through valley s.
1056	QC($\theta=0.75$) +CorrectDPO	Hey, I ' got a friend named Jessie who just finished college after taking a few years to get his degree. Now that he 's finally done, what do you think he ' ll want to do next? Here's the rationale Will he want to enroll : in college again, " jj has finally get a job next, finished college, what or pay for college? will he want to do next? - he will probably want to get a job " I think he ' ll probably want to get a job next.
1057		
1058		
1059		
1060		
1061		

1062 We present several qualitative examples generated by our models in Table 8. In Example 1, after
1063 fine-tuning with CoT, our model correctly answers the question, whereas the Moshi baseline fails.
1064 With our proposed QC-based early thinking, the model begins generating its CoT trace immediately
1065 after all information are provided. Therefore it reduces the latency.

1066 In Example 2, we show an example requires minimal reasoning but the model generate a long
1067 CoT, which increase the latency a lot. By applying our Length-DPO fine-tuning, we were able to
1068 significantly reduce the CoT length while still maintaining the correct answer

1069 Example 3 illustrates a limitation of the QC-based early thinking. If the model initiates reasoning too
1070 early—in this case, before the answer “get a job” is spoken—it is prone to generating an incorrect
1071 reasoning trace and, consequently, an incorrect final answer. With Correct-DPO tuning, the model
1072 overcome this failure. Even when the CoT trace starts at the same early point, the model correctly
1073 considers subsequent incoming information from the user question, leading to a correct answer.

1074
1075
1076
1077
1078
1079

1080 A.6 SYSTEM PROMPTS
10811082 **System prompt for LLM-judge scoring**1083 You are provided with a question, a ground truth answer and a model response. Your task is to determine
1084 whether the model response is correct.

1085 Only determine the correctness of the response with the information provided.

1086 Don't judge the non-factual components in the response, such as opinions, greetings, beliefs, subjective
1087 statements, follow-up questions.

1088 Now Given

1089 question: {{question}}

1090 ground_truth_answer: {{gt_answer}}

1091 model_response: {{model_output}}

1092 Output should be a JSON-formatted string with dictionary containing keys (model_final_answer, judge_result).
1093 Do not include any other text.

1094 For 'model_final_answer', please extract the final answer from the model_response.

1095 If the model_response doesn't output a final answer, output '<no_final_answer>'.

1096 If the model_response reaches a final conclusion, output the final answer (do not output any special
1097 characters).

1098 For 'judge_result', please output one of the following three options:

1099 1. output '<no_final_answer>' if the model_response doesn't conclude a final answer.

1100 2. output '<correct>' if the model_final_answer is equivalent to the ground_truth_answer.

1101 3. output '<incorrect>' if the model_final_answer is not equivalent to the ground_truth_answer.

1102 Only output one of the above three options for 'judge_result'.

1103 Please judge it based on the only the given ground_truth_answer, the question and model_final_answer.

1104 Example:

1105 [Response]

1106 {{{"model_final_answer": "20", "judge_result": "<correct>"}}}

1107 [Response]

1108

1109 **System prompt for LLM rewrite on CoT-Collection**1110 You are a helpful conversational assistant. Your task is to convert written question and answer pairs into a
1111 natural, spoken conversation. Do not throw away information required for answering the question. The
1112 question itself should be self-contained for people to answer it.

1113 You are given a question an answer and a rationale. Please convert them into natural spoken conversation.

1114 If it is a multiple choice question, please mention the choices in the converted spoken question.

1115 If the given question is too long, please summarize it and include the information required for answering.

1116 If the given question refers to an article, passage, paragraph, please include the essential information in
1117 the converted question.1118 The converted_question and converted_answer should be in spoken format. The converted_rationale should be in
1119 written format (as concise as possible).

1120 Do not use any special characters in the converted_question and converted_answer.

1121 Make sure the converted_rationale is coherent with the converted_question and converted_answer.

1122 The output shoud be in JSON format as the following.

1123 {"converted_question": "...", "converted_answer": "...", "converted_rationale": "..."}
1124

Example:

1125 Question: [What was the reaction when the children were given ice cream?

1126 Choose the most suitable option to answer the above question.

1127 Options:

1128 A. awesome

1129 B. enjoyed

1130 C. play chess

1131 D. skip

1132 E. sadness]]

1133 Answer: [B]

1134 Rationale: [The children were given ice cream, they enjoyed. So the answer is B]

1135 Output:

1136 {"converted_question": "What was the reaction when the children were given ice cream? Did they feel awesome,
1137 enjoyed, play chess, skip or sadness? Which one is more suitable", "converted_answer": ".They are most
1138 likely enjoyed.", "converted_rationale": "The children were given ice cream, they enjoyed. So the answer
1139 is enjoyed."}

1140 Now given

1141 Question: {{question}}

1142 Answer: {{answer}}

1143 Rationale: {{reasoning}}

1144 Output:

1134 **System prompt for LLM rewrite on SRQA benchmark**
 1135
 1136 **ARC-E**
 1137 You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
 not throw away information required for answering the question. The question itself should be self-
 1138 contained for people to answer it.
 1139 You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
 mention the options in the converted spoken question.
 1140 The output should be in JSON format as the following.
 {"converted_question": "..."}
 1141 Example1:
 1142 Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
 likely effect of this increase in rotation?]
 1143 Options: [1. Planetary density will decrease.
 2. Planetary years will become longer.
 3. Planetary days will become shorter.
 4. Planetary gravity will become stronger.]
 1144 Output:
 {"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is
 the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
 become longer or planetary days become shorter or planetary gravity become stronger?"}
 1145 Now given
 1146 Question: {{question}}
 1147 Options: {{options_str}}
 1148 Output:
 1149 **ARC-C**
 1150 You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
 not throw away information required for answering the question. The question itself should be self-
 1151 contained for people to answer it.
 1152 You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
 mention the options in the converted spoken question.
 1153 The output should be in JSON format as the following.
 {"converted_question": "..."}
 1154 Example1:
 1155 Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
 likely effect of this increase in rotation?]
 1156 Options: [1. Planetary density will decrease.
 2. Planetary years will become longer.
 3. Planetary days will become shorter.
 4. Planetary gravity will become stronger.]
 1157 Output:
 {"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is
 the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
 become longer or planetary days become shorter or planetary gravity become stronger?"}
 1158 Now given
 1159 Question: {{question}}
 1160 Options: {{options_str}}
 1161 Output:
 1162 **PIQA**
 1163 You are a helpful assistant. Your task is to convert written goal and solution into a natural, spoken
 conversation. Do not throw away information required for answering the question. The question itself
 1164 should be self-contained for people to answer it.
 1165 You are given a goal, 2 solution and an answer. Please convert them into natural spoken conversation. Make
 sure to mention the options in the converted spoken goal.
 1166 The output should be in JSON format as the following.
 {"converted_goal": "...", "converted_answer": "..."}
 1167 Now given
 1168 Goal: {{goal}}
 1169 Solution 1: {{option1}}
 Solution 2: {{option2}}
 1170 Answer: {{answer}}
 1171 Output:
 1172 **SIQA**

1188 You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
1189 not throw away information required for answering the question. The question itself should be self-
1190 contained for people to answer it.
1191 You are given a question, 3 options and an answer. Please convert them into natural spoken conversation. Make
1192 sure to mention the options in the converted spoken goal.
1193 The output should be in JSON format as the following.
1194 {"converted_goal": "...", "converted_answer": "..."}
1195 Now given
1196 Goal: {{context} {question}}
1197 Option 1: {{option1}}
1198 Option 2: {{option2}}
1199 Option 3: {{option3}}
1200 Answer: {{answer}}
1201 Output:
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241