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ABSTRACT

Recent advances in speech large language models (speech LLMs) have enabled
seamless spoken interactions, but these systems still struggle with complex rea-
soning tasks. Previously, chain-of-thought (CoT) prompting or fine-tuning has
been to shown to significantly improve the reasoning abilities of text-based LLMs.
In this work, we investigate the effect of CoT fine-tuning for multi-stream speech
LLMs, demonstrating that reasoning in text space improves the accuracy of
speech LLMs by 2.4x, on average, over a suite of spoken reasoning tasks. Be-
yond accuracy, the latency of the spoken response is a crucial factor for interacting
with voice-based agents. Inspired by the human behavior of “thinking while lis-
tening,” we propose methods to reduce the additional latency from reasoning by
allowing the model to start reasoning before the user query has ended. To achieve
this, we introduce an entropy-based metric, “question completeness,” which acts
as an indicator to guide the model on the optimal time to start reasoning. This
method provides greater control over the accuracy-latency trade-off compared
with heuristic-based approaches and, under equivalent latency conditions, yields a
4% accuracy gain on ARC-Easy. Finally, we use Direct Preference Optimization
(DPO) on preference data created using rejection sampling to push the accuracy-
latency pareto frontier further, resulting in a 70% reduction in latency without
loss in accuracy.

1 INTRODUCTION

The traditional approach for building voice agents is to cascade several components: an automatic
speech recognition (ASR) model, a text-based large language model (LLM), and a text-to-speech
(TTS) model Huang et al. (2023); Lin et al. (2024); Likhomanenko et al. (2025); Chen et al. (2025).
The recent emergence of speech large language models (Speech LLMs) (Cui et al., 2024) offers
a promising alternative to this cascaded pipeline. These models are designed to directly process
speech input or generate speech output, thereby eliminating the need for separate ASR or TTS mod-
ules. This integrated approach can seamlessly process both the semantic content and paralinguistic
features of speech, and also reduces latency due to cascaded components. In addition to being used
for specialized tasks such as speech understanding (Tang et al., 2024; Hu et al., 2024; Lu et al., 2024)
and speech generation (Ye et al., 2025; Du et al., 2024), these models have shown promise in end-to-
end spoken dialog Défossez et al. (2024); Huang et al. (2025). Nevertheless, while they work well
for casual conversations, speech LLMs often fall behind their text-based counterparts on complex
reasoning tasks (Peng et al., 2025; Wei et al., 2025; Lin et al., 2025). Consequently, the develop-
ment of methods to enhance the reasoning capabilities of speech LLMs remains an underexplored
and critical research problem to further their application as smart companions.

Several approaches have been explored to enhance reasoning capabilities in text-based LLMs, with
the most popular being chain-of-thought (CoT) (Wei et al., 2022). In this method, the model gen-
erates a series of intermediate reasoning steps before producing its final answer. An LLM can be
coerced to elicit reasoning traces either through zero-shot prompting (Kojima et al., 2022) or via su-
pervised fine-tuning on a dataset of reasoning examples (Zelikman et al., 2022). Despite their strong
performance, recent research highlights a critical trade-off with CoT: the length of the reasoning
trace is a crucial factor in accuracy. While longer CoT sequences generally yield better perfor-
mance, this comes at the cost of increased decoding latency and computational overhead (Jin et al.,
2024). To tackle this problem, there are explorations about when and how long an LLM should
reason (Sprague et al., 2025), resulting in a growing interest in “hybrid” reasoning models.
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Figure 1: Training token sequence arrangement. We train the model to interleave reasoning
tokens RT with streaming ASR tokens QT on the text monologue channel, with special switch
tokens for mode switching. After the CoT ends, the model generates text tokens which align with
the spoken response RT. For simplicity, [PAD] and [EPAD] tokens are not shown here.

Although some recent work has adopted CoT in the speech domain, they focus primarily on ap-
plications such as speech translation Hu et al. (2025); Du et al. (2025); Gállego et al. (2025), dia-
logue Arora et al. (2025), or other detection tasks Mai et al. (2025); Park et al. (2025). The integra-
tion of CoT in speech LLMs requires answering two research questions: (i) should models reason
using text or speech, and (ii) how do we maintain the responsiveness required for spoken interac-
tions? To answer the first question, we investigate both alternatives, showing that text-based CoT is
as performant as speech-based CoT for improving reasoning in speech LLMs, while being 2x more
token-efficient.

The sequential process of listening, reasoning, and responding introduces considerable latency; con-
sequently, previous research has proposed methods to overlap CoT tokens with speech to improve
real-time conversational AI. Building upon the anthropomorphism of speech LLMs, concurrent
works such as STITCH (Chiang et al., 2025) and Mini-Omni-Reasoner (Xie et al., 2025) have pro-
posed “thinking while speaking,” i.e., the model begins its spoken response while its reasoning is still
ongoing. This is achieved by interleaving chunks of reasoning tokens with spoken response tokens,
and subsequent CoT chunks are generated in the time it takes for the audio decoder to synthesize the
preceding response. Despite showing reasonable improvements, this approach has notable limita-
tions. For instance, the optimal chunk size for interleaving requires careful tuning and is dependent
on hardware limitations. Moreover, despite a reduction in the time to first word, the model may
inadvertently vocalize too much of its reasoning, leading to a longer overall response time to a fi-
nal, conclusive answer. In this paper, we draw inspiration from neuroscience (Donhauser & Baillet,
2019) to propose a novel “thinking while listening” paradigm, by enabling concurrent processing of
text-based CoT and user speech.

Current speech LLM architectures may be broadly categorized into two types: single-stream and
multi-stream. Single-stream architectures merge user/system speech and text into a unified token
sequence (Kim et al., 2024; Veluri et al., 2024), while multi-stream architectures simultaneously
model distinct streams for each token sequence (Défossez et al., 2024). In this work, we build
upon a multi-stream architecture due to its superior capacity for the concurrent processing of user
audio and reasoning tokens. This design provides significant flexibility by allowing the system’s
text stream to be revised independently, a key advantage over single-stream models that lack this
decoupling. Specifically, we fine-tune the publicly available Moshi model (Défossez et al., 2024) to
generate CoT within its text monologue stream to improve its reasoning capabilities (Section 2). To
enable the model to think while listening, we propose two methods: (i) a novel metric that estimates
the completeness of the user’s question at each timestep, and (ii) a preference tuning scheme to
update the model’s reasoning dynamically with new input (Section 3).

Since there are no existing standard reasoning evaluations for speech LLMs, we curated a suite
of single-turn spoken reasoning tasks from well-known text-based reasoning benchmarks compris-
ing mathematical reasoning, social/physical interactions, and other general reasoning tasks (Sec-
tion 4.2). Overall, our contributions are summarized below.

1. Text-based CoT improves reasoning in speech LLMs. To the best of our knowledge, we are
the first to explore text-based CoT fine-tuning on multi-stream speech LLMs. Our method obtains
2.4x improvement in accuracy, on average, over the Moshi baseline across the SRQA tasks.
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2. Thinking while listening reduces reasoning latency. We demonstrate that auto-regressive mod-
els that can generate tokens in sync with streaming user input can be taught to “think early” using
entropy-based selection of trigger points. We achieve this using a novel Question Completeness
metric that results in more controllable accuracy-latency trade-offs.

3. Preference tuning enables adaptive reasoning for early-CoT models. We use rejection sam-
pling to curate correctness-based and length-based preference data and use them for DPO training,
pushing the accuracy-latency pareto further and reducing ∼70% latency without loss in accuracy.

2 MULTI-STREAM SPEECH LLMS WITH CHAIN-OF-THOUGHT

2.1 BACKGROUND: MOSHI

Moshi (Défossez et al., 2024) is a full-duplex multi-stream model that simultaneously processes
three distinct token streams at each timestep: user audio, system audio, and system text (referred to
as the “text monologue”). For the audio streams, a separate codec model, Mimi, is used to encode
audio waveforms into discrete tokens and back, operating at a frame rate of 12.5 Hz with 8 code-
books. Eventually, all three streams of inputs are represented as tokens:

User Audio : AU ∈ {1, . . . , NA}L×8 (1)

System Audio : AS ∈ {1, . . . , NA}L×8 (2)

System Text : TS ∈ {1, . . . , NT }L , (3)
where NA = 2048 is the size of each Mimi code-book and NT = 32000 is the text vocabulary size.
All streams have L time-aligned tokens; text tokens are interleaved with padding tokens ([PAD]
and [EPAD]1) to align with the corresponding audio tokens. Notably, since such aligned text token
sequences are significantly shorter than the corresponding speech, the majority of text tokens in
Moshi are simply padding tokens. The model architecture consists of a temporal transformer and a
depth transformer, trained jointly using Negative Log Likelihood(NLL) loss. At each timestep t, the
temporal transformer consumes AU

t and AS
t , and predicts TS

t+1
2. This token is fed into the depth

transformer, which generates AS
t+1. The model is trained to estimate the following probability:

p
(
AS

t+1,T
S
t+1|AS

≤t,T
S
≤t,A

U
≤t

)
. (4)

Moshi was trained in multiple stages: (i) pre-training a text backbone LLM (Helium) using next
token prediction, followed by (ii) post-training and fine-tuning with audio token sequences as well
as multi-stream data, and (iii) fine-tuning with user-system dialogue data. Subsequent studies also
showed the effectiveness of alignment training with direct preference optimization (DPO) to improve
aspects such as factuality and safety (Wu et al., 2025). During inference, Moshi consumes user
tokens and generates a system text and audio token per timestep. Due to the nature of the training
sequences, we can force Moshi to generate a response by inserting an [EPAD] token on the text
monologue stream. Conversely, inserting a [PAD] token forces it to remain silent.

2.2 FINETUNING WITH COT

Given a user’s spoken question, QA, our model predicts a spoken answer, AA, guided by a reasoning
trace, R. In the base Moshi model, all spoken responses AA are preceded by aligned text AT on
the text monologue stream. To integrate CoT in this framework, we allow the model to additionally
generate text-only reasoning tokens RT without corresponding audio. Since both RT and AT are
generated on the text monologue channel, we demarcate them using special <start cot> and
<end cot> tokens, as shown in Fig. 1.

To help the model learn the relationship between the user’s spoken question and the CoT, we also
introduce a streaming ASR component into the text monologue, with the corresponding tokens de-
noted by QT (red tokens in Fig. 1). Previously, Arora et al. (2025) and Yuen et al. (2024) have
suggested using the user’s audio transcript as an intermediate step in the CoT process for speech
LLMs, but they focused on offline ASR. In contrast, our model naturally learns streaming ASR

1[EPAD] is used for indicating end of consecutive pad tokens.
2For simplicity, we neglect the delay pattern of first audio codebook and system text in our notation.
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Table 1: Examples of questions where it is feasible to start reasoning early without impacting the
correctness of the answer.

# Question Reasoning Answer
1 What is the capital of France ... is it New York

or Paris?
The capital of France is Paris. It’s Paris.

2 If you flip a fair coin three times and get
heads each time ... what is the probability
the fourth flip is heads?

It’s a fair coin, so probability
of heads/tails is always 0.5.

The probability is 0.5.

through word-aligned user transcripts right-shifted by k tokens for look-ahead. Based on our pre-
liminary experiments, we used k = 6 (equivalent to a 480 ms look-ahead), which was found to
provide a good balance between latency and word error rate (WER). Finally, the text monologue
contains the user transcript QT , the reasoning RT , and the response text AT . To ensure all three
streams—user audio (AU), system audio (AS), and text monologue (AU)—have the same length,
we insert silent audio tokens as needed.

We fine-tune Moshi using the same NLL loss for next token prediction during the SFT stage, and use
DPO loss for off-policy preference tuning. During inference, we apply force-decoding to our fine-
tuned model and the baselines in two ways: (i) at the start of the user’s question, we force-decode
k [PAD] tokens to accommodate the streaming ASR, and (ii) we force-decode the <start cot>
token after the user’s question ends if the model has not generated it already.

3 THINKING WHILE LISTENING

Since our text-based CoT does not generate any aligned audio, naively inserting it between the
query and the response can increase the perceived latency, thus impacting the naturalness of the
human-system interaction. To alleviate this issue, our objective is to reduce this additional latency
by mimicking the common cognitive trait wherein humans begin processing and reasoning before a
question is fully articulated.

There are two scenarios where a model can begin reasoning early and yet provide the correct answer,
as illustrated in Table 1. The first scenario includes questions which can be considered “complete”
before reaching the end. In such cases, the model can start reasoning early and simply ignore
the remaining question. In the second scenario, sufficient information may be available to start
reasoning before the question ends, but the model still needs the remaining information to provide
a correct response. We propose two different methods to enable early thinking. To endow the
model with the ability for early reasoning, we created training examples by using our proposed
Question Completeness metric. This metric is designed to identify the optimal time for the model to
begin generating its CoT. Subsequently, we fine-tuned the model on this dataset to teach it to follow
the distribution of these early-reasoning examples. Finally, we apply preference tuning to further
enhance the performance of the model under early thinking scenario.

3.1 MEASURING THE QUESTION COMPLETENESS

Let us define the inflection point of a question as the timestep where sufficient information is avail-
able to begin reasoning. Our objective is to teach the model to identify such points in order to start
its reasoning trace. A naive approach to identify the inflection point may be to shift the reasoning
trace by a fixed number of frames or words, based on the heuristic that sufficient information is
typically available a few words before the question concludes. However, this method is fundamen-
tally limited by its lack of semantic awareness. For instance, in the query “What is the capital of
France?”, a model cannot reasonably begin its reasoning process until the final word, “France,” has
been received. Consequently, it is necessary to develop a method that instructs the model to initiate
reasoning at the appropriate moment, informed by the semantics of the question. We do this through
a novel metric, which we call Question Completeness, denoted as ζ.

Given a training sample that contains the question Q1:N , the reasoning R, and the answer A, where
N denotes the number of words in the question. Our goal is to find the index p that splits Q into two

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Ca
n

yo
u

th
in

k of a
br

oa
de

r
ca

te
go

ry
th

at a
gu

n
wo

ul
d

fa
ll

un
de

r? In
ot

he
r

wo
rd

s,
wh

at
's a

hy
po

ny
m

fo
r

th
e

wo
rd

gu
n?

0.00

0.25

0.50

0.75

1.00

(p
)

= 0.95

p
=

19

Do yo
u

kn
ow

wh
at

ki
nd of

be
ar

wa
s

fe
at

ur
ed in th

e
m

ov
ie

Ba
ck

co
un

tr
y?

0.00

0.25

0.50

0.75

1.00

(p
)

= 0.95

p
=

13

Figure 2: Examples of the Question Completeness curve ζ (p). In the first example, ζ reaches a
high value at the end of the main question, at which point it is feasible to begin reasoning. In the
second example, the word “Backcountry?” is critical to answer the question, and this is reflected in
the corresponding ζ curve. More examples of the ζ curve are provided in Appendix A.1.

halves: Q1:p and Qp+1:N such that
Pr [R,A|Q1:p] ≈ Pr [R,A|Q1:N ] . (5)

Let Xp denote the joint probability of R and A given a partial question until the p-th word, i.e.,
Xp = Pr [R,A|Q0:p]. In practice, Xp can be estimated using an external language model. We
define Question Completeness, ζ, as:

ζ(p) = 1− DKL (XN ||Xp)

DKL (XN ||X0)
, (6)

where DKL denotes the Kullback-Leibler (KL) divergence. Here, XN and X0 represent the extreme
cases where the full question and no question are given, respectively. By definition, ζ(0) = 0 and
ζ(N) = 1, so we can regard ζ as a semantic completeness progress bar3. Figure 2 shows illus-
trative examples of the ζ curve, indicating that ζ can be a good proxy for the progressive semantic
completeness of a question.

The inflection point for a training sample can be approximated using ζ by estimating p̂ s.t.
p̂ = min{p : ζ(p) ≥ θ}, (7)

where θ is a hyperparameter. We then use p̂ to shift the CoT earlier in our training data and use the
same loss (as in Sec 2.2 to do SFT). In our experiments, we set θ as 0.95. Further discussion and
illustrative examples can be found in Appendix A.1.

3.2 PREFERENCE TUNING

While our question completeness metric allows for the creation of training samples that enable early
reasoning, we observed that the model struggles to learn the distribution effectively via SFT and is
often unable to update its CoT in response to new information in the user channel. Additionally,
the CoT in our training data may be excessively long for simple questions, indicating a considerable
opportunity to shorten the reasoning trace. To solve these issues, we created contrastive reasoning

pairs, D =
{(

x(i), y
(i)
w , y

(i)
l

)}N

i=1
, using rejection sampling and preference-tuned the SFT model

using direct preference optimization (DPO) Rafailov et al. (2023). Fig. 3 illustrates our framework
for preparing the preference dataset.

For a subset of prompts in the SFT training data, we generate K responses using an SFT model (fine-
tuned with early CoT) where we force-decoded <start cot> at ζ(p) = θ completeness. From
these generations, we select a preferred output yw and a rejected output yl. To improve adaptive
reasoning, the preference is based on the correctness of the spoken response; for latency reduction,
it is based on the both reasoning length and correctness. Kang et al. (2025) and Hao et al. (2024)
have explored other techniques to reduce the the length of reasoning trace in CoT-based models.

3ζ is not guaranteed to be non-decreasing, and in practice, there are small local fluctuations in probability
Xp due to incomplete syntax. Nonetheless, the general trend of ζ is still increasing from 0 to 1.
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The capital of France is Paris. 
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The capital of France is Paris. 
It is located in central France.
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The capital of France is 
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Direct Preference
Optimization (DPO)

The capital of France is Paris. 
It is located on the Seine.

Correctness-based preference Length-based preference

Figure 3: The framework for curating preference data for DPO. We generate outputs from the
SFT model (πref ) by force-decoding <start cot> early (e.g., before “on which river” is spoken).
The preferred response (yw) is the one where the model is able to adaptively generate a correct and
shorter reasoning trace.

Once we have the preference pairs, training is then performed using the DPO objective:

LDPO (πΘ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πΘ (yw|x)
πref (yw|x)

− β log
πΘ (yl|x)
πref (yl|x)

)]
, (8)

where πΘ and πref are the policy and reference model respectively, σ indicates sigmoid function and
β is a hyperparameter. Practically, we initialize the policy model πΘ and the reference model πref

with the same weights from an SFT model π, but freeze the reference model during DPO training.

Following Wu et al. (2025), we calculate the token sequence probabilities exclusively using the text
monologue stream TS for a more stable training process, rather than using the full policy probability
from eq. 4. Additionally, we exclude user streaming ASR tokens QT from this calculation to better
differentiate between the probabilities of π (yw|x) and π (yl|x). We also adopt length-normalized
DPO Meng et al. (2024) and add the NLL loss on yw to further stabilize the training Xu et al. (2024).
The overall loss is given as:

Lpref = LDPO − λE(x,yw)∼D[log πΘ (yw|x)], (9)
where λ is a hyperparameter that balances the two objectives.

3.3 INTERLEAVED REASONING WITH STREAMING ASR

In Section 2, we proposed that training the model to generate streaming user text tokens improves its
textual reasoning capability. Predicting user text poses a challenge when left-shifting the reasoning
trace to occur before the user’s question is finished, since the CoT tokens may overlap with the exist-
ing streaming user ASR token sequence. To address this issue, we introduce two special switching
tokens, <switch cot> and <switch asr>, which enable the model to alternate between the
two generation modes on the text monologue stream.

To prepare the interleaving pattern for training, we first insert the user’s streaming ASR tokens on
the text channel as usual. Then, we identify available blank spaces ([PAD] and [EPAD] tokens)
and insert the CoT tokens into these spaces. Whenever a mode switch occurs, we prepend the
corresponding switching token. This approach preserves the time alignment between the user’s
streaming ASR tokens and the audio input. A detailed illustration of the token arrangement can be
found in Figure 1.

4 EXPERIMENTAL SETUP

4.1 TRAINING

Supervised fine-tuning for CoT based on the proposed modeling scheme requires training samples
(Q,R,A), where Q and A are in spoken formats, while R is in text format. Since there are no suit-
able large-scale public spoken reasoning datasets available, we used text-based reasoning datasets
for training by converting them into spoken format. Specifically, we used the CoT-Collection Kim
et al. (2023) dataset as it contains samples from diverse sources along with reasoning traces, amount-
ing to a total of 1.8M examples. The reasoning traces in this dataset are augmented by OpenAI
Codex followed by some filtering to ensure quality.

Since the CoT-Collection was created for text LLM training, it is not readily applicable to voice-
based models. For instance, several samples are instances of summarization problems containing

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

long-form text, which may not be applicable to natural conversations. We performed careful curation
to obtain a spoken-friendly training dataset from this source:

1. Remove all samples where Q contains more than 60 words, resulting in ∼690K samples.
2. Use an LLM to perform spoken-friendly rewriting for all questions, reasoning, and answers. The
system prompt used for this rewriting is provided in Appendix A.6.
3. Convert the rewritten questions and answers into audio waveforms using an internal TTS engine
that generates 24Khz mono audios.

We have provided fine-tuning hyper-parameters and other details in Appendix A.2.

4.2 EVALUATION

Spoken reasoning question-answering (SRQA) benchmark. We prepared a suite of spoken rea-
soning tasks from multiple domains, derived from popular text benchmarks: (i) AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), (ii) Physical Interaction QA (PIQA) (Bisk et al., 2019), (iii)
Social Interaction QA (SIQA) (Sap et al., 2019), and (iv) Grade School Math (GSM8K) (Cobbe
et al., 2021). For ARC, we prepared easy (ARC-E) and challenging (ARC-C) subsets, similar to
previous work. Since these evaluation tasks are derived from text sources, we used the same method
of LLM-rewriting and TTS as used for the Spoken CoT-Collection, to convert them into spoken
forms. We designed customized rewriting prompts for each eval set to ensure that the rewritten
questions and answers are reasonable. Since several of the tasks contain multiple-choice questions,
these were rewritten such that the choices are listed in the spoken question. Additionally, we also
tracked the accuracy on LLaMA-Questions (Nachmani et al., 2024) to measure the model’s perfor-
mance for cases where reasoning may not be useful. The statistics and illustrative examples for all
evaluation datasets can be found in Appendix A.3.

Scoring. Throughout this work, we used LLaMA-3.1 405B Grattafiori et al. (2024) as a text-based
judge to assess the correctness of the response. Since the model generates a spoken response A, we
used Pyannote VAD (Bredin & Laurent, 2021; Bredin et al., 2020) to first detect speech presence,
followed by Whisper (Radford et al., 2023) to transcribe the response. The LLM-judge is provided
the question and ground-truth answer, along with the model’s transcribed response. It first deter-
mines whether the model provided an answer and then evaluates its correctness. The system prompt
for the judge can be found in Appendix A.6.

5 RESULTS

5.1 CHAIN-OF-THOUGHT FINE-TUNING IMPROVES ACCURACY

Comparison with baselines. Table 2 shows the accuracy of our CoT fine-tuned model on the SRQA
tasks, compared to the Moshi baseline. We also include several publicly available text and speech
LLMs of similar size for reference (Touvron et al., 2023; Mesnard et al., 2024; Chu et al., 2024;
Ding et al., 2025). On average, our proposed method provided an absolute accuracy improvement of
29.1%, with most eval tasks improving by 2-3x, showing the effectiveness of our approach. Among
the speech LLMs, our fine-tuned model showed competitive performance across the board, placing
top-2 on all reasoning tasks though the other speech LLMs are pretrained on much more pretraining
data. The performance on LLaMA-QS also improved, but the gains were smaller.

Effect of streaming user ASR. In Section 2, we conjectured that training the model to transcribe
the user’s audio through aligned text tokens on the monologue stream would improve reasoning. To
justify this choice, we designed an ablation experiment by removing these streaming user ASR to-
kens in training, but otherwise retaining the same training sequences. We also measured the topline
accuracy using “offline” ASR, by training the model to transcribe the user audio after the end of
the question. Finally, we trained several models with streaming ASR where the user text tokens are
delayed by different numbers of tokens (between 2 and 6). In Table 2, removing ASR significantly
degrades accuracy on all reasoning tasks while remaining almost the same on factuality, corroborat-
ing that ASR helps reasoning. In Fig. 4, we observe that both user WER and accuracy consistently
improved for SRQA tasks with an increasing number of delay tokens. The accuracy gain saturated
after 4 delay tokens, though GSM8K showed continued improvement. At a delay of 6 tokens, the
streaming ASR showed comparable accuracy to offline ASR for the majority of tasks.
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Table 2: Performance of text and speech LLMs on the SRQA benchmark. All models are
roughly 7B but vary in sizes of pretraining data. Our proposed method significantly enhanced the
reasoning abilities of Moshi baseline and got competitive results against other speech LLMs pre-
trained with much more pretraining data.

Model # of pretraining Reasoning Factuality
text tokens ARC-E ARC-C SIQA PIQA GSM8K LLaMA-QS

Text LLMs
Helium† 2.1T 79.6 55.9 51.0 79.4 – –
LLaMA2-7b-Chat 2T 63.7 47.1 13.4 25.8 29.4 70.6
Gemma-7B-Instruct 6T 82.5 66.2 18.3 45.0 43.1 69.7
Speech LLMs
Qwen2-Audio-7B-Instruct 2.4T 59.1 42.4 21.9 24.5 18.1 64.7
Kimi-Audio-7B-Instruct 18T 83.0 71.5 32.9 34.4 15.7 61.7

Moshi (baseline) 2.1T 30.2 21.5 22.8 23.8 8.7 42.8
Moshi + CoT (ours)♣ 2.1T 77.7 59.8 56.1 56.9 16.1 57.8

w/o Streaming User ASR 2.1T 55.8 44.0 50.1 46.3 12.2 59.9
† We include Helium since it is the backbone for Moshi, but the results are not directly comparable. Since the model is
not publicly accessible, we report the metrics from Défossez et al. (2024), which measured accuracy by evaluating the
log-likelihood over the set of given options.
♣ Contains streaming user ASR with a delay of 6 tokens.
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Figure 4: Effect of streaming user ASR on accuracy for SRQA tasks. As we increase look-ahead,
the accuracy improves and approaches the “offline ASR” topline.

Reasoning in text v/s speech. A design choice in our CoT fine-tuning is to perform reasoning in
text, since text is much more information-dense than speech tokens. To investigate the effect of this
decision, we conducted an ablation by performing CoT fine-tuning in speech. For this, we used our
internal TTS engine to synthesize the CoT into speech and prefixed it to the spoken response.

Table 3: Comparison of
text-based and speech-
based CoT on GSM8K, in
terms of accuracy (%).
Model Accuracy
LLaMA2-7b-Chat 29.4
Moshi (baseline) 8.7
Text CoT 17.5
Speech CoT 17.2
No CoT 3.5

For these ablation studies, we used the train/test subsets of GSM8K,
and the results are shown in Table 3. As expected, the Moshi base-
line performed poorly on GSM8K since it was trained primarily for
casual dialog. CoT fine-tuning improved the overall accuracy from
8.7% to 17.5% and 17.2% for text-based and speech-based reasoning,
respectively. While Speech CoT has zero latency but it comes with
the cost of 3x token length for the entire response. Direct fine-tuning
on question-answer pairs (“No CoT”) degraded model performance,
indicating that the improvement for CoT models cannot be attributed
to our training data alone. Qualitative analysis revealed that in sev-
eral cases where the Moshi baseline provided the correct answer, it
actually performed some reasoning first. By directly fine-tuning it without CoT, we forced Moshi
“not to think” and therefore reduced its accuracy. More results are shown in Appendix A.4.

5.2 EFFECT OF EARLY REASONING

In Section 3, we proposed two methods to teach the model to think while listening: first, based
on Question Completeness (QC), ζ, and second, using DPO on reasoning traces generated with
rejection sampling. For the QC method, we can control the onset of CoT during training based on θ.
As a simple baseline, we trained the model by left-shifting the CoT by a fixed number of words of
the user question. We refer to this as WS-N , to denote shift by N words. Fig. 5 shows the accuracy
v/s latency curves for our proposed methods as well as the baseline. The latency metric is reported
in terms of the number of tokens between the end of the user question and start of system response.

QC-based shifting outperforms word-count heuristic. First, it is evident that all latency improve-
ments resulted in accuracy degradation, and different methods can only be compared based on their
pareto-frontiers on the accuracy-latency curve. The results for the WS baselines were mixed: while
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Figure 5: Accuracy-latency curves for the proposed methods
on SRQA reasoning tasks. QC exhibits better controllability
in trade-offs. DPO training with correctness-based preference
further improves the accuracy of the QC models.

Table 4: Effect of DPO train-
ing with length-based prefer-
ences on accuracy (%) and la-
tency (# tokens). The base SFT
model is trained with θ = 0.75.
With DPO training, we further
reduced latency by 70% without
compromising the accuracy.

Eval Set Accuracy Latency
SFT DPO SFT DPO

LLaMA-QS 56.2 56.9 35.6 20.9
ARC-E 62.8 65.4 49.2 12.0
ARC-C 43.2 46.0 49.9 13.2
SIQA 45.1 45.3 50.0 12.9
PIQA 40.7 46.0 46.6 18.2
GSM8K 13.8 14.7 76.0 48.6

they showed gradual latency reduction on ARC, the performance on other tasks was haphazard. On
PIQA and GSM8K, for instance, increasing N in training did not result in expected reduction in la-
tency, indicating that the model was unable to learn any patterns for early reasoning. The proposed
QC method, on the other hand, provided better control over the trade-off. On all eval sets, latency
improved as we reduced the θ for selecting inflection point (see equation 7) from 0.95 to 0.65.

Table 5: Start CoT Gap
(# tokens) on the valida-
tion set. The gap is calcu-
lated by subtracting the po-
sition of <start cot> be-
tween model generation and
ground truth.

θ
Gap (pred - gt)

SFT Correct-DPO

0.95 -1.62 -0.60
0.85 -3.68 -0.76
0.75 -5.77 -1.56
0.65 -5.17 -0.32

Correctness-based preference improves accuracy. On further
DPO training with correctness-based preference data, we achieved
consistent improvements on all evaluation sets, as shown by the pur-
ple curve in Fig. 5. The marginal increase in latency stems from
the better alignment between our model’s behavior and the ground
truth. We report the average gap between start CoT position of pre-
diction and ground truth in Table 5. Negative sign indicates that the
model generated CoT starts earlier than ground truth. Before ap-
plying Correct-DPO, SFT models tends to start CoT earlier than the
ground truth.

Length-based preference improves latency. Next, we trained the
model using the length-based preference data to further shorten the
CoT length. For this experiment, we chose the SFT model trained
with θ = 0.75 as our base model. From Table 4, we found that our
method successfully reduced latency across all tasks by 30 tokens on
average, while maintaining or improving accuracy.

Illustrative examples showing the improvements of our methods are shown in Appendix A.5.

6 CONCLUSION

In this work, we integrate CoT into speech LLMs and proposed a novel “thinking while listening”
paradigm. We showed that text-based CoT can dramatically improve the model’s performance, lead-
ing to 2-3x accuracy improvements over a suite of spoken reasoning tasks. A significant fraction of
this improvement came from explicit user understanding by teaching the model to transcribe the user
audio in a streaming manner. To avoid the latency cost of reasoning, we trained the multi-stream
model to reason concurrently with incoming audio guided by our proposed “Question Complete-
ness” metric. This metric offers a superior controllability over accuracy latency trade-off. We then
performed preference tuning of this model with datasets created using rejection sampling. By curat-
ing correctness-based and length-based preference data, we were able to (i) improve the accuracy of
the early-CoT model, and (ii) shorten the length of the reasoning trace, respectively. The resulting
model demonstrated 70% lower latency without a significant loss in accuracy. Our work opens up
a new direction for Speech LLMs: the ability to think while listening, a capability that brings them
closer to the natural, responsive flow of human conversation.
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7 ETHICS STATEMENT

We acknowledge that we have read and adhered to the ICLR Code of Ethics. Our research on Speech
LLM reasoning is intended to advance the communication between human and machine. The data
source used is publicly available and has no personally identifiable information.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide comprehensive implementation details
in out paper. The overall pipeline for dataset preparation and evaluation is described in Section 4.1.
Additionally, all LLM prompt templates and evaluation benchmark statistics are included in Ap-
pendices A.6 and A.3, respectively. The detail of our model training parameters is provided in
Appendix A.2.
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A APPENDIX

A.1 THE “QUESTION COMPLETENESS” METRIC

In our preliminary experiments, we considered using entropy or log-probability as metrics for mea-
suring completeness. However, both were found to be less robust, as they were more susceptible to
noise from the incomplete syntax of partial questions. Consequently, we adopted Kullback–Leibler
(KL) divergence for this purpose.

For determining the inflection point, we set a specific percentage-based threshold rather than captur-
ing the largest jump in the curve, as suggested in prior work Labiausse et al. (2025). A large jump
may occur early in a user’s question when a key term is mentioned, but it does not mean that this
partial information is sufficient to answer the question correctly. We conjecture that a metric based
on a completeness percentage is more semantically reasonable. Furthermore, through manual exam-
ination of the QC curves on our training data, a 95% threshold was empirically found to align well
with human perception of question completeness, serving as a conservative and effective criterion.
We put more QC curves in the Appendix. Table 6 shows more examples of QC curves.

Table 6: Examples of the Question Completeness curve ζ (p). The word at inflection point p̂
is shown as red and underlined. Each point on the horizontal axis corresponds to the cumulative
sequence of words in the partial question up to and including the current word.
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A.2 TRAINING AND FINE-TUNING DETAILS

We fine-tuned the entire model with a learning rate (LR) of 4e-6 and batch size 128 using fully-
sharded data-parallel (FSDP) on 8 A100 GPUs. All models were trained for 8K steps with a warmup
of 400 steps followed by LR annealing. We used Llama3-8B-Chat (Grattafiori et al., 2024) to es-
timate Xp which is required for estimating the inflection point p̂ (§ 3.1). For preference tuning
experiments, we selected models that are fine-tuned with different θ as the base models. We set
learning rate to 5e-7, β = 0.1, λ = 0.1, and trained with batch size 16 for 1200 steps. Final
checkpoint was selected based on saturation of reward accuracy. To get a better monitor our model
training, we curated a the validation set with a more strict filtering process. Specifically, we only
keep examples with question length less than 80 words and the question shouldn’t include key-
words such as “paragraph”, “article”, ... etc. and no special character allowed. The rest of dataset
preparation procedure is as same as the training set.
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A.3 SPOKEN REASONING BENCHMARK

Table 7 shows illustrative examples for each of the tasks in our SRQA benchmark. Since the source
prompts for ARC-E, ARC-C, PIQA, and SIQA are choice-based tasks, LLM rewriting includes the
vocalized options with the questions to make them suitable for spoken tasks.

Table 7: Statistics and illustrative examples for each task in the Spoken Reasoning Question An-
swering (SRQA) benchmark

Task Multiple
choice Size Q statistics Example

Dur. (s) #words
ARC-E ✓ 2376 14.5±5.6 40.5±17.5 Q: Plants use sunlight to make something,

but what is it? Is it soil, minerals, food, or
water? A: Food

ARC-C ✓ 1172 16.9±6.4 48.6±19.6 Q: What is the mass of a carbon atom that
has 6 protons, 7 neutrons, and 6 electrons? Is
it 6, 7, 13, or 19? A: 13

PIQA ✓ 1838 12.4±4.7 43.9±15.3 Q: I want to install some cabinet pulls and
I’m considering two options: either gluing
some old jewelry under the cabinet knob or
gluing it on top of the cabinet knob. Which
do you think would be the better idea? A: I
think gluing the old jewelry on top of the cab-
inet knob would be the way to go.

SIQA ✓ 1954 15.1±3.7 49.8±12.3 Q: Hey, I was just watching this game and
Ash had a pretty rough moment. He tried to
redeem himself after missing an open shot.
How do you think he’s feeling right now?
Would he be feeling disappointed, frugal, or
maybe trying hard to shake it off? A: I think
he’d be feeling disappointed.

GSM8K ✗ 1319 15.3±5.7 46.3±18.1 Q: A candle melts by 2 centimeters every
hour that it burns. How many centimeters
shorter will a candle be after burning from
1:00 PM to 5:00 PM? A: 8

LLaMA-QS ✗ 300 3.0±0.8 8.5±2.1 Q: Which river is the longest in South Amer-
ica? A: Amazon
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A.4 COMPARISON OF TEXT-BASED AND SPEECH-BASED COT

In Table 3, we showed a comparison between text v/s speech modes of CoT, when trained and tested
on GSM8K. While the accuracies were similar, reasoning in text was much more token-efficient
than speech, with the token sequence lengths being 119.0 ± 54.4 and 368.8 ± 190.3, respectively.
Speech-based CoT may still be useful as it introduces no additional latency compared to the baseline
Moshi model, while still yielding substantial reasoning gains. This characteristic is similar to recent
work such as STITCH (Chiang et al., 2025) that does “thinking while speaking”. Still, text-based
CoT results in shorter latency to the model’s final answer since model generates the reasoning trace,
without having to vocalize it.

Figure 6 shows the variation in accuracy for the different methods by the number of ground-truth
reasoning steps required for the solution. For all models, accuracy degraded with an increase in # of
steps, which indicates more complex questions.

2 3 4 5 6 7
# reasoning steps

5

10

15

20

25

30

35

Ac
cu

ra
cy

 (%
)

Moshi (baseline)
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Figure 6: Accuracy variation by number of reasoning steps for text-based and speech-based CoT,
measured on GSM8K.
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A.5 QUALITATIVE EXAMPLES

Table 8: Examples generated by models. We show some examples of the model output. Words in
blue shaded are the spoken from the model. Words in red shaded are the user audio ASR. Words in
green shaded are the CoT generated by the system.

Example 1:
User Question: Steve put together a puzzle that took 10 hours of hard work to complete. Anna put together the same puzzle in 2

hours more than half Steve’s time. How long did it take Anna to finish the difficult puzzle?
Ground Truth 7
Moshi(Baseline): Based on the information from the previous paragraph, we can infer that Anna took around six hours to complete the

puzzle.
Moshi+CoT: Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in two

hours more than half Steve’s time. How long did it take Anna to finish the difficult puzzle? If Steve’s time to complete
the puzzle is 1 0 hours, then half of this time is 1 0 / 2 = 5 hours. 2 hours more than half of Steve ’ s time is 5 + 2 = 7
hours. Anna finished the puzzle in 7 hours. Anna took seven hours to finish the puzzle.

QC(θ=0.95) Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in 2
hours more than half Steve’s time. First find half of How long did it take Anna to finish the difficult the puzzle? time
it took Steve to put together the puzzle : 1 0 hours / 2 = 5 hours. Then add 2 hours to find Anna’s time : 5 hours + 2
hours = 7 hours. It took Anna seven hours to finish the puzzle.

Example 2:
User Question: What would be best seen through a telescope? Would it be a moon, a cell, a light ray, or a molecule?
Ground Truth: a moon
QC(θ=0.75)
+CorrectDPO

What would be best seen through a telescope? Would it be a moon, The telescope a cell, is a device that uses a light
ray, lenses or a molecule? or mirror s to mag n ify images of distant objects. The most common use for telescope s is
in astronomy, where they are used to observe celestial bodies such as planets and stars. A telescope can be used to see
the moon because it’s an object located in space. However, a cell cannot be seen through a telescope because cells are
too small ( and therefore not visible ) without some sort of magnification device like a microscope. Light rays also
do not need to be viewed through telescope s ; instead they are just part of the process by which we see things with
our eyes. Mol ec ules don’ t exist outside of chemical reactions so seeing them would require more than just looking
at them through a lens. Therefore, ” a moon ” is the correct answer here you’ d be able to see the moon through a
telescope.

QC(θ=0.75)
+LengthDPO

What would be best seen through a telescope? Would it be a moon, The correct answer a cell, is A, because you can
a light see ray, or the a molecule? moon through a telescope. You’ d be able to see a moon through a telescope.

Example 3:
User Question: Hey, I’ve got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he’s

finally done, what do you think he’ll want to do next? Will he want to enroll in college again, get a job next, or pay
for college?

Ground Truth: I think he’ll want to get a job next.
QC(θ = 0.75): Hey, I’ got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he’s

finally done, what do you think he’ ll want to do next? Here’s the rationale Will he want to enroll in : ” college again,
river s flow trough get a job valley next, s.” or pay for college? Actually, that’s an unexpected answer, although it
seems unrelated. However, according to the answer, rivers flow through valley s.

QC(θ=0.75)
+CorrectDPO

Hey, I’ got a friend named Jessie who just finished college after taking a few years to get his degree. Now that he’s
finally done, what do you think he’ll want to do next? Here’s the rationale Will he want to enroll : in college again,
” jj has finally get a job next, finished college, what or pay for college? will he want to do next? - he will probably
want to get a job ” I think he’ ll probably want to get a job next.

We present several qualitative examples generated by our models in Table 8. In Example 1, after
fine-tuning with CoT, our model correctly answers the question, whereas the Moshi baseline fails.
With our proposed QC-based early thinking, the model begins generating its CoT trace immediately
after all information are provided. Therefore it reduces the latency.

In Example 2, we show an example requires minimal reasoning but the model generate a long
CoT, which increase the latency a lot. By applying our Length-DPO fine-tuning, we were able to
significantly reduce the CoT length while still maintaining the correct answer

Example 3 illustrates a limitation of the QC-based early thinking. If the model initiates reasoning too
early—in this case, before the answer “get a job” is spoken—it is prone to generating an incorrect
reasoning trace and, consequently, an incorrect final answer. With Correct-DPO tuning, the model
overcome this failure. Even when the CoT trace starts at the same early point, the model correctly
considers subsequent incoming information from the user question, leading to a correct answer.
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A.6 SYSTEM PROMPTS

System prompt for LLM-judge scoring
You are provided with a question, a ground truth answer and a model response. Your task is to determine

whether the model response is correct.
Only determine the correctness of the response with the information provided.
Don’t judge the non-factual components in the response, such as opinions, greetings, beliefs, subjective

statements, follow-up questions.

Now Given

question: [{question}]

ground_truth_answer: [{gt_answer}]

model_response: [{model_output}]

Output should be a JSON-formatted string with dictionary containing keys (model_final_answer, judge_result).
Do not include any other text.

For ’model_final_answer’, please extract the final answer from the model_response.
If the model_response doesn’t output a final answer, output ’<no_final_answer>’.
If the model_response reaches a final conclusion, output the final answer (do not output any special

characters).

For ’judge_result’, please output one of the following three options:
1. output ’<no_final_answer>’ if the model_response doesn’t conclude a final answer.
2. output ’<correct>’ if the model_final_answer is equivalent to the ground_truth_answer.
3. output ’<incorrect>’ if the model_final_answer is not equivalent to the ground_truth_answer.
Only output one of the above three options for ’judge_result’.
Plese judge it based on the only the given ground_truth_answer, the question and model_final_answer.

Example:
[Response]
{{"model_final_answer": "20", "judge_result": "<correct>"}}

[Response]

System prompt for LLM rewrite on CoT-Collection
You are a helpful conversational assistant. Your task is to convert written question and answer pairs into a

natural, spoken conversation. Do not throw away information required for answering the question. The
question itself should be self-contained for people to answer it.

You are given a question an answer and a rationale. Please convert them into natural spoken conversation.
If it is a multiple choice question, please mention the choices in the converted spoken question.
If the given question is too long, please summarize it and include the information required for answering.
If the given quesiton refers to an article, passage, paragraph, please include the essential information in

the converted question.
The converted_question and converted_answer should be in spoken format. The converted_rationale should be in

written format (as concise as possible).
Do not use any special characters in the converted_question and converted_answer.
Make sure the converted_rationale is coherent with the converted_question and converted_answer.
The output shoud be in JSON format as the following.
{"converted_question": "...", "converted_answer": "...", "converted_rationale": "..."}

Example:

Question: [What was the reaction when the children were given ice cream?
Choose the most suitable option to answer the above question.
Options:

A. awesome

B. enjoyed

C. play chess

D. skip

E. sadness]]

Answer: [B]

Rationale: [The children were given ice cream, they enjoyed. So the answer is B]

Output:
{"converted_question": "What was the reaction when the children were given ice cream? Did they feel awesome,

enjoyed, play chess, skip or sadness? Which one is more suitable", "converted_answer": ".They are most
likely enjoyed.", "converted_rationale": "The children were given ice cream, they enjoyed. So the answer
is enjoyed."}

Now given

Question: [{question}]

Answer: [{answer}]

Rationale: [{reasoning}]

Output:
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System prompt for LLM rewrite on SRQA benchmark

ARC-E
You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do

not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
mention the options in the converted spoken question.

The output should be in JSON format as the following.
{"converted_question": "..."}

Example1:

Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
likely effect of this increase in rotation?]

Options: [1. Planetary density will decrease.
2. Planetary years will become longer.
3. Planetary days will become shorter.
4. Planetary gravity will become stronger.]

Output:
{"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is

the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
become longer or planetary days become shorter or planetary gravity become stronger?"}

Now given

Question: [{question}]

Options: [{options_str}]

Output:

ARC-C
You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do

not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
mention the options in the converted spoken question.

The output should be in JSON format as the following.
{"converted_question": "..."}

Example1:

Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
likely effect of this increase in rotation?]

Options: [1. Planetary density will decrease.
2. Planetary years will become longer.
3. Planetary days will become shorter.
4. Planetary gravity will become stronger.]

Output:
{"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is

the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
become longer or planetary days become shorter or planetary gravity become stronger?"}

Now given

Question: [{question}]

Options: [{options_str}]

Output:

PIQA
You are a helpful assistant. Your task is to convert written goal and solution into a natural, spoken

conversation. Do not throw away information required for answering the question. The question itself
should be self-contained for people to answer it.

You are given a goal, 2 solution and an answer. Please convert them into natural spoken conversation. Make
sure to mention the options in the converted spoken goal.

The output should be in JSON format as the following.
{"converted_goal": "...", "converted_answer": "..."}

Now given

Goal: [{goal}]

Solution 1: [{option1}]
Solution 2: [{option2}]

Answer: [{answer}]

Output:

SIQA
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You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

You are given a question, 3 options and an answer. Please convert them into natural spoken conversation. Make
sure to mention the options in the converted spoken goal.

The output should be in JSON format as the following.
{"converted_goal": "...", "converted_answer": "..."}

Now given

Goal: [{context} {question}]

Option 1: [{option1}]
Option 2: [{option2}]
Option 3: [{option3}]

Answer: [{answer}]

Output:
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