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ABSTRACT

Recent advances in speech large language models (speech LLMs) have enabled
seamless spoken interactions, but these systems still struggle with complex rea-
soning tasks. Previously, chain-of-thought (CoT) prompting or fine-tuning has
been to shown to significantly improve the reasoning abilities of text-based LLMs.
In this work, we investigate the effect of CoT fine-tuning for multi-stream speech
LLMs, demonstrating that reasoning in text space improves the accuracy of
speech LLMs by 2.4x, on average, over a suite of spoken reasoning tasks. Be-
yond accuracy, the latency of the spoken response is a crucial factor for interacting
with voice-based agents. Inspired by the human behavior of “thinking while lis-
tening,” we propose methods to reduce the additional latency from reasoning by
allowing the model to start reasoning before the user query has ended. To achieve
this, we introduce an entropy-based metric, “question completeness,” which acts
as an indicator to guide the model on the optimal time to start reasoning. This
method provides greater control over the accuracy-latency trade-off compared
with heuristic-based approaches and, under equivalent latency conditions, yields a
4% accuracy gain on ARC-Easy. Finally, we use Direct Preference Optimization
(DPO) on preference data created using rejection sampling to push the accuracy-
latency pareto frontier further, resulting in a 70% reduction in latency without
loss in accuracy.

1 INTRODUCTION

The traditional approach for building voice agents is to cascade several components: an automatic
speech recognition (ASR) model, a text-based large language model (LLM), and a text-to-speech
(TTS) model Huang et al.|(2023); Lin et al.| (2024); Likhomanenko et al.| (2025)); Chen et al.|(2025).
The recent emergence of speech large language models (Speech LLMs) (Cui et al., 2024) offers
a promising alternative to this cascaded pipeline. These models are designed to directly process
speech input or generate speech output, thereby eliminating the need for separate ASR or TTS mod-
ules. This integrated approach can seamlessly process both the semantic content and paralinguistic
features of speech, and also reduces latency due to cascaded components. In addition to being used
for specialized tasks such as speech understanding (Tang et al., 2024} [Hu et al.,|2024; |Lu et al.| [2024)
and speech generation (Ye et al.,[2025; Du et al., |2024)), these models have shown promise in end-to-
end spoken dialog |[Défossez et al. (2024); [Huang et al.| (2025). Nevertheless, while they work well
for casual conversations, speech LLMs often fall behind their text-based counterparts on complex
reasoning tasks (Peng et al.| [2025; Wei et al., 2025} [Lin et al.l [2025). Consequently, the develop-
ment of methods to enhance the reasoning capabilities of speech LLMs remains an underexplored
and critical research problem to further their application as smart companions.

Several approaches have been explored to enhance reasoning capabilities in text-based LLMs, with
the most popular being chain-of-thought (CoT) (Wei et al., 2022)). In this method, the model gen-
erates a series of intermediate reasoning steps before producing its final answer. An LLM can be
coerced to elicit reasoning traces either through zero-shot prompting (Kojima et al., [2022)) or via su-
pervised fine-tuning on a dataset of reasoning examples (Zelikman et al.,[2022)). Despite their strong
performance, recent research highlights a critical trade-off with CoT: the length of the reasoning
trace is a crucial factor in accuracy. While longer CoT sequences generally yield better perfor-
mance, this comes at the cost of increased decoding latency and computational overhead (Jin et al.,
2024). To tackle this problem, there are explorations about when and how long an LLM should
reason (Sprague et al., 2025), resulting in a growing interest in “hybrid” reasoning models.
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What is the capital of France? Is it Barcelona, London, or Paris?
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Figure 1: Training token sequence arrangement. We train the model to interleave
tokens R with [streaming ASR| tokens Q™ on the text monologue channel, with special

tokens for mode switching. After the CoT ends, the model generates text tokens which align with
the spoken RT. For simplicity, [PAD] and [EPAD] tokens are not shown here.

Although some recent work has adopted CoT in the speech domain, they focus primarily on ap-
plications such as speech translation Hu et al.| (2025); |Du et al.| (2025)); |Gallego et al.| (2025)), dia-
logue |Arora et al.| (2025), or other detection tasks Mai et al.|(2025)); Park et al|(2025). The integra-
tion of CoT in speech LLMs requires answering two research questions: (i) should models reason
using text or speech, and (ii) how do we maintain the responsiveness required for spoken interac-
tions? To answer the first question, we investigate both alternatives, showing that text-based CoT is
as performant as speech-based CoT for improving reasoning in speech LLMs, while being 2x more
token-efficient.

The sequential process of listening, reasoning, and responding introduces considerable latency; con-
sequently, previous research has proposed methods to overlap CoT tokens with speech to improve
real-time conversational Al Building upon the anthropomorphism of speech LLMs, concurrent
works such as STITCH (Chiang et al.,[2025) and Mini-Omni-Reasoner (Xie et al., [2025) have pro-
posed “thinking while speaking,” i.e., the model begins its spoken response while its reasoning is still
ongoing. This is achieved by interleaving chunks of reasoning tokens with spoken response tokens,
and subsequent CoT chunks are generated in the time it takes for the audio decoder to synthesize the
preceding response. Despite showing reasonable improvements, this approach has notable limita-
tions. For instance, the optimal chunk size for interleaving requires careful tuning and is dependent
on hardware limitations. Moreover, despite a reduction in the time to first word, the model may
inadvertently vocalize too much of its reasoning, leading to a longer overall response time to a fi-
nal, conclusive answer. In this paper, we draw inspiration from neuroscience (Donhauser & Baillet,
2019) to propose a novel “thinking while listening” paradigm, by enabling concurrent processing of
text-based CoT and user speech.

Current speech LLM architectures may be broadly categorized into two types: single-stream and
multi-stream. Single-stream architectures merge user/system speech and text into a unified token
sequence (Kim et al.l 2024; |Veluri et al., |2024), while multi-stream architectures simultaneously
model distinct streams for each token sequence (Défossez et al., [2024). In this work, we build
upon a multi-stream architecture due to its superior capacity for the concurrent processing of user
audio and reasoning tokens. This design provides significant flexibility by allowing the system’s
text stream to be revised independently, a key advantage over single-stream models that lack this
decoupling. Specifically, we fine-tune the publicly available Moshi model (Défossez et al., [2024) to
generate CoT within its text monologue stream to improve its reasoning capabilities (Section [2)). To
enable the model to think while listening, we propose two methods: (i) a novel metric that estimates
the completeness of the user’s question at each timestep, and (ii) a preference tuning scheme to
update the model’s reasoning dynamically with new input (Section 3)).

Since there are no existing standard reasoning evaluations for speech LLMs, we curated a suite
of single-turn spoken reasoning tasks from well-known text-based reasoning benchmarks compris-
ing mathematical reasoning, social/physical interactions, and other general reasoning tasks (Sec-
tion @ Overall, our contributions are summarized below.

1. Text-based CoT improves reasoning in speech LLMs. To the best of our knowledge, we are
the first to explore text-based CoT fine-tuning on multi-stream speech LLMs. Our method obtains
2.4x improvement in accuracy, on average, over the Moshi baseline across the SRQA tasks.
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2. Thinking while listening reduces reasoning latency. We demonstrate that auto-regressive mod-
els that can generate tokens in sync with streaming user input can be taught to “think early” using
entropy-based selection of trigger points. We achieve this using a novel Question Completeness
metric that results in more controllable accuracy-latency trade-offs.

3. Preference tuning enables adaptive reasoning for early-CoT models. We use rejection sam-
pling to curate correctness-based and length-based preference data and use them for DPO training,
pushing the accuracy-latency pareto further and reducing ~70% latency without loss in accuracy.

2  MULTI-STREAM SPEECH LLMS WITH CHAIN-OF-THOUGHT

2.1 BACKGROUND: MOSHI

Moshi (Défossez et al., [2024) is a full-duplex multi-stream model that simultaneously processes
three distinct token streams at each timestep: user audio, system audio, and system text (referred to
as the “text monologue”). For the audio streams, a separate codec model, Mimi, is used to encode
audio waveforms into discrete tokens and back, operating at a frame rate of 12.5 Hz with 8 code-
books. Eventually, all three streams of inputs are represented as tokens:

User Audio: AY e {1,...,NA}LX8 (D
System Audio : AS € {1,...,NA}LX8 2)
System Text : TS € {1,... 7NT}L , 3)

where V4 = 2048 is the size of each Mimi code-book and N7 = 32000 is the text vocabulary size.
All streams have L time-aligned tokens; text tokens are interleaved with padding tokens ([PAD]
and [EPAD ] to align with the corresponding audio tokens. Notably, since such aligned text token
sequences are significantly shorter than the corresponding speech, the majority of text tokens in
Moshi are simply padding tokens. The model architecture consists of a temporal transformer and a
depth transformer, trained jointly using Negative Log Likelihood(NLL) loss. At each timestep ¢, the
temporal transformer consumes AY and AP, and predicts T? 1|+ This token is fed into the depth

transformer, which generates A? 1. The model is trained to estimate the following probability:

p (Ats+1» T§+1|AS§N ngta Algjt) . “)

Moshi was trained in multiple stages: (i) pre-training a text backbone LLM (Helium) using next
token prediction, followed by (ii) post-training and fine-tuning with audio token sequences as well
as multi-stream data, and (iii) fine-tuning with user-system dialogue data. Subsequent studies also
showed the effectiveness of alignment training with direct preference optimization (DPO) to improve
aspects such as factuality and safety (Wu et al.| [2025). During inference, Moshi consumes user
tokens and generates a system text and audio token per timestep. Due to the nature of the training
sequences, we can force Moshi to generate a response by inserting an [EPAD] token on the text
monologue stream. Conversely, inserting a [PAD] token forces it to remain silent.

2.2 FINETUNING WITH COT

Given a user’s spoken question, @, our model predicts a spoken answer, .A“, guided by a reasoning
trace, R. In the base Moshi model, all spoken responses .4“ are preceded by aligned text .A” on
the text monologue stream. To integrate CoT in this framework, we allow the model to additionally
generate text-only reasoning tokens R? without corresponding audio. Since both R and A" are
generated on the text monologue channel, we demarcate them using special <start_cot> and
<end_cot> tokens, as shown in Fig.[I]

To help the model learn the relationship between the user’s spoken question and the CoT, we also
introduce a streaming ASR component into the text monologue, with the corresponding tokens de-
noted by o7 ( in Fig. . Previously, |Arora et al.[ (2025) and |Yuen et al.| (2024) have
suggested using the user’s audio transcript as an intermediate step in the CoT process for speech
LLMs, but they focused on offline ASR. In contrast, our model naturally learns streaming ASR

'IEPAD] is used for indicating end of consecutive pad tokens.
2For simplicity, we neglect the delay pattern of first audio codebook and system text in our notation.
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Table 1: Examples of questions where it is feasible to start reasoning early without impacting the
correctness of the answer.

# Question Reasoning Answer

What is the capital of France ... is it New York The capital of France is Paris. It’s Paris.
or Paris?

2 If you flip a fair coin three times and get It’s a fair coin, so probability The probability is 0.5.
heads each time ... what is the probability of heads/tails is always 0.5.
the fourth flip is heads?

through word-aligned user transcripts right-shifted by & tokens for look-ahead. Based on our pre-
liminary experiments, we used £ = 6 (equivalent to a 480 ms look-ahead), which was found to
provide a good balance between latency and word error rate (WER). Finally, the text monologue
contains the user transcript 9T the reasoning RT, and the response text AT, To ensure all three
streams—user audio (AY), system audio (A®), and text monologue (AY)—have the same length,
we insert silent audio tokens as needed.

We fine-tune Moshi using the same NLL loss for next token prediction during the SFT stage, and use
DPO loss for off-policy preference tuning. During inference, we apply force-decoding to our fine-
tuned model and the baselines in two ways: (i) at the start of the user’s question, we force-decode
k [PAD] tokens to accommodate the streaming ASR, and (ii) we force-decode the <start_cot>
token after the user’s question ends if the model has not generated it already.

3 THINKING WHILE LISTENING

Since our text-based CoT does not generate any aligned audio, naively inserting it between the
query and the response can increase the perceived latency, thus impacting the naturalness of the
human-system interaction. To alleviate this issue, our objective is to reduce this additional latency
by mimicking the common cognitive trait wherein humans begin processing and reasoning before a
question is fully articulated.

There are two scenarios where a model can begin reasoning early and yet provide the correct answer,
as illustrated in Table[I] The first scenario includes questions which can be considered “complete”
before reaching the end. In such cases, the model can start reasoning early and simply ignore
the remaining question. In the second scenario, sufficient information may be available to start
reasoning before the question ends, but the model still needs the remaining information to provide
a correct response. We propose two different methods to enable early thinking. To endow the
model with the ability for early reasoning, we created training examples by using our proposed
Question Completeness metric. This metric is designed to identify the optimal time for the model to
begin generating its CoT. Subsequently, we fine-tuned the model on this dataset to teach it to follow
the distribution of these early-reasoning examples. Finally, we apply preference tuning to further
enhance the performance of the model under early thinking scenario.

3.1 MEASURING THE QUESTION COMPLETENESS

Let us define the inflection point of a question as the timestep where sufficient information is avail-
able to begin reasoning. Our objective is to teach the model to identify such points in order to start
its reasoning trace. A naive approach to identify the inflection point may be to shift the reasoning
trace by a fixed number of frames or words, based on the heuristic that sufficient information is
typically available a few words before the question concludes. However, this method is fundamen-
tally limited by its lack of semantic awareness. For instance, in the query “What is the capital of
France?”, a model cannot reasonably begin its reasoning process until the final word, “France,” has
been received. Consequently, it is necessary to develop a method that instructs the model to initiate
reasoning at the appropriate moment, informed by the semantics of the question. We do this through
a novel metric, which we call Question Completeness, denoted as (.

Given a training sample that contains the question Q1. , the reasoning R, and the answer A, where
N denotes the number of words in the question. Our goal is to find the index p that splits Q into two
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Figure 2: Examples of the Question Completeness curve { (p). In the first example, ¢ reaches a
high value at the end of the main question, at which point it is feasible to begin reasoning. In the
second example, the word “Backcountry?” is critical to answer the question, and this is reflected in
the corresponding ¢ curve. More examples of the ( curve are provided in Appendix

halves: Q1., and Q1. such that
Pr[R,A|Q.,,] ~ Pr[R,A|Qi.5]. 5)

Let X, denote the joint probability of R and A given a partial question until the p-th word, i.e.,
X, = Pr[R,A|Qq.]. In practice, X, can be estimated using an external language model. We
define Question Completeness, (, as:

Dy (Xn|[|Xp)

C(p)=1- D (X[ Xo0)”

where D1, denotes the Kullback-Leibler (KL) divergence. Here, X v and X represent the extreme
cases where the full question and no question are given, respectively. By definition, ((0) = 0 and
¢(N) = 1, so we can regard ¢ as a semantic completeness progress bai’} Figure shows illus-
trative examples of the ¢ curve, indicating that ¢ can be a good proxy for the progressive semantic
completeness of a question.

(6)

The inflection point for a training sample can be approximated using { by estimating p s.t.

p=min{p: ((p) = 0}, (7
where 6 is a hyperparameter. We then use p to shift the CoT earlier in our training data and use the
same loss (as in Sec @] to do SFT). In our experiments, we set 6 as 0.95. Further discussion and
illustrative examples can be found in Appendix [A.T]

3.2 PREFERENCE TUNING

While our question completeness metric allows for the creation of training samples that enable early
reasoning, we observed that the model struggles to learn the distribution effectively via SFT and is
often unable to update its CoT in response to new information in the user channel. Additionally,
the CoT in our training data may be excessively long for simple questions, indicating a considerable

opportunity to shorten the reasoning trace. To solve these issues, we created contrastive reasoning
N

pairs, D = {(x(i), yf,f), yl(z)) } , using rejection sampling and preference-tuned the SFT model

using direct preference optimization (DPO) [Rafailov et al.| (2023). Fig. [|illustrates our framework
for preparing the preference dataset.

For a subset of prompts in the SFT training data, we generate K responses using an SFT model (fine-
tuned with early CoT) where we force-decoded <start_cot> at ((p) = 6 completeness. From
these generations, we select a preferred output y,, and a rejected output ;. To improve adaptive
reasoning, the preference is based on the correctness of the spoken response; for latency reduction,
it is based on the both reasoning length and correctness. [Kang et al.| (2025) and |[Hao et al.|(2024)
have explored other techniques to reduce the the length of reasoning trace in CoT-based models.

3¢ is not guaranteed to be non-decreasing, and in practice, there are small local fluctuations in probability
X, due to incomplete syntax. Nonetheless, the general trend of  is still increasing from O to 1.
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The capital of France is : :
located on which river? The capital of France is Paris. The capital of France is Paris. L &
1 It is located in central France. It is located on the Seine. : o
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Figure 3: The framework for curating preference data for DPO. We generate outputs from the
SFT model (7.¢) by force-decoding <start_cot> early (e.g., before “on which river” is spoken).
The preferred response (y,,) is the one where the model is able to adaptively generate a correct and
shorter reasoning trace.

Once we have the preference pairs, training is then performed using the DPO objective:

76 (Yu|?) mo (yi|z)
Lpro (1e; Tret) = —E(z y0 u)~ {10 0’(510 ——— — Blog ——= (3)

(m: Toet) = B yp |loB e | Flog 20 1 et (12)
where mg and 7,¢¢ are the policy and reference model respectively, o indicates sigmoid function and
[ is a hyperparameter. Practically, we initialize the policy model wg and the reference model m.q¢

with the same weights from an SFT model 7, but freeze the reference model during DPO training.

Following [Wu et al.| (2025)), we calculate the token sequence probabilities exclusively using the text
monologue stream T* for a more stable training process, rather than using the full policy probability
from eq. 4| Additionally, we exclude user streaming ASR tokens Q7 from this calculation to better
differentiate between the probabilities of 7 (yy,|2) and 7 (y;|z). We also adopt length-normalized
DPOMeng et al.|(2024)) and add the NLL loss on y,, to further stabilize the training|Xu et al.|(2024)).
The overall loss is given as:

Lyret = LbPo — AE(4 y,)~p[l0g To (yu|T)], )
where ) is a hyperparameter that balances the two objectives.

3.3 INTERLEAVED REASONING WITH STREAMING ASR

In Section 2] we proposed that training the model to generate streaming user text tokens improves its
textual reasoning capability. Predicting user text poses a challenge when left-shifting the reasoning
trace to occur before the user’s question is finished, since the CoT tokens may overlap with the exist-
ing streaming user ASR token sequence. To address this issue, we introduce two special switching
tokens, <switch_cot> and <switch_asr>, which enable the model to alternate between the
two generation modes on the text monologue stream.

To prepare the interleaving pattern for training, we first insert the user’s streaming ASR tokens on
the text channel as usual. Then, we identify available blank spaces ([PAD] and [EPAD] tokens)
and insert the CoT tokens into these spaces. Whenever a mode switch occurs, we prepend the
corresponding switching token. This approach preserves the time alignment between the user’s
streaming ASR tokens and the audio input. A detailed illustration of the token arrangement can be
found in Figure[T]

4 EXPERIMENTAL SETUP

4.1 TRAINING

Supervised fine-tuning for CoT based on the proposed modeling scheme requires training samples
(Q,R,.A), where Q and A are in spoken formats, while R is in text format. Since there are no suit-
able large-scale public spoken reasoning datasets available, we used text-based reasoning datasets
for training by converting them into spoken format. Specifically, we used the CoT-Collection |[Kim
et al.| (2023) dataset as it contains samples from diverse sources along with reasoning traces, amount-
ing to a total of 1.8M examples. The reasoning traces in this dataset are augmented by OpenAl
Codex followed by some filtering to ensure quality.

Since the CoT-Collection was created for text LLM training, it is not readily applicable to voice-
based models. For instance, several samples are instances of summarization problems containing
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long-form text, which may not be applicable to natural conversations. We performed careful curation
to obtain a spoken-friendly training dataset from this source:

1. Remove all samples where Q contains more than 60 words, resulting in ~690K samples.

2. Use an LLM to perform spoken-friendly rewriting for all questions, reasoning, and answers. The
system prompt used for this rewriting is provided in Appendix

3. Convert the rewritten questions and answers into audio waveforms using an internal TTS engine
that generates 24Khz mono audios.

We have provided fine-tuning hyper-parameters and other details in Appendix

4.2 EVALUATION

Spoken reasoning question-answering (SRQA) benchmark. We prepared a suite of spoken rea-
soning tasks from multiple domains, derived from popular text benchmarks: (i) AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), (ii) Physical Interaction QA (PIQA) (Bisk et al., 2019), (iii)
Social Interaction QA (SIQA) (Sap et al., [2019), and (iv) Grade School Math (GSM8K) (Cobbe
et al.| [2021). For ARC, we prepared easy (ARC-E) and challenging (ARC-C) subsets, similar to
previous work. Since these evaluation tasks are derived from text sources, we used the same method
of LLM-rewriting and TTS as used for the Spoken CoT-Collection, to convert them into spoken
forms. We designed customized rewriting prompts for each eval set to ensure that the rewritten
questions and answers are reasonable. Since several of the tasks contain multiple-choice questions,
these were rewritten such that the choices are listed in the spoken question. Additionally, we also
tracked the accuracy on LLaMA-Questions (Nachmani et al., 2024) to measure the model’s perfor-
mance for cases where reasoning may not be useful. The statistics and illustrative examples for all
evaluation datasets can be found in Appendix [A.3]

Scoring. Throughout this work, we used LLaMA-3.1 405B |Grattafiori et al.|(2024) as a text-based
judge to assess the correctness of the response. Since the model generates a spoken response A, we
used Pyannote VAD (Bredin & Laurent, 2021} Bredin et al., 2020) to first detect speech presence,
followed by Whisper (Radford et al., 2023) to transcribe the response. The LLM-judge is provided
the question and ground-truth answer, along with the model’s transcribed response. It first deter-
mines whether the model provided an answer and then evaluates its correctness. The system prompt
for the judge can be found in Appendix

5 RESULTS

5.1 CHAIN-OF-THOUGHT FINE-TUNING IMPROVES ACCURACY

Comparison with baselines. Table[2]shows the accuracy of our CoT fine-tuned model on the SRQA
tasks, compared to the Moshi baseline. We also include several publicly available text and speech
LLMs of similar size for reference (Touvron et al., 2023 Mesnard et al., [2024; |Chu et al., 2024}
Ding et al.,2025)). On average, our proposed method provided an absolute accuracy improvement of
29.1%, with most eval tasks improving by 2-3x, showing the effectiveness of our approach. Among
the speech LLMs, our fine-tuned model showed competitive performance across the board, placing
top-2 on all reasoning tasks though the other speech LLMs are pretrained on much more pretraining
data. The performance on LLaMA-QS also improved, but the gains were smaller.

Effect of streaming user ASR. In Section [2] we conjectured that training the model to transcribe
the user’s audio through aligned text tokens on the monologue stream would improve reasoning. To
justify this choice, we designed an ablation experiment by removing these streaming user ASR to-
kens in training, but otherwise retaining the same training sequences. We also measured the topline
accuracy using “offline” ASR, by training the model to transcribe the user audio after the end of
the question. Finally, we trained several models with streaming ASR where the user text tokens are
delayed by different numbers of tokens (between 2 and 6). In Table [2] removing ASR significantly
degrades accuracy on all reasoning tasks while remaining almost the same on factuality, corroborat-
ing that ASR helps reasoning. In Fig.[d] we observe that both user WER and accuracy consistently
improved for SRQA tasks with an increasing number of delay tokens. The accuracy gain saturated
after 4 delay tokens, though GSM8K showed continued improvement. At a delay of 6 tokens, the
streaming ASR showed comparable accuracy to offline ASR for the majority of tasks.
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Table 2: Performance of text and speech LLMs on the SRQA benchmark. All models are
roughly 7B but vary in sizes of pretraining data. Our proposed method significantly enhanced the
reasoning abilities of Moshi baseline and got competitive results against other speech LLLMs pre-
trained with much more pretraining data.

Model # of pretraining Reasoning Factuality
text tokens ARC-E ARC-C SIQA PIQA GSMSK LLaMA-QS
Text LLMs
1 _ _
Speech LLMs
Qwen2-Audio-7B-Instruct 24T 59.1 424 219 245 18.1 64.7
Kimi-Audio-7B-Instruct 18T 83.0 71.5 329 344 15.7 61.7
Moshi (baseline) 2.1T 30.2 21.5 228 238 8.7 42.8
Moshi + CoT (ours)® 21T 71.7 59.8 56.1 569 16.1 57.8
w/o Streaming User ASR 21T 55.8 440 50.1 463 12.2 59.9

 We include Helium since it is the backbone for Moshi, but the results are not directly comparable. Since the model is
not publicly accessible, we report the metrics from [Défossez et al.|(2024), which measured accuracy by evaluating the
log-likelihood over the set of given options.

* Contains streaming user ASR with a delay of 6 tokens.

*tfiine ASR Rfiine ASR © so]Qffline ASR 56l Bffiine ASR e Rifiine ASR =
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Figure 4: Effect of streaming user ASR on accuracy for SRQA tasks. As we increase look-ahead,
the accuracy improves and approaches the “offline ASR” topline.

Reasoning in text v/s speech. A design choice in our CoT fine-tuning is to perform reasoning in
text, since text is much more information-dense than speech tokens. To investigate the effect of this
decision, we conducted an ablation by performing CoT fine-tuning in speech. For this, we used our
internal TTS engine to synthesize the CoT into speech and prefixed it to the spoken response.

For these ablation studies, we used the train/test subsets of GSM8K, Table 3: Comparison of
and the results are shown in Table 3| As expected, the Moshi base- text-based and speech-
line performed poorly on GSMSK since it was trained primarily for based CoT on GSMSK, in
casual dialog. CoT fine-tuning improved the overall accuracy from terms of accuracy (%)

8.7% to 17.5% and 17.2% for text-based and speech-based reasoning,  Model Accuracy
respectively. While Speech CoT has zero latency but it comes with
the cost of 3x token length for the entire response. Direct fine-tuning

- . Moshi (baseli 8.7
on question-answer pairs (“No CoT”) degraded model performance, Te(;(i Cl(gTase ine) 175
indicating that the improvement for CoT models cannot be attributed  gpeech CoT 17.2
to our training data alone. Qualitative analysis revealed that in sev-  No CoT 35

eral cases where the Moshi baseline provided the correct answer, it
actually performed some reasoning first. By directly fine-tuning it without CoT, we forced Moshi
“not to think” and therefore reduced its accuracy. More results are shown in Appendix

5.2 EFFECT OF EARLY REASONING

In Section 3] we proposed two methods to teach the model to think while listening: first, based
on Question Completeness (QC), ¢, and second, using DPO on reasoning traces generated with
rejection sampling. For the QC method, we can control the onset of CoT during training based on 6.
As a simple baseline, we trained the model by left-shifting the CoT by a fixed number of words of
the user question. We refer to this as WS-V, to denote shift by N words. Fig.[5|shows the accuracy
v/s latency curves for our proposed methods as well as the baseline. The latency metric is reported
in terms of the number of tokens between the end of the user question and start of system response.

QC-based shifting outperforms word-count heuristic. First, it is evident that all latency improve-
ments resulted in accuracy degradation, and different methods can only be compared based on their
pareto-frontiers on the accuracy-latency curve. The results for the WS baselines were mixed: while
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ARC-E ARC-C GSM8K .
s * _60 P - = Table 4: Effect of DPO train-
S <) S 3 S . .
S s e 7."«' 52 o ing with length-based prefer-
g7 o g% & g B | ences on accuracy (%) and la-
gosi A gl 8847 tency (# tokens). The base SFT
AR aaraansress e e pos 55 50 oo 1, Mmodel is trained with 6 = 0.75.
Latency (# tokens) Latency (# tokens) Latency (# tokens) With DPO training, we further
SIQA PIQA reduced latency by 70% without
g% | X % Moshi + CoT 2 g ; compromising the accuracy.
250 4 ® WordShift 350 =l e
£ ¢ac E ' Accuracy Latenc,
Sas & R @ @ Correct-DPO Sl Eval Set y y
& - SFT DPO SFT DPO
50 60 70 80 50 60
Latency (# tokens) Latency (# tokens) LLaMA-QS 56.2 569 356 209
3 1 words @® 2 words ® 3words ® 4 words * 5 words * 6 words ARC-E 62.8 654 492 12.0
@(79=95% G Wo=85% 4 @ 6=75% ¢+ o B=65% ARC-C 432 46.0 499 132
SIQA 45.1 453 50.0 12.9
Figure 5: Accuracy-latency curves for the proposed methods PIQA 40.7 46.0 46.6 182

on SRQA reasoning tasks. QC exhibits better controllability GSM8K 138 14.7 76.0 48.6
in trade-offs. DPO training with correctness-based preference
further improves the accuracy of the QC models.

they showed gradual latency reduction on ARC, the performance on other tasks was haphazard. On
PIQA and GSMBK, for instance, increasing N in training did not result in expected reduction in la-
tency, indicating that the model was unable to learn any patterns for early reasoning. The proposed
QC method, on the other hand, provided better control over the trade-off. On all eval sets, latency
improved as we reduced the 6 for selecting inflection point (see equation [7)) from 0.95 to 0.65.

Correctness-based preference improves accuracy. On further Table 5: Start CoT Gap
DPO training with correctness-based preference data, we achieved (# tokens) on the valida-
consistent improvements on all evaluation sets, as shown by the pur- tion set. The gap is calcu-
ple curve in Fig.[5] The marginal increase in latency stems from lated by subtracting the po-
the better alignment between our model’s behavior and the ground sition of <start_cot> be-
truth. We report the average gap between start CoT position of pre- tween model generation and
diction and ground truth in Table[5] Negative sign indicates that the ground truth.

model generated CoT starts earlier than ground truth. Before ap-
plying Correct-DPO, SFT models tends to start CoT earlier than the 0 Gap (pred - gt)

ground truth. SFT Correct-DPO
Length-based preference improves latency. Next, we trained the 095 -1.62 -0.60
model using the length-based preference data to further shorten the 0.85 -3.68 -0.76
CoT length. For this experiment, we chose the SFT model trained 0.75 -5.77 -1.56
with § = 0.75 as our base model. From Table 4] we found that our 0.65 -5.17 -0.32
method successfully reduced latency across all tasks by 30 tokens on
average, while maintaining or improving accuracy.

Ilustrative examples showing the improvements of our methods are shown in Appendix [A.5]

6 CONCLUSION

In this work, we integrate CoT into speech LLMs and proposed a novel “thinking while listening”
paradigm. We showed that text-based CoT can dramatically improve the model’s performance, lead-
ing to 2-3x accuracy improvements over a suite of spoken reasoning tasks. A significant fraction of
this improvement came from explicit user understanding by teaching the model to transcribe the user
audio in a streaming manner. To avoid the latency cost of reasoning, we trained the multi-stream
model to reason concurrently with incoming audio guided by our proposed “Question Complete-
ness” metric. This metric offers a superior controllability over accuracy latency trade-off. We then
performed preference tuning of this model with datasets created using rejection sampling. By curat-
ing correctness-based and length-based preference data, we were able to (i) improve the accuracy of
the early-CoT model, and (ii) shorten the length of the reasoning trace, respectively. The resulting
model demonstrated 70% lower latency without a significant loss in accuracy. Our work opens up
a new direction for Speech LLMs: the ability to think while listening, a capability that brings them
closer to the natural, responsive flow of human conversation.
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We acknowledge that we have read and adhered to the ICLR Code of Ethics. Our research on Speech
LLM reasoning is intended to advance the communication between human and machine. The data
source used is publicly available and has no personally identifiable information.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide comprehensive implementation details
in out paper. The overall pipeline for dataset preparation and evaluation is described in Section
Additionally, all LLM prompt templates and evaluation benchmark statistics are included in Ap-
pendices [A.6] and [A.3] respectively. The detail of our model training parameters is provided in

Appendix

10



Under review as a conference paper at ICLR 2026

REFERENCES

Siddhant Arora et al. Chain-of-thought training for open e2e spoken dialogue systems. ArXiv,
abs/2506.00722, 2025. URL https://api.semanticscholar.org/CorpusID:
279075666.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning about
physical commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2019.

Hervé Bredin and Antoine Laurent. End-to-end speaker segmentation for overlap-aware resegmen-
tation. In Proc. Interspeech 2021, Brno, Czech Republic, August 2021.

Hervé Bredin et al. pyannote.audio: neural building blocks for speaker diarization. In ICASSP 2020,
IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain,
May 2020.

Junjie Chen et al. Fireredchat: A pluggable, full-duplex voice interaction system with cascaded and
semi-cascaded implementations, 2025. URL https://arxiv.org/abs/2509.06502.

Cheng-Han Chiang et al. Stitch: Simultaneous thinking and talking with chunked reasoning for
spoken language models, 2025. URL https://arxiv.org/abs/2507.15375.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Ly,
Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report, 2024.
URLhttps://arxiv.org/abs/2407.107509.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Wengian Cui, Dianzhi Yu, Xiaoqi Jiao, Zigiao Meng, Guangyan Zhang, Qichao Wang, Yiwen Guo,
and Irwin King. Recent advances in speech language models: A survey. ArXiv, abs/2410.03751,
2024. URL https://api.semanticscholar.org/CorpusID:273186873.

Ding Ding et al. Kimi-audio technical report, 2025. URL https://arxiv.org/abs/2504.
18425,

Peter Donhauser and Sylvain Baillet. Two distinct neural timescales for predictive speech process-
ing. Neuron, 105, 12 2019. doi: 10.1016/j.neuron.2019.10.019.

Yexing Du et al. Making llms better many-to-many speech-to-text translators with curriculum learn-
ing. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics,
pp. 12466-12478, 01 2025. doi: 10.18653/v1/2025.acl-long.610.

Zhihao Du et al. Cosyvoice 2: Scalable streaming speech synthesis with large language
models. ArXiv, abs/2412.10117, 2024. URL https://api.semanticscholar.org/
CorpusID:274762932.

Alexandre Défossez et al. Moshi: a speech-text foundation model for real-time dialogue, 2024.
URLhttps://arxiv.org/abs/2410.00037.

Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783\l

Gerard 1. Gallego, Oriol Pareras, Marti Cortada Garcia, Lucas Takanori, and Javier Hernando.
Speech-to-Text Translation with Phoneme-Augmented CoT: Enhancing Cross-Lingual Transfer
in Low-Resource Scenarios. In Interspeech 2025, pp. 31-35, 2025. doi: 10.21437/Interspeech.
2025-1954.

11


https://api.semanticscholar.org/CorpusID:279075666
https://api.semanticscholar.org/CorpusID:279075666
https://arxiv.org/abs/2509.06502
https://arxiv.org/abs/2507.15375
https://arxiv.org/abs/2407.10759
https://api.semanticscholar.org/CorpusID:273186873
https://arxiv.org/abs/2504.18425
https://arxiv.org/abs/2504.18425
https://api.semanticscholar.org/CorpusID:274762932
https://api.semanticscholar.org/CorpusID:274762932
https://arxiv.org/abs/2410.00037
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Shibo Hao et al. Training large language models to reason in a continuous latent space. arXiv
preprint arXiv:2412.06769, 2024.

Ke Hu et al. Chain-of-thought prompting for speech translation. In ICASSP 2025 - 2025 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2025.
doi: 10.1109/ICASSP49660.2025.10890560.

Shujie Hu et al. Wavllm: Towards robust and adaptive speech large language model. In Con-
ference on Empirical Methods in Natural Language Processing, 2024. URL https://api.
semanticscholar.org/CorpusID:268819260.

Ailin Huang et al. Step-audio: Unified understanding and generation in intelligent speech in-
teraction. ArXiv, abs/2502.11946, 2025. URL https://api.semanticscholar.org/
CorpusID:2764217776.

Rongjie Huang et al. Audiogpt: Understanding and generating speech, music, sound, and talk-
ing head. ArXiv, abs/2304.12995, 2023. URL https://api.semanticscholar.org/
CorpusID:258309430.

Mingyu Jin et al. The impact of reasoning step length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 1830-1842, 2024.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: generating shorter chain-of-
thought without compromising effectiveness. In Proceedings of the Thirty-Ninth AAAI Con-
ference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications
of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial In-
telligence, AAAT25/TAAT'25/EAAT’25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi:
10.1609/aaai.v39i23.34608. URL https://doi.org/10.1609/aaai.v39123.34608.

Heeseung Kim et al. Paralinguistics-aware speech-empowered large language models for natural
conversation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=NjewXJUDYq.

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. The cot collection: Improving zero-shot and few-shot learning of language models via chain-
of-thought fine-tuning. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023. URL |https://openreview.net/forum?id=D70omx8QyFP.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Tom Labiausse, Laurent Mazaré, Edouard Grave, Alexandre Défossez, and Neil Zeghidour. High-
fidelity simultaneous speech-to-speech translation. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=fgjN8B6xVX.

Tatiana Likhomanenko et al. Chipchat: Low-latency cascaded conversational agent in mlx. In ASRU,
2025.

Guan-Ting Lin, Cheng-Han Chiang, and Hung yi Lee. Advancing large language models to capture
varied speaking styles and respond properly in spoken conversations. In ACL, 2024.

Guan-Ting Lin et al. Align-SLM: Textless spoken language models with reinforcement learning
from Al feedback. In Proceedings of the 63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 20395-20411, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.997. URL https://aclanthology.org/2025.acl-1long.997/|

Ke-Han Lu et al. Desta: Enhancing speech language models through descriptive speech-text
alignment. ArXiv, abs/2406.18871, 2024. URL https://api.semanticscholar.org/
CorpusID:270764362.

12


https://api.semanticscholar.org/CorpusID:268819260
https://api.semanticscholar.org/CorpusID:268819260
https://api.semanticscholar.org/CorpusID:276421776
https://api.semanticscholar.org/CorpusID:276421776
https://api.semanticscholar.org/CorpusID:258309430
https://api.semanticscholar.org/CorpusID:258309430
https://doi.org/10.1609/aaai.v39i23.34608
https://openreview.net/forum?id=NjewXJUDYq
https://openreview.net/forum?id=D7omx8QyFP
https://openreview.net/forum?id=fgjN8B6xVX
https://aclanthology.org/2025.acl-long.997/
https://api.semanticscholar.org/CorpusID:270764362
https://api.semanticscholar.org/CorpusID:270764362

Under review as a conference paper at ICLR 2026

Jialong Mai, Xiaofen Xing, Yangbiao Li, and Xiangmin Xu. Chain-of-Thought Distillation with
Fine-Grained Acoustic Cues for Speech Emotion Recognition. In Interspeech 2025, pp. 5438—
5442, 2025. doi: 10.21437/Interspeech.2025-1979.

Yu Meng, Mengzhou Xia, and Dangi Chen. SimPO: Simple preference optimization with a
reference-free reward. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=3Tzcot1LKb.

Thomas Mesnard et al. Gemma: Open models based on gemini research and technology, 2024.
URL https://arxiv.org/abs/2403.08295.

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Julian Salazar, Chulayuth Asawaroengchai, Soroosh
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and Michelle Tadmor Ramanovich. Spoken question
answering and speech continuation using spectrogram-powered LLM. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=izrOLJov5y.

Chanwoo Park, Anna Seo Gyeong Choi, Sunghye Cho, and Chanwoo Kim. Reasoning-Based Ap-
proach with Chain-of-Thought for Alzheimer’s Detection Using Speech and Large Language
Models. In Interspeech 2025, pp. 2185-2189, 2025. doi: 10.21437/Interspeech.2025-1226.

Jing Peng, Yucheng Wang, Bohan Li, Yiwei Guo, Hankun Wang, Yangui Fang, Yu Xi, Haoyu Li,
Xu Li, Ke Zhang, Shuai Wang, and Kai Yu. A survey on speech large language models for
understanding, 2025. URL https://arxiv.org/abs/2410.18908,

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML 23. IMLR.org, 2023.

Rafael Rafailov et al. Direct preference optimization: Your language model is secretly a reward
model. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=HPuSIXJaa9l

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
aojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 4463-4473, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/
D19-1454/.

Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot?
chain-of-thought helps mainly on math and symbolic reasoning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=wénlcS8Kkn.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=14rn7HpKVkl

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https:
//arxiv.orqg/abs/2307.09288.

Bandhav Veluri et al. Beyond turn-based interfaces: Synchronous llms as full-duplex dialogue
agents. In EMNLP, 2024.

Chengwei Wei, Bin Wang, Jung-Jae Kim, and Nancy F. Chen. Towards spoken mathemati-
cal reasoning: Benchmarking speech-based models over multi-faceted math problems. ArXiv,
abs/2505.15000, 2025. URL https://api.semanticscholar.org/CorpusID:
2718782499.

13


https://openreview.net/forum?id=3Tzcot1LKb
https://arxiv.org/abs/2403.08295
https://openreview.net/forum?id=izrOLJov5y
https://openreview.net/forum?id=izrOLJov5y
https://arxiv.org/abs/2410.18908
https://openreview.net/forum?id=HPuSIXJaa9
https://aclanthology.org/D19-1454/
https://aclanthology.org/D19-1454/
https://openreview.net/forum?id=w6nlcS8Kkn
https://openreview.net/forum?id=w6nlcS8Kkn
https://openreview.net/forum?id=14rn7HpKVk
https://openreview.net/forum?id=14rn7HpKVk
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:278782499
https://api.semanticscholar.org/CorpusID:278782499

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Anne Wu, Laurent Mazaré, Neil Zeghidour, and Alexandre Défossez. Aligning spoken dia-
logue models from user interactions. ArXiv, abs/2506.21463, 2025. URL https://api.
semanticscholar.org/CorpusID:280012148.

Zhifei Xie et al. Mini-omni-reasoner: Token-level thinking-in-speaking in large speech models,
2025. URL https://arxiv.org/abs/2508.15827.

Haoran Xu et al. Contrastive preference optimization: Pushing the boundaries of llm performance
in machine translation. In ICML, 2024. URL https://openreview.net/forum?id=
5liwkioZpnl

Zhen Ye et al. Llasa: Scaling train-time and inference-time compute for llama-based speech
synthesis. ArXiv, abs/2502.04128, 2025. URL https://api.semanticscholar.org/
CorpusID:276161207.

Robin Shing-Hei Yuen, Timothy Tin-Long Tse, and Jian Zhu. Internalizing asr with implicit chain
of thought for efficient speech-to-speech conversational 1lm. ArXiv, abs/2409.17353, 2024. URL
https://api.semanticscholar.org/CorpusID:272911262.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_3ELRdg2sglI.

14


https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:280012148
https://api.semanticscholar.org/CorpusID:280012148
https://arxiv.org/abs/2508.15827
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://api.semanticscholar.org/CorpusID:276161207
https://api.semanticscholar.org/CorpusID:276161207
https://api.semanticscholar.org/CorpusID:272911262
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE “QUESTION COMPLETENESS” METRIC

In our preliminary experiments, we considered using entropy or log-probability as metrics for mea-
suring completeness. However, both were found to be less robust, as they were more susceptible to
noise from the incomplete syntax of partial questions. Consequently, we adopted Kullback—Leibler
(KL) divergence for this purpose.

For determining the inflection point, we set a specific percentage-based threshold rather than captur-
ing the largest jump in the curve, as suggested in prior work |[Labiausse et al.| (2025). A large jump
may occur early in a user’s question when a key term is mentioned, but it does not mean that this
partial information is sufficient to answer the question correctly. We conjecture that a metric based
on a completeness percentage is more semantically reasonable. Furthermore, through manual exam-
ination of the QC curves on our training data, a 95% threshold was empirically found to align well
with human perception of question completeness, serving as a conservative and effective criterion.
We put more QC curves in the Appendix. Table[6]shows more examples of QC curves.

Table 6: Examples of the Question Completeness curve ¢ (p). The word at inflection point p
is shown as red and underlined. Each point on the horizontal axis corresponds to the cumulative
sequence of words in the partial question up to and including the current word.

illumination,
money,

it
produce?

. ; . to
nickel cadmium

0.6
0.4
0.2

Washington

¢(p)

-0.2

hypéronymfor

0.8

= 0.6

one to? other words, what's
elongs
catel

=
A 0.4 broader

keyboard?
—~ 0.6
= something
A 0.4

0.2+

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

14
"""" 1 Y- 5 A R e Sl S o Tairy  tales? 7’
0.8 =095 Tree, those classic Jiterary L
E 0.6+ Spéwman and
=
049 wrote  both
0.2
01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p
s o 0 O O B> S
9 =095 resent?
0.84
= 0.6 branch overnment  does the United States Senate
=
o 0.4
0.24
01
0 1 2 3 4 5 6 7 8 9
p
e st L P S Y N Sy L
6=10.95 ne?
0.84
~—~ 0.6 - a verifiable fact,
<% into the economy g
— eleases gold
‘o 0.4
statement
0.2
01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p

16



Under review as a conference paper at ICLR 2026

A.2 TRAINING AND FINE-TUNING DETAILS

We fine-tuned the entire model with a learning rate (LR) of 4e—6 and batch size 128 using fully-
sharded data-parallel (FSDP) on 8 A100 GPUs. All models were trained for 8K steps with a warmup
of 400 steps followed by LR annealing. We used Llama3-8B-Chat (Grattafiori et al., [2024) to es-
timate X,, which is required for estimating the inflection point p (§ . For preference tuning
experiments, we selected models that are fine-tuned with different 6 as the base models. We set
learning rate to 5e—-7, 5 = 0.1, A = 0.1, and trained with batch size 16 for 1200 steps. Final
checkpoint was selected based on saturation of reward accuracy. To get a better monitor our model
training, we curated a the validation set with a more strict filtering process. Specifically, we only
keep examples with question length less than 80 words and the question shouldn’t include key-
words such as “paragraph”, “article”, ... etc. and no special character allowed. The rest of dataset
preparation procedure is as same as the training set.
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A.3 SPOKEN REASONING BENCHMARK

Table[/|shows illustrative examples for each of the tasks in our SRQA benchmark. Since the source
prompts for ARC-E, ARC-C, PIQA, and SIQA are choice-based tasks, LLM rewriting includes the
vocalized options with the questions to make them suitable for spoken tasks.

Table 7: Statistics and illustrative examples for each task in the Spoken Reasoning Question An-
swering (SRQA) benchmark

Task

Multiple
choice

Size

Q statistics

Dur. (s)

#words

Example

ARC-E

4

2376

14.5+56

40.5+175

Q: Plants use sunlight to make something,
but what is it? Is it soil, minerals, food, or
water? A: Food

ARC-C

1172

16.9+6.4

48.6+19.6

Q: What is the mass of a carbon atom that
has 6 protons, 7 neutrons, and 6 electrons? Is
it6,7,13,0r 19? A: 13

PIQA

1838

12.4+47

43.9+153

Q: I want to install some cabinet pulls and
I’'m considering two options: either gluing
some old jewelry under the cabinet knob or
gluing it on top of the cabinet knob. Which
do you think would be the better idea? A: [
think gluing the old jewelry on top of the cab-
inet knob would be the way to go.

SIQA

1954

15.1+37

49.8+123

Q: Hey, I was just watching this game and
Ash had a pretty rough moment. He tried to
redeem himself after missing an open shot.
How do you think he’s feeling right now?
Would he be feeling disappointed, frugal, or
maybe trying hard to shake it off? A: I think
he’d be feeling disappointed.

GSMSK

1319

15.3+57

46.3+18.1

Q: A candle melts by 2 centimeters every
hour that it burns. How many centimeters
shorter will a candle be after burning from
1:00 PM to 5:00 PM? A: 8

LLaMA-QS

>

300

3.0+038

8.5+21

Q: Which river is the longest in South Amer-
ica? A: Amazon
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A.4 COMPARISON OF TEXT-BASED AND SPEECH-BASED COT

In Table 3] we showed a comparison between text v/s speech modes of CoT, when trained and tested
on GSMS8K. While the accuracies were similar, reasoning in text was much more token-efficient
than speech, with the token sequence lengths being 119.0 & 54.4 and 368.8 £ 190.3, respectively.
Speech-based CoT may still be useful as it introduces no additional latency compared to the baseline
Moshi model, while still yielding substantial reasoning gains. This characteristic is similar to recent
work such as STITCH (Chiang et al [2025)) that does “thinking while speaking”. Still, text-based
CoT results in shorter latency to the model’s final answer since model generates the reasoning trace,
without having to vocalize it.

Figure [6] shows the variation in accuracy for the different methods by the number of ground-truth
reasoning steps required for the solution. For all models, accuracy degraded with an increase in # of
steps, which indicates more complex questions.

35
Q\ —§— Moshi (baseline)
,530‘ \ o~ Text CoT
3\,25- \\\ = Speech CoT
) -#- No CoT

520-
o
5 151
O
< 101

5.

2 3 4 5 6 7
# reasoning steps

Figure 6: Accuracy variation by number of reasoning steps for text-based and speech-based CoT,
measured on GSM8K.
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A.5 QUALITATIVE EXAMPLES

Table 8: Examples generated by models. We show some examples of the model output. Words in
blue shaded are the spoken from the model. Words in red shaded are the user audio ASR. Words in
green shaded are the CoT generated by the system.

Example 1:

User Question: Steve put together a puzzle that took 10 hours of hard work to complete. Anna put together the same puzzle in 2
hours more than half Steve’s time. How long did it take Anna to finish the difficult puzzle?

Ground Truth 7

Moshi(Baseline): Based on the information from the previous paragraph, we can infer that Anna took around six hours to complete the
puzzle.
Moshi+CoT: Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in two

hours more than half Steve’s time. How long did it take Anna to finish the difficult puzzle? If Steve’s time to complete
the puzzle is 1 0 hours, then half of this time is 1 0/ 2 = 5 hours. 2 hours more than half of Steve * s time is 5 +2 =7
hours. Anna finished the puzzle in 7 hours. Anna took seven hours to finish the puzzle.

QC(0=0.95) Steve put together a puzzle that took 1 0 hours of hard work to complete. Anna put together the same puzzle in 2
hours more than half Steve’s time. First find half of How long did it take Anna to finish the difficult the puzzle? time
it took Steve to put together the puzzle : 1 0 hours / 2 = 5 hours. Then add 2 hours to find Anna’s time : 5 hours + 2
hours = 7 hours. It took Anna seven hours to finish the puzzle.

Example 2:

User Question: ‘What would be best seen through a telescope? Would it be a moon, a cell, a light ray, or a molecule?

Ground Truth: a moon

QC(6=0.75) What would be best seen through a telescope? Would it be a moon, The telescope a cell, is a device that uses a light

+CorrectDPO ray, lenses or a molecule? or mirror s to mag n ify images of distant objects. The most common use for telescope s is
in astronomy, where they are used to observe celestial bodies such as planets and stars. A telescope can be used to see
the moon because it’s an object located in space. However, a cell cannot be seen through a telescope because cells are
too small ( and therefore not visible ) without some sort of magnification device like a microscope. Light rays also
do not need to be viewed through telescope s ; instead they are just part of the process by which we see things with
our eyes. Mol ec ules don’ t exist outside of chemical reactions so seeing them would require more than just looking
at them through a lens. Therefore, ” a moon ” is the correct answer here you’ d be able to see the moon through a
telescope.

QC(6=0.75) What would be best seen through a telescope? Would it be a moon, The correct answer a cell, is A, because you can

+LengthDPO a light see ray, or the a molecule? moon through a telescope. You’ d be able to see a moon through a telescope.

Example 3:

User Question: Hey, I've got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he’s
finally done, what do you think he’ll want to do next? Will he want to enroll in college again, get a job next, or pay
for college?

Ground Truth: I think he’ll want to get a job next.

QC(0 = 0.75): Hey, I’ got a friend named Jesse who just finished college after taking a few years to get his degree. Now that he’s
finally done, what do you think he’ 11 want to do next? Here’s the rationale Will he want to enroll in : ” college again,
river s flow trough get a job valley next, s.” or pay for college? Actually, that’s an unexpected answer, although it
seems unrelated. However, according to the answer, rivers flow through valley s.

QC(0=0.75) Hey, I’ got a friend named Jessie who just finished college after taking a few years to get his degree. Now that he’s

+CorrectDPO finally done, what do you think he’ll want to do next? Here’s the rationale Will he want to enroll : in college again,

” jj has finally get a job next, finished college, what or pay for college? will he want to do next? - he will probably
want to get a job ” I think he’ 11 probably want to get a job next.

We present several qualitative examples generated by our models in Table [8| In Example 1, after
fine-tuning with CoT, our model correctly answers the question, whereas the Moshi baseline fails.
With our proposed QC-based early thinking, the model begins generating its CoT trace immediately
after all information are provided. Therefore it reduces the latency.

In Example 2, we show an example requires minimal reasoning but the model generate a long
CoT, which increase the latency a lot. By applying our Length-DPO fine-tuning, we were able to
significantly reduce the CoT length while still maintaining the correct answer

Example 3 illustrates a limitation of the QC-based early thinking. If the model initiates reasoning too
early—in this case, before the answer “get a job” is spoken—it is prone to generating an incorrect
reasoning trace and, consequently, an incorrect final answer. With Correct-DPO tuning, the model
overcome this failure. Even when the CoT trace starts at the same early point, the model correctly
considers subsequent incoming information from the user question, leading to a correct answer.
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A.6 SYSTEM PROMPTS

System prompt for LLM-judge scoring

You are provided with a question, a ground truth answer and a model response. Your task is to determine
whether the model response is correct.

Only determine the correctness of the response with the information provided.

Don’t judge the non-factual components in the response, such as opinions, greetings, beliefs, subjective
statements, follow-up questions.

Now Given

question: [{question}]
ground_truth_answer: [{gt_answer}]
model_response: [{model_output}]

Output should be a JSON-formatted string with dictionary containing keys (model_final_answer, judge_result).
Do not include any other text.

For ’'model_final_answer’, please extract the final answer from the model_response.

If the model_response doesn’t output a final answer, output ’<no_final_answer>’.

If the model_response reaches a final conclusion, output the final answer (do not output any special
characters) .

For ’judge_result’, please output one of the following three options:

1. output ’<no_final_answer>’ if the model_response doesn’t conclude a final answer.

2. output ’<correct>’ if the model_final_answer is equivalent to the ground_truth_answer.

3. output ’<incorrect>’ if the model_final_answer is not equivalent to the ground_truth_answer.

Only output one of the above three options for ’judge_result’.

Plese judge it based on the only the given ground_truth_answer, the question and model_final_answer.

Example:
[Response]
{{"model_final_answer": "20", "judge_result": "<correct>"}}

[Response]

System prompt for LLM rewrite on CoT-Collection

You are a helpful conversational assistant. Your task is to convert written question and answer pairs into a
natural, spoken conversation. Do not throw away information required for answering the question. The
question itself should be self-contained for people to answer it.

You are given a question an answer and a rationale. Please convert them into natural spoken conversation.

If it is a multiple choice question, please mention the choices in the converted spoken question.

If the given question is too long, please summarize it and include the information required for answering.

If the given quesiton refers to an article, passage, paragraph, please include the essential information in
the converted question.

The converted_question and converted_answer should be in spoken format. The converted_rationale should be in
written format (as concise as possible).

Do not use any special characters in the converted_question and converted_answer.

Make sure the converted_rationale is coherent with the converted_question and converted_answer.

The output shoud be in JSON format as the following.

{"converted_question": "...", "converted_answer": "...", "converted_rationale": "..."}

Example:

Question: [What was the reaction when the children were given ice cream?
Choose the most suitable option to answer the above question.

Options:

A. awesome

B. enjoyed

C. play chess

D. skip

E. sadness]]

Answer: [B]

Rationale: [The children were given ice cream, they enjoyed. So the answer is B]

Output:

{"converted_question": "What was the reaction when the children were given ice cream? Did they feel awesome,
enjoyed, play chess, skip or sadness? Which one is more suitable", "converted_answer": ".They are most
likely enjoyed.", "converted_rationale": "The children were given ice cream, they enjoyed. So the answer

is enjoyed."}
Now given
Question: [{question}]
Answer: [{answer}]
Rationale: [{reasoning}]

Output:
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System prompt for LLM rewrite on SRQA benchmark
ARC-E

You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
mention the options in the converted spoken question.

The output should be in JSON format as the following.

{"converted_question": "..."}

Examplel:

Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
likely effect of this increase in rotation?]

Options: [1l. Planetary density will decrease.
2. Planetary years will become longer.

3. Planetary days will become shorter.

4. Planetary gravity will become stronger.]

Output:

{"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is
the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
become longer or planetary days become shorter or planetary gravity become stronger?"}

Now given
Question: [{question}]
Options: [{options_str}]

Output:

ARC-C

You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

You are given a question, several options. Please convert them into natural spoken conversation. Make sure to
mention the options in the converted spoken question.

The output should be in JSON format as the following.

{"converted_question": "..."}

Examplel:

Question: [An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most
likely effect of this increase in rotation?]

Options: [1l. Planetary density will decrease.

2. Planetary years will become longer.

3. Planetary days will become shorter.

4. Planetary gravity will become stronger.]

Output:

{"converted_question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is
the most likely effect of this increase in rotation? Will planetary density decrease or planetary years
become longer or planetary days become shorter or planetary gravity become stronger?"}

Now given

Question: [{question}]

Options: [{options_str}]

output :

PIQA

You are a helpful assistant. Your task is to convert written goal and solution into a natural, spoken
conversation. Do not throw away information required for answering the question. The question itself
should be self-contained for people to answer it.

You are given a goal, 2 solution and an answer. Please convert them into natural spoken conversation. Make
sure to mention the options in the converted spoken goal.

The output should be in JSON format as the following.

{"converted_goal": "...", "converted_answer": "..."}

Now given

Goal: [{goal}]

Solution 1: [{optionl}]
Solution 2: [{option2}]

Answer: [{answer}]

Output:

SIQA
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1188

You are a helpful assistant. Your task is to convert written question into a natural, spoken conversation. Do
1189 not throw away information required for answering the question. The question itself should be self-
contained for people to answer it.

1190 You are given a question, 3 options and an answer. Please convert them into natural spoken conversation. Make
1191 sure to mention the options in the converted spoken goal.
The output should be in JSON format as the following.
1192 {"converted_goal": "...", "converted_answer": "..."}
1193 Now given
1194 Goal: [{context} {question}]
1195

Option 1: [{optionl}]
1196 Option 2: [{option2}]
1197 Option 3: [{option3}]
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Answer: [{answer}]

Output:
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