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Abstract

It has become common knowledge for convolutional neural networks (CNN)
to perform well on image data, so, intuitively, CNNs should be used for word
vectorization of logographic characters such as those from Chinese. The paper
introduces three CNN-based innovations to obtain better Chinese word embeddings
for use in natural language processing (NLP) tasks. Our ablation studies will focus
on the first two innovations: “Using historical scripts to enrich the pictographic
evidence in characters” and using “CNN structures tailored to Chinese character
image processing”. We will verify that it does indeed produce better results. We
then generalize and experiment whether the findings in this paper apply to another
logographic but subtly different language- Japanese.

1 Introduction

Chinese characters are logograms which were developed from real-life images and thus encode
abundant information of their meanings. Inspired by the assumption that logographic information
should help semantic modeling, many researchers have tested Chinese-embeddings using CNN. To
many’s surprises, however, it was found that this approach not only did not improve the language
model consistently but in fact harmed some language modeling tasks.

The authors hypothesized that this was due to the loss of information from years of textual simpli-
fication of Chinese characters. They enriched the pictographic information using historical scripts,
contemporary scripts, and scripts of different writing styles. Their model improved common NLP
tasks including tagging and classification.

Figure 1: Evolution of Chinese characters. The images are copied from Wikipedia.



Our ablation studies aim to replicate their results, narrowing our focus on the language model tasks
of Name Entity Recognition (NER), Part of Speech (POS) tagging, and Chinese Word Segmentation
(CWS). We will also place our spotlight on the aspect that various historical fonts, which are assumed
to preserve information, are vital.

2 Related Work

BERT[1] stands for Bidirectional Encoder Representations from Transformers which is robust
for a wide range of NLP tasks. It outperforms unidirectional language models by alleviating their
constraints. Particularly, during the prextraining process, it extends the choice of possible architectures
by allowing every token to attend to previous and next tokens in the self-attention layers of the
Transformer.

The mechanism of BERT is as follows. BERT constructs the input representation of each token
by summing the corresponding token embeddings, segment embeddings, and position embeddings.
During the pretraining process, rather than doing a shallow concatenation of two independently
trained left-to-right and right-to-left models, it uses masked word prediction and next sentence
prediction. During the fine-tuning process, it uses the self-attention mechanism in the Transformer.

Figure 2: The input of BERT transformer is the sum of Position embeddings, Segmentation
embeddings, and Token embeddings.

The paper we aim to perform ablation studies proposed a new method for Chinese NLP tasks named
GLYCE[2]. GLYCE stands for GLYph-vectors for Chinese character representations. Unlike typical
ImageNet[3] images with the size of 800 × 600, Chinese character logos are significantly smaller.
The CNN structures designed for ImageNet combined with glyph-vector did not perform well on
Chinese characters in previous research[4][5]; it sometimes worsened the performance[6]. By treating
Chinese characters as smaller images, the authors suggest a new CNN structure that can combine
with glyph-vectors to perform well.

Figure 3: Image of proposed CNN in original paper[2].

3 Data Setup

The nature of the experiment requires 2 sets of data. The first data is the various Chinese scripts. We
used the prepared 7 Chinese scripts: cjk, regular, seal, cursive, bronzeware, clerical, and tablet scripts.
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Within each script, there are 1 to 8 styles for a total of 28 different writing styles, each stored as a .ttf
file. The number of styles used to train the model is a hyperparameter, with a constraint of using up
to 10 styles only out of the given 28.

The second data is task-specific labeled data for NER, POS, and CWS. Each task has data collected
from various sources, ranging from university and research institutes to web-scraped data. For
example, CWS has data collected from Beijing University, Microsoft Research China, Weibo (a
popular Chinese blogging website), etc. For each source, data is pre-split into 3 files -train, dev, and
test. The size of these data range anywhere from a few MB to 30MB per source.

The embedding layers are trained on arbitrarily chosen N writing styles. Since it is computationally
not possible for us to run our models on all data, training and testing are only done on a single source
at a time.

4 Architecture of Model
1. BERT Layer
BERT is designed to pretrain deep bidirectional representations from the unlabeled text by jointly
conditioning on both left and right contexts in all layers. The authors used the Chinese BERT model
as a layer in the proposed model.
Chinese BERT model is a large scale pretrained model and was fine-tuned to produce better results in
the Chinese-only data set. In the Sequence Labeling Tasks, each input sequence S (such as the name
entities) is concatenated with a prefix[CLS] and a suffix[SEP].

Figure 4: The input of BERT transformer is the sum of Position embeddings and Token embeddings.

2. Glyph Embedding Layer
The authors propose a new CNN structure, called Tianzige-CNN, for Chinese NLP tasks by training
CNN with single Chinese characters with different scripts and writing styles. In the first convolutional
layer, font_channels is the input channel. Therefore by adjusting font_channels, features from
different scripts and writing styles used in Chinese are extracted. The max-pooling layer resizes
images of the Chinese character to 2× 2 and extracts features efficiently. Remarkably, the authors
use group convolutions [7][8] instead of the conventional convolutional layer to reduce the likelihood
of overfitting.

3. Joint Glyce-BERT Layer
This is the proposed model that achieved the best performance in Tagging tasks. Instead of feeding
Position embeddings and Token embeddings to BERT directly, Position embeddings are first added
to glyph embeddings and then combined with BERT to obtain the full Glyce representation.

4. Task-specific Output Layer
The task-specific output layer is used to encode contextual-aware glyph representations. The outputs
of Glyce-BERT are passed to the task-specific output layer. The outputs of the task-specific output
layer are passed to prediction layer and obtain the prediction.

5 Limitations

The computational resource available to us was Google Colab’s K80 GPU for up to approximately 12
hours of consecutive use, largely short of the author’s suggested NVIDIA TITAN Xp with 12G RAM.
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In reality, however, we could not afford to run the entire 12 hours because it will lead to Google
blacklisting us for half a day. Besides, our training and evaluations were often terminated suddenly;
this is something we could not control and lead to results that are difficult to compare because each
was trained for unequal durations.

6 Ablation Studies and Results

6.1 Chinese Word Segmentation (CWS)

Results on CWS task are mentioned first because configurations used for achieving the reported
precision, recall, and F1 score were provided. Due to our computational limitations, however, not a
single model was run to completion at the default 20 epoch. The Cityu dataset was selected since it
provided the largest numerical difference between BERT and Glyce+BERT across Precision, Recall,
and F1.

The most exemplary model is the one run with default configuration for the longest time of 11
hours. Although the results for this model are short of the reported results, the model’s loss was still
decreasing and thus we imagine that it is possible to reach the reported results after longer training.
The loss when it terminated was 0.02, so there is still some room for improvement.

The different configurations and their best results are summarized in Table 1. The F1 for each
configuration as it was trained is shown in Figure 5.

Table 1: Results are not directly comparable due to different training duration. Reported results are
shown in the first 2 rows (highlighted); "Original" mean that original configurations were used.

Channel is the hyperparameter font_channel and Cocat is the hyperparameter num_font_concat.
Model Channel Concat Loss Precision Recall F1

Glyce+BERT (reported results) 8 4 NA 97.9 96.8 97.9
BERT (reported results) NA NA NA 97.5 97.7 97.6
Original (not graphed) 8 4 0.0253 95.53 95.64 95.59

Original (graphed) 8 4 0.0341 94.16 93.36 93.76
Glyce+BERT 8 1 0.0454 92.09 91.09 91.59
Glyce+BERT 4 4 0.0481 91.36 90.9 91.13
Glyce+BERT 4 2 0.0416 94.58 95.09 94.83

Glyce+BERT (not graphed) 4 1 0.0394 93.03 92.28 92.65
Glyce+BERT 2 2 0.0299 94.66 94.61 94.63

Glyce+BERT (not graphed) 2 1 0.0431 92.33 92.06 92.2
Glyce+BERT 1 4 0.0293 94.55 94.81 94.68

BERT NA NA 0.0275 96.35 96.85 96.6

Figure 5: F1 vs Steps. full training. Notice that they all have varying training duration resulting from
our unstable training environment.Train step is on X-axis and F1 score on Y-axis.

As seen in Table 1, no substantial improvement or deterioration was observed by changing the
hyperparameters; they all performed above 90%. The concern here is that results were all over the
place, and no statement such as "increasing font_channels tend to improve results" can be declared.
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Figure 6: F1 vs Steps. Zoomed in to initial 9000 steps. Train step is on X-axis and F1 score on Y-axis.

The results at the beginning of the training and evaluation phase though, were drastically different as
seen in Figure 6. Depending on the configuration, the model quickly reaches a certain value, and
from there improved extremely slowly. Generally, a simpler model (i.e. the model with smaller
font_channels and num_font_concat) achieved higher metrics much faster than more complex models
and improved from thereon. The prime example is standalone BERT without Glyce added on top; it
achieved very high results in the shortest time. However, we could not determine the results in the
long-run. Perhaps simpler models reach a higher F1 faster but plateaus quickly, and a complex model
starts slow but is able to continue improving and ultimately will reach a higher result.

6.2 Part Of Speech tagging (POS)

In contrast to our assumption of "using more fonts leads to better performance", the results of altering
font_channels and num_font_concat demonstrate that the model performance does not necessarily
improve with a larger number of fonts. Experiment results for POS are shown in Figure 7. A
multitude of hyperparameter combinations was tested, but they all lead to similar results with little
improvement. Notice again the different training durations.

Figure 7: The F1 of different hyperparameters on the POS task.
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Despite the difficulty finding the extent of font_channels and num_font_concat’s influence on the
final result, glyph_ratio was found to positively affect the results by increasing the ratio.

In addition to hyperparameter tuning, the CNN architecture was modified to perform the POS task.
We found that increasing the hidden layer number of transformers in the task-specific output layer
from 1 to 2 would noticeably improve the model performance. However, further increasing from 2 to
4 would significantly decrease accuracy. We assumed we could optimize the model by adjusting how
much it depended on the scripts, but high dependency possibly resulted in high sensitivity to the bias
caused by the scripts. The results for POS task are summarized in Table 2.

Table 2: Results of POS. Results are not directly comparable due to different training duration.
Model Hidden Layer Channel Concat Loss Precision Recall F1

Glyce+BERT (reported results) NA NA NA NA 95.56 95.26 95.41
BERT (reported results) NA NA NA NA 94.91 94.63 94.77

Glyce+BERT 2 2 2 0.0518 92.8 92.5 92.65
BERT NA NA NA 0.0603 94.5 94.71 94.61

Glyce+BERT 1 1 1 0.0689 90.2 89.24 89.72
Glyce+BERT 1 2 2 0.0594 91.19 91.4 91.29
Glyce+BERT 1 4 4 0.0611 90.83 90.79 90.81
Glyce+BERT 1 8 4 0.639 90.74 90.36 90.55

Additionally, we justified the architecture of Tianzige-CNN by evaluating on POS task. "Tianzige"
signifies a 2 × 2 format. Experimental results show that it performed better than 4 × 4 or more, but
only by a small margin. We assume this is due to the input fonts having a small dimension.

Figure 8: The F1 of different CNN architectures on the POS task.

6.3 Named Entity Recognition (NER)

We used the resume dataset for the NER task. The result in the paper is 96.54 for F1 by using
Glyce+BERT model. The authors proved that Glyce can outperform the BERT model by improving
0.76 on F1. The authors do not provide the configurations used to obtain the results. We experimented
on learning rate, font_channels and num_font_concat to replicate the results.

With a fixed number of epoch (epoch = 12) and learning rate (lr = 3e-5), the change of F1 does not
exceed ± 1.
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The different configurations and results are listed in Table 3. Graphs of experiments are shown in
Figures 11, and 13. We use the F1 metric to score and compare our results.

Table 3: Configuration and results for NER.
Model Channel Concat Loss Precision Recall F1

Glyce+BERT (reported results) NA NA NA 96.12 95.45 95.78
BERT (reported results) NA NA NA 96.62 96.48 95.82

Glyce+BERT 8 4 0.0013 88.31 88.32 87.92
Glyce+BERT 8 2 0.0015 88.53 88.32 87.91
Glyce+BERT 4 4 0.0049 87.75 88.07 87.91
Glyce+BERT 4 2 0.0051 89.49 88.38 88.93
Glyce+BERT 2 2 0.0090 89.71 88.50 88.51

We hypothesized that we did not run the experiment long enough to replicate the result of Glyce+BERT
model mentioned in the paper. To test this, we picked the configuration of Glyce+BERT model that
performed best, with font_channels=4, num_font_concat=2, and ran 100 epochs on it. The loss stayed
at 0.0045 and F1 value started to decrease. The finding contradicts our claim. Longer training does
not yield better results.

A point to note is that the loss of NER is the lowest among the three tagging tasks despite the dataset
for NER being the smallest. We were not able to decrease loss further and boost performance by
fine-tuning the hyperparameters. We suppose that the performance of NER may be correlated to
glyph-ratio and glyph-decay, but it will remain as future work due to time constraints for this project.

7 Generalization

So far the discussion has been centered around Chinese as the logographic language of choice.
However, the author suggests as part of their conclusion that their approach is general enough to apply
to other logographic languages, so we chose to apply the same experimental procedure to Japanese
POS tagging.

Japanese was selected not only due to its logographic nature but because it has a complex his-
tory of script transformation. The current Japanese language is composed of Hiragana(平仮名),
Katakana(片仮名), and Kanji(漢字), where Hiragana and Katakana both have one corresponding
pronunciation/sound per character, and Kanji has the Kun-yomi(訓読み) and On-yomi(音読み),
which are respectively Japanese and Chinese-based pronunciations, used differently depending on the
context[9].

The three different sets of characters are used in a mixture in today’s Japanese, but it all originated
from the Kanji, which was imported from China. Hiragana is a cursive transformation of the Kanji as
seen in Figure 9. Katakana, on the other hand, is a simplification of the Kanji as seen in Figure 10.
The origin Kanji and corresponding Hiragana and Katakana are shown for the sounds "a", "i", "u",
"e", "o" from the top respectively.

Figure 9: Hiragana transformation. Figure 10: Katakana transformation.

We observe that similar to Chinese, Japanese has simplified greatly by the creation of Hiragana and
Katakana. However, that is only the case if Kanji was no longer used. The mixed utilization of all
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three sets of characters in today’s Japanese is believed to preserve semantic information if not add
more complexity.

Again, historical scripts were chosen for Japanese font training. They include tensho, reisho, gyousho,
kaisho, and sousyo, and were obtained online[10] as .ttf files.

Text data was obtained from a website[11] which stores copyright-expired novels. The novels
"Kokoro" by Souseki Natsume and "Ningen Shikkaku" by Osamu Dazai were picked due to their
high reputation and orthodox use of the Japanese language. Then Janome [12] was used to process
the text data and create POS tags for each tokenized word. BERT and Glyce+BERT were used to
perform the POS task. A sample segmentation and its POS tags is shown below:

’筆’, ’を’, ’執っ’, ’て’, ’も’, ’心持’, ’は’, ’同じ’, ’事’, ’で’, ’ある’
’名詞’, ’助詞’, ’動詞’, ’助詞’, ’助詞’, ’名詞’, ’助詞’, ’連体詞’, ’名詞’, ’助動詞’, ’助動詞’

The main difference between Chinese and Japanese is the way in which words are segmented. In
Chinese, character-level-segmentation is used in Tagging tasks, but there may be multiple characters
in Japanese segmentation as shown above.

We suspect this to be one reason why POS tagging on Japanese failed. The best results were obtained
when the loss was still 0.2954. Precision, Recall, and F1 were respectively 6.22, 5.88, and 4.85
when the loss was 0.2954. Further training only worsened the results. Another suspect for poor
performance is the multilingual BERT model. Unlike the Chinese BERT model, no tuning was
performed. Modifying the code almost completely was an extraordinary challenge for us, one that
could not have been done given the time span of this project. Improving the result further shall remain
as future work.

8 Conclusion and Future Work

Our experimental environment greatly reduced the ability to verify the author’s results. The best we
may do is extrapolate from the graphs, but doing so does not allow us to ascertain the superiority of
Glyce+BERT over simple BERT. Hyperparameter tuning of font_channel and num_font_concat as
well as some other parameters did not significantly improve Tagging task results as we hypothesized;
glyph_ratio did improve the results. As for the CNN structure, we were able to verify that Tianzige-
CNN performs the best but by an extremely small margin; adding a single transformer layer also
proved beneficial.

For Japanese generalization, we were able to generalize, apply the same experiment on Japanese, and
get the model running, but the results were too poor to consider it a success.

9 Statement of Contribution

Yuchen Chen: Ablation study on POS; research on the paper; write the report.

Yunfei Cheng: Ablation study on CWS; collect and process Japanese dataset; write the report.

Jiayao Zhang: Ablation study on NER; set up codes and configurations; write the report.
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10 Appendix

Figure 11: Impact of font_channels on F1 (F1 vs steps)

Figure 12: Impact of num_font_concat and maxpool sizes on F1 (F1 vs steps)

Figure 13: Impact of learning rates on F1 (F1 vs steps)
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