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Exploiting Language Power for Time Series Forecasting with
Exogenous Variables

Anonymous Author(s)

Abstract
The World Wide Web thrives on intelligent services that depend
heavily on accurate time series forecasting to navigate dynamic
and evolving environments. Due to the partially-observed nature of
real world, exclusively focusing on the target of interest, so-called
endogenous variables, is insufficient for accurate forecasting, espe-
cially in web systems that are susceptible to external influences.
Thus, utilizing exogenous variables to harness external information,
i.e., forecasting with exogenous variable (FEV), is imperative. Never-
theless, as the external environment is complex and ever-evolving,
inadequately capturing external influences can even lead to learn-
ing spurious correlations and invalid prediction. Fortunately, recent
studies have demonstrated that large language models (LLMs) ex-
hibit exceptional recognition capabilities across open real-world
systems, including a deep understanding of exogenous environ-
ments. However, it is difficult to directly apply LLMs for FEV due
to challenges of task activation, exogenous knowledge extraction,
and feature space alignment. In this work, we devise ExoLLM,
an LLM-driven method to sufficiently utilize Exogenous variables
for time series forecasting. We begin by Meta-task Instruction to
activate the knowledge transfer of LLM from natural language
processing to FEV. To comprehensively understand the intricate
and hierarchical influences of exogenous variables, we propose
Multi-grained Prompts, encompassing diverse external influences,
including natural attributes, trend correlations, and period relation-
ships between two types of variables. Additionally, a Dual TS-Text
Attention is devised to bridge the feature gap between text and nu-
meric data in LLM. Evaluation on real-world datasets demonstrates
ExoLLM’s superiority in exploiting exogenous information for fore-
casting with open-world language knowledge. Code is available at
https://anonymous.4open.science/r/ExoLLM.
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1 Introduction
The World Wide Web, as a continuously and ever-changing physi-
cal system, heavily depends on the ability to forecast and respond
to shifting patterns and user behaviors [11, 12, 15, 28]. Time series
forecasting is essential to modern web technologies, utilizing his-
torical data to anticipate future web patterns and trends [20, 25, 41].
Its predictive accuracy not only enhances user experience but also
drives the development of intelligent web services, ranging from
personalized content recommendations [27] and web economics
modeling [5] to microservice log analysis [9]. These capabilities po-
sition time series forecasting as a cornerstone in creating adaptive,
data-driven web platforms [23, 37].

Recently, deep models have achieved promising progress in time
series forecasting [3, 17], with most of them focusing exclusively on
the target of interest, known as endogenous variables, to make pre-
dictions [21, 26, 36, 44]. This approach often ignores the influence
of exogenous variables from the external environment. Exogenous
variables refer to observable data within a system that are
not the target variable being predicted. As shown in Figure 1
(a), the variations within web page views (endogenous variable)
are often influenced by exogenous variables, such as traffic flow,
hospitalization rate, and societal events [35]. Thus, given the com-
plex and changing physical system [48], incorporating exogenous
factors, i.e., forecasting with exogenous variables (FEV) is becoming
prevalent and indispensable [24].

Generally, the core of FEV is to effectively model the influence
of exogenous variables on endogenous variable [4, 18, 19, 30]. Re-
cent research in FEV proposes using attention among observed
numerical exogenous series and endogenous series to capture this
inherent relationship [24, 35]. Nevertheless, due to the Intricate in-
fluences and interactions from external environment, relying solely
on time series modality is insufficient for capturing these exter-
nal influences: (1) Multi-grained temporal dependencies [14].
The external influences and interactions from exogenous variables
is multi-grained, such as periodicity and trends, which can be re-
flected by various aspects including complex human behaviors and
living habits [46]. It is difficult to model such changing and diverse
impact only by observed numeric [20], highlighting the necessity of
thoroughly learning multi-grained temporal features to effectively
model these intricate patterns [14]. (2) Spurious correlation [10].
Noise and interventions in current data can lead to learning biased
external influence, thereby affecting the accuracy of forecasting
results [34]. For example, traffic flows are positively correlated with
exogenous weather variables, but mandatory controls can lead to
less traffic even when the weather is good, resulting in spurious
association that may be learned by models. Without any external
knowledge from real world, a high prediction uncertainty tends to
be inevitable [47].

Consequently, designing more intelligent and robust FEV frame-
work that enable models to effectively understand the intricate

1
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Figure 1: (a) Illustration of Knowledge Reserve from Pre-trained LLM: The extensive pre-trained text data endows LLMs with
the potential to understand intricate influence of exogenous variables on web page views. (b) Huge Gaps in Feature Space
and Tasks: Text embeddings and time series features are usually mapped to different feature spaces, and it is challenging to
fine-tune text-generation pre-trained LLM for FEV.

external influence and avoid spurious correlation is in demand.
Fortunately, with rapid development of large language models
(LLMs) [1], there have been more opportunities to leverage the
vast language knowledge to comprehend external influence on en-
dogenous variables. Through extensive training on large-scale text
corpora, pre-trained LLMs have extensively acquired knowledge
of multi-grained correlation between two types of variables. Intu-
itively, empowering FEV with these full-scale external knowledge
can significantly enhance forecasting accuracy [45]. Nevertheless,
as shown in Figure 1 (b), considering distinct task differences be-
tween NLP and time series forecasting [2, 45], and distant data
gap between discrete text and continues numeric [14], employing
LLMs to FEV faces several urgent challenges: (1) Task activation.
How to construct task instruction to fully activate the potential
of LLMs in FEV, enabling the knowledge transfer across tasks. (2)
Full-scale language-driven knowledge acquirement. Given
an LLM-based solution, how to devise effective and comprehen-
sive prompts to acquire hierarchical and sufficient knowledge from
exogenous variables. (3) Feature space alignment. Given the so-
lution is concerned with two data modalities of both numerical and
text data, how to construct a feasible encoding-decoding strategy
to ensure the alignment between text space and time series space.

In this work, we devise ExoLLM to forecast with Exogenous
variables using LLM, capturing diverse and changing external in-
fluences from exogenous variables with language-based knowl-
edge. Technically, we elaborately craft domain-specific Meta-task
Instructions to guide LLMs to process FEV tasks in different data
domains. Subsequently, we establish Multi-grained Prompts to dy-
namically capture the natural attributes, periodic associations, trend
correlations, and other granular external influence of exogenous
variables, thereby adaptive transferring the dynamic auxiliary in-
formation into knowledge that can be understood by ExoLLM. Ad-
ditionally, we design the Dual Time series-Text Attention Attention
(DT2Attention) to mitigate data discrepancies during time series
encoding and feature decoding, respectively. Comprehensive evalu-
ation demonstrates that LLM can even act as an effective few-shot
and zero-shot FEV learners when adopted through our elaborate de-
sign, outperforming specialized forecasting models. Our meticulous

design enables LLMs to function even as a proficient few-shot and
zero-shot FEV learner, surpassing specialized forecasting models
in terms of effectiveness, as demonstrated by the comprehensive
evaluation. Our contributions can be summarized as follows:

• Given the complex and evolving external environment of
real-world system, i.e., web service, traffic, electricity and
weather, we introduce LLMs to maximally explore the aux-
iliary information of exogenous variables.

• We propose ExoLLM, the first LLM-based forecasting model
to accomplish FEV:
1) To fully exploit the potential of LLM in FEV, we elab-
orately design Meta-task Instruction and Multi-grained
Prompt, realizing the pre-trained knowledge transfer from
NLP to FEV and integrate dynamic context information
into knowledge of time-series domain.
2) To deal with the distant data gap between discrete text
and continues numeric, we design modality-aware encod-
ing and decodingmechanisms, i.e., DT2Attention, to achieve
aligned feature before and after LLM encoding.

• ExoLLM demonstrates outstanding predictive performance
across various real scenarios, including long-term, short-
term, few-shot, and zero-shot forecasting. Quantitatively,
ExoLLM outperforms 10 state-of-the-art models for long-
term forecasting, achieving top-1 performance in 51 settings
and top-2 in 5 settings out of a total of 56 settings. In ad-
dition, ExoLLM reduces MAE by an average of 4.1%, 5.2%,
and 4.5% in short-term, few-shot, and zero-shot forecasting
tasks, respectively.

2 Related Work
2.1 Forecasting with Exogenous Variables
In practical forecasting scenarios, the utilization of exogenous vari-
ables as auxiliary information for forecasting endogenous vari-
ables is more prevalent. Previous research has explored statistical
methods such as ARIMAX [38] and SARIMAX [33], which un-
derstand relationships between exogenous and endogenous series
along with auto-regression. Additionally, deep learning models like

2
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Table 1: Comparison between prior LLM-based time series forecasting models and ExoLLM.

Method ExoLLM AutoTimes TimeLLM LLM4TS UniTime LLMTime TEST TEMPO GPT4TS
(Ours) [2024] [2023] [2023] [2024] [2023] [2023] [2023] [2023]

Exogenous Variables ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Multimodal ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

Feature Alignment ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

NBEATSx [29] and TiDE [6] argue that forecasting models can
leverage future values of exogenous variables during the forecasing
endogenous variables. Notably, TimeXer [35] introduces external
information into transformer architectures through well-designed
embedding strategies to effectively incorporate external informa-
tion into segmented representations of endogenous variables, ac-
commodating temporal lags ormissing data records. However, these
approaches rely on establishing auxiliary information only based on
numeric correlation between exogenous and endogenous series. In
contrast, ExoLLM has the capability to extract multi-grained effects
of exogenous variables on endogenous ones as auxiliary informa-
tion from extensive world knowledge, thereby holding significant
potential for enhancing accuracy and generalization in FEV.

2.2 LLM-based Forecasting
The recent emergence of LLMs has opened up new possibilities
for time series forecasting [20, 22]. GPT4TS [45] utilizes a pre-
trained language model without updating its self-attention and
feedforward layers. The model undergoes fine-tuning and evalua-
tion across various time series analysis tasks, demonstrating com-
parable or state-of-the-art performance by leveraging knowledge
transfer from natural language pre-training. LLM4TS [2] adopts a
two-stage fine-tuning approach on the LLM to fully leverage time
series data. TimeLLM [14] introduces the concept of text prototypes
and reprograms time series based on these prototypes to align them
more naturally with language models. Tempo [1] decomposes the
trend, seasonality, and residual components of time series while dy-
namically selecting prompts to address comprehension challenges
for LLMs. UniTime [20] proposes a language-empowered unified
model to efficiently capture knowledge from cross-domain time
series data. With their extensive knowledge base, LLMs exhibit
tremendous potential in time series forecasting. However, as shown
in Table 1, there has been no prior research exploiting LLM for fore-
casting with exogenous variables (FEV) to enhance the prediction
accuracy. To address this gap, we propose ExoLLMwhich harnesses
the power of language to capture the influence of exogenous vari-
ables on endogenous variables.

3 Problem Definition
In forecasting with exogenous variables, there is a historical endoge-
nous series X ∈ R1×𝐿 and its associated exogenous information
E, where 𝐿 is look-back window size. Concretely, E ∈ R𝑀×𝐿 com-
prises multiple exogenous variables {E(1) , E(2) , . . . , E(𝑀 ) }, where
𝑀 is the variable num and E(𝑚) ∈ R1×𝐿 is the 𝑚-th exogenous
series. Our goal is to learn a forecasting model 𝑓 (·), which predicts
the future 𝑇 time steps of endogenous series X̂ ∈ R1×𝑇 , based on
its historical observation X and the exogenous variables E.

Figure 2: Overall architecture of ExoLLM, which consists of
Dual TS-Text Attention and pre-trained LLM to sufficiently
exploit exogenous variables in FEV.

4 Methodology
The detailed framework of ExoLLM is illustrated in Figure 2. Firstly,
the Meta-task Instruction (MTI) and Multi-grained Prompt (MGP)
text are embedded using frozen large languagemodel to get uniform
size embedding. Then, exogenous and endogenous series will be
tokenized by shared Temporal-property preserved Tokenizer (TPT)
to preserve temporal properties. Furthermore, a mainly frozen pre-
trained LLM is utilized to integrate exogenous knowledge into
endogenous token. It’s worth noting that a Dual TS-Text Attention
(DT2Attention) is devised to align TS-Text feature space before and
after LLM encoding, which enables the model to aware of specific
modality. The output endogenous token wil be finally mapped to
the future time series by a lightweight forecasting head.

4.1 Language-driven Exogenous Knowledge
Utilization

Meta-task Instruction. To activate the knowledge transfer of LLM
from nature language processing (NLP) to FEV, it is necessary to
construct task instructions as guidance. As illustrated in Figure 3,
the meta-task instruction comprises three key elements: (1) Overall
description and analysis of dataset, offering explicit domain identifi-
cation information to the model. (2) Brief summary of endogenous
and exogenous variables, facilitating model to discern the source
of each variables. (3) Introduction to the FEV task, fully activating
LLM to accomplishing forecasting task with exogenous variables.
We aim to activate the LLM’s FEV capability in different domains
through carefully designed meta-task instructions.

Multi-grained Prompt. To comprehensively understand the ex-
ternal environment of Entire systems, we need to consider not only

3
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Figure 3: Example of Meta-task Instruction and headlines of
Multi-grained Prompt in ETTh1.

the apparent data correlation between numerical exogenous and
endogenous variables, but also the natural properties, constant re-
lationships, sequential trends, period influences, stability, and other
multilevel factors. Therefore, we design multi-grained prompts
(MGP) to exploit the LLM’s comprehensive knowledge of the world
to a diversified understanding of a specific environment. As shown
in Table 2, the multi-grained prompt mainly consists of two ele-
ments: (1) Revealing the natural attribute of exogenous variables
and their essential correlationwith endogenous variables, endowing
the model with prior knowledge of external environment. (2) De-
scribing the dynamic characteristics of exogenous/endogenous se-
ries in term of trends, period, stability, and noise intensity, enabling
the model to consider dynamic external influences. Intuitively, MGP
not only deepens the LLM’s understanding of exogenous variables,
but also enhances the LLM’s perception of the external invisible
environment.

Uniform-scale Text Encoding. After constructing the meta-task
instruction and multi-grained prompt, the next step involves en-
coding the text to obtain embeddings of uniform dimensions. To
integrate these text with adequate language knowledge, we use a
pre-trained LLM to encode these text descriptions. Since the text
length of each prompt is different, we design an ingenious method
to obtain the same embedding size. Particularly, we add a special
token <EOS> at the end of the prompt. Since all the previous to-
kens are visible to <EOS> throughout the causal attention in LLM,
the embedding of <EOS> could represent the entire text. The text
encoding process is given by:

PT = SelectLast(LLM(TD; <EOS>)), (1)

where SelectLast(·) denotes selecting the embedding of the last
<EOS> token, LLM(·) represents encoding part of large language
model, TD = {𝑡𝑑task, 𝑡𝑑

(1)
exo, 𝑡𝑑

(2)
exo, ..., 𝑡𝑑

(𝑀 )
exo , 𝑡𝑑end} is text descrip-

tion set of Meta-task Instruction and Multi-grained Prompt. PT =

{𝑝𝑡task, 𝑝𝑡
(1)
exo, 𝑝𝑡

(2)
exo, ..., 𝑝𝑡

(𝑀 )
exo , 𝑝𝑡end} represents the uniform-scale

text embeddings of TD, where 𝑝𝑡task ∈ R1×𝐷 is the embedding of
meta-task instruction, 𝑝𝑡 (𝑖 )exo ∈ R𝑘×𝐷 is the 𝑖-th exogenous prompt
embedding set, 𝑝𝑡end ∈ R𝑘×𝐷 is endogenous prompt embedding
set, 𝑘 is multi-grained prompt number of one-type variable and 𝐷
is the uniform hidden dimension.

4.2 Temporal-property Preserved Tokenizer
To facilitate LLM’s understanding of the different types of variable
series, we need to compress each series into a single token. Recent

studies [21] use a linear layer to embed the entire time series as a to-
ken. However, this embedding approach neglects the temporal prop-
erties of data, resulting in the model’s incomplete understanding of
the relationships between exogenous and endogenous series. There-
fore, we devise a Temporal-property Preserved Tokenizer (TPT) to
obtain tokens reserving the temporal characteristics. Firstly, we par-
tition the exogenous variables E and endogenous variables X into
non-overlapping patches to enhance the local semantics at each
time step [26], resulting in P𝑒𝑛𝑑 ∈ R1×𝑁×𝑃 and P𝑒𝑥𝑜 ∈ R𝑀×𝑁×𝑃 ,
where 𝑃 is patch length, and 𝑁 = 𝐿

𝑃
is the corresponding numbers

of patches. To compress the temporal representations, TPT employs
Self-Attention to learn temporal interactions among patches and
selects the the last patch as the output:

TK𝑡𝑖𝑚𝑒
∗ = SelectLast(Self-Attn(PE + P∗)), (2)

where Self-Attn(·) denotes self-attention applied to time series, PE
represents the position embedding, SelectLast(·) denotes the opera-
tion of selecting the last patch, P∗ is patched exogenous or endoge-
nous series and TK𝑡𝑖𝑚𝑒

∗ is the corresponding token. Selecting the
last patch as the token representation of the entire series is justified
by two reasons: (1) It interacts with all preceding patches through
attention, thus possessing sequence-level temporal information;
(2) It is closest to the future sequence, providing crucial near-term
information. Finally, we obtain exogenous tokens TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 ∈ R𝑀×𝐷

and endogenous token TK𝑡𝑖𝑚𝑒
𝑒𝑛𝑑

∈ R1×𝐷 in the time series feature
space.

4.3 Knowledge-retained LLM Encoder
Understanding the exogenous impact on endogenous variables is
crucial for time series forecasting. We utilize meta-task instruction
along with tokenized exogenous and endogenous variables to LLMs
to fully exploit the prior knowledge in LLMs, thereby forming
enhanced representations of endogenous token:

TK𝑙𝑙𝑚
𝑒𝑛𝑑

= LLM({𝑝𝑡𝑡𝑎𝑠𝑘 ,TK𝑒𝑥𝑜 ,TK𝑒𝑛𝑑 }), (3)

where LLM(·) denotes the encoder part of LLM. Each variable is
treated as a token, and exogenous and endogenous variables are
concatenated in a fixed order to form a "sentence" in a fixed order,
like [𝑝𝑡𝑡𝑎𝑠𝑘 ,TK

(1)
𝑒𝑥𝑜 ,TK

(2)
𝑒𝑥𝑜 , ...,TK

(𝑀 )
𝑒𝑥𝑜 ,TK𝑒𝑛𝑑 ]. Following [45], we

freeze the positional embedding layers and self-attention blocks in
LLM to retain majority of learned knowledge from language pre-
training. Ultimately, we obtain an exogenous variable enhanced
representation of endogenous token, TK𝑙𝑙𝑚

𝑒𝑛𝑑
∈ R1×𝐷 , which encap-

sulates rich information from prior exogenous knowledge.

4.4 Feature Alignment with Dual TS-Text
Attention

Given that LLM is pre-trained on discrete textual data and lack
exposure to continuous numerical values, directly inputting tokens
TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 and TK𝑡𝑖𝑚𝑒
𝑒𝑛𝑑

in time series featrue space into LLMs would
increase the difficulties in understanding never-seen modality, thus
resulting in degraded predictive performance. Besides, the output
token from LLM in text space is difficult to decode into future series.
Thus, a Dual TS-Text Attention (DT2Attention) is devised to align
ts-text feature space before and after LLM encoder, respectively.

4
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Table 2: An example of Multi-grained Prompt of one variable in ETTh1. Orange is chosen from exogenous and endogenous.
Green is the variable name. Blue is prior knowledge about the variable’s nature attribute. Black is the fixed template.

Characteristics Prompts

Nature Attribute

1○ This Exogenous variable is High UseLess Load, representing external load that is inefficiently utilized.
2○ Exogenous High UseLess Load indicates a potential inefficiency in the system’s external load handling.
3○ Exogenous High UseLess Load can lead to increased energy consumption without corresponding output.
4○ Exogenous High UseLess Load might suggest that the system is operating under suboptimal external conditions.

Trend

5○ Exogenous High UseLess Load series shows an overall upward trend .
6○ Exogenous High UseLess Load series initially rises and then declines .
7○ Exogenous High UseLess Load series exhibits an overall declining trend .
8○ Exogenous High UseLess Load series initially declines and then rises .

Period

9○ Exogenous High UseLess Load series has no apparent periodicity .
10○ Exogenous High UseLess Load series exhibits shorter periodicity and higher frequency .
11○ Exogenous High UseLess Load series displays clear periodicity .
12○ Exogenous High UseLess Load series exhibits relatively longer periodicity .

Stability

13○ Exogenous High UseLess Load series undergoes significant instability over all the time.
14○ Exogenous High UseLess Load series remains relatively stable with minimal fluctuations .
15○ Exogenous High UseLess Load series experiences occasional bouts of volatility, interspersed with periods of relative calm.
16○ Exogenous High UseLess Load series shows consistent stability, with values remaining close to a steady mean.

Noise Intensity

17○ Exogenous High UseLess Load series is subject to very strong noise interference .
18○ Exogenous High UseLess Load series has a low signal-to-noise ratio, where noise significantly affects the clarity of the underlying data.
19○ Exogenous High UseLess Load series experiences moderate noise, partially obscuring the underlying pattern.
20○ Exogenous High UseLess Load series is not influenced by any noise interference .

TS-Text Attention. Intuitively, there should be a certain distinc-
tion between exogenous and endogenous tokens to avoid over-
smoothing representation among different types of tokens, and
absorb certain prior external knowledge to enhance the LLM’s en-
coding ability. Thus, a TS-Text Attention is designed to achieve:
1) Mapping tokens from time series feature space to text feature
space; 2) Distinguishing between endogenous and exogenous To-
kens. Specifically, for any type of token, TS-Text Attention designs
its Query as token in time series space, while the Key and Value are
its corresponding multi-grained prompt. Then, we perform Cross
Attention to align tokens:

TK𝑡𝑒𝑥𝑡∗ = Cross-Attn(TK𝑡𝑖𝑚𝑒
∗ , PT∗, PT∗), (4)

where TK𝑡𝑖𝑚𝑒
∗ ∈ R𝐷 is the exogenous/endogenous token in time

series space, PT∗ ∈ R𝑘×𝐷 is this variable’s corresponding multi-
grained prompt, TK𝑡𝑒𝑥𝑡∗ ∈ R𝐷 is the mapped token in text space
and will be input into LLM in Eq (3).

Text-TS Attention. Denote TK𝑙𝑙𝑚
𝑒𝑛𝑑

∈ R1×𝐷 as the endogenous
token encoded by LLM encoder in Eq (3). SinceTK𝑙𝑙𝑚

𝑒𝑛𝑑
remains in the

text space, directly decode TK𝑙𝑙𝑚
𝑒𝑛𝑑

for forecasting faces the challenge
of converting textual semantics into time series. Thus, we use Text-
TS Attention to alleviate such problem, decoding TK𝑙𝑙𝑚

𝑒𝑛𝑑
into time

series space based on the temporal information of exogenous series.
This can be expressed as:

TK𝑙𝑙𝑚
𝑑𝑒𝑐

= Cross-Attn(TK𝑙𝑙𝑚
𝑒𝑛𝑑

,TK𝑡𝑖𝑚𝑒
𝑒𝑥𝑜 ,TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 ), (5)

where TK𝑡𝑖𝑚𝑒
𝑒𝑥𝑜 represents exogenous variables in time series space,

TK𝑙𝑙𝑚
𝑑𝑒𝑐

∈ R1×𝐷 is the decoded endogenous token. Through this
approach, we can better utilize the representation capability of
LLMs and combine exogenous series to enhance the endogenous
forecasting.

4.5 Lightweight Forecasting Head
Considering the richness of the encoded token and maximumly
preserving exogenous information by LLMs, a simple linear layer
is employed to transform TK𝑙𝑙𝑚

𝑑𝑒𝑐
for forecasting:

X̂ = Linear(TK𝑙𝑙𝑚
𝑑𝑒𝑐

). (6)

where X̂ ∈ R1×𝑇 is the future endogenous series.

5 Experiments
5.1 Dataset and Experimental Settings
To verify the model’s effectiveness, we extensively evaluate our
proposed ExoLLM on a diverse range of FEV scenarios, including
long-term, short-term, few-shot and zero-shot task.

Datasets and Experimental Setups. To completely evaluate the
FEV capability of ExoLLM, we conduct experiments on 12 real-
world datasets. These datasets are collected from web and espe-
cially the exogenous factors retrieved from are in the formation
of language. In particular, seven well-established public long-term
datasets from different domains, and five short-term datasets in
electricity price are involved in our FEV experiments. The endoge-
nous and exogenous variables of each dataset are summarized in
detail in Appendix A.1. For short-term forecasting datasets, the
input length is set as 168 and prediction length is 24. For long-term
forecasting datasets, the input length is set as 96 and prediction
length varies {96, 192, 336, 720}. More implementation details can
be found at Appendix A.2.

Baselines. We compare ExoLLM with 10 baselines, which com-
prise the state-of-the-art forecasting methods, including LLM-based
model: LLM4TS [2], GPT4TS [45], TimeLLM [14], Transformer-
basedmodel: TimeXer [35] PatchTST [26], ITransformer [21], Cross-
former [43], Autoformer [39], CNN-based model: SCINet [19], and
Linear-based model: TiDE [6] . Among these models, TimeXer and
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Table 3: Full results of the long-term FEV. The input sequence length is set to 96 for all baselines. Results are averaged from all
prediction lengths. The complete results are listed in the Appendix.

Models
ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.330 0.404 0.336 0.415 0.365 0.486 0.394 0.446 0.344 0.412 0.419 0.468 0.428 0.450 0.495 0.528 0.392 0.442 0.365 0.413 0.378 0.427

Weather 0.001 0.027 0.002 0.031 0.002 0.029 0.002 0.031 0.005 0.055 0.002 0.029 0.007 0.030 0.007 0.061 0.005 0.056 0.003 0.036 0.004 0.046

ETTh1 0.069 0.205 0.074 0.211 0.075 0.224 0.078 0.216 0.285 0.447 0.084 0.223 0.437 0.256 0.130 0.282 0.126 0.305 0.104 0.277 0.115 0.304

ETTh2 0.175 0.327 0.183 0.337 0.200 0.357 0.192 0.345 1.027 0.873 0.205 0.356 1.154 0.406 0.243 0.386 0.277 0.443 0.226 0.388 0.251 0.415

ETTm1 0.049 0.165 0.051 0.168 0.053 0.173 0.054 0.173 0.412 0.548 0.053 0.173 0.099 0.204 0.086 0.231 0.106 0.264 0.080 0.233 0.093 0.248

ETTm2 0.113 0.249 0.116 0.252 0.127 0.261 0.120 0.258 0.976 0.769 0.122 0.261 0.685 0.334 0.154 0.304 0.196 0.349 0.162 0.311 0.179 0.330

Traffic 0.145 0.220 0.150 0.227 0.161 0.412 0.173 0.253 0.182 0.268 0.319 0.408 0.447 0.362 0.303 0.353 0.166 0.247 0.186 0.271 0.177 0.260

Table 4: Full results of the short-term FEV. The input length and prediction length are set to 168 and 24 respectively for all
baselines. Avg means the average results from all five datasets.

Models
ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NP 0.216 0.234 0.238 0.268 0.265 0.300 0.267 0.284 0.245 0.289 0.335 0.340 0.373 0.368 0.402 0.398 0.275 0.303 0.255 0.293 0.265 0.315

PJM 0.076 0.175 0.088 0.188 0.097 0.197 0.106 0.209 0.149 0.198 0.124 0.228 0.143 0.259 0.168 0.267 0.118 0.207 0.210 0.283 0.255 0.308

BE 0.358 0.225 0.374 0.241 0.394 0.270 0.403 0.264 0.436 0.294 0.523 0.336 0.731 0.412 0.500 0.333 0.502 0.288 0.384 0.230 0.426 0.258

FR 0.365 0.203 0.381 0.211 0.439 0.233 0.411 0.220 0.440 0.216 0.510 0.290 0.855 0.384 0.519 0.295 0.570 0.497 0.501 0.443 0.519 0.459

DE 0.422 0.401 0.440 0.418 0.479 0.443 0.461 0.432 0.540 0.423 0.568 0.496 0.565 0.497 0.674 0.544 0.569 0.490 0.498 0.438 0.517 0.460

AVG 0.288 0.251 0.304 0.265 0.335 0.289 0.330 0.282 0.362 0.284 0.412 0.338 0.533 0.384 0.453 0.368 0.325 0.326 0.338 0.378 0.399 0.408

TiDE are advanced recent forecaster elaborated for exogenous vari-
ables.

5.2 Main Results
Long-term FEV. Long-term forecasting results are presented in

Table 3, where ExoLLM demonstrates superior performance across
different prediction length again all baselines. In contrast to the
cutting-edge LLM-based model TimeLLM, ExoLLM achieves per-
formance gains of 31.2% and 19.8% in MSE and MAE metrics. Com-
pared to the state-of-the-art (SOTA) FEV model TimeXer, ExoLLM
exhibits a relative reduction of 9.1% and 4.1% in MSE and MAE
metrics, respectively. These results highlight ExoLLM’s exceptional
FEV capability in long-term scenario.

Short-term FEV. In Table 4, ExoLLM consistentlymaintains a lead-
ing predictive performance. Compared to SOTA short-term forecast-
ing model SCINet, ExoLLM achieves significant reductions in 35.5%
MAE and 46.1% MSE respectively. Besides, ExoLLM outperforms

the FEV-designed model TimeXer in all short-term datasets.The
comprehensive experimental results underscore the FEV efficacy
of ExoLLM in short-term forecasting.

Few-shot FEV. In few-shot learning, only 10% of the training data
are utilized, and the outcomes are presented in Table 5. Quantita-
tively, ExoLLM achieves an average 8.9% reduction in MSE and 4.5%
reduction in MAE compared to the top-performing GPT4TS.

Zero-shot FEV. This task is to evaluate how effectively a model
can perform on target dataset when it has been trained on source
dataset, and the results are presented in Table 6. ExoLLM outper-
forms all SOTA models, achieving a performance improvement of
over 5% compared to other models in zero-shot FEV. This demon-
strates ExoLLM’s powerful FEV generalization capabilities with
pre-trained knowledge.
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Table 5: Results of few-shot FEV. Results are averaged from all prediction lengths.

Models ExoLLM TimeXer ITrans. PatchTST Cross. TiDE SCINet Auto. GPT4TS TimeLLM LLM4TS

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.084 0.230 0.094 0.248 0.091 0.251 0.153 0.344 0.346 0.506 0.126 0.312 0.533 0.288 0.159 0.316 0.095 0.242 0.101 0.251 0.140 0.342

ETTh2 0.253 0.403 0.279 0.435 0.290 0.439 0.401 0.546 1.501 1.080 0.327 0.478 1.681 0.500 0.352 0.475 0.278 0.425 0.298 0.439 0.364 0.512

ETTm1 0.057 0.181 0.062 0.194 0.062 0.190 0.124 0.290 0.475 0.601 0.094 0.256 0.115 0.224 0.102 0.255 0.062 0.190 0.062 0.190 0.109 0.273

ETTm2 0.144 0.291 0.156 0.310 0.163 0.306 0.253 0.410 1.187 0.882 0.209 0.365 0.869 0.389 0.204 0.360 0.155 0.301 0.158 0.306 0.231 0.388

Table 6: Results of zero-shot FEV. Results are averaged from all prediction lengths.

Models ExoLLM TimeXer ITrans. PatchTST Cross. TiDE SCINet Auto. GPT4TS TimeLLM LLM4TS

Source Target MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 ETTh2 0.204 0.359 0.228 0.390 0.221 0.395 0.380 0.544 0.875 0.796 0.308 0.490 1.309 0.453 0.384 0.497 0.232 0.381 0.248 0.394 0.344 0.538

ETTh2 ETTh1 0.074 0.212 0.082 0.228 0.085 0.230 0.118 0.287 0.429 0.562 0.096 0.251 0.489 0.262 0.103 0.250 0.082 0.223 0.087 0.230 0.107 0.269

ETTm1 ETTm2 0.162 0.309 0.177 0.332 0.178 0.324 0.353 0.495 1.348 1.025 0.267 0.437 0.328 0.382 0.299 0.438 0.178 0.324 0.176 0.324 0.310 0.466

ETTm2 ETTm1 0.054 0.176 0.058 0.187 0.061 0.185 0.094 0.248 0.455 0.538 0.078 0.220 0.326 0.236 0.075 0.217 0.058 0.182 0.059 0.185 0.086 0.234

5.3 Efficiency Analysis
We have compared ExoLLMwith other LLM-based and linear-based
methods in term of running time, and the results are provided in
Table 7. As demonstrated, ExoLLM significantly reduces computa-
tional costs since it does not require repetitive text encoding during
training. It saves considerable computational time compared to
TimeLLM and is even comparable to DLinear. We will discuss the
computational efficiency of ExoLLM from theoretical perspectives:
(a)The LLM used for frozen text embeddings does not participate
in forward computation or backpropagation during each training
iteration. For a given dataset, its MTI and MGP components are
fixed, meaning their embeddings can be precomputed and stored on
disk. During training, these embeddings only need to be loaded into
memory, resulting in zero additional training time for this part. (b)
The TPT (Time Patch Tokenization) used for encoding time-series
features reduces the sequence length by a factor of 𝑃 (where 𝑃 is the
patch length). This reduces the theoretical time complexity from
𝑂 (𝐿2) to𝑂 ( 𝐿

𝑃

2). Thus, ExoLLM is designed with a strong emphasis
on resource efficiency, making it more computationally economical
in practice.

Table 7: Comparisons of per-batch running time.

Models DLinear ExoLLM GPT4TS TimeLLM
ETTh2 7.0ms 24.3ms 23.9ms 105.4ms
Traffic 47.3ms 85.8ms 81.3ms 586.4ms
Weather 10.1ms 25.5ms 20.3ms 109.3ms

5.4 Ablation Study
We conduct ablation studies by removing each module from Ex-
oLLM on six datasets. w/o MGP removes Multi-grained Prompt

(MGP). w/o MTI removes Meta-task Instruction (MTI). w/o DT2A
removes Dual TS-text Attention (DT2Attention) for feature space
alignment. w/o TPT replaces Temporal-property Preserved Tok-
enizer (TPT), which could preserve temporal properties for each
token, with a linear layerr. We analyze the results shown in Table 8.
The obervations are listed as follows: Obs.1) Removing MGP and
MTI results in the most significant decrease in prediction metrics,
emphasizing their strong ability in activating LLM in FEV. Obs.2)
DT2Attention also significantly improves the model performance,
demonstrating the importance of featrure space alignment. Obs.3)
TST constantly promotes the forecasting accuracy, suggesting that
reserving temporal properties in each token is needed.

Table 8: Ablation of each module on ECL, Weather, ETTh1,
Traffic, PJM and NP.

Dataset ECL Weather ETTh1 Traffic PJM NP

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ExoLLM 0.330 0.404 0.001 0.027 0.069 0.205 0.145 0.220 0.076 0.175 0.216 0.234

w/o MGP 0.359 0.413 0.003 0.037 0.083 0.239 0.152 0.227 0.110 0.185 0.238 0.281

w/o MTI 0.354 0.418 0.003 0.035 0.096 0.209 0.153 0.222 0.099 0.187 0.238 0.277

w/o DT2A 0.348 0.418 0.002 0.034 0.074 0.212 0.157 0.226 0.090 0.176 0.235 0.262

w/o TPT 0.332 0.405 0.002 0.031 0.079 0.210 0.152 0.223 0.086 0.182 0.225 0.241

5.5 Exogenous Scale Analysis
Real-world time series often encounter challenges such as the ab-
sence of crucial exogenous data. In this section, we employ random
masking to simulate these scenarios and further investigate the
forecasting performance. As illustrated in Figure 4 (a) and (b), We
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Figure 4: The MAE (left Y-axis) and MSE results (right Y-axis) of ExoLLM on ETTh, Traffic and Weather. (a) and (b) display
the performance on different prompt number. (c) and (d) demonstrates the performance on different number of exogenous
variables.

vary prompt number from 0 to 16 and report the MSE and MAE
results on ETTh1 and ETTh2. For instance, when the number of
prompts in Figure 4 is 16, we respectively remove prompt of Natural
Attribute, Trend, Period, Stability, and Noise Intensity, and report
the average results. We observe that the performance improve-
ment is positive to the prompt size, indicating that more prompts
extracting more auxiliary information from LLM. As shown in
Figure 4 (c) and (d), we vary exogenous variable number in
{0%, 25%, 50%, 75%, 100%} and find that more exogenous variables
improve the model performance, indicating that ExoLLM is able
to sufficiently understand complex and evolving environment. To
further identify which prompts and exogenous variables are most
important, we individually remove each exogenous prompt and
variable, and results are in Table 10 and Table 9. For ETTh1, the
critical exogenous prompt is Trend, and the most important exoge-
nous variable is HUFT. This result aligns with intuition, as trend
information often plays a pivotal role in long-term forecasting, and
HUFT captures crucial temporal dynamics. It further demonstrates
ExoLLM’s ability to effectively leverage exogenous knowledge, en-
hancing prediction accuracy by identifying and utilizing the most
relevant external factors.

Table 9: Results of removing different type of MGP.

w/o Attribute w/o Trend w/o Period w/o Stability w/o Noise

MSE 0.071 0.071 0.076 0.070 0.070

MAE 0.206 0.206 0.210 0.207 0.206

Table 10: Results of removing different exogenous variables.

w/o HUFT w/o HULL w/o MUFL w/o MULL w/o LUFL w/o LULL

MSE 0.074 0.070 0.072 0.071 0.072 0.072

MAE 0.212 0.207 0.206 0.206 0.206 0.207

5.6 Case Study
Figure 5 illustrates the attention map of ETTh2 (comprising 6 ex-
ogenous variables and 1 endogenous variable) during causal LLM
encoding. Here, tokens 0 through 7 represent the inputs to the LLM:
token 0 denotes the MTI, tokens 1 through 6 represent the token
sequence for the exogenous variables, and token 7 represents the

Figure 5: Case study of causal attention on different tokens.

endogenous variable. These tokens are arranged in a fixed sequence,
forming an input structure akin to a sentence. Encoding through
a large language model allows the endogenous variable token to
be enriched with open-world knowledge conveyed through lan-
guage, thereby enhancing prediction accuracy. The case study on
the ETTh2 dataset demonstrates that: (1) Meta-task Instruction
receive extensive attention for each variable, demonstrating that
the guidance we design perfectly activates the LLM’s ability to
transition from NLP to FEV. (2) ExoLLM is able to distinguish be-
tween exogenous variables that exhibit strong association with the
endogenous variable, resulting in a more focused and interpretable
attention map.

6 Conclusion
To align with the evolving needs of web-related technologies, which
require handling external influences from dynamic and shifting en-
vironments, we propose an LLM-based approach, ExoLLM, for time
series forecasting with exogenous variables (FEV). By incorporat-
ing Meta-task Instruction, Multi-grained Prompt, and Dual TS-Text
Attention, ExoLLM enables large language models (LLMs) to excel
in multiple forecasting scenarios, including long-term, short-term,
few-shot, and zero-shot tasks. This framework introduces a novel
paradigm that taps into the textualized knowledge embedded in
LLMs to enhance the understanding of structural time-series data.
The versatility of ExoLLM also opens new possibilities for structural
and tabular data learning across various domains, driving innova-
tions in real-world applications central to the web ecosystem.
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A Experimental Details
A.1 Dataset Descriptions

Table 1: Dataset descriptions as summarized in [35]. Ex. and
En. are abbreviations for the Exogenous variable and Endoge-
nous variable, respectively. The dataset size is organized in
(Train, Validation, Test)

Dataset #Num Ex. Descriptions En. Descriptions Sampling Frequency Dataset Size

Electricity 320 Electricity Consumption Electricity Consumption 1 Hour (18317, 2633, 5261)

Weather 20 Climate Feature CO2-Concentration 10 Minutes (36792, 5271, 10540)

ETTh 6 Power Load Feature Oil Temperature 1 Hour (8545, 2881, 2881)

ETTm 6 Power Load Feature Oil Temperature 15 Minutes (34465, 11521, 11521)

Traffic 861 Road Occupancy Rates Road Occupancy Rates 1 Hour (12185, 1757, 3509)

NP 2 Grid Load, Wind Power Nord Pool Electricity Price 1 Hour (36500, 5219, 10460)

PJM 2 System Load, SyZonal COMED load Pennsylvania-New Jersey-Maryland 1 Hour (36500, 5219, 10460)Electricity Price

BE 2 Generation, System Load Belgium’s Electricity Price 1 Hour (36500, 5219, 10460)

FR 2 Generation, System Load France’s Electricity Price 1 Hour (36500, 5219, 10460)

DE 2 Wind power, Ampirion zonal load German’s Electricity Price 1 Hour (36500, 5219, 10460)

Seven real-world datasets are used in long-term FEV to evalu-
ate ExoLLM, including: (1) ETT [44] consists of two hourly-level
datasets (ETTh) and two 15minute-level datasets (ETTm). Each
of them contains seven oil and load features of electricity trans-
formers from July 2016 to July 2018. The endogenous variable is
the oil temperature and the exogenous variables are 6 power load
features. (2) Weather [44] includes 21 indicators of weather, such
as air temperature, and humidity. Its data is recorded every 10 min
for 2020 in Germany. In our experiment, we use the Wet Bulb factor
as the endogenous variable to be predicted and the other indicators
as exogenous variables. (3) ECL [39] contains hourly electricity
consumption (in Kwh) of 321 clients from 2012 to 2014. The elec-
tricity consumption of the last client is token as an endogenous
variable and other clients as exogenous variables. (4) Traffic [40]
describes hourly road occupancy rates measured by 862 sensors
on San Francisco Bay area freeways from 2015 to 2016. Te mea-
surement of the last sensor is token as an endogenous variable and
others as exogenous variables.

Five short-term datasets in term of electricity price [16] is used in
short-term FEV, including: (1)NP represents The Nord Pool electric-
itymarket, recording the hourly electricity price, and corresponding
grid load and wind power forecast from 2013-01-01 to 2018-12-24.
(2) PJM represents the Pennsylvania-New Jersey-Maryland market,
which contains the zonal electricity price in the Commonwealth
Edison (COMED), and corresponding System load and COMED
load forecast from 2013-01-01 to 2018-12-24. (3) BE represents Bel-
gium’s electricity market, recording the hourly electricity price,
load forecast in Belgium, and generation forecast in France from
2011-01-09 to 2016-12-31. (4) FR represents the electricity market
in France, recording the hourly prices, and corresponding load and
generation forecast from 2012-01-09 to 2017-12-31. (5) DE repre-
sents the German electricity market, recording the hourly prices,
the zonal load forecast in the TSO Amprion zone, and the wind and
solar generation forecasts from 2012-01-09 to 2017-12-31.

A.2 Implementation Details
All experiments are conducted using PyTorch on 2 NVIDIA H100
PCIe 80GB GPUs. We try using models such as LLaMa-7B [32],
GPT-2 [7],OPT-1.3B [42], as large language models and find that

their effects are in little difference. Considering the lightweight of
time series forecasting and avoid data leakage issue, GPT-2 is finally
selected as the backbone of LLM in the reported results. We utilize
the ADAM optimizer with L2 loss for model optimization, adjusting
the batch size from 32 to 512 to maximize GPU memory utilization.
Grid search is performed for learning rates, exploring values in
[1e-2, 1e-3, 5e-3, 5e-4] corresponding to different datasets. Early
stop of training occurs if the validation loss did not decrease for 10
consecutive rounds. The patch length is set as 8 across all datasets.
The max training epoch number is set as 50. For a fair comparison,
we set the input length to 96 for long-term forecasting and 168 for
short-term forecasting, aligning with all baseline models.

B Key Differences and Advantages of ExoLLM
In fact, ExoLLM is fundamentally different from other LLM-based
methods. 1. Different Task Focus: ExoLLM specifically focuses
on leveraging exogenous information to enhance the predictability
of the target variables. It introduces innovative components such
as MGP and MTI, which significantly improve the LLM’s under-
standing of exogenous variables, rather than merely relying on a
single prompt to guide LLM. 2. Resource Efficiency: Unlike other
large language models that require LLM involvement in forward
computation for text encoding. ExoLLM allows the embedding
from MGP to be pre-computed and stored, significantly reducing
computational time. As shown in Table 2 of the supplementary
one-page PDF, ExoLLM’s computational time is significantly lower,
significantly shorter than other TimeLLM and competitive to other
linear-based models. 3. Different Objective: The goal of ExoLLM
is to generalize across various real-world forecasting scenarios by
leveraging open-world knowledge (i.e., superior insights into ex-
ogenous variables) to improve predictive performance in different
contexts, a capability not shared by other LLM-based methods. 4.
Appropriate Encoding: Other LLM-based models often lack fine-
grained, targeted designs for encoding different data modalities,
risking suboptimal data utilization. In contrast, ExoLLM employs
a tailored TFT to tokenize sequences while preserving temporal
features. Additionally, the DT2Attention mechanism enables dual
alignment between temporal and textual modalities during both
LLM encoding and decoding, enhancing data usability—an area
where other approaches fall short.

Our ExoLLM provides a paradigm to activate the power of LLM
that is encompassed with textualized knowledge in open world to
help better understand structural data of time-series. This can be
potentially extended to more general structural and tabular data
learning on various domains.

C Necessity of Language Power
we demonstrated the importance of using LLMs for FEV from
both a theoretical and practical perspective. Theoretical Justifica-
tion: LLMs provide a crucial foundation for leveraging open-world
knowledge to understand the impact of exogenous variables on
endogenous variables. During pre-training, LLMs acquire extensive
linguistic knowledge, which includes essential prior knowledge.
This knowledge can be embedded into the prediction process, en-
hancing the model’s understanding of the dynamic system. Ex-
perimental Results: In the ablation study presented in Section 5.4,
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we examine the effects of removing MGP and MTI to assess the
contribution of textual information to FEV prediction. The results
showed that removing MGP and MTI led to the most significant
decrease in prediction metrics, highlighting their critical role in
activating LLMs for FEV.

D Data Integrity and Leakage Prevention
We consider much during the initial design of our model, particu-
larly ensuring that ExoLLM is free from data leakage. (1)No Data
Leakage in Practice: As outlined in A.2 Implementation Details,
ExoLLM uses GPT-2 as its backbone. GPT-2 was trained on Web-
Text, a dataset created by OpenAI using text from Reddit posts that
linked to highly-rated external content prior to 2018. The datasets
used in our study were all released after 2019, meaning they have
no overlap with the WebText corpus. Thus, there is no potential
for data leakage in principle. (2) Testing Results Confirm No Data
Leakage: To further verify the absence of data leakage, we tested
GPT-2 with queries about the datasets used in our study. The model

was unable to provide any relevant descriptions of these datasets,
indicating that the pre-trained GPT-2 has not encountered this data
before. This confirms that data leakage is not an issue. Our con-
tribution fundamentally lies in leveraging LLMs to utilize existing
knowledge about open world, enabling more practical time series
forecasting. Experimental results demonstrate the effectiveness of
ExoLLM on datasets where no data leakage is present.

E Full Results
The results presented in Tables 2, 3, and 4 highlight the predictive
advantages of ExoLLM in utilizing exogenous variables. ExoLLM
demonstrates strong adaptability across few-shot, long-term, and
zero-shot forecasting tasks by effectively capturing multi-grained
temporal dependencies. Its ability to maintain high performance
even under limited (few-shot) or unseen (zero-shot) data conditions
underscores the model’s flexibility and generalization capabilities,
making it highly applicable to dynamic, real-world scenarios.
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Table 2: Full results of the few-shot forecasting with exogenous variables.

Models
ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.068 0.193 0.076 0.215 0.075 0.210 0.111 0.200 0.174 0.338 0.116 0.308 0.449 0.232 0.156 0.299 0.072 0.202 0.077 0.209 0.113 0.307
192 0.086 0.228 0.098 0.244 0.095 0.242 0.132 0.341 0.298 0.462 0.121 0.289 0.504 0.269 0.169 0.323 0.092 0.233 0.100 0.242 0.126 0.315
336 0.087 0.232 0.097 0.250 0.091 0.250 0.139 0.339 0.265 0.440 0.115 0.279 0.442 0.272 0.137 0.289 0.095 0.240 0.101 0.250 0.127 0.309
720 0.095 0.261 0.105 0.283 0.102 0.304 0.231 0.501 0.646 0.783 0.153 0.373 0.736 0.381 0.174 0.355 0.119 0.293 0.127 0.303 0.192 0.437ET

Th
1

Avg. 0.084 0.230 0.094 0.248 0.091 0.251 0.153 0.344 0.346 0.506 0.126 0.312 0.533 0.288 0.159 0.316 0.095 0.242 0.101 0.251 0.140 0.342

96 0.175 0.328 0.194 0.352 0.195 0.345 0.282 0.457 0.371 0.498 0.236 0.388 1.086 0.402 0.262 0.404 0.193 0.344 0.193 0.344 0.259 0.423
192 0.244 0.396 0.265 0.421 0.264 0.412 0.385 0.520 1.749 1.249 0.288 0.465 1.523 0.456 0.302 0.442 0.261 0.409 0.264 0.412 0.336 0.492
336 0.275 0.427 0.308 0.464 0.310 0.463 0.440 0.560 1.367 1.054 0.359 0.493 1.626 0.534 0.377 0.489 0.304 0.450 0.324 0.463 0.400 0.527
720 0.319 0.459 0.348 0.504 0.390 0.538 0.498 0.646 2.517 1.518 0.427 0.563 2.489 0.607 0.467 0.567 0.353 0.495 0.411 0.538 0.462 0.605ET

Th
2

Avg. 0.253 0.403 0.279 0.435 0.290 0.439 0.401 0.546 1.501 1.080 0.327 0.478 1.681 0.500 0.352 0.475 0.278 0.425 0.298 0.439 0.364 0.512

96 0.034 0.140 0.037 0.149 0.038 0.149 0.072 0.223 0.224 0.411 0.058 0.193 0.065 0.160 0.127 0.290 0.038 0.146 0.039 0.149 0.065 0.208
192 0.049 0.169 0.054 0.182 0.055 0.178 0.103 0.286 0.359 0.527 0.078 0.219 0.102 0.202 0.076 0.219 0.055 0.178 0.054 0.178 0.090 0.253
336 0.061 0.191 0.067 0.205 0.068 0.199 0.146 0.309 0.375 0.543 0.107 0.288 0.125 0.240 0.094 0.248 0.066 0.199 0.065 0.199 0.126 0.299
720 0.083 0.224 0.091 0.240 0.087 0.233 0.175 0.340 0.943 0.923 0.132 0.324 0.168 0.295 0.111 0.263 0.091 0.237 0.089 0.233 0.154 0.332ET

Tm
1

Avg. 0.057 0.181 0.062 0.194 0.062 0.190 0.124 0.290 0.475 0.601 0.094 0.256 0.115 0.224 0.102 0.255 0.062 0.190 0.062 0.190 0.109 0.273

96 0.093 0.234 0.104 0.250 0.114 0.263 0.186 0.376 0.239 0.409 0.152 0.291 0.406 0.303 0.213 0.373 0.109 0.249 0.117 0.263 0.169 0.334
192 0.129 0.275 0.140 0.294 0.151 0.295 0.224 0.385 0.961 0.904 0.172 0.388 0.829 0.369 0.200 0.359 0.140 0.288 0.146 0.295 0.198 0.387
336 0.154 0.303 0.167 0.323 0.175 0.314 0.282 0.421 0.684 0.686 0.241 0.377 0.973 0.412 0.195 0.351 0.160 0.309 0.164 0.314 0.261 0.399
720 0.201 0.351 0.215 0.372 0.213 0.353 0.322 0.459 2.866 1.529 0.269 0.402 1.268 0.473 0.209 0.357 0.210 0.360 0.204 0.353 0.295 0.431ET

Tm
2

Avg. 0.144 0.291 0.156 0.310 0.163 0.306 0.253 0.410 1.187 0.882 0.209 0.365 0.869 0.389 0.204 0.360 0.155 0.301 0.158 0.306 0.231 0.388
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Table 3: Full results of the long-term forecasting with exogenous variables.

Models
ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.277 0.374 0.282 0.380 0.299 0.480 0.339 0.412 0.265 0.364 0.405 0.459 0.390 0.407 0.432 0.502 0.334 0.412 0.315 0.396 0.324 0.404
192 0.313 0.389 0.319 0.399 0.321 0.461 0.361 0.425 0.313 0.390 0.383 0.442 0.375 0.433 0.492 0.492 0.361 0.420 0.324 0.378 0.342 0.399
336 0.357 0.413 0.362 0.429 0.379 0.481 0.393 0.440 0.380 0.431 0.418 0.464 0.468 0.471 0.508 0.548 0.393 0.433 0.381 0.403 0.387 0.418
720 0.372 0.439 0.380 0.450 0.461 0.523 0.482 0.507 0.418 0.463 0.471 0.507 0.477 0.489 0.547 0.569 0.481 0.503 0.439 0.474 0.460 0.489EC

L

AVG 0.330 0.404 0.336 0.415 0.365 0.486 0.394 0.446 0.344 0.412 0.419 0.468 0.428 0.450 0.495 0.528 0.392 0.442 0.365 0.413 0.378 0.427

96 0.001 0.023 0.001 0.026 0.001 0.025 0.001 0.027 0.004 0.048 0.001 0.025 0.006 0.028 0.007 0.066 0.003 0.043 0.001 0.025 0.002 0.034
192 0.001 0.026 0.002 0.030 0.002 0.028 0.002 0.030 0.005 0.053 0.001 0.028 0.007 0.030 0.007 0.061 0.004 0.056 0.003 0.028 0.004 0.042
336 0.001 0.027 0.002 0.031 0.002 0.029 0.002 0.032 0.004 0.051 0.002 0.029 0.008 0.030 0.007 0.062 0.005 0.057 0.004 0.046 0.005 0.052
720 0.002 0.031 0.002 0.035 0.002 0.033 0.002 0.036 0.007 0.067 0.002 0.033 0.008 0.033 0.005 0.053 0.008 0.066 0.005 0.044 0.007 0.055W

ea
th
er

AVG 0.001 0.027 0.002 0.031 0.002 0.029 0.002 0.031 0.005 0.055 0.002 0.029 0.007 0.030 0.007 0.061 0.005 0.056 0.003 0.036 0.004 0.046

96 0.052 0.176 0.055 0.180 0.057 0.185 0.055 0.178 0.133 0.297 0.059 0.184 0.343 0.204 0.119 0.263 0.085 0.170 0.088 0.271 0.087 0.270
192 0.067 0.202 0.073 0.206 0.074 0.214 0.072 0.206 0.232 0.409 0.078 0.214 0.393 0.238 0.132 0.286 0.103 0.302 0.094 0.256 0.099 0.279
336 0.080 0.223 0.085 0.229 0.084 0.240 0.087 0.231 0.244 0.423 0.093 0.240 0.406 0.261 0.126 0.278 0.128 0.326 0.106 0.268 0.117 0.297
720 0.078 0.220 0.082 0.227 0.084 0.256 0.098 0.247 0.530 0.660 0.104 0.255 0.604 0.321 0.143 0.299 0.189 0.423 0.126 0.314 0.158 0.368ET

Th
1

AVG 0.069 0.205 0.074 0.211 0.075 0.224 0.078 0.216 0.285 0.447 0.084 0.223 0.437 0.256 0.130 0.282 0.126 0.305 0.104 0.277 0.115 0.304

96 0.123 0.272 0.130 0.278 0.137 0.286 0.136 0.285 0.261 0.413 0.136 0.285 0.763 0.333 0.184 0.335 0.198 0.379 0.166 0.322 0.182 0.350
192 0.173 0.326 0.179 0.330 0.187 0.339 0.185 0.337 1.240 1.028 0.187 0.339 1.080 0.375 0.214 0.364 0.273 0.428 0.204 0.383 0.239 0.405
336 0.196 0.354 0.209 0.366 0.221 0.384 0.217 0.373 0.974 0.874 0.231 0.384 1.159 0.443 0.269 0.405 0.314 0.464 0.256 0.409 0.285 0.437
720 0.207 0.356 0.215 0.372 0.253 0.417 0.229 0.384 1.633 1.177 0.267 0.417 1.615 0.471 0.303 0.440 0.323 0.501 0.277 0.437 0.300 0.469ET

Th
2

AVG 0.175 0.327 0.183 0.337 0.200 0.357 0.192 0.345 1.027 0.873 0.205 0.356 1.154 0.406 0.243 0.386 0.277 0.443 0.226 0.388 0.251 0.415

96 0.026 0.121 0.027 0.123 0.029 0.129 0.029 0.126 0.171 0.355 0.030 0.129 0.050 0.138 0.097 0.251 0.055 0.193 0.044 0.167 0.050 0.180
192 0.040 0.152 0.042 0.156 0.045 0.160 0.045 0.160 0.293 0.474 0.044 0.160 0.083 0.182 0.062 0.197 0.084 0.258 0.064 0.197 0.074 0.227
336 0.054 0.177 0.056 0.181 0.060 0.184 0.058 0.184 0.330 0.503 0.057 0.184 0.110 0.222 0.083 0.230 0.129 0.286 0.094 0.267 0.111 0.277
720 0.075 0.209 0.078 0.213 0.079 0.217 0.082 0.221 0.852 0.861 0.080 0.217 0.152 0.275 0.100 0.245 0.158 0.317 0.119 0.302 0.139 0.309ET

Tm
1

AVG 0.049 0.165 0.051 0.168 0.053 0.173 0.054 0.173 0.412 0.548 0.053 0.173 0.099 0.204 0.086 0.231 0.106 0.264 0.080 0.233 0.093 0.248

96 0.058 0.177 0.062 0.180 0.071 0.199 0.068 0.188 0.149 0.309 0.073 0.199 0.253 0.229 0.133 0.282 0.116 0.285 0.095 0.220 0.105 0.252
192 0.092 0.225 0.095 0.229 0.108 0.241 0.100 0.236 0.686 0.740 0.104 0.241 0.592 0.302 0.143 0.294 0.160 0.315 0.123 0.318 0.141 0.317
336 0.123 0.266 0.127 0.270 0.140 0.276 0.128 0.271 0.546 0.602 0.131 0.276 0.777 0.362 0.156 0.308 0.225 0.369 0.193 0.331 0.209 0.350
720 0.177 0.327 0.180 0.330 0.188 0.329 0.185 0.335 2.524 1.424 0.180 0.329 1.117 0.441 0.184 0.333 0.284 0.428 0.237 0.374 0.260 0.401ET

Tm
2

AVG 0.113 0.249 0.116 0.252 0.127 0.261 0.120 0.258 0.976 0.769 0.122 0.261 0.685 0.334 0.154 0.304 0.196 0.349 0.162 0.311 0.179 0.330

96 0.143 0.215 0.145 0.219 0.156 0.431 0.176 0.253 0.154 0.230 0.350 0.430 0.371 0.323 0.290 0.290 0.169 0.250 0.164 0.243 0.167 0.246
192 0.142 0.214 0.146 0.220 0.156 0.404 0.162 0.243 0.180 0.256 0.316 0.405 0.450 0.307 0.291 0.291 0.159 0.241 0.182 0.252 0.170 0.246
336 0.139 0.212 0.145 0.224 0.154 0.399 0.164 0.248 0.193 0.289 0.305 0.398 0.447 0.309 0.322 0.416 0.156 0.242 0.197 0.287 0.181 0.264
720 0.157 0.239 0.165 0.246 0.177 0.415 0.189 0.267 0.199 0.295 0.305 0.398 0.521 0.507 0.307 0.414 0.182 0.257 0.201 0.302 0.192 0.285Tr

affi
c

AVG 0.145 0.220 0.150 0.227 0.161 0.412 0.173 0.253 0.182 0.268 0.319 0.408 0.447 0.362 0.303 0.353 0.166 0.247 0.186 0.271 0.177 0.260

1𝑠𝑡 counts 51 0 0 0 2 0 0 0 1 2 0

2𝑛𝑑 counts 5 42 7 1 2 2 0 0 0 0 0
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Table 4: Full results of the zero-shot forecasting with exogenous variables.

Methods
ExoLLM

(Ours)

TimeXer

[2024]

ITrans.

[2024]

PatchTST

[2023]

Cross.

[2023]

TiDE

[2023]

SCINet

[2022]

Auto.

2021

GPT4TS

[2023]

TimeLLM

[2024]

LLM4TS

[2023]

Source Target Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.146 0.299 0.162 0.333 0.160 0.326 0.239 0.310 0.373 0.524 0.248 0.478 0.963 0.360 0.334 0.464 0.154 0.314 0.166 0.324 0.243 0.476

192 0.197 0.351 0.226 0.376 0.218 0.372 0.303 0.525 0.683 0.711 0.277 0.445 1.157 0.414 0.389 0.497 0.212 0.358 0.230 0.372 0.290 0.485

336 0.208 0.369 0.232 0.398 0.218 0.397 0.332 0.540 0.634 0.700 0.276 0.443 1.056 0.432 0.328 0.460 0.226 0.382 0.242 0.397 0.304 0.492

720 0.266 0.417 0.294 0.452 0.286 0.485 0.646 0.801 1.807 1.251 0.430 0.595 2.060 0.608 0.488 0.567 0.334 0.468 0.355 0.483 0.538 0.698ET
Th

1

ET
Th

2

Avg. 0.204 0.359 0.228 0.390 0.221 0.395 0.380 0.544 0.875 0.796 0.308 0.490 1.309 0.453 0.384 0.497 0.232 0.381 0.248 0.394 0.344 0.538

96 0.059 0.186 0.066 0.200 0.066 0.196 0.096 0.259 0.126 0.283 0.080 0.220 0.368 0.228 0.089 0.229 0.066 0.195 0.066 0.195 0.088 0.240

192 0.077 0.215 0.084 0.229 0.083 0.224 0.122 0.282 0.552 0.678 0.091 0.253 0.481 0.247 0.095 0.240 0.082 0.222 0.083 0.224 0.106 0.267

336 0.079 0.219 0.088 0.238 0.089 0.238 0.126 0.287 0.393 0.541 0.103 0.253 0.467 0.274 0.108 0.251 0.087 0.231 0.093 0.238 0.115 0.270

720 0.082 0.226 0.089 0.248 0.100 0.265 0.128 0.318 0.647 0.747 0.110 0.277 0.640 0.299 0.120 0.279 0.091 0.244 0.106 0.265 0.119 0.298ET
Th

2

ET
Th

1

Avg. 0.074 0.212 0.082 0.228 0.085 0.230 0.118 0.287 0.429 0.562 0.096 0.251 0.489 0.262 0.103 0.250 0.082 0.223 0.087 0.230 0.107 0.269

96 0.110 0.250 0.120 0.267 0.123 0.267 0.234 0.399 0.723 0.733 0.186 0.345 0.212 0.285 0.410 0.519 0.123 0.260 0.127 0.267 0.210 0.372

192 0.145 0.292 0.160 0.315 0.163 0.307 0.304 0.495 1.062 0.911 0.231 0.378 0.301 0.350 0.225 0.378 0.163 0.307 0.160 0.307 0.267 0.437

336 0.166 0.318 0.181 0.341 0.184 0.331 0.395 0.515 1.014 0.904 0.288 0.480 0.338 0.399 0.255 0.413 0.178 0.331 0.175 0.331 0.342 0.497

720 0.228 0.377 0.249 0.403 0.240 0.391 0.481 0.572 2.590 1.553 0.363 0.545 0.462 0.496 0.304 0.442 0.249 0.399 0.243 0.391 0.422 0.558ET
Tm

1

ET
Tm

2

Avg. 0.162 0.309 0.177 0.332 0.178 0.324 0.353 0.495 1.348 1.025 0.267 0.437 0.328 0.382 0.299 0.438 0.178 0.324 0.176 0.324 0.310 0.466

96 0.032 0.134 0.036 0.143 0.039 0.151 0.064 0.216 0.082 0.234 0.052 0.167 0.139 0.173 0.073 0.213 0.037 0.142 0.040 0.151 0.058 0.191

192 0.045 0.163 0.049 0.174 0.053 0.175 0.078 0.228 0.336 0.536 0.060 0.230 0.290 0.219 0.070 0.213 0.049 0.171 0.051 0.175 0.069 0.229

336 0.059 0.188 0.064 0.200 0.067 0.195 0.107 0.261 0.261 0.425 0.092 0.234 0.371 0.255 0.074 0.217 0.061 0.191 0.063 0.195 0.100 0.247

720 0.080 0.220 0.086 0.233 0.085 0.221 0.128 0.287 1.144 0.956 0.107 0.251 0.506 0.296 0.083 0.224 0.084 0.225 0.082 0.221 0.118 0.269ET
Tm

2

ET
Tm

1

Avg. 0.054 0.176 0.058 0.187 0.061 0.185 0.094 0.248 0.455 0.538 0.078 0.220 0.326 0.236 0.075 0.217 0.058 0.182 0.059 0.185 0.086 0.234
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