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Abstract
Models trained on crowdsourced labels may not001
reflect broader population views, because those002
who work as annotators do not represent the003
population. We propose Population-Aligned In-004
stance Replication (PAIR), a method to address005
bias caused non non-representative annotator006
pools. Using a simulation study of offensive007
language and hate speech, we create two types008
of annotators with different labeling tendencies009
and generate datasets with varying proportions010
of the types. Models trained on unbalanced an-011
notator pools show poor calibration compared012
to those trained on representative data. By du-013
plicating labels from underrepresented anno-014
tator groups to match population proportions,015
PAIR reduces bias without collecting additional016
annotations. These results suggest that statis-017
tical techniques from survey research can im-018
prove model performance. We conclude with019
practical recommendations for improving the020
representativity of training data and model per-021
formance.022

1 Introduction and Inspiration023

When a hate speech detection model flags harmless024

expressions as toxic, or a content moderation sys-025

tem fails to identify genuinely harmful content, the026

root cause often lies not in the model architecture,027

but in who labeled the training data. While NLP028

models aim to serve broad populations, the human029

judgments used to train these systems typically030

come from a non-representative pool of annotators031

– crowdworkers and convenience samples whose de-032

mographics, cultural contexts, and worldviews may033

differ from the communities the models ultimately034

impact (Sorensen et al., 2024; Fleisig et al., 2024).035

These non-representative annotator pools can have036

real consequences, because annotator characteris-037

tics like age, education level, and cultural back-038

ground impact how content is labeled (Sap et al.,039

2022; Fleisig et al., 2023; Kirk et al., 2024). Mod-040

els trained on non-representative data can perpetu-041

Collecting surveys Weighting towards 
target population

Representative 
opinions analysis 
on adjusted data

Collecting annotations Weighting towards 
target population

Model training on 
adjusted data: 
Better performance?

--------------------------------------------------------------------------

Figure 1: Top: Adjusting survey data to match pop-
ulation produces high quality results. Bottom: Can
a similar adjustment in data annotations also improve
model performance?

ate the biases and blind spots of their training data 042

(Smart et al., 2024; Berinsky et al., 2012; Ouyang 043

et al., 2022; Mehrabi et al., 2021; Rolf et al., 2021; 044

Favier et al., 2023; Hebert-Johnson et al., 2018; 045

Hüllermeier and Waegeman, 2021). 046

Fortunately, survey researchers have developed 047

robust statistical techniques to produce population- 048

level estimates from non-representative samples 049

(Bethlehem et al., 2011). The top panel of Figure 1 050

shows a simple survey workflow: collecting survey 051

data, creating statistical weights to match the sam- 052

ple to the population, and estimating population 053

parameters. We propose adapting this approach 054

to the machine learning context, enabling models 055

to better align with target populations even when 056

trained on non-representative annotator pools (bot- 057

tom panel). 058

To test this approach, we conduct a rigorous 059

simulation study following established practices in 060

statistical research (Burton et al., 2006; Valliant, 061

2019; Morris et al., 2019). Using controlled experi- 062

ments, simulated populations, and multiple training 063

datasets varying in annotator composition, we in- 064

vestigate two questions: 065

• RQ1: How do non-representative annotator 066
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pools impact model calibration and accuracy?067

• RQ2: Can survey techniques effectively mitigate068

these annotator pool effects?069

Our results demonstrate that models trained on070

nonrepresentative annotator pools perform poorly.071

However, simple adjustment methods can improve072

performance without collecting additional data.073

These findings suggest that insights from survey074

methodology can help AI systems better represent075

the populations they serve.076

2 Related Work077

Several strands of related work inform our ap-078

proach to identifying and mitigating bias due to079

the use of non-representative annotators:080

Annotator Impact on Data and Models. An-081

notator characteristics and attitudes significantly082

influence label quality, particularly for subjective083

tasks like toxicity detection (Giorgi et al., 2024;084

Prabhakaran et al., 2021; Fleisig et al., 2023; Sap085

et al., 2022). For example, annotators’ political086

views and racial attitudes affect their toxicity judg-087

ments (Sap et al., 2022). Models trained on non-088

representative annotator pools inherit these biases089

and generalize poorly (Smart et al., 2024; Berinsky090

et al., 2012; Ouyang et al., 2022; Mehrabi et al.,091

2021; Rolf et al., 2021; Favier et al., 2023).092

Annotator Demographics. Several researchers093

advocate collecting annotator demographics to as-094

sess representation and identify biases (Bender and095

Friedman, 2018; Prabhakaran et al., 2021).1 How-096

ever, collecting and releasing these data can raise097

privacy concerns (Fleisig et al., 2023).098

Debiasing & Data Augmentation Methods.099

Prior work has proposed various approaches to100

reduce bias in training data features and labels101

(Calders et al., 2009; Kamiran and Calders, 2012;102

Sharma et al., 2020). Most similar to our work103

is the resampling and reweighting approaches of104

Calders et al. (2009) and Kamiran and Calders105

(2012), and the oversampling of minority class106

cases of Ling and Li (1998). PAIR adapts these107

methods to balance annotator characteristics rather108

than class labels or sensitive observation-level fea-109

tures. PAIR retains the simplicity and interpretabil-110

ity of earlier resampling methods while extending111

them to a “Learning with Disagreement” (Uma112

et al., 2021; Leonardelli et al., 2023) setting with113

1In our context, these characteristics are used only to an-
alyze bias; because they are not available for unlabeled text,
they are not features that the model can use.

multiple annotations per observation, by replicating 114

labels from underrepresented annotator groups. 115

3 Annotation Simulation and Model 116

Training 117

To address our research questions, we imagine a 118

population made up of two types of people: those 119

more likely to perceive offensive language and hate 120

speech and those less likely. We create three sets 121

of simulated annotations which differ in the mix 122

of the annotator types. We then create a fourth 123

data set, using the PAIR algorithm, to attempt to 124

fix the imbalance in the annotators. We fine-tune 125

RoBERTa models on the four data sets and evaluate 126

the effect of annotator characteristics on model 127

performance (RQ1) and the ability of the PAIR 128

algorithm to improve performance (RQ2). 129

3.1 Simulating Annotations 130

We use a dataset of 3,000 English-language tweets, 131

each with 15 annotations of both offensive lan- 132

guage (OL: yes/no) and hate speech (HS: yes/no) 133

(Kern et al., 2023).2 We chose this dataset be- 134

cause the high number of annotations of each tweet 135

gives us a diverse set of labels to work with. We 136

randomly select (without replacement) 12 labels 137

(of both OL and HS) of each tweet in the origi- 138

nal dataset.3 Let pi,OL be the proportion of the 12 139

annotators who labeled tweet i as OL and pi,HS 140

defined similarly. Table 1 shows the distribution 141

of these proportions across the 3,000 tweets. The 142

HS labels are unevenly distributed, whereas the 143

OL labels are relatively balanced. Because this 144

work is a preliminary investigation of the PAIR ap- 145

proach, and balanced labels provide a clearer view 146

of PAIR’s abilities, the main body of the paper fo- 147

cuses on results with the OL labels; the HS results 148

in Appendix §C. 149

Variable 25th pctile. Median Mean 75th pctile.

pi,OL 0.167 0.667 0.564 0.917
pi,HS 0.083 0.167 0.301 0.50

Table 1: Distribution of pi,OL and pi,HS in original data

We imagine a population made up of equal 150

shares of two types of people. Type A people 151

2https://huggingface.co/datasets/soda-lmu/
tweet-annotation-sensitivity-2

3As shown in Table 2, we can more carefully control the
construction of our data sets when the number of labels per
tweet is divisible by four.
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are less likely to say a tweet contains OL. Type B152

people are more likely:153

pAi,OL = max(pi,OL − β, 0) (1)154

pBi,OL = min(pi,OL + β, 1) (2)155

Here β captures the magnitude of the bias. We156

vary β from [0.05, 0.3] by 0.05, corresponding to157

an increase or decrease in the probability to judge158

a tweet as OL by five to 30 percentage points. This159

range is large on the probability scale and covers160

most reasonable situations. With these seven val-161

ues of β, we create seven vectors of probabilities162

(pAi,OL, p
B
i,OL) for each tweet.163

We then create four datasets, each with 3,000164

tweets (Table 2), for each value of β. The Repre-165

sentative Dataset contains OL labels from six A166

annotators (drawn from Bernoulli(pAi,OL)) and six167

B annotators (drawn from Bernoulli(pBi,OL)). Be-168

cause the proportion of A and B annotators in this169

dataset matches the population, the labels in this170

dataset are our gold standard.171

Dataset Labels per tweet A labels B labels

Representative 12 6 6
Non-representative 1 9 6 3
Non-representative 2 12 9 3
Adjusted 12 6 3 + 3*

* 3 B labels duplicated

Table 2: Four training datasets for each bias value (β)

We then create two unbalanced datasets. Non-172

representative 1 randomly deletes three B labels173

for each tweet from the Representative Dataset.174

Non-representative 2 adds three additional A la-175

bels, drawn from pAi , to the Non-representative 1176

dataset. The Non-representative 2 Dataset is more177

unbalanced than Non-representative 1, but contains178

the same number of annotations as the Representa-179

tive dataset.180

Finally, we use the PAIR algorithm to create181

the Adjusted Dataset. It is the same as the Non-182

representative 1 dataset, but the three B annotations183

are duplicated. This duplication is an easy way to184

adjust the unbalanced training dataset to reflect185

the population. Appendix §A provides a general186

version of the PAIR algorithm which can handle im-187

balances across multiple annotator characteristics.188

Figure 2 shows the percentage of tweets labeled189

OL in the four datasets for each value of β.190

3.2 Model Training and Evaluation191

Training and Test Setup. We train models on192

each dataset. We divide each dataset, at the tweet193
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Figure 2: Percentage of tweets annotated as OL, by
dataset and bias (β)

level, into training (2000 tweets), development 194

(500), and test (500) sets. Each tweet appears 12 195

times in the Representative, Non-representative 2, 196

and Adjusted data sets and nine times in the Non- 197

representative 1 set. 198

Model Selection and Training. We used 199

RoBERTa base (Liu et al., 2019) as our text classi- 200

fier, training for five epochs on each dataset, with 201

development set optimization. To ensure reliable 202

results, we trained five versions with different ran- 203

dom seeds and averaged their performance. Ap- 204

pendix §B contains details on model training. 205

Performance Metrics. We evaluate models us- 206

ing both calibration and accuracy metrics on 207

the test set. While accuracy metrics directly mea- 208

sure classification performance, calibration metrics 209

provide crucial insights into model reliability by as- 210

sessing probability estimate quality – particularly 211

important for high-stakes applications requiring 212

trustworthy confidence measures. 213

For calibration, we report Absolute Calibration 214

Bias (ACB), which measures how well model pre- 215

dicted probabilities match true frequencies in the 216

Representative dataset (lower is better). ACBOL = 217
1
n

∑n
i=1

∣∣pi,OL − predsi,OL

∣∣. For accuracy, we re- 218

port the F1 score. 219

4 Results 220

Calibration. Figure 3(1) compares the ACB in 221

the test set for models trained on the simulated 222

datasets. The dark lines show average ACB across 223

the five training runs and the shading shows the 224

standard deviation. 225

The ACB for the models trained on the Adjusted 226

dataset closely tracks that for the Representative 227

(gold standard) data set and does not increase with 228

β. ACB for the models trained on the two unbal- 229

anced datasets is greater and grows with β. These 230
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results demonstrate the effectiveness of our adjust-231

ment method. Duplicating the labels from the un-232

derrepresented annotator type to match population233

proportions improves model calibration.234
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Figure 3: Metrics for OL models, by dataset and bias
(β)

Accuracy. Figure 3(2) compares the models’ F1235

scores. In contrast to Figure 3(1), we do not see236

strong differences between the models trained on237

the different datasets. For all datasets, model per-238

formance declines with β: as the amount of bias in239

the labels increases, the models have a harder time240

predicting the binary OL label.241

Because the F1 metric focuses on binary pre-242

dictions, it is less sensitive to training biases than243

calibration metrics like ACB, which more explic-244

itly capture biases through prediction scores. These245

findings suggest that calibration metrics provide a246

clearer view of the impact of annotators on mod-247

els: binary classification metrics can obscure such248

effects. In decision-making, miscalibrated pre-249

dictions can have harmful consequences when,250

for example, hateful content remains undetected251

(Van Calster et al., 2019).252

Ablation Study 1: Hate Speech labels. Ap-253

pendix §C gives the ACB and F1 results for the254

HS labels. The PAIR approach has limited effec-255

tiveness when label distributions are highly skewed.256

This failure is likely due to the rarity of hate speech257

labels in the dataset (only 16.7% positive labels)258

combined with our simulation setup, which further259

reduces positive labels in the unbalanced datasets. 260

PAIR may need modifications, such as stratified 261

sampling or adaptive replication, when working 262

with highly imbalanced datasets. 263

Ablation Study 2: Difficult Tweets. A represen- 264

tative pool of annotators may be more important 265

for instances that are difficult or about which peo- 266

ple disagree. Filtering our tweets in this way also 267

removes cases where floor and ceiling effects could 268

mask the impact of annotator characteristics. To 269

test PAIR performance on difficult tweets, we reran 270

the models on tweets where 0.4 < pi,HS < 0.6, 271

0.4 < pi,OL < 0.6. Performance on OL is still 272

good, and performance on HS is improved (Ap- 273

pendix §D). 274

5 Discussion & Recommendations 275

Our results show that (RQ1) OL prediction mod- 276

els perform less well when trained on data from 277

non-representative annotator pools, and (RQ2) sim- 278

ple statistical adjustments can improve model cal- 279

ibration without collecting additional annotations. 280

These findings establish a promising bridge be- 281

tween survey statistics and machine learning - of- 282

fering a practical approach to make AI systems 283

more representative of and responsive to the popu- 284

lations they serve, particularly for tasks involving 285

subjective human judgments. 286

We recommend these four steps to reduce bias 287

due to non-representative annotator pools: 288

1) Use social science research to identify the an- 289

notator characteristics that influence the propen- 290

sity to engage in annotation and the annotations 291

provided (Eckman et al., 2024). 292

2) Collect these characteristics from annotators 293

and gathering corresponding population-level 294

data from national censuses or high-quality sur- 295

veys.4 296

3) Calculate weights that match the annotators to 297

the population on those characteristics (Bethle- 298

hem et al., 2011; Valliant et al., 2013). 299

4) Use these weights in model training. Our sim- 300

ple duplication approach showed promise, fu- 301

ture work should test more sophisticated weight- 302

ing approaches. 303

4Collection and release of annotator characteristics or
weights derived from them may raise confidentiality con-
cerns. The survey literature contains relevant approaches (see
Karr, 2016, for a review). Collecting annotator characteristics
may also require involvement of Institutional Review Boards
or other participant protection organizations (Kaushik et al.,
2024).
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Limitations304

Stylized Biases and Simulated Data. Our sim-305

ulation makes strong assumptions about annotator306

behavior, particularly in modeling consistent biases307

across annotator types. Real-world annotator bi-308

ases may be more nuanced or context-dependent.309

Future work could incorporate more realistic biases310

and refine the proposed simulations and statistical311

techniques.312

Sampling Variability. We have created only one313

version the four datasets for each label type and314

value of β, each of which contains random draws315

from the Bernoulli distribution. A more traditional316

statistical approach would create multiple versions317

of the datasets and train models on each one, to318

average over the sampling variability. We have319

not done that in this preliminary study because of320

the high cost and time needed to fine tune many321

RoBERTa models. As discussed, we used five322

seeds in model training.323

Need for Population Benchmarks and Annota-324

tor Characteristics. PAIR requires high quality325

benchmark information about the relevant popula-326

tion. These benchmarks might come from national327

statistical offices or national surveys. Annotators328

must provide accurate data on the same character-329

istics available in the benchmark data. In addition,330

theory from survey science demonstrates that bias331

will be reduced only when the characteristics used332

in weighting correlate with the annotations (Eck-333

man et al., 2024). In our simulation, differences334

in annotations were driven solely by group mem-335

bership (A, B). In the real world, it is challeng-336

ing to know what characteristics impact annotation337

behavior and to find good benchmarks for those338

characteristics.339

Generalization Beyond Task Types. The study340

focuses only on binary classification tasks. Many341

real-world annotation tasks involve multiple classes342

or labels, which may show different bias patterns.343

Additional research is needed to extend these meth-344

ods to more complex classification scenarios.345

Evaluation Metrics. While we measured calibra-346

tion and accuracy, we did not examine other impor-347

tant metrics such as fairness across subgroups or348

robustness to adversarial examples. Future work349

on training data adjustment should assess a broader350

range of performance measures.351

Ethical Considerations 352

In this simulation study, we experiment on a pub- 353

licly available dataset (Kern et al., 2023), which 354

contains offensive and hateful tweets. We do not 355

support the views expressed in the tweets. The sim- 356

ulation study itself does not collect any new data 357

or raise any ethical considerations. 358
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A PAIR Algorithm Implementation563

Details564

The adjustment we use to make the annotator pool565

more representative of the target population is a566

form of pseudo-population generation (Quatem-567

ber, 2015). We create the pseudo-population by568

first constructing post-stratification weights, per- 569

forming weight normalization to ensure the sum of 570

the weights equals the size of the target population, 571

and then duplicating each observation proportion- 572

ally to its weight via deterministic replication. 573

Post-stratification is a method of statistical ad- 574

justment that makes a selected sample more closely 575

resemble a target population (Bethlehem et al., 576

2011; Valliant et al., 2013). We form strata (groups) 577

of annotators. For example, we might form 6 strata 578

from three categories of region and two categories 579

of age. Post-stratification requires population-level 580

totals or proportions for each stratum and corre- 581

sponding case-level observations. The weight for 582

each unit i in stratum s is: 583

wi =
Ps

Ss
(3) 584

where Ps is the true population proportion (or 585

total) for stratum s and Ss is the sample proportion 586

(or total) for stratum s. In our case, the strata of 587

interest was a single variable (annotator Types A & 588

B). However, post-stratification can involve multi- 589

ple variables if their joint distribution is known at 590

the population level. 591

Although the post-stratified weights will pre- 592

serve the ratios of the strata in the target population, 593

the weighted totals themselves may not match those 594

in the target population. Weight normalization 595

can be used to address this by updating the survey 596

weights so that they sum to a desired total. The 597

normalized weight for unit i can be calculated by: 598

wnormalized
i = winitial

i · T∑n
i=1w

initial
i

(4) 599

where T is the target total. Since we want the 600

Adjusted dataset to match the size of our gold stan- 601

dard Representative dataset, the target total for the 602

simulation was 12 labels per tweet. 603

Lastly, to construct a pseudo-population from 604

our weighted data, we perform deterministic repli- 605

cation by replicating each unit na times where: 606

ni = round(wnormalized
i ) (5) 607

Rounding the normalized weights ensures that na 608

are integers and prevents fractional replicates. 609

In this initial work, we prioritized this approach 610

for its simple interpretation and reproducibility. 611

However, researchers may prefer other approaches, 612

such as replication via resampling, if they are inter- 613

ested in how the adjustment varies across samples, 614
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or incorporating weights directly into the loss func-615

tion if they want to avoid the normalization and616

rounding steps.617

In our simulation, after post-stratification and618

weight normalization, each Type A label in the619

Non-representative 1 dataset receives a weight of 1620

and each Type B label receives a weight of 2. This621

resulted in an Adjusted dataset where each of the622

Type A labels stays the same and each of the Type623

B labels is duplicated once.624

B Model Training Details625

Our implementation of RoBERTa models was626

based on the libraries pytorch (Paszke et al., 2019)627

and transformers (Wolf et al., 2020). During628

training, we used the same hyperparameter settings629

of the respective models for our five training con-630

ditions to keep these variables consistent for com-631

parison purposes. We report the hyperparameter632

settings of the models in Table 3. To avoid random633

effects on training, we trained each model variation634

with five random seeds {10, 42, 512, 1010, 3344}635

and took the average across the models. All experi-636

ments were conducted on an NVIDIA® A100 80637

GB RAM GPU.638

Hyperparameter Value

encoder roberta-base

epochs_trained 5

learning_rate 3e−5

batch_size 32

warmup_steps 500

optimizer AdamW

max_length 128

Table 3: Hyperparameter settings of RoBERTa models

C Ablation Study 1: HS Results639

We show the results on HS labels in this section.640

We construct the HS probabilities for the A and B641

annotators are defined in the same way as the OL642

probabilities: pAi,HS = max(pi,HS−β, 0), pBi,HS =643

min(pi,HS + β, 1). We also construct the four data644

sets (Representative, Non-representative 1, Non-645

representative 2, Adjusted) in the same way we did646

for the OL case.647

Label Distribution during Simulations. Figure648

4 shows the percentage of tweets labeled HS in the649

four datasets for each value of β. As expected, the650

percentage in the Adjusted dataset is similar to that651

in the Representative dataset for all values of β,652

and the two unbalanced datasets have lower rates 653

of HS, because they overrepresent the A annotators, 654

who are less likely to label HS. 655
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Figure 4: Percentage of tweets annotated as HS, by
dataset and bias (β)

HS is rare in our dataset (16.7% of HS labels are 656

yes, Table 1). And, our simulation strategy overrep- 657

resents A annotators in the two Non-representative 658

data sets, who are less likely to perceive HS (Ta- 659

ble 2). For these reasons, a higher proportion of 660

pAi,HS are 0 while the pBi,HS probabilities continue 661

to increase. This issue leads the proportion of “yes” 662

labels in the Representative and Adjusted datasets 663

to increase with β in the HS data set, which have 664

more B labels than the unadjusted datasets. 665

Results. Figure 5 (1) contains the ACB results 666

and Figure 5 (2) the F1 score results for the HS 667

datasets. The PAIR approach does not improve cal- 668

ibration or accuracy: the adjusted model performs 669

similarly to the Non-representative models. This 670

effect is likely due to the combination of label rar- 671

ity and our simulation design. With few positive 672

labels to begin with, the impact of varying anno- 673

tator characteristics through our β parameter may 674

be overwhelmed by the baseline scarcity of hate 675

speech annotations. Ablation Study 2 (Appendix 676

§D) addresses this point. 677

D Ablation Study 2: Difficult Tweets 678

Our simulations assumed that all tweets are im- 679

pacted the same way (Eq. (2)), which is an oversim- 680

plification. More realistically, annotator charac- 681

teristics likely have more impact for ambiguous 682

tweets. For this reason, we repeat model train- 683

ing and recompute metrics for those tweets where 684

0.4 ≤ pi ≤ 0.6. This approach not only focuses on 685

those tweets where annotator characteristics likely 686

play a larger role, it also eliminates the floor and 687

ceiling effects in Eq. 2). The filtered datasets con- 688

tain 267 (OL) and 360 (HS) tweets. 689
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Figure 5: Metrics for HS models, by dataset and bias
(β)

Figures 6 and 7 show the results for two met-690

rics (ACB, F1) for filtered OL and HS labels. In691

Figure 6(1): the Representative and Adjusted mod-692

els have similar ACB and are lower than the Non-693

representative models. The F1 scores do not show694

differences between the models. These results are695

similar to those on the full set of tweets (Figure 3).696

In the two HS figures (7), we see signs that the Rep-697

resentative and Adjusted models perform similarly,698

and better than the two Non-representative models,699

on both metrics. These results are more promising700

than those on the full set of tweets (Figure 5).701
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Figure 6: Metrics for OL models for filtered tweets
(0.4 ≤ pi,OL ≤ 0.6), by dataset and bias (β)
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