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Abstract

Semantic segmentation suffers from significant performance degradation when the
trained network is applied to a different domain. To address this issue, unsupervised
domain adaptation (UDA) has been extensively studied. Despite the effectiveness
of selftraining techniques in UDA, they still overlook the explicit modeling of
domain-shared feature extraction. In this paper, we propose DiDA, an unsupervised
domain bridging approach for semantic segmentation. DiDA consists of two key
modules: (1) Degradation-based Intermediate Domain Construction, which creates
continuous intermediate domains through simple image degradation operations
to encourage learning domain-invariant features as domain differences gradually
diminish; (2) Semantic Shift Compensation, which leverages a diffusion encoder
to disentangle and compensate for semantic shift information with degraded time-
steps, preserving discriminative representations in the intermediate domains. As a
plug-and-play solution, DiDA supports various degradation operations and seam-
lessly integrates with existing UDA methods. Extensive experiments on multiple
domain adaptive semantic segmentation benchmarks demonstrate that DiDA con-
sistently achieves significant performance improvements across all settings. Code
is available at https://github.com/Woof6/DiDA.

1 Introduction

Semantic segmentation, a fine-grained pixel-wise classification task, assigns semantic class labels
to each pixel, facilitating high-level image analysis. Despite the remarkable progress made in this
field [56, 6, 18, 17], networks trained within source domain often encounter significant performance
degradation when applied to a target dataset due to domain discrepancies. Mitigating this issue to
enhance the generalization capability of networks remains a formidable challenge. To address this
problem, extensive research has resorted to unsupervised domain adaptation (UDA), which aims to
transfer knowledge from a labeled source domain to an unlabeled target domain.

In previous works, to fully exploit the abundance of unlabeled target domain data, self-training
techniques have been naturally incorporated into UDA tasks and have emerged as a mainstream
paradigm. The core idea of this paradigm lies in constructing a teacher network via temporal
ensembling mechanisms, which generates pseudo-labels by predicting the target domain images.
These pseudo-labels are then used to progressively guide the student network’s learning on the target
domain. Despite achieving impressive results, these methods still overlook the explicit modeling
of domain-shared feature extraction, which remains a central challenge in UDA. To illustrate this,
we refer to the classic notion of causal representation learning [36, 74]: any observed feature can
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Figure 1: Conceptual illustration of the diffusion forward process. Fine-grained, domain-specific
attributes such as texture are lost with less noise added (i.e., early time-steps), while coarse-grained,
domain-invariant ones such as shape are lost by adding more noise (i.e., late time-steps).

be generated as x = Φ(c, e), where Φ is a generator, c denotes the causal feature that determines
the domain-invariant class identity (e.g., shape), and e represents the environment-specific feature
(e.g., texture). Since environmental features are domain-specific, the domain shift eS ̸= eT leads to
xS ̸= xT , thereby hindering the learning of a truly domain-invariant class representation.

In this work, we explore a novel perspective for unsupervised domain bridging and demonstrate that
simple image degradation operations can serve as effective priors. Our key idea is motivated by
the theoretical insight (Sec.3.2) of the Denoising Diffusion Probabilistic Model (DM) [37, 76]. As
shown in Fig. 1, the forward diffusion process incrementally adds Gaussian noise to input samples
at each time step. This process gradually removes domain-specific attributes, effectively collapsing
samples from different domains into a shared representation space. As the time step increases, this
diffusion process enlarges the overlapping area of the probability density functions of the noisy
domain distributions. Existing studies [95, 77] show that this overlapping area is closely correlated
with the DM’s ambiguous reconstruction of different samples. For instance, due to the large overlap
between the intermediate distributions at a certain time step t2, noisy samples drawn from these may
be reconstructed ambiguously as either source domain or target domain. This observation leads to
a crucial insight: the overlapping area formed through degradation can be interpreted as a domain-
shared distribution, which acts as a valuable prior for learning domain-invariant representations. This
hypothesis is further substantiated by our quantitative analysis presented in Appendix H, where we
empirically validate the correlation between degradation level and domain alignment effectiveness.

It is non-trivial to interpret image degradation as a form of domain bridging, especially considering its
fundamental differences from consistency regularization based on data augmentation [40, 93]. This
perspective introduces two major challenges: (1) Wide Range of Degradation Levels: Degradation
operations, when applied incrementally from mild to severe, can gradually eliminate domain-specific
attributes. To effectively capture domain-invariant information under such conditions, the encoder of
the segmentation network should maintain stable and consistent feature representations across varying
levels of degradation. (2) Semantic Shift Due to Feature Corruption: While degradation helps
remove domain-specific cues, it also inevitably affects domain-invariant features. This degradation of
essential semantic information hinders the encoder’s ability to extract discriminative representations,
which in turn compromises the learning process of the segmentation head. This issue is commonly
referred to as the semantic shift problem [1, 86].

To this end, we propose an unsupervised domain bridging approach for semantic segmentation, termed
DiDA, which constructs intermediate domains via image degradation defined by a forward diffusion
process. We introduce the following key components to integrate DiDA into the UDA training
pipeline: (1) Degradation-based Intermediate Domain Construction: Based on the definition of
the forward diffusion process, we construct a sequence of continuous intermediate domains through
simple image degradation operations. These intermediate domains are incorporated into the UDA
training process to encourage the model to learn more domain-invariant features from the increasingly
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overlapping area of domain distributions. (2) Semantic Shift Compensation: To mitigate the
semantic shift problem introduced during intermediate domain construction, we propose a diffusion
encoder, conditioned on a time embedding module. This encoder disentangles the time-specific
semantic shift and, through residual connections across multiple feature levels, compensates for the
lost discriminative representations in intermediate domains. This ensures better semantic alignment
between extracted features and corresponding labels. (3) Expansion to Arbitrary Degradation:
To demonstrate the flexibility of our framework, we explore various degradation operations for
constructing intermediate domains. The implementation of DiDA is compatible with any image
degradation method by simply replacing the Gaussian noise addition in the standard diffusion process.
This characteristic showcases the generality and extensibility of our framework. Our approach can be
regarded as a plug-and-play training strategy, which can be seamlessly integrated with various UDA
methods and network architectures, consistently yielding performance improvements.

In this work, our contributions can be summarized as follows: (1) We propose a novel domain bridging
mechanism based on image degradation to facilitate the learning of domain-invariant features. This
introduces a new perspective for domain-adaptive semantic segmentation. (2) We design a unified
framework that integrates diffusion strategies into the training pipeline of UDA. By introducing
a series of degradation-based intermediate domains, our approach enables progressive learning of
domain-invariant representations and effectively mitigates the semantic shift problem commonly
observed in intermediate domains. (3) We validate the effectiveness and versatility of our approach
through extensive experiments on multiple UDA methods, benchmarks, and network architectures.
DiDA consistently achieves significant performance improvements across all settings.

2 Related Work

2.1 Unsupervised Domain Adaptation (UDA)

Unsupervised Domain Adaptation (UDA) aims to transfer semantic knowledge from labeled source
domains to unlabeled target domains. Given widespread domain gaps [88, 67], UDA has been
extensively studied across various vision tasks, including image classification [29, 28, 57, 35, 34],
object detection [11, 12, 51], and semantic segmentation [83, 101, 98, 9]. Semantic segmentation
requires assigning a label to each pixel, which often leads to high annotation costs [13, 52, 87]. To
address this, various label-efficient methods have been developed, such as semi-supervised learning
[79, 62, 78], few-shot learning [54, 59, 55, 53], and domain adaptation [49, 15, 14]. Among them,
UDA is particularly valuable, as it eliminates the need for costly pixel-level annotations in new
domains. Recent UDA methods for semantic segmentation fall into two main categories: adversarial
training and self-training. Adversarial methods align source and target feature distributions via
a min-max game between a feature extractor and a domain discriminator [81, 83]. Self-training
methods, gaining traction due to the domain-robustness of Transformers [4], adopt a teacher-student
framework to generate pseudo labels for target images [82, 38, 60, 50]. Their success hinges on
producing reliable pseudo labels through entropy minimization [8], consistency regularization [40],
and class-balanced training [48]. Our method builds upon the self-training paradigm, introducing a
novel domain bridging mechanism via image degradation to enhance domain invariance and improve
adaptation performance.

2.2 Generative Models for Segmentation

Generative models like GANs [31] and VAEs [45] map data to latent codes following simple distribu-
tions (e.g., Gaussian), enabling data generation and manipulation. Denoising Diffusion Probabilistic
Models (DDPMs) [37] extend this by modeling the data-to-latent mapping as a Markov chain with in-
termediate distributions. To adapt such generative mechanisms to semantic segmentation—a typically
discriminative task—some works synthesize paired images and labels to train separate segmentation
networks [47, 100], while others directly exploit internal features from generative models [91, 3, 80].
In domain adaptive segmentation, diffusion-based approaches have shown promise. Some methods
leverage style transfer [68, 69] or generate diverse domain samples to enhance generalization [66, 99],
while others estimate segmentation uncertainty to guide sample selection [26]. In contrast, our
method integrates diffusion strategies into the UDA self-training framework, progressively learning
domain-invariant representations from images sampled across intermediate distributions.
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3 Methods

In this section, we first formalize the standard self-training paradigm for UDA and the training process
for diffusion models, respectively (Sec.3.1). Then, we introduce theoretical insight (Sec.3.2). After
that, we describe our new UDA framework, DiDA, a novel perspective for domain bridging that
couples diffusion strategies to improve UDA semantic segmentation performance (Sec.3.3). Finally,
we illustrate the details that expand our method to arbitrary choices of image degradation (Sec.3.4).

3.1 Preliminary Knowledge

Self-Training (ST) for UDA. For domain adaptive semantic segmentation, the source domain can
be denoted as Ds = {(xS

i , y
S
i )}

NS
i=1, where xS

i ∈ XS represents an image with ySi ∈ YS as the
corresponding pixel-wise one-hot label covering C classes. The target domain can be denoted as
Dt = {(xT

i )}
NT
i=1, which shares the same label space but has no access to target label Y T . In this

setting, the supervised loss LS can be calculated on the source domain to train a neural network fθ:

LS =

NS∑
i=1

Lce(fθ(x
S
i ), y

S
i , 1), (1)

where Lce denotes the pixel-wise cross-entropy loss:

Lce(ŷi, yi, qi) = −
H×W∑
j=1

C∑
c=1

q(i,j,c)y(i,j,c) log ŷ(i,j,c). (2)

Self-training introduces a teacher-student framework to generate pseudo-labels pT for the target
domain (see Fig. 2): pT(i,j,c) = [c = argmaxc′ fϕ(x

S
i )(j,c′)], where fϕ is the teacher network. Then,

the pseudo-labels are used to train the network fθ on the target domain with the adaptation loss LT :

LT =

NT∑
i=1

Lce(fθ(x
T
i ), p

T
i , q

T ). (3)

The quality of pseudo-labels is weighted by a confidence estimate qT [38], which gradually strength-
ens with increasing accuracy of models. After each training step, the teacher model fϕ is updated
with the exponentially moving average of the weights of fθ. The segmentation model, fθ, can be
defined as fθ = h ◦ g, where g : X → Z is an encoder that lifts each pixel of the input image in X to
the feature space Z , and h : Z → RC is a segmentation head which can be viewed as a pixel-wise
classifier to give a score for each class.

Diffusion Model. Diffusion models learn a series of state transitions to generate high-quality sample
from the noise, defined as a forward diffusion process during the training phase. The diffusion process
generates intermediate state xt with a random uniformly sampled t from {1,...,T}:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (4)

where ᾱt originates from a predefined noise schedule (decreases from 1 to 0). This process can be
rewritten through a reparameterization trick:

xt ≜
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (5)

Afterword, a network is trained to predict noise ϵ (or predict sample data x0 directly) from xt, with a
reconstruction loss:

LR = ||fθ(xt, t)− ϵ||22. (6)

3.2 Theoretical Insight

In the forward diffusion process, the loss of attributes with different levels of granularity is directly
related to the time step. Specifically, we restate following proposition based on the findings in [95]:

Proposition (Attribute Loss and Time Step). 1) For each attribute Zi, there exists a minimum
time step t(Zi) such that Zi is lost with degree τ at every t ∈ {t(Zi), . . . , T}. 2) There exists a set
{βi}Ti=1 such that t(Zi) > t(Zj) whenever the distribution of ∥x0− gi · x0∥ first-order stochastically
dominates that of ∥x0 − gj · x0∥, where x0 ∼ X uniformly.
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Figure 2: Overview of DiDA framework. We integrate diffusion strategies (green box) with a standard
self-training paradigm. While regular frameworks train networks using supervised loss on source
domain and unsupervised adaptation loss on target domain, DiDA introduces degradation-based
intermediate domains and addresses semantic shift through a diffusion encoder and reconstruction
head, which are enabled by degraded image consistency (DIC) loss and reconstruction loss.

The first part of the proposition indicates that once an attribute Zi is lost at a certain time step t(Zi)
with a specified degree τ , it cannot be recovered in subsequent steps. The second part implies that
if the i-th modular attribute transformation gi induces larger changes in pixel space than gj , then
the corresponding attribute Zi (typically a coarse-grained attribute) is lost at a later time step than
Zj (a fine-grained attribute). This theoretical result reveals that in the forward diffusion process,
fine-grained attributes (e.g., texture) are lost earlier than coarse-grained ones (e.g., shape), with
granularity measured by the magnitude of pixel-level changes induced by modifying the attribute.

This proposition also shows the overlapping area between domains is closely related to the DM’s
inherent ambiguity in reconstructing degraded samples. Based on this insight, we reinterpret the
overlapping area—created by predefined image degradation—as a domain-shared distribution. This
serves as a valuable prior, enabling the network to extract domain-invariant representations.

3.3 DiDA Framework

Although intermediate domains generated via image degradation can facilitate cross-domain adapta-
tion, they should contend with a wide range of degradation levels and alleviate the risk of semantic
shift. To overcome these challenges, we propose DiDA with two key modules: Degradation-based
Intermediate Domain Construction and Semantic Shift Compensation. Our framework processes
images at varying degradation levels and disentangles semantic shift through a dedicated diffusion
encoder and reconstruction head. Designed as a general and flexible solution, DiDA seamlessly
integrates with existing network architectures and UDA methods.

Degradation-based Intermediate Domain Construction. Degradation operations, when applied
incrementally from mild to severe, can gradually enlarge overlapping area between domain distribu-
tions and eliminate domain-specific attributes. To effectively capture domain-invariant information
under such conditions, the encoder g should maintain stable and consistent feature representations
across varying levels of degradation. We propose a general approach by formalizing continuous
degradation operations as a diffusion forward process.

The learning objective of generative models can be framed as finding a transport map T : Rd → Rd

between two distributions, i.e., X = T (Z), where X ∼ πx, Z ∼ πz . Typically, Z follows a simple
elementary (Gaussian) distribution for sampling to generate X from the data distribution πx. In
the diffusion process, the transport map is formulated as a Markov chain with learned Gaussian
transitions starting at XT ∼ πz:

XT → XT−1 · · ·Xt
pθ(Xt−1|Xt)−−−−−−−−−→ Xt−1 · · · → X0, (7)
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which is termed as a reverse process in contrast to equation (4). In our case, X0 ∼ {πs, πt} represents
the distribution of the source or target domain, respectively. Since X1, X2, ..., XT can be viewed as
latent codes of the same dimensionality as the data X0, we consider them as intermediate domains,
which possess gradually increasing overlapping area compared to the original X0. This formulation
enables a degradation-based domain bridging mechanism within the diffusion framework.

Semantic Shift Compensation. While degradation helps remove domain-specific cues, it also
inevitably affects domain-invariant features. This degradation of essential semantic information
hinders the encoder’s ability to extract discriminative representations, known as semantic shift. To
address this challenge, we propose a compensation mechanism that effectively disentangles the
semantic shift and aligns the extracted features with label semantics throughout the degradation
process, enabling the network to process intermediate domains at any degradation level while
maintaining semantic consistency.

In this module, a trainable diffusion encoder, g′, is introduced to map each degraded image xt to
the feature space Ẑ given t. This diffusion encoder g′ is designed to capture the semantic shift
information of the segmentation network’s encoder g when taking xt as input. To this end, a time
embedding module is added to specify the diffusion time t. It is implemented by the Transformer
sinusoidal position embedding [84] to condition all blocks of g′ on t. Then, the internal feature z′(t,i)
in block′i is modulated with shift and bias:

ẑ(t,i) = z′(t,i)(MLP i
s ◦ Embed(t) + 1) +MLP i

b ◦ Embed(t), (8)

which is operated at the channel dimension of z′(t,i). The resulting feature ẑt is required to compensate
for the intermediate feature zt from g to minimize the reconstruction error by being supervised with
the loss LR (see equation (6)), where fθ is replaced by f̂θ = h′ ◦ (g+ g′). We perform feature fusion
by adding hierarchical features through residual connections. Through this module, the network is
empowered to precisely disentangle the degree of perturbation and align the extracted features with
label semantics by compensating for the semantic shift. Meanwhile, it retains the capability to adapt
domain-invariant knowledge to the original domain distribution.

To leverage intermediate domains for improved adaptation, we introduce a Degraded Image Consis-
tency (DIC) loss:

LD =

NS∑
i=1

Lce(f̄θ(x
S
i,t, t), y

S
i , 1) +

NT∑
i=1

Lce(f̄θ(x
T
i,t, t), p

T
i , q

T ), (9)

where f̄θ = h ◦ (g + g′) and xi,t is degrade image of xi,0, which can be obtained with equation (5).
This loss enforces consistency between predictions on degraded and original images.

Training and Inference. The training pipeline is shown in Fig. 2 and detailed in Appendix A. The
original operation in the self-training framework is fully retained, and DiDA can be considered as
an additional plugin. In each training iteration, we conduct the forward process with a fixed noise
schedule ᾱt and random t sampled from a uniform distribution between 1 and T on the current
training batch. Then, they are fed to the network f̄θ/f̂θ, which shares the same weights with student
net fθ, and diffusion time t is encoded through the time embedding module in diffusion encoder g′.
The outputs of this step, prediction for segmentation map and noise, are individually supervised by
DIC loss and reconstruction loss. The overall loss L for DiDA is the weighted sum of the presented
loss components:

L = LS + LT + λDLD + λRLR. (10)

During regular inference, only the backbone segmentation network fθ = h ◦ g is used, while the
diffusion-specific components—g′ and h′—are entirely removed. The input is an unprocessed image
from X0, and there is no need to use the diffusion encoder or reconstruction head for noise prediction,
meaning that no additional time consumption or network structure changes are required in this stage.

3.4 Expansion to Arbitrary Degradation

Diffusion models demonstrate flexibility in their choice of degradation operations beyond traditional
Gaussian noise [2]. Building on this insight, we extend DiDA to support various degradation
types while maintaining our core principles of intermediate domain construction and semantic shift
perception. To demonstrate this generalization, we implement forward diffusion processes based
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Table 1: Quantitative results of DiDA on different methods
and benchmarks with CNN-based model (C) or Transformer-
based model (T). ∗ denotes the reproduced result.

GTA.→CS. SYN.→CS. CS.→ACDCMethod C T C T T

DAFormer [38] 56.0 68.3 54.7 60.9 55.4
+DiDA 58.3↑2.3 70.3↑2.0 57.6↑2.9 63.1↑2.2 59.1↑3.7

HRDA [39] 63.0 73.8 61.2 65.8 68.0
+DiDA 64.3↑1.3 75.4↑1.6 62.6↑1.4 67.8↑2.0 70.7↑2.7

MIC [40] 64.2 75.5∗ 62.4∗ 67.3 69.8∗

+DiDA 65.0↑0.8 76.8↑1.3 63.5↑1.1 68.6↑1.3 72.1↑2.3

Table 2: Component ablation analy-
sis of DiDA built with DAFormer on
GTA.→CS.(val).

LD LR gtime g′ h′ mIoU

- - - - - 68.3
✓ - - - - 66.5
✓ - ✓ - - 69.5
- ✓ ✓ - ✓ 67.9
✓ ✓ ✓ - - 69.4
✓ ✓ ✓ - ✓ 69.9
✓ ✓ - ✓ ✓ 70.3

on two fundamental vision tasks: deblurring and inpainting. These implementations preserve the
network’s ability to perceive degradation levels and compensate for semantic shifts across different
degradation operations. Please refer to Appendix B for details on the implementation.

4 Experiments

4.1 Implementation Details

Datasets. To comprehensively evaluate the performance of DiDA, we follow standard UDA pro-
tocols and conduct experiments on both synthetic-to-real and clear-to-adverse-weather adaptation
scenarios. As synthetic datasets, we use GTAv [70] containing 24,966 images and SYNTHIA [71]
with 9,400 images. For real-world datasets, we employ Cityscapes [21] with 2,975 training and 500
validation images representing clear weather conditions, and ACDC [72] containing 1,600 training,
406 validation, and 2,000 test images capturing adverse weather conditions (fog, night, rain, and
snow). We report the intersection over union for each class as well as the mean IoU over all classes.

Base Segmentation Architectures and UDA Methods To demonstrate the versatility and adaptability
of our method, we implement it on two widely-used network architectures and three progressively
enhanced baseline methods. Specifically, we employ DeepLabV2 [5] with ResNet-101 [32] backbone
and DAFormer [38] with MiT-B5 [90] backbone. Both of these network architectures have been
pretrained on the ImageNet-1k [24] dataset. Building upon this foundation, we apply our framework
to different methods in the DAFormer series, including DAFormer [38], HRDA [39], and MIC [40].

Training Details. We implement DiDA based on the MMSegmentation [20] framework. Depending
on the complexity of the network architectures and UDA frameworks, all experiments are conducted
on one or two RTX-3090 GPUs with 24 GB memory, with 40K training iterations and a batch size of
2. We train the network using the AdamW optimizer, with learning rates of 6× 10−5 for the encoder
and 6× 10−4 for the decoder, a weight decay of 0.01, and a linear learning rate warm-up strategy for
the first 1.5K iterations. The EMA coefficient for updating the teacher network is set to 0.999. We set
T = 100 and use a sigmoid schedule [44] to obtain ᾱt. To achieve scale and quantity matching during
feature fusion, we initialize a diffusion encoder h′ with the same structure as the corresponding the
segmentation encoder, along with extra time embedding modules. For the reconstruction head g′, we
initialize an ASPP module [5] with a linear projector. For the reconstruction loss, the clean image x0

or sampled noise ϵ is downsampled at a rate of 4× or 8× to match the input of the reconstruction head.
We set DIC loss weight λD to 0.5, and reconstruction loss weight λR to 5 for DAFormer and 1 for
DeepLabV2 to ensure a similar gradient magnitude induced by these different components. Finally,
we report the mIoU using the last checkpoint of the student model fθ without model selection.

4.2 Evaluation on Benchmark Datasets

Overall Quantitative Results. Tab. 1 shows quantitative results by building DiDA upon three
mainstream methods with different architectures. We report results based on whole inference on
DAFormer and slide inference on HRDA and MIC without any other test time augmentation strategies
for a fair comparison. Whether with Transformer-based or CNN-based backbones, DiDA achieves
consistent gains beyond all baselines, ranging from 0.8% to 3.7%. As expected, the performance
improvement generally decreases when the baseline is stronger and closer to performance saturation.
When implemented with DeepLabV2, the performance gain is slightly lower than DAFormer due to
the coarse output (8× downsampling) for the optimization goal of reconstruction. It is worth noting
that DiDA achieves new state-of-the-art performance when applied on MIC.
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Table 3: UDA segmentation performance on GTA.→CS., where the improvement by DiDA is marked
as bold. The results are acquired with CNN-based model (C) in the first group or Transformer-based
model (T) in the second group. ∗ denotes the reproduced result.
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DACS [82] C 89.9 39.7 87.9 39.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.2 27.3 34.0 52.1

I2F [61] C 90.8 48.7 85.2 30.6 28.0 33.3 46.4 40.0 85.6 39.1 88.1 61.8 35.0 86.7 46.3 55.6 11.6 44.7 54.3 53.3
ProDA [98] C 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 50.4 1.0 48.9 56.4 57.5
DAP [42] C 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87.0 73.6 38.6 91.3 50.2 52.9 0.0 50.2 63.5 59.8
CPSL [48] C 92.3 59.5 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.6 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
MIC [40] C 96.5 74.3 90.4 47.1 42.8 50.3 61.7 62.3 90.3 49.2 90.7 77.8 53.2 93.0 66.2 68.0 6.8 38.0 60.6 64.2
+DiDA C 96.6 74.6 89.2 47.5 44.2 50.0 61.2 60.6 90.4 51.9 91.8 76.5 53.8 93.5 67.1 63.7 5.8 50.0 66.7 65.0

TransDA [10] T 94.7 64.2 89.2 48.1 45.8 50.1 60.2 40.8 90.4 50.2 93.7 76.7 47.6 92.5 56.8 60.1 47.6 49.6 55.4 63.9
ADFormer [33] T 96.7 75.1 88.8 57.5 45.9 45.6 55.4 59.8 90.2 45.6 92.1 70.8 43.0 91.0 78.9 79.3 68.7 52.7 65.0 69.2

CoPT [63] T 97.6 80.9 91.6 62.1 55.9 59.3 66.7 70.5 91.9 53.0 94.4 80.0 55.6 94.7 87.1 88.6 82.1 65.0 68.8 76.1
DAFormer [38] T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

+FST [25] T 95.3 67.7 89.3 55.5 47.1 50.1 57.2 58.6 89.9 51.0 92.9 72.7 46.3 92.5 78.0 81.6 74.4 57.7 62.6 69.3
+DiDA(B) T 97.2 76.3 89.2 58.0 51.1 53.6 57.5 63.5 90.0 51.3 92.3 71.7 43.8 92.1 69.2 81.4 72.1 56.0 64.6 70.0
+DiDA(M) T 96.4 75.3 90.5 57.6 49.2 53.4 58.6 64.4 90.5 52.6 92.5 71.8 40.8 92.6 70.6 81.7 66.1 57.6 64.0 69.8

+DiDA T 96.9 74.7 88.9 54.4 49.8 53.5 57.5 63.9 90.6 50.4 92.2 71.5 50.8 92.2 76.1 82.1 70.7 53.2 66.8 70.3
HRDA [39] T 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
+DiGA [75] T 97.0 78.6 91.3 60.8 56.7 56.5 64.4 69.9 91.5 50.8 93.7 79.2 55.2 93.7 78.3 86.9 77.8 63.7 65.8 74.3

+DiDA T 97.4 79.6 91.6 62.9 55.7 59.2 68.0 70.3 92.0 55.5 93.8 80.4 52.5 94.8 86.9 87.0 69.3 66.2 68.9 75.4
MIC∗ [40] T 97.4 80.1 91.7 61.4 56.9 60.3 66.4 71.3 91.7 51.2 94.1 79.8 55.6 94.6 85.9 88.5 74.3 64.7 68.1 75.5
+DTS [43] T 97.0 80.4 91.8 60.6 58.7 61.7 7.9 73.2 92.0 45.4 94.3 81.3 58.7 95.0 87.9 90.7 82.2 65.7 69.0 76.5

+DiDA T 97.9 81.0 92.4 62.0 57.7 60.5 63.2 76.6 92.3 56.4 94.4 79.2 54.4 94.7 86.2 90.4 81.8 65.8 71.6 76.8

Class-level Comparison. We further display the class-wise performance on each benchmark in Tab.
3 and Tab. 4, with additional results provided in Tab. 5 (Appendix D), for detailed comparison. When
combined with DiDA, most of classes achieve higher accuracy. We investigate that performance
on road, sidewalk, fence, and terrain achieves consistent and relatively significant improvements
over all UDA methods and datasets. These classes constitute the main scene and comprise abundant
domain-specific texture information. By adding random Gaussian noise to images, these textures
are broken while the context information is preserved, which is more robust over domains. Since
DiDA establishes domain bridging through these progressively intensifying degraded images between
domains, the network can focus more on domain-invariant context to enhance the adapting ability.
Furthermore, we implement the extended version of DiDA on the DAFormer baseline with Blur and
Mask, denoted as B and M, respectively. These extensions obtain less gain than the default version
but show a certain potential if well-designed.

Comparison with other plug-in methods. We further compare DiDA with other plug-in approaches,
such as FST [25], DiGA [75], and DTS [43]. Our method consistently demonstrates superior
performance compared to these methods when built with the same baselines.

4.3 Diagnostic Experiments

Please refer to the Appendix D-L for further analysis, where we provide more experiment results,
deeper ablation studies, and more visualization.

Component Ablation Analysis. To gain deeper insights, we analyze the proposed approach by
ablating the components and evaluating the performance with DAFormer as the baseline on GTA→CS.
The results are presented in Tab. 2. The DiDA with complete components achieves a 2.0 mIoU gain
on this baseline. To analyze the diffusion encoder and the module of time embedding respectively,
we use the segmentation encoder g directly conditioned by time embedding as gtime without an extra
diffusion encoder, as the baseline for ablation studies (row 6). We first ablate the module of time
embedding, implying that the original network is equivalently trained with the randomly degraded
images as additional data augmentation. The performance decreases heavily in this case (row 2)
due to the excessive degradation of data, known as semantic shift problem. The introduced time
embedding plays a vital role in encoding noise intensity information, indicating that we alleviate
this issue by encoding time-specific semantic shift information. Then, we discard the loss terms, i.e.,
LD and LR, respectively (rows 3 and 4). Without LR, DiDA obtains less improvement, although it
does not constrain segmentation results directly, indicating that LR helps to learn the module of time
embedding and perceive the semantic shift. Discarding LD brings an accuracy drop since introducing
LR only is inconsistent with the learning objective for high-level semantics. After that, the extra
reconstruction head h′ is ablated (row 5), which means that we obtain reconstruction results from
the segmentation head h. It is also essential to avoid excessive disturbance for originally learned
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Table 4: UDA segmentation performance on SYN.→CS., where the improvement by DiDA is marked
as bold. The results are acquired with CNN-based model (C) in the first group or Transformer-based
model (T) in the second group.
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DACS [82] C 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.6 38.3 82.9 - 38.9 - 28.5 47.6 48.3

I2F [61] C 84.9 44.7 82.2 9.1 1.9 36.2 42.1 40.2 83.8 - 84.2 68.9 35.3 83.0 - 49.8 - 30.1 52.4 51.8
ProDA [98] C 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 - 84.4 74.2 24.3 88.2 - 51.1 - 40.5 45.6 55.5
DAP [42] C 84.2 46.5 82.5 35.1 0.2 46.7 53.6 45.7 89.3 - 87.5 75.7 34.6 91.7 - 73.5 - 49.4 60.5 59.8
CPSL [48] C 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 - 88.5 79.0 32.0 90.6 - 49.4 - 50.8 59.8 57.9

TransDA [10] T 90.4 54.8 86.4 31.1 1.7 53.8 61.1 37.1 90.3 - 93.0 71.2 25.3 92.3 - 66.0 - 44.4 49.8 59.3
ADFormer [33] T 91.8 53.6 87.0 40.5 5.2 46.8 52.1 54.9 88.4 - 92.6 72.5 45.7 86.1 - 61.6 - 50.4 64.4 62.1

CoPT [63] T 83.4 44.3 90.0 50.4 8.0 60.0 67.0 63.0 87.5 - 94.8 81.1 58.6 89.7 - 66.5 - 68.9 65.0 67.4
DAFormer [38] T 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9

+FST [25] T 88.3 46.1 88.0 41.7 7.3 50.1 53.6 52.5 87.4 - 91.5 73.9 48.1 85.3 - 58.6 - 55.9 63.4 61.9
+DiDA T 87.8 47.5 88.9 43.1 9.8 51.6 56.8 56.1 86.5 - 90.1 76.1 46.5 88.8 - 56.8 - 59.3 63.2 63.1

HRDA [39] T 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8
+DiGA [75] T 88.5 49.9 90.1 51.4 6.6 55.3 64.8 62.7 88.2 - 93.5 78.6 51.8 89.5 - 62.2 - 61.0 65.8 66.2

+DiDA T 87.9 52.9 89.6 54.3 11.6 56.6 63.8 61.2 87.6 - 94.1 79.9 54.2 90.5 - 71.5 - 67.1 62.3 67.8
MIC [40] T 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 - 94.6 81.0 58.9 90.1 - 61.9 - 67.1 64.3 67.3

+DTS [43] T 89.1 54.9 89.0 39.1 8.7 61.6 67.4 64.3 88.8 - 94.0 82.2 60.7 89.6 - 62.6 - 68.5 64.9 67.8
+DiDA T 89.2 55.9 89.6 49.0 8.4 58.9 66.1 64.4 88.5 - 94.6 80.6 59.4 89.2 - 69.2 - 66.7 68.4 68.6

 

Figure 3: Demonstration of
two modes of inference.

 

Figure 4: The performance variation with the degraded level.

features. In the end, the extra diffusion encoder is ablated (rows 6 and 7). Although gtime can
perceive the semantic shift implicitly enabled by time embedding, it is more effective to introduce an
extra diffusion encoder to compensate for the lost discriminative representation.

How DiDA Works. To further comprehend the working mechanism of DiDA, we design two modes
for inference on degraded images with known diffusion time t, shown in Fig. 3. The first mode, called
implicit denoising inference, is the same as what we used in the training phase of DiDA. The network
f̄θ takes degraded images and t as inputs and generates segmentation results immediately. In contrast
with this mode, the second mode segments the degraded images indirectly by predicting the noise
through fθ first for reconstruction and feeding them back to the network fθ, which shares the same
weight with f̄θ but no diffusion encoder, to obtain the final prediction. This mode is termed explicit
denoising inference. We evaluate the performance difference between the two modes on different
noise levels and construct two baselines for comparison. The strong baseline, called base(S), trains
and inferences each model separately on intermediate domains with different noise levels. For the
weak baseline, termed as base(W), we execute inference on these intermediate domains with fθ. Fig.
4 (a) plots the performance curve throughout the diffusion forward process. The performance with
implicit denoising inference is slightly lower than the explicit mode, and the gap between them is tiny.
Both modes beat the strong baseline using a single network trained only once. It indicates that DiDA
can perceive the semantic shift precisely and extract features in an implicit denoising manner during
the training phase. Furthermore, unlike the explicit mode, the network f̄θ learns domain-invariant
features directly from the degraded images to bridge the domain gap and heighten the adapting ability.
These two factors jointly contribute to improving overall performance on UDA segmentation.

Inference with Fixed Diffusion Time. Based on the above discussion, we further evaluate the
performance for inference with different fixed diffusion times t. The results are summarized in Fig.
4 (b). Note that t = 0 is equivalent to inference without the diffusion encoder, i.e., fθ, which is
the same as the weak baseline defined above. With the change of fixed diffusion time, there are
two common properties among these curves: (i) the performance decreases along with the forward
diffusion process, and (ii) at each fixed level of the forward process, inference with the same fixed
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diffusion time t can achieve the current best precision, which is in accordance with the intuition.
We can deduce that the higher t is fixed in the inference procedure, the flatter the corresponding
performance curve will be. Although the optimal performance degrades, this phenomenon reveals
a desirable property: inference with a fixed diffusion time t can enhance the network’s robustness
against input perturbations, thereby improving its anti-interference capability.

5 Conclusions

In this paper, we propose DiDA, a degradation-based bridging framework for domain adaptive
semantic segmentation. By simulating intermediate domains through simple image degradations and
formalizing them as a diffusion process, DiDA effectively mitigates semantic shift and promotes
domain-invariant feature learning. The framework is general and modular, supporting various
degradation types and seamlessly integrating with diverse UDA methods and backbones. Extensive
experiments demonstrate that DiDA consistently improves performance and achieves new state-of-
the-art results on multiple standard UDA benchmarks.
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material?
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources in Section 4 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper adheres fully to the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix N for our discussions on the societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and baselines from existing assets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details of DiDA

In this section, we provide the pseudo algorithms to explain implementation details of DiDA, as shown
in Alg. 1. Our method is designed as a plug-and-play module applicable to any self-training-based
UDA framework, introducing no additional computational overhead during inference.

Algorithm 1 Pseudo algorithms of DiDA.

1: Inputs: Source Domain Ds = (xS
i , y

S
i )

NS

i=1, Target Domain Dt = (xT
i )

NT

i=1
2: Define: Student Network fθ, Teacher Network fϕ, Diffusion Encoder g′, Reconstruction Head

h′, Noise Schedule ᾱt, Diffusion Steps T , Momentum Coefficient β
3: Output: Student Network fθ
4: for each batch of (xS

i , y
S
i ), x

T
i in Ds, Dt do

5: # Source Domain:
6: Calculate LS for fθ by Eq. (1) ▷ Supervised loss
7: # Target Domain:
8: Obtain pseudo-labels from fϕ by Eq. (3)
9: Calculate LT for fθ by Eq. (4) ▷ Adaptation loss

10: # Degradation-based Intermediate Domain Construction:
11: Sample t ∼ Uniform(1, T )
12: Obtain degraded images xS

i,t, x
T
i,t by Eq. (6)

13: # Semantic Shift Compensation:
14: Calculate LD for f̄θ = h ◦ (g + g′) by Eq. (10) ▷ Degraded image consistency loss
15: Calculate LR for f̂θ = h′ ◦ (g + g′) by Eq. (7) ▷ Reconstruction loss
16: # Training:
17: Gradient backward LS + LT + λDLD + λRLR ▷ Update student model
18: # EMA Update:
19: ϕ← βϕ+ (1− β)θ ▷ Update teacher model
20: end for

B Details in Expansion Versions

In this section, we describe the details of our implementation for expansion versions of DiDA, in
which we replace the degradation operation in the diffusion forward process with blur and mask.

Image Blur. Given the Gaussian kernels {Gs}, the forward process can be simply defined as:

xt = Gt ∗ xt−1 = Gt ∗ ...G1 ∗ x0 = Ḡt ∗ x0, (11)

where * represents the convolution operator to apply the Gaussian blur operation on the image. Then,
the model f̂θ is trained for deblurring to invert this blurred diffusion process.

Following the setting of cold diffusion [2], we define T Gaussian kernels: G1, ..., GT to execute
gradual blurring. For instance, we set T = 100 with a Gaussian kernel of 31× 31, and the standard
deviation of the Gaussian kernel grows exponentially with time t at the rate of 0.02.

Image Mask. To implement the incremental mask operation on the image with the diffusion time
steps, we define this process with cowmask [27]. With the schedule ᾱt as a threshold, we can generate
the cowmaskMt and obtain xt by element-wise multiplication of the mask and image:

xt =Mt ⊙ x0, (12)

and the inpainting model is trained to restore the image. The procedure for generating a masked
image with cowmask and τ is provided in Algorithm 2, and we wet the std δ = 6.

To extend our method with the above-defined forward process, we only need to replace the degraded
image sampling operation and modify the reconstruction loss to predict the clean image x0 directly:

LR = λt||f̂θ(xt, t)− x0||22, (13)

where λt is a t-dependent loss weight, defined as a fixed value computed from the noise schedule
{αt}Tt=1 [73], introduced to balance the contribution of different degradation levels.
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Figure 5: The examples that extend DiDA to any other forward diffusion process defined by arbitrary
image degradation operations. (a) shows image blurred process and (b) shows image masked process.

Algorithm 2 CowMask generation algorithm with the threshold τ ∈ [0, 1] as the ratio.

Require: original image xO, threshold τ , std δ
Ensure: masked image xM

1: sample Gaussian noise ϵ ∼ N (0, I)
2: filter noise ϵf = gaussian_filter_2d(ϵ, δ)
3: compute mean m = mean(ϵf )
4: compute std_dev s = std_dev(ϵf )
5: compute noise threshold p = m+

√
2erf−1(2τ − 1)s

6: threshold filtered noiseM = ϵf < p
7: mask image xM = xO ⊙M
8: return xM

C Architecture of Time Embedding Module

In this section, we illustrate the details of the time embedding module introduced in different
backbones. As shown in Fig. 6, we condition all blocks of models on t, whether Transformer-
based architecture or CNN-based architecture. The diffusion time t is first encoded by Transformer
sinusoidal position embedding [84] and projected to time embedding through 2 layers MLP. Then,
the time embedding is encoded by MLP i

s and MLP i
b to obtain shift and bias and ensure the same

channel dimension as the corresponding feature. In the end, each block’s internal feature fi is
modulated through multiplication and addition operations at the channel dimension.
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Figure 6: Architecture of time embedding module in different backbones.

Table 5: UDA segmentation performance on CS.→ACDC, where the improvement by DiDA is
marked as bold. The results are acquired with CNN-based model (C) in the first group or Transformer-
based model (T) in the second group. ∗ denotes the reproduced result.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU
ADVENT [85] C 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
DANNet [89] C 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
FREST [46] T 93.3 72.2 88.3 52.4 46.6 58.6 66.2 66.1 86.1 58.6 95.3 69.9 49.2 89.1 75.1 79.4 83.0 52.9 61.4 70.7

DAFormer [38] T 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
+DiDA T 68.5 52.5 82.5 43.4 42.7 59.8 60.3 53.4 75.7 40.2 63.7 59.3 30.4 87.3 68.6 76.1 79.5 41.9 36.6 59.1

HRDA [39] T 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0
+DiDA T 90.7 65.4 89.3 58.3 50.1 68.7 70.8 66.6 79.1 46.2 67.1 73.0 49.4 85.2 85.9 89.4 91.5 56.3 60.1 70.7

MIC∗ [40] T 90.1 65.0 87.7 55.5 43.3 60.6 63.8 66.2 75.8 54.3 85.0 69.5 47.4 88.6 80.7 89.5 88.8 55.4 59.1 69.8
+DiDA T 90.5 68.6 89.0 62.9 50.1 65.4 66.3 68.8 75.6 51.9 84.3 70.0 51.4 88.1 82.4 92.5 92.2 56.6 63.6 72.1

D Additional Experiment Results

In this section, we evaluate the performance of our method on the CS.→ACDC adaptation task,
which involves large domain shifts caused by adverse weather conditions such as rain, snow, and
nighttime. As shown in Tab. 5, DiDA consistently improves the performance of multiple baseline
models, including DAFormer, HRDA, and MIC, with a gain ranging from 2.3% to 3.7% mIoU. These
improvements are highlighted in bold.

We attribute DiDA’s superior performance in this scenario to the similarity between image degradation
operations and real-world image corruptions caused by bad weather. Notably, the improvements are
especially significant in classes that are typically affected by weather degradation, such as traffic
light, sign, and pole. The degradation-aware training in DiDA (e.g., blur, noise, contrast reduction)
helps the model learn more robust and generalizable features that align well with the characteristics
of the ACDC dataset. In other words, DiDA implicitly narrows the domain gap by simulating
weather-induced artifacts during training.

E DiDA Efficiency Analysis

In this section, we analyze the computational overhead introduced by DiDA in terms of GPU memory
usage, iteration time, and total training time. As summarized in Table 6, while DiDA brings consistent
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performance improvements across various UDA baselines, it also introduces moderate increases in
computational cost.

Specifically, DiDA increases the GPU memory usage by approximately 60–70%, while it is computa-
tionally efficient, with an increase of 0.3-0.5s per iteration for each method. This overhead mainly
stems from the additional modules introduced by DiDA, as illustrated in Algorithm 1. These include:
(1) the diffusion-based degradation encoder g′, used to handle intermediate degraded domains; (2)
the reconstruction head h′, which enforces semantic consistency via reconstruction and consistency
losses (LD, LR); (3) additional forward passes on degraded inputs for both source and target do-
mains. Despite this increase in resource usage, DiDA’s design is modular and parallelizable, and
the degradation-based learning can be seamlessly integrated with existing teacher–student frame-
works. We argue that the trade-off is justified, as the performance boosts brought by DiDA (up to
+3.7% mIoU) outweigh the moderate increase in training cost, especially in challenging real-world
adaptation scenarios like CS.→ACDC.

To further enhance the efficiency of our method, we additionally provide a memory-friendly variant,
denoted as DiDA (gtime). As shown in row 6 of Table 2, this version avoids the explicit use of the
diffusion encoder, and instead implicitly models the t-specific semantic shift through a lightweight
time embedding. Despite its simplified design, DiDA (gtime) still achieves a comparable performance
gain when compared to the full version (row 6 vs. row 7). By eliminating the diffusion encoder,
DiDA (gtime) significantly reduces GPU memory consumption—saving up to 15–20% compared
to the full version—while also slightly accelerating the training process. This makes it a practical
trade-off option for scenarios with limited hardware resources.

Furthermore, DiDA is only applied during the training phase. No architectural modifications or
additional computations are introduced at inference time, ensuring that the inference speed and
resource consumption remain identical to the baseline models.

Table 6: Computational resource requirements comparison
Methods GPU Memory (MB) Time per iter (s) Total Time (h)

DAFormer [38] 9,807 1.32 14.5 (40K iters)
+DiDA (gtime) 12754 1.59 17.8 (40K iters)

+DiDA 15856 1.64 18.5 (40K iters)
HRDA [39] 22325 2.11 23.5 (40K iters)

+DiDA (gtime) 16727×2 2.58 28.7 (40K iters)
+DiDA 19337×2 2.64 29.4 (40K iters)

MIC [40] 22370 2.60 28.9 (40K iters)
+DiDA (gtime) 16813 ×2 3.03 33.7 (40K iters)

+DiDA 19343 ×2 3.13 34.8 (40K iters)

F Influence of Parameter Settings

In this section, we further study the influence of parameter settings introduced in DiDA, i.e., DIC
loss weight λD, reconstruction loss weight λR, and diffusion steps T . All experiments are conducted
with DAFormer [38] on GTA→CS.

DIC Loss Weight λD. We first study the weight of the DIC loss λD in Tab. 7. The weight for the DIC
loss is sensitive to the UDA performance. Reducing the weight progressively diminishes performance
until no DIC is used. A larger weight also results in decreased performance. If the weight is too large,
such as λD = 5, it can lead to a significant decline in performance due to excessive disturbance.

Reconstruction Loss Weight λR. The weight of the reconstruction loss is also studied in a similar
way (see Tab. 8). Based on the analysis above, we can draw a similar conclusion, with the difference
being that this loss item has a slightly diminished impact compared to the previous one. The results
demonstrate that values ranging from 1 to 10 consistently yield good UDA performance, providing a
reasonably wide range for selecting robust hyperparameters.

Diffusion Steps T . We also study the value selection of diffusion steps T (see Tab. 9). Notice that
too large a value, like T = 1000, does not result in optimal performance, which is the default setting
for DDPM [37] to facilitate high-quality generation. In the UDA setting, the number of iterations
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and batch size is far less than the requirement to train the generative model. Therefore, we make
adjustments to reduce the diffusion steps T , ensuring they are more suitable for this task. In our
experiments, a value around 100 can achieve consistently good performance.

Table 7: Parameter study of loss weight λD.

Weight λD 0 0.1 0.25 0.5 1 5
mIou 67.9 69.6 70.1 70.3 69.8 64.1

Table 8: Parameter study of loss weight λR.

Weight λR 0 1 2.5 5 10 50
mIou 69.5 70.0 70.0 70.3 70.2 67.7

Table 9: Parameter study of diffusion steps T .

Diffusion Steps T 10 50 100 200 1000
mIou 69.3 70.2 70.3 70.0 70.1

Table 10: Different strategies of time schedule.

Time Schedule linear cosine sigmoid
mIou 69.8 70.2 70.3

Table 11: Results on GTA.→CS built with ex-
tended versions.

Method base B M
DAFormer [38] 68.3 70.0 69.8

HRDA [39] 73.8 75.3 74.9
MIC [40] 75.9 76.7 76.6

Table 12: Results on SYN.→CS built with ex-
tended versions.

Method base B M
DAFormer [38] 60.9 63.1 62.6

HRDA [39] 65.8 68.0 67.7
MIC [40] 67.3 68.7 68.2

G Influence of Time Schedule

We study different choices of time schedules for βt, namely, linear [37], cosine [65], and sigmoid
[44], with the same setting as Sec. F. The results are summarized in Tab. 10. Although selecting the
appropriate schedule is significant for generating high-quality images in the diffusion model, it is
robust in DiDA, and we can achieve consistently good performance among these strategies.

H Degradation-Based Domain Bridging

To further investigate the feasibility of our proposed motivation and provide deeper insight into
the domain bridging mechanism, we conduct a quantitative analysis of the distribution discrepancy
between domains. Specifically, we train models independently within different distribution spaces
and evaluate their performance in terms of mIoU under both fully supervised and UDA settings, as
shown in Fig. 7(a).

To better assess the degree of domain adaptation, we further report the relative performance in
Fig. 7(b), defined as the ratio of UDA mIoU to the fully supervised counterpart at each degradation
level. As the level of image degradation increases, we observe a gradual improvement in the relative
performance, suggesting that the adaptation capability is enhanced. This indicates that domain-shared
information is better preserved in the intermediate domains constructed via degradation.

However, image degradation inevitably destroys fine-grained visual details, which may include
essential semantic cues. As a result, the semantic shift problem arises, where the corrupted features
impair the discriminative power of the model and hinder further performance gains in UDA.

Our proposed DiDA framework addresses this issue by explicitly disentangling and compensating for
the semantic shift through a diffusion-based encoder and reconstruction loss. This design enables the
network to retain domain-invariant representations while mitigating the adverse effects of degradation,
thereby achieving consistently better adaptation performance.

I More Results with Extended Versions

We further conduct more experiments about Blur (B) and Mask (M) built with DAFormer [38] and
HRDA [39] and evaluate the performance on two benchmarks as shown in Tab. 11 and Tab. 12.
These extended versions show consistent gains beyond all baselines, which further demonstrates the
generality and expansibility of our framework.
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Figure 7: (a) The absolute performance of fully supervised learning and UDA settings (source-only,
DAFormer [38] and DiDA) when the proportion of noise increases. Note that we train the models
separately within different intermediate domains for the first three methods, while DiDA is trained
only once and tested within different distributions. (b) Compared to oracle, the relative performance
of UDA settings gradually improves, which means that the model’s adaptability is strengthened in
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Figure 8: Qualitative comparison built with DAFormer and MIC. The dotted boxes mark regions
improved by DiDA.

J Qualitative Results

In Fig. 8, we illustrate the qualitative comparisons of our DiDA against DAFormer and MIC. The
previous methods fail to identify some classes on the target domain when their visual textures are
significantly different from the source domain and confuse them with other visually similar classes
(e.g., sidewalk and road, fence and building, terrain and vegetation). In this case, DiDA makes the
model recognize semantic categories more dependent on context information, resulting in improved
cross-domain performance.

K Visualization of Reconstruction Results

We visualize examples of reconstruction results in Fig. 9 with t = 25, 50, 75 in the time embedding
module. The model can yield the best reconstruction results for degraded images with the corre-
sponding t value. A fixed value of t leads to inadequate denoising for higher levels of degradation
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Figure 9: The examples of image reconstruction results with fixed diffusion time t = 25, 50, 75 as
input in the time embedding module, where the image is degraded by 25, 50, and 75, respectively.
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Figure 10: Examples of image denoising, horizontal coordinate represents the level of image degrada-
tion, and vertical coordinate indicates the t used in the inference.

and excessive denoising for lower levels of degradation, meaning that degradation information is
accurately encoded in the time embedding. This further alleviates the semantic shift phenomenon
and facilitates adaptive learning from the disturbed image.

L More Examples for Image Reconstruction

In this section, we give further details, analysis, and examples of image reconstruction. For different
versions of the implementation of DiDA, we execute the inference with different diffusion times t on
varying levels of image degradation for qualitative analysis.

Image Denoising This is the default setting of DiDA, the noise ϵ′ is predicted by network f̄θ firstly
and used to reconstruct the image as:

xR
0 =

1√
ᾱt

(xt −
√
1− ᾱtϵ

′
i). (14)

The examples are shown in Fig. 10. The noised images can be restored most perfectly when the
diffusion time t matches the level of degradation. We can observe that the higher value of t has a
more powerful anti-noise ability, which is consistent with our experimental results previously stated.
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Figure 11: Examples of image deblurring, horizontal coordinate represents the level of image
degradation, and vertical coordinate indicates the t used in the inference.
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Figure 12: Examples of image inpainting, horizontal coordinate represents the level of image
degradation, and vertical coordinate indicates the t used in the inference.
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Image Deblurring. In the following two settings, the reconstructed image is directly predicted by f̄θ.
Fig. 11 shows examples of image deblurring. We can draw a similar conclusion that the matched t
achieves the best performance as above. The higher t results in excessive deblurring operation while
the structure and edge information of the image are preserved, leading to more robust performance.

Image Inpainting. Fig. 12 shows examples of image inpainting. Unlike the former, when the variable
t changes in the inference, the reconstruction quality for the masked image does not vary significantly.
Since the mask operation is operated in a global view to control the ratio while the previous degrading
operation is executed locally, it is difficult for the network to sense the level of degradation in this case.
Therefore, DiDA achieves slighter performance gains with the implementation of mask operation.

M More Discussion with Domain Bridging

Directly transferring knowledge from the source domain to the target domain can be challenging
due to significant discrepancies and pixel-wise gaps between the domains. To address this issue,
some works propose gradually transferring knowledge by building a bridge between the source and
target domains. This is achieved by constructing intermediate domains at the image level [64, 92, 94],
feature level [22, 23, 58], or output level [41, 98]. One line of work utilizes style transfer techniques
[16, 19, 30] to transfer the style of source data to target data, effectively creating intermediate domains.
Another approach leverages data mix augmentation techniques [82, 102, 7], such as CutMix [96] and
Mixup [97], to construct various intermediate domains. While these methods can effectively reduce
the domain gap and facilitate the adapting ability of models, they have certain limitations. Style
transfer-based methods are often dataset-specific and may generate unexpected artifacts, while data
mix strategies can disrupt the contextual distribution of images and require intricate designs. Both
approaches lack generalization ability and face the semantic shift problem, where the intermediate
domains may not preserve the semantic information of the original domains. These limitations restrict
their applicability in different scenarios. In contrast, our work aims to explore a universal and concise
domain bridging strategy that can be easily integrated into existing UDA frameworks while explicitly
compensating for the discriminative representations. By constructing intermediate domains through a
diffusion forward process, we propose a dataset-agnostic approach that alleviates the semantic shift
problem and enhances the generalization ability of the model.

N Limitation and Societal Impact

Our work presents a general and modular approach for domain adaptive semantic segmentation. While
our method demonstrates consistent improvements across multiple UDA baselines and datasets, it still
presents a few limitations. First, DiDA introduces moderate computational overhead during training
due to additional modules such as the degradation encoder and reconstruction losses. Although we
provide a memory-friendly variant, further optimization is needed for extremely resource-constrained
environments. Second, the choice and combination of degradation operations are currently heuris-
tic and manually designed; automating or learning this selection process could further enhance
performance and generality.

This work focuses on domain adaptive semantic segmentation, a key area in computer vision with
broad applicability in domains such as autonomous driving, medical imaging, and remote sensing.
At present, we are not aware of any direct negative societal impacts associated with the proposed
method.
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