

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ROBOALIGN: REINFORCEMENT LEARNING FOR ACTION-ALIGNED MULTIMODAL LARGE LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 In recent years, state-of-the-art vision–language–action models (VLAs) have been
014 built upon pre-trained multimodal large language models (MLLMs). However,
015 how to systematically train MLLMs to improve VLA performance remains an
016 open problem. While prior approaches primarily focus on strengthening embodied
017 reasoning via linguistic actions, the modality gap limits the transferability of
018 language-based knowledge to non-linguistic low-level actions produced by VLAs.
019 To address this problem, we propose a novel framework ROBOALIGN that aligns
020 MLLM representations with low-level actions, thereby producing MLLMs well-
021 suited for VLA. Specifically, we achieve action alignment through reinforcement
022 learning, where the model generates action tokens via zero-shot reasoning in natural
023 language. To validate the effectiveness of ROBOALIGN, we train VLAs by adding
024 a diffusion-based action head on top of an MLLM backbone and evaluate them on
025 major robotics benchmarks. Specifically, training base MLLMs with ROBOALIGN
026 improves the performance on robotic tasks by 17.5%, 18.9%, and 106.6% on
027 LIBERO, CALVIN, and real-world robotic environments, respectively. Moreover,
028 ROBOALIGN outperforms models aligned only with language-described actions
029 or with supervised fine-tuning based approaches such as ECoT, demonstrating its
030 effectiveness and broad applicability.

031 1 INTRODUCTION

032 Vision–language–action models (VLAs) have recently demonstrated remarkable success in robotics
033 ([Brohan et al., 2022; 2023; Driess et al., 2023](#)). By integrating the visual perception, language
034 understanding, and common-sense knowledge of multimodal large language models (MLLMs),
035 VLAs provide a foundation for training generalizable robotic policies in real-world scenarios ([Yang
036 et al., 2023; Huang et al., 2022b; Tellez et al., 2020; Huang et al., 2022a; Hu et al., 2023](#)). Specifically,
037 policies are obtained either through discrete action token predictions by MLLMs ([Kim et al., 2024;
038 Pertsch et al., 2025; Kim et al., 2025b](#)) or through continuous action prediction by external action
039 experts that operate on latent states of MLLMs ([Black et al., 2024; Bjorck et al., 2025; Team et al.,
040 2024](#)). This approach allows leveraging the extensive pretrained knowledge within MLLMs, enabling
041 the development of generalizable policies even with a limited amount of robotics data.

042 However, the performance and generalization of VLAs are often limited by the underlying MLLMs,
043 which struggle with key embodied tasks required for action generation, such as spatial reasoning
044 ([Tong et al., 2024; Zhou et al., 2025; Cheng et al., 2024](#)) and temporal reasoning ([Ahn et al., 2022;
045 Sermanet et al., 2024](#)). To address this limitation, researchers have developed various embodied
046 question-answering tasks designed to improve reasoning skills for robotic manipulation. These
047 include tasks such as answering high-level action questions ([Chen et al., 2025; Lynch et al., 2023](#)),
048 responding to spatial questions about object relationships ([Chen et al., 2024a; Xu et al., 2025](#)),
049 grounding points or bounding boxes in images to identify affordance-related locations ([Yuan et al.,
050 2024; Song et al., 2025a](#)), and predicting future visual trajectories of end-effectors ([Ji et al., 2025;
051 Yuan et al., 2025a](#)). While these tasks have been primarily addressed through supervised fine-tuning
052 (SFT), recent approaches have applied reinforcement learning (RL) schemes (*e.g.*, DeepSeek-R1; [Guo
053 et al. 2025](#)) to encourage reasoning, leading to significant improvements in performance ([Azzolini
et al., 2025; Kim et al., 2025a; Song et al., 2025b; Huang et al., 2025a](#)).

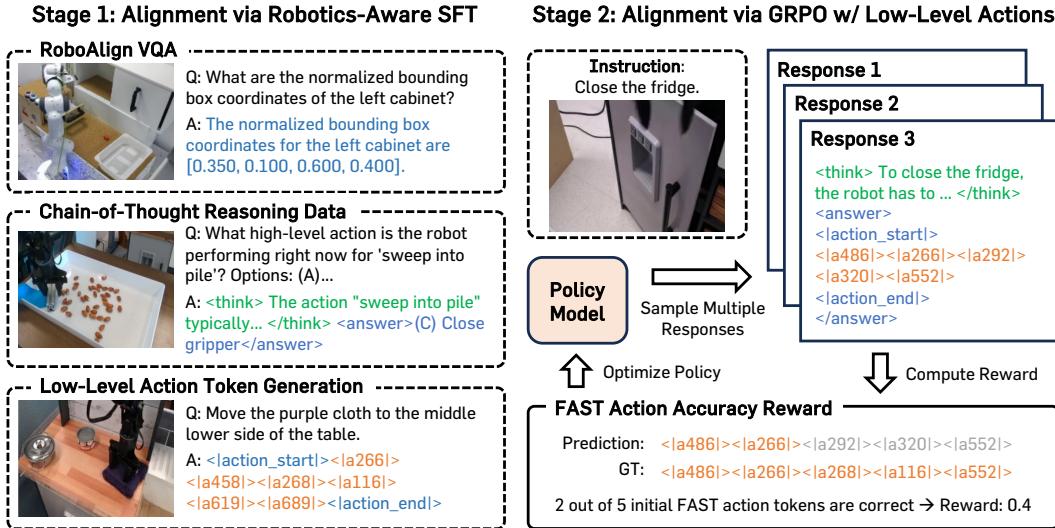


Figure 1: **Overview of ROBOALIGN framework.** ROBOALIGN directly aligns MLLM representations with low-level action generation using reasoning-incentivized reinforcement learning (Guo et al., 2025). The framework consists of two stages: (i) Stage 1 integrates embodied reasoning, zero-shot reasoning, and FAST-tokenized low-level action generation via supervised fine-tuning, and (ii) Stage 2 optimizes responses through reinforcement learning to improve token-level action accuracy and better alignment. The resulting model serves as an MLLM tailored for effective VLA training.

Despite recent successes in enhancing the embodied reasoning of MLLMs, *it remains unclear whether these improvements directly translate into improved low-level action generation in VLAs*, since language and low-level action modalities are inherently different and not naturally aligned. Moreover, such training is typically conducted through SFT, but it increases the risk of catastrophic forgetting (Chu et al., 2025), potentially weakening other capabilities of MLLMs essential for policy generation by VLAs. Motivated by this concern, we conducted experiments by training VLAs on top of open-source MLLMs specialized in embodied reasoning. Our experiments show that these specialized models indeed yield limited performance gains compared to the VLA model built upon the original, non-fine-tuned MLLM (see Figure 2).

Contribution. To address these limitations, we identify the necessity of aligning MLLMs directly using non-linguistic low-level actions. Motivated by this insight, we introduce ROBOALIGN, a training framework designed to directly align MLLM representations with low-level action generation, while coupling embodied reasoning capabilities with low-level actions.

The key idea of ROBOALIGN is an RL-based fine-tuning process that trains the MLLM to generate low-level action tokens as the direct output of embodied reasoning. This allows the model to explore diverse embodied reasoning trajectories obtained through sampling and strengthens the coupling between reasoning and action generation, resulting in strong alignment between MLLM’s internal knowledge and low-level actions. Moreover, this RL-based alignment reduces the risk of catastrophic forgetting compared to SFT, which is advantageous for preserving its general-purpose knowledge. Specifically, our method first fine-tunes the MLLM with SFT to enable the model to generate low-level actions through zero-shot reasoning, and then optimizes the model to further refine this reasoning process using GRPO (Shao et al., 2024) to maximize the action-accuracy reward.

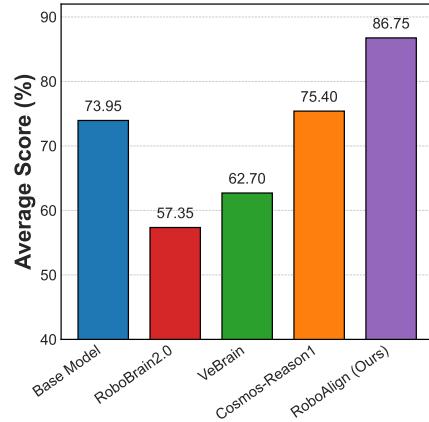


Figure 2: **Performance on LIBERO.** VLAs built upon MLLMs specialized for embodied reasoning (fine-tuned variants of Qwen2.5-VL-7B-Ins) fail to significantly improve performance and often degrade it compared to the baseline VLA based on the original model. In contrast, ROBOALIGN achieves significant gains, as detailed in Section 5.

To evaluate the effectiveness of ROBOALIGN, we train MLLMs with our framework and test the performance on a suite of robotic benchmarks, including simulation environments such as LIBERO (Liu et al., 2023) and CALVIN (Mees et al., 2022), as well as real-world robot settings. Specifically, we attach a diffusion-based action head to the frozen MLLM backbone and fine-tune it to generate low-level actions. Our experiments show that models trained with ROBOALIGN achieve substantial performance gains over the baseline models, with relative improvements of 17.5% on LIBERO, 18.9% on CALVIN, and 106.6% in the real-world setup. Moreover, we find that our approach is more effective than other alignment approaches such as high-level action prediction (13.1% v.s. 17.5%) or point trajectory prediction (15.2% v.s. 17.5%) on the LIBERO benchmark, respectively.

Furthermore, to examine if ROBOALIGN also improves embodied reasoning capabilities of MLLMs, we evaluated ROBOALIGN on a diverse set of benchmarks for general image understanding (Chen et al., 2024b), spatial reasoning (Song et al., 2025a; Yuan et al., 2024; Fu et al., 2024), and embodied reasoning for robotics (Kim et al., 2025a). On the embodied reasoning tasks, ROBOALIGN achieve state-of-the-art performance on embodied reasoning tasks, outperforming not only commercial general-purpose models such as GPT-4o (OpenAI, 2024), but also specialized embodied MLLMs, such as RoboBrain2.0 (Team et al., 2025). Notably, this is accomplished while preserving the model’s performance on general image understanding. This result shows that our RL-based alignment enhances the general capabilities of MLLMs, in contrast to SFT-based alignment methods such as ECoT (Zawalski et al., 2024), which often degrades performance on these embodied tasks.

2 RELATED WORK

Multimodal large language models for robot control. Efforts to leverage the visual processing capabilities, commonsense, and world knowledge of multimodal large language models (MLLMs) for robot policy decision have shown consistent success. In particular, MLLMs have demonstrated strong performance in high-level action planning. Concretely, prior work has explored generating predefined atomic action skills to directly control robots (Liang et al., 2023; Tellex et al., 2020; Luo et al., 2025), or producing high-level actions and plans that condition subsequent low-level actions (Driess et al., 2023; Yang et al., 2023; Huang et al., 2022b;a; Hu et al., 2023). These approaches have been further extended toward more precise action generation, either by enabling MLLMs to produce policies in an end-to-end manner (Kim et al., 2024; Pertsch et al., 2025; Kim et al., 2025b) or by training action experts that consume latent states instead of language outputs (Team et al., 2024; Li et al., 2023; Shentu et al., 2024; Black et al., 2024; Bjorck et al., 2025; GEAR, 2025). We investigate how to better align MLLMs with low-level actions to enhance such robot control performance.

Multimodal large language model for embodied reasoning. With the increasing application of MLLMs to embodied environments such as robot manipulation, their capabilities for tasks requiring spatial and temporal reasoning have been enhanced. For spatial reasoning, prior work has enhanced 3D scene understanding by leveraging VQA data to train models that convert information from 2D and 3D vision inputs (Chen et al., 2024a; Ray et al., 2024; Zhou et al., 2025; Wu et al., 2025). To further improve performance in specific robotic tasks, some approaches have trained models to predict bounding boxes or points associated with affordances and manipulation-relevant spatial cues (Yuan et al., 2024; Song et al., 2025a; Lu et al., 2023; Ji et al., 2025). For temporal reasoning, researchers have extracted high-level actions (Chen et al., 2025; Lynch et al., 2023; Chen et al., 2025; Huang et al., 2024; Chen et al., 2023), 2D point trajectories of object movement from egocentric videos of humans or robots to construct VQA (Huang et al., 2025a; Yang et al., 2025; Ranasinghe et al., 2024; Zheng et al., 2024; Lee et al., 2025). Nevertheless, these approaches only contribute indirectly to low-level action prediction.

Encouraging reasoning through reinforcement learning. Chain-of-Thought (CoT) prompting (Wang et al., 2022; Yao et al., 2023; Kim et al., 2023; Wei et al., 2022) has been widely applied to both LLMs and MLLMs in zero-shot, few-shot, and supervised fine-tuning (SFT) settings (Muenighoff et al., 2025), effectively improving answer quality. Recently, DeepSeek-R1 (Guo et al., 2025) proposed a training approach specialized for CoT, in which reasoning is explicitly enforced during the response process, and the entire reasoning trace is optimized using the reinforcement learning algorithm with rewards derived from the final answer. This training paradigm has demonstrated that, compared to SFT, models can achieve stronger performance and generalization across diverse domains, including mathematics (Zeng et al., 2025; Yu et al., 2025), agents (Lu et al., 2025; Jin et al.,

162 2025), visions (Shen et al., 2025; Huang et al., 2025b;b), and embodied reasoning (Kim et al., 2025a;
 163 Song et al., 2025b; Huang et al., 2025a; Yuan et al., 2025a;b), while requiring significantly less data,
 164 in some cases even a single example (Wang et al., 2025). In this work, we introduce a reinforcement
 165 learning scheme based on low-level action prediction, aligning the MLLM’s representations more
 166 directly with robot control.

168 3 PRELIMINARIES

170 **FAST action tokenization.** We adopt FAST tokenization (Pertsch et al., 2025) to integrate low-level
 171 actions into MLLMs, as it has been shown to be effective not only for end-to-end policy learning but
 172 also for representation learning (Black et al., 2025; Driess et al., 2025). Our action is defined as a
 173 D -dimensional vector representing the end-effector’s state, which consists of its Cartesian position
 174 (x, y, z), orientation (roll, pitch, yaw), and gripper state (Open/Close). An action sequence over a
 175 horizon of H timesteps forms a chunk, $\mathbf{a}_{1:H} = [[a_{1,1}, a_{1,2}, \dots, a_{1,D}], \dots, [a_{H,1}, a_{H,2}, \dots, a_{H,D}]]$.
 176 To improve compactness, FAST tokenization transforms the action chunk $\mathbf{a}_{1:H}$ into the frequency
 177 domain using a discrete cosine transform (DCT; Ahmed et al. 2006). The resulting DCT coefficients
 178 are quantized and flattened into a sequence. This sequence is then compressed into discrete tokens
 179 using byte-pair encoding (BPE; Gage 1994), resulting in $T_k = \text{FAST}(\mathbf{a}_{1:H})$, where each token is
 180 mapped to one of $2K$ special tokens added to the MLLM’s vocabulary for training and generation.

181 **Encouraging reasoning with GRPO.** To encourage explicit reasoning, we train the model to
 182 generate intermediate thoughts enclosed within `<think>...</think>` before producing a final
 183 answer. Training is conducted with Group Relative Policy Optimization (GRPO; Shao et al. 2024),
 184 where the policy is optimized jointly for format correctness and answer accuracy. Specifically,
 185 let the current policy be denoted as $\pi_{\theta_{\text{old}}}$. For a given query $q \sim P(Q)$, we sample G responses
 186 $[o_1, \dots, o_G] \sim \pi_{\theta_{\text{old}}}(q)$. Each response is evaluated by a pre-defined reward model $R(q, o_i)$, which
 187 assigns a reward r_i based on format and answer accuracy. We then compute an advantage by
 188 normalizing the reward using the standard deviation, $A_i = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})}$. GRPO optimizes the policy
 189 by maximizing these advantages while applying a KL penalty against a reference policy:

$$\begin{aligned} \mathbb{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\right. \\ \left. \frac{1}{G} \sum_{i=1}^G \min \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)} A_i, \text{clip} \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right], \end{aligned} \quad (1)$$

196 where ε and β are hyperparameters for clipping and KL penalty.

198 4 ROBOALIGN: ALIGN EMBODIED REASONING WITH LOW-LEVEL ACTIONS

201 In this section, we introduce ROBOALIGN, a training framework that directly aligns multi-modal
 202 large language models (MLLMs) with low-level actions through reinforcement learning (RL). While
 203 doing so, ROBOALIGN is designed to preserve the general capabilities of MLLMs and simultaneously
 204 enhance embodied reasoning ability. A key challenge, however, is that off-the-shelf MLLMs
 205 cannot generate specialized low-level actions (e.g., FAST tokens) in a zero-shot manner, making RL
 206 inapplicable. To address this, we introduce a two-stage training pipeline. First, we apply supervised
 207 fine-tuning (SFT) to equip the model with the initial ability to predict FAST tokens through zero-shot
 208 reasoning, while preserving the general abilities of MLLMs and enhancing embodied reasoning.
 209 Second, building on this ability, we apply RL on this SFT model to further strengthen embodied
 210 reasoning and improve FAST token prediction accuracy. The overall process is illustrated in Figure 1.

211 4.1 STAGE 1: INTEGRATING LOW-LEVEL ACTION WITH MLLM USING SFT

213 The primary objective of this SFT stage is to equip the MLLM with the ability to generate FAST
 214 action tokens, which is a prerequisite for the subsequent RL stage, while simultaneously preserving
 215 its general vision-language capabilities and enhancing its embodied reasoning skills. To achieve this,
 we curate a data mixture from four sources: (i) a variety of open-source SFT datasets for embodied

216
 217 **Table 1: Example of the ROBOALIGN response.** Incorporating reasoning data during SFT effectively
 218 transfers zero-shot reasoning ability to FAST token generation process. Without such data, the model
 219 produces only minimal reasoning which reduces the diversity of reasoning samples and hinders RL.

220 **Question:** Your current task is ‘pick up cup from the table’. Output the robot’s actions
 221 to perform this task through Fast tokens.

222 **Model Answer (Trained w/ reasoning datasets):** <think>To pick up the cup
 223 from the table, the robot needs to move its gripper towards the cup, position it
 224 correctly, close the gripper to secure the cup, and then lift it up. Given the cur-
 225 rent state of the gripper being open and positioned above the cup, the immedi-
 226 ate next action would be to move down towards the cup to prepare for grasp-
 227 ing.</think><answer><action_start><action_266><action_299> ...

228 **Model Answer (Trained w/o reasoning datasets):** <think>Go to the cup.</think>
 229 <answer><action_start><action_266><action_299>...

231
 232
 233 reasoning and general understanding, (ii) our custom ROBOALIGN VQA dataset for robotic embodied
 234 reasoning, (iii) specialized reasoning datasets designed to improve zero-shot reasoning of MLLMs,
 235 and (iv) robotic dataset with FAST tokens. We describe the process for building our custom datasets
 236 in this section, with full details for all data sources and configurations available in Appendix A.

237 **ROBOALIGN VQA.** While existing VQA datasets are useful for general embodied reasoning, high-
 238 quality VQA specifically grounded in robotic information remains limited. For example, datasets
 239 such as ShareRobot (Ji et al., 2025) and RoboVQA (Sermanet et al., 2024) use robot imagery but
 240 focus on high-level QA tasks, lacking the fine-grained, spatial-temporal information needed for
 241 low-level control. To address this gap, we develop a data generation pipeline that feeds robot images
 242 and associated metadata, *e.g.*, bounding boxes, end-effector states, and both high and low-level
 243 actions, into a powerful large model, *i.e.*, gemini-2.5 pro (Hassabis et al., 2025). The model
 244 then automatically generates a diverse set of high-quality VQA, captioning, and grounding QA pairs.

245 **Reasoning dataset with zero-shot CoT.** To preserve the MLLM’s zero-shot reasoning ability during
 246 SFT and transfer it to the action generation process, we incorporate a specialized reasoning dataset
 247 into our training mixture. This dataset is created by distilling outputs from a reasoning model that is
 248 trained with GRPO to generate step-by-step reasoning. Specifically, we first train the reasoning model
 249 on spatial and robot-related embodied MCQAs for distillation, following Kim et al. (2025a). From
 250 this model, for a given prompt, we sample multiple reasoning outputs. These outputs are then filtered
 251 using a combination of rule-based rewards and correctness checks. Table 1 shows that including this
 252 specialized reasoning data during SFT enables the effective transfer of reasoning ability to FAST
 253 token generation, while the absence of such data results in limited zero-shot reasoning.

254 **FAST token generation dataset.** To enable FAST token prediction, we first extend the MLLM’s
 255 vocabulary by adding two special marker tokens <ACTION_START>, <ACTION_END> and 2K
 256 FAST tokens. The training data is then constructed from the BridgeV2 dataset (Walke et al., 2023)
 257 in a QA format. Each sample pairs a robot image with a fixed instruction, where the ground-truth
 258 answer is the corresponding sequence of FAST tokens.

259 The resulting data mixture, consisting of our custom and open-source datasets, is used to fine-tune
 260 the MLLM with SFT, providing a strong foundation for subsequent RL training stage.

261 262 4.2 STAGE 2: ALIGNING EMBODIED REASONING WITH LOW-LEVEL ACTION USING RL

263 In the second stage, we use RL to directly align the MLLM with low-level actions, *i.e.*, FAST
 264 tokens, further refining the model to be better suitable for VLA adaptation. Specifically, we optimize
 265 the model’s embodied reasoning process to directly improve the accuracy of FAST action token
 266 generation. To create the data for this stage, we adapt the FAST token dataset from Stage 1. In
 267 particular, each sample’s input instruction is augmented with a prompt that requires explicit reasoning
 268 within <think>...</think> tags before producing the FAST token sequence.

We define the reward as the arithmetic mean of two components: a format reward $r_f \in \{0, 1\}$ indicating whether the output correctly adheres to the required reasoning format, and an accuracy reward $r_a \in [0, 1]$ measuring FAST token prediction accuracy. In particular, the accuracy reward r_a is computed by measuring the prefix similarity between the generated action token sequence $T_{1:n}^{\text{gen}}$ and the target sequence $T_{1:m}^{\text{target}}$, normalized by the target length:

$$r_a = \frac{1}{m} \max\{i \in \{1, \dots, m\} : T_{1:i}^{\text{gen}} = T_{1:i}^{\text{target}}\}. \quad (2)$$

The final reward is given by $r = (r_f + r_a)/2$. This formulation encourages the model to generate both correctly formatted and accurate FAST token sequences. Building on the constructed training dataset and reward function, we then apply GRPO (Shao et al., 2024) to further optimize the MLLM.

5 EXPERIMENT

In this section, we design experiments to answer the following research questions:

- o Does training with ROBOALIGN improve both MLLMs and the VLAs built upon them?
- o Is aligning with low-level actions more effective than alternative alignment methods?
- o Is RL-based alignment in ROBOALIGN more effective than SFT-based alignment?

5.1 EXPERIMENTAL SETUP

Training data. For supervised fine-tuning (SFT), we prepare a diverse set of datasets covering both general MLLM capability and Fast token prediction. In total, 1.88M samples are used for MLLM-related tasks. For FAST token prediction, we use the subset of BridgeV2 (Walke et al., 2023) dataset (400K samples), yielding 2.28M samples overall. For reinforcement learning (RL), we further use a 12.8K subset of the BridgeV2 FAST token prediction data. More details are provided in Appendix A.

Baseline models. To validate the effectiveness of ROBOALIGN, we prepare two baselines: (i) a model trained only on MLLM data and (ii) a model trained only on FAST token prediction using the full BridgeV2 dataset (1.88M samples). Both are trained for one epoch following the same SFT train schema as in ROBOALIGN.

Benchmarks. We evaluate VLA performance in LIBERO (Liu et al., 2023) and CALVIN (Mees et al., 2022) (see Figure 3 for the examples).

- **LIBERO:** This benchmark uses a Franka Panda Arm to perform manipulation tasks grouped into four categories: spatial, object, goal, and long-horizon. Each category consists of 10 tasks. Training uses the provided dataset covering all tasks, and evaluation runs 50 trials per task (500 trials per category).
- **CALVIN:** This benchmark also employs a Franka Panda Arm and consists of 34 distinct tasks. Training uses data collected from environments A, B, and C for 100K steps, after which zero-shot evaluation is performed in a novel environment D. Performance is measured by the success rate of executing five consecutive instruction chains, with a total of 1,000 chains evaluated.

Implementation details. We train our models based on Qwen2.5VL-7B-Ins (Bai et al., 2025). For SFT, we follow the official Qwen2.5VL training repository. The vision encoder is frozen, and we use a cosine scheduler with a learning rate of 2×10^{-5} , a warmup ratio of 0.03 and training for 1 epoch. For RL, we use the EasyR1 repository¹, training all parameters from scratch with a rollout batch size of 512, update batch size of 128, and 5 samples per prompt. We apply a constant learning rate of 1×10^{-6} and train for one epoch. For VLA experiments, we adapt diffusion-based action head on

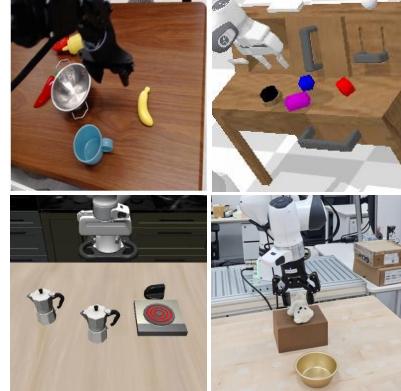


Figure 3: Examples of Observations. Visual inputs for training and evaluation (clockwise from top left): BridgeV2 for FAST token training, CALVIN, real-robot, and LIBERO benchmark.

¹<https://github.com/hiyouga/EasyR1>

Table 2: **LIBERO** success rates (%) for VLAs built upon MLLMs that were fine-tuned with various methods, evaluated over 500 trials per category. Each model is evaluated by training a newly-initialized, diffusion-based action head on the **LIBERO** dataset while the MLLM backbone remains frozen. **ROBOALIGN** shows particularly large improvements in the Long and Goal categories compared to other training methods.

Method	Spatial	Object	Goal	Long	Avg.
Qwen2.5VL-7B-Ins (Bai et al., 2025)	95.2	95.0	42.4	63.2	73.9
w/ Language-Only SFT	91.0	94.4	67.8	65.0	79.6
w/ Action-Only SFT	89.8	95.8	82.8	57.6	81.5
w/ ROBOALIGN (SFT)	92.8	97.4	59.0	65.6	78.7
w/ ROBOALIGN (SFT + RL)	93.8	96.0	87.2	70.0	86.8

Table 3: **CALVIN ABC**→**D** success rates (%) for VLAs built upon MLLMs that were fine-tuned with various methods, evaluated over 1000 trials. Each model is evaluated by training a newly-initialized, diffusion-based action head on the CALVIN dataset while the MLLM backbone remains frozen. While all baselines show drops in task completions of length 4 and 5, ROBOALIGN consistently improves performance across all sequence.

Method	Task completed in a row (%) ↑					Succ. Len. (Avg)
	1	2	3	4	5	
Qwen2.5VL-7B-Ins (Bai et al., 2025)	77.8	55.0	38.6	26.6	18.1	2.16
w/ Language-Only SFT	87.4	62.2	41.9	25.2	15.3	<u>2.32</u>
w/ Action-Only SFT	66.1	34.7	15.3	7.1	3.2	1.26
w/ ROBOALIGN (SFT)	74.6	49.6	31.5	21.2	12.2	1.89
w/ ROBOALIGN (SFT+RL)	87.6	67.2	47.1	32.8	22.2	2.57

top of an MLLM backbone and train newly-initialized diffusion-based action head on robot datasets while keeping the MLLM backbone frozen. Action experts are newly trained for each benchmark environment with a batch size of 32. Training steps are set to 60K for LIBERO, 100K for CALVIN (see detail in Appendix A)

5.2 MAIN RESULTS

As shown in Tables 2, 3, MLLMs trained with ROBOALIGN, which combines SFT and RL, achieve the highest performance across all simulations. The SFT stage alone yields moderate improvements, suggesting that most of the performance gain comes from the RL stage. In particular, ROBOALIGN demonstrates a significant increase in success rates on long-horizon tasks, which are more intricate and complex than other types of tasks. For example, in CALVIN (Table 3), ROBOALIGN achieves the highest task completions of length-5 success rate (18.1% → 22.2%), whereas all other training methods show a decline performance in here. Similarly, in LIBERO (Table 2), the *Long* category improves to 70% with ROBOALIGN, compared to only ~2% gains from other methods.

Another notable finding is in the *Goal* category of LIBERO, which requires handling different instructions in the same environment. Here, ROBOALIGN improves performance dramatically from 42.4% to 87.2%. However, models trained only with MLLM data show limited improvements. Specifically, in CALVIN they achieve higher success in task completions of length-1 (77.8% \rightarrow 87.4%) but experience a drop in task completions of length-5 performance (18.1% \rightarrow 15.3%). Similarly, in LIBERO they improve in the *Goal* category (42.4% \rightarrow 67.8%) but yield only marginal gains in the *Long* category (63.2% \rightarrow 65.6%). These results indicate that embodied reasoning abilities learned

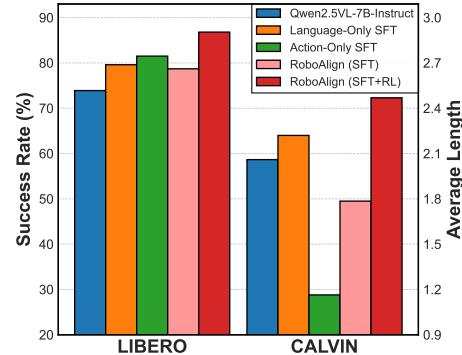


Figure 4: **Summary of VLA performance.** Comparison of VLA performance across different MLLM training methods on LIBERO and CALVIN. ROBOALIGN achieves the highest gains across all settings.

378
 379
 380
 381
 Table 4: **Real robot** success rates (%) for VLAs built upon MLLMs that were fine-tuned with various
 methods, evaluated over 96 trials per task. Each model is evaluated by training a newly-initialized,
 diffusion-based action head on the real-world robotic dataset while the MLLM backbone remains
 frozen. We find that ROBOALIGN is also effective in real-world settings.

Method/ stage	Box to bowl	Box to plate	Basket to bowl	Plate to basket	Avg.
Qwen2.5VL-7B-Ins (Bai et al., 2025)	16.7	70.8	20.8	20.8	32.3
w/ ROBOALIGN (SFT)	87.5	58.3	37.5	37.5	55.2
w/ ROBOALIGN (SFT+RL)	87.5	58.3	70.8	50.0	66.7

382
 383
 384
 385
 386
 Table 5: **Compatibility with different models.** We apply ROBOALIGN to a different MLLM
 387 backbone (Qwen3VL-8B-Ins) to validate its generalizability. We report success rates (%) on the
 388 LIBERO benchmark, averaged over 500 trials per category. ROBOALIGN consistently improves
 389 overall performance, with particularly significant gains in the Long category.

Method	Spatial	Object	Goal	Long	Avg.
Qwen3VL-8B-Ins (Team, 2025)	94.2	96.4	90.0	60.0	85.2
w/ ROBOALIGN (SFT)	96.2	97.4	93.3	71.0	89.5
w/ ROBOALIGN (SFT + RL)	95.6	99.6	95.2	78.6	92.5

391
 392
 393
 394
 395
 396
 397 through language can enhance performance on relatively simple tasks, but offer limited improve-
 398 ments on more complex and demanding tasks. When trained only with VLA data, we observe large
 399 in-domain gains, particularly in LIBERO’s *Goal* category (42.4% → 82.8). However, performance
 400 drops significantly on long-horizon tasks in both CALVIN and LIBERO. We hypothesize that while
 401 FAST token training strengthens alignment between instructions and low-level actions in-domain, it
 402 also induces forgetting of general MLLM capabilities, leading to reduced zero-shot generalization.

404 5.3 ABLATION STUDY AND ANALYSES

405
 406 **Real robot experiments.** To examine whether the improvements of ROBOALIGN on VLA per-
 407 formance extend beyond simulation to real-robot settings, we conduct experiments using a Franka
 408 Research 3 robot arm across four distinct pick-and-place tasks. Each task involves moving a different
 409 object (teddy bear, box, cup, sponge). Training is performed with 60 demonstrations per task, and
 410 evaluation consists of 24 trials per object, totaling 96 trials per task. The VLA setup follows the same
 411 configuration as in the main experiments, with each task trained for 30K steps. As shown in Table 4,
 412 ROBOALIGN consistently improves performance even in real-robot settings.

413 **Compatibility with different models.** To assess whether ROBOALIGN generalizes to other architec-
 414 tures, we conducted experiments using another MLLM backbone, Qwen3-VL-8B-Ins. For the MLLM
 415 training phase, we utilized 5K samples for RL, while maintaining all other training setup. After
 416 training, all models are converted into VLAs and evaluated on the LIBERO simulation environments.
 417 As shown in Table 5, we observed an overall performance increase, with particularly significant gains
 418 in the Long category. This trend is consistent with the results observed in Table 2. These results
 419 demonstrate that ROBOALIGN effectively generalizes across different MLLM architectures.

420 **Comparison with embodied alignment strategies.** To evaluate the effectiveness of aligning with
 421 low-level action by ROBOALIGN, we compare it with two commonly used embodied MLLM training
 422 tasks: (i) predicting high-level actions expressed in language descriptions and (ii) predicting 2D visual
 423 trajectories of the end effector. For a fair comparison, all models are trained with RL on the same
 424 BridgeV2 images as ROBOALIGN, encouraging embodied reasoning in both cases. For high-level
 425 action alignment, we convert movements such as “move right” or “move left” into multiple-choice
 426 QA format and provide rewards based on correctness (Kim et al., 2025a). For 2D visual trajectory
 427 prediction, we use data from ShareRobot and adopt the same reward formulation as ThinkAct (Huang
 428 et al., 2025a). Since ShareRobot contains only 6K samples, training is limited to this size. After
 429 training, all models are converted into VLAs and evaluated on the LIBERO simulation environments.
 430 As shown in Table 6, ROBOALIGN achieves the largest performance improvement. In contrast, the
 431 alternative methods show notable gains in the LIBERO *Goal* category but remain limited on long-
 432 horizon tasks. This trend is consistent with our main results in Section 5.3 and further demonstrates
 433 the advantage of direct alignment with low-level actions.

432 Table 6: **Impact of alignment strategies on VLA.** We compare different RL alignment strategies
 433 on the LIBERO benchmark, reporting success rates (%), evaluated over 500 trials per category. All
 434 experiments start from the same SFT model and use an identical RL setup, with only the alignment
 435 target varying between experiments. ROBOALIGN consistently improves performance and uniquely
 436 enhances long-horizon tasks, where other methods degrade.

Method	Spatial	Object	Goal	Long	Avg.
ROBOALIGN (SFT)	92.6	97.4	65.2	64.0	<u>79.1</u>
w/ Language-described high-level action alignment	91.6	94.6	90.0	58.2	83.6
w/ Robot 2d point trajectory forecasting alignment	92.4	95.6	87.8	64.6	85.1
w/ Low-level Action alignment (Ours)	93.8	96.0	87.2	70.0	86.8

442 Table 7: **Comparison with SFT-based alignment.** We compare our RL-based alignment against
 443 an SFT-based baseline that jointly trains reasoning and low-level actions using the ECoT (Zawalski
 444 et al., 2024) dataset. Both methods are fine-tuned from the ROBOALIGN SFT model and evaluated on
 445 the LIBERO benchmark, reporting success rates (%), evaluated over 500 trials per category. While
 446 the SFT-based baseline degrades performance, ROBOALIGN achieves significant improvements.
 447

Method	Spatial	Object	Goal	Long	Avg.
ROBOALIGN (SFT)	92.6	97.4	65.2	64.0	<u>79.1</u>
w/ SFT-based Alignment (ECoT)	84.6	90.8	49.6	45.6	67.7
w/ RL-based Alignment (Ours)	93.8	96.0	87.2	70.0	86.8

448
 449
 450
 451
 452
 453
 454 **Comparison with SFT-based alignment.** We further compare RL-based alignment in ROBOALIGN
 455 against SFT-based alignment. Specifically, we consider ECoT (Zawalski et al., 2024), which aligns
 456 reasoning and low-level actions through SFT. For this experiment, we use the ECoT dataset while
 457 keeping the action space in the form of FAST tokens. Both methods are trained on the same
 458 12.8K samples on top of the ROBOALIGN SFT model, with one epoch of SFT using identical
 459 hyperparameters. Then, the resulting models are converted into VLAs and evaluated on the LIBERO
 460 simulation environments. As shown in Table 7, the SFT-based approach even reduces performance
 461 compared to RL. We attribute this to the limited generalization of SFT, where knowledge aligned
 462 on BridgeV2 transfers poorly to LIBERO, as well as to forgetting effects introduced during SFT.
 463 Consistently, when evaluated on general MLLM benchmarks, the ECoT-trained model shows a
 464 degradation in performance, confirming the limitations of SFT-based alignment.

465
 466 **Performance on MLLM benchmarks.** To examine whether ROBOALIGN enhances embodied
 467 reasoning and generalist capabilities of MLLM, we evaluate performance across diverse MLLM
 468 benchmarks. We use MMStar (Chen et al., 2024b) for general VQA ability, Robospatial-Home (Song
 469 et al., 2025a), Where2Place (Yuan et al., 2024), and the depth components of BLINK (Fu et al., 2024)
 470 for spatial reasoning. For robot embodied reasoning, we use Robot-R1 Bench (Kim et al., 2025a),
 471 which provides detailed assessments of embodied reasoning abilities including planning, subtask
 472 decomposition, movement, and spatial reasoning, all based on BridgeV2. As shown in Table 8,
 473 ROBOALIGN outperforms specialized embodied reasoning models such as Cosmos-Reason1 (Azo-
 474 zolini et al., 2025), RoboBrain2.0 (Team et al., 2025), and VeBrain (Luo et al., 2025) across embodied
 475 reasoning tasks, while maintaining strong performance on general MLLM benchmarks. In contrast,
 476 Cosmos-Reason1 and RoboBrain2.0 show clear drops in general task performance. Furthermore,
 477 RL-based alignment with low-level actions does not reduce MLLM capability, but instead improves
 478 it. We attribute this to the alignment of embodied reasoning with low-level action generation, which
 479 simultaneously enhances both action accuracy and embodied reasoning performance.

6 CONCLUSION

480
 481 We proposed ROBOALIGN, a training framework for multimodal large language models (MLLMs)
 482 tailored to vision–language–action models (VLA) by directly aligning MLLM’s representations with
 483 low-level action policies. Our approach leverages reinforcement learning to improve low-level action
 484 prediction accuracy through embodied reasoning. We evaluated ROBOALIGN across diverse robotic
 485 environments and MLLM benchmarks, and demonstrated that it consistently delivers substantial
 486 gains in embodied reasoning performance within MLLM tasks as well as in the VLA domain across

486
 487 **Table 8: Performance on multimodal benchmarks.** We evaluate ROBOALIGN and other MLLMs
 488 on general image understanding (MMStar), spatial reasoning (RoboSpatial, Where2Place, BLINK,
 489 and robot embodied reasoning (Robot-R1 Bench) benchmarks. Our initial SFT model, ROBOALIGN
 490 (SFT), performs on par with specialized embodied-reasoning MLLMs, and RL training further boosts
 491 performance across the overall MLLM benchmarks. Values marked with * are taken from prior work
 (Team et al., 2025; Duan et al., 2024).

Model	MMStar	Robot-R1 Bench (0-3)	RoboSpatial	Where2Place	Blink (Rel. Depth)
GPT-4o-2024-11-20 (Hurst et al., 2024)	65.10*	1.55	44.42*	20.41*	77.90*
Qwen2.5-VL-7B-Ins (Bai et al., 2025)	60.30	1.02	36.29	11.35	55.64
Cosmos-Reason1-7B (Azzolini et al., 2025)	54.40	1.19	38.81*	5.51*	68.57*
RoboBrain2.0-7B (Team et al., 2025)	35.80	1.17	54.23*	63.59*	83.95*
VeBrain-8B (Luo et al., 2025)	61.90	1.02	42.48*	11.34*	79.68*
ROBOALIGN (SFT)	62.47	1.14	48.86	51.66	87.10
ROBOALIGN (SFT+RL)	62.80	1.38	<u>50.86</u>	<u>54.49</u>	87.90

492
 493 both short and long horizon tasks. In contrast, language-only embodied reasoning fine-tuning yields
 494 limited or even degraded performance on complex scenarios. These results establish ROBOALIGN as
 495 an effective and generalizable approach for advancing VLA training.

500 REFERENCES

501 Nasir Ahmed, T. Natarajan, and Kamisetty R Rao. Discrete cosine transform. *IEEE transactions on*
 502 *Computers*, 100(1):90–93, 2006.

503 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
 504 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
 505 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

506 Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu Chen,
 507 Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, et al. Cosmos-reason1: From physical common
 508 sense to embodied reasoning. *arXiv preprint arXiv:2503.15558*, 2025.

509 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 510 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 511 2025.

512 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
 513 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist
 514 humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

515 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
 516 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
 517 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

518 Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail, Michael
 519 Equi, Chelsea Finn, Niccolò Fusai, Manuel Y Galliker, et al. π_0 . 5: a vision-language-action
 520 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

521 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 522 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
 523 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

524 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
 525 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
 526 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.

527 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 528 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings*
 529 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
 2024a.

540 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 541 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
 542 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024b.
 543

544 William Chen, Suneel Belkhale, Suvir Mirchandani, Oier Mees, Danny Driess, Karl Pertsch,
 545 and Sergey Levine. Training strategies for efficient embodied reasoning. *arXiv preprint*
 546 *arXiv:2505.08243*, 2025.

547 Yi Chen, Yuying Ge, Yixiao Ge, Mingyu Ding, Bohao Li, Rui Wang, Ruifeng Xu, Ying Shan, and
 548 Xihui Liu. Egoplan-bench: Benchmarking egocentric embodied planning with multimodal large
 549 language models. *CoRR*, 2023.

550

551 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 552 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision language models. *arXiv preprint*
 553 *arXiv:2406.01584*, 2024.

554

555 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 556 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 557 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

558

559 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
 560 Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
 561 multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.

562

563 Danny Driess, Jost Tobias Springenberg, Brian Ichter, Lili Yu, Adrian Li-Bell, Karl Pertsch, Allen Z
 564 Ren, Homer Walke, Quan Vuong, Lucy Xiaoyang Shi, et al. Knowledge insulating vision-language-
 565 action models: Train fast, run fast, generalize better. *arXiv preprint arXiv:2505.23705*, 2025.

566

567 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
 568 Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large
 569 multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*,
 570 pp. 11198–11201, 2024.

571

572 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith,
 573 Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not
 574 perceive. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2024.

575

576 Philip Gage. A new algorithm for data compression. *C Users Journal*, 12(2):23–38, 1994.

577

578 NVIDIA GEAR. Gr00t n1.5: An improved open foundation model for generalist humanoid robots.
 579 https://research.nvidia.com/labs/gear/gr00t-n1_5/, June 2025. Accessed:
 580 2025-09-09.

581

582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 583 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 584 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

585

586 Demis Hassabis, Koray Kavukcuoglu, and Google DeepMind. Gemini model thinking updates march
 587 2025. *Google Blog*, March 2025. URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>.

588

589 Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
 590 power of gpt-4v in robotic vision-language planning. *arXiv preprint arXiv:2311.17842*, 2023.

591

592 Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, and Fu-En Yang.
 593 Thinkact: Vision-language-action reasoning via reinforced visual latent planning. *arXiv preprint*
 594 *arXiv:2507.16815*, 2025a.

595

596 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
 597 planners: Extracting actionable knowledge for embodied agents. In *International conference on*
 598 *machine learning*, pp. 9118–9147. PMLR, 2022a.

594 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
 595 Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
 596 planning with language models. *arXiv preprint arXiv:2207.05608*, 2022b.
 597

598 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 599 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 600 *arXiv preprint arXiv:2503.06749*, 2025b.

601 Yifei Huang, Guo Chen, Jilan Xu, Mingfang Zhang, Lijin Yang, Baoqi Pei, Hongjie Zhang, Lu Dong,
 602 Yali Wang, Limin Wang, et al. Egoexolearn: A dataset for bridging asynchronous ego-and exo-
 603 centric view of procedural activities in real world. In *Proceedings of the IEEE/CVF Conference on
 604 Computer Vision and Pattern Recognition*, pp. 22072–22086, 2024.

605 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 606 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 607 arXiv:2410.21276*, 2024.

609 Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
 610 Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipulation
 611 from abstract to concrete. In *Proceedings of the Computer Vision and Pattern Recognition
 612 Conference*, pp. 1724–1734, 2025.

613

614 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 615 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 616 learning. *arXiv preprint arXiv:2503.09516*, 2025.

617 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 618 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 619 et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint arXiv:2403.12945*,
 620 2024.

621

622 Dongyoung Kim, Sumin Park, Huiwon Jang, Jinwoo Shin, Jaehyung Kim, and Younggyo Seo.
 623 Robot-r1: Reinforcement learning for enhanced embodied reasoning in robotics. *arXiv preprint
 624 arXiv:2506.00070*, 2025a.

625

626 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 627 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 628 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

629

630 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 631 speed and success. *arXiv preprint arXiv:2502.19645*, 2025b.

631

632 Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
 633 Seo. The cot collection: Improving zero-shot and few-shot learning of language models via
 634 chain-of-thought fine-tuning. *arXiv preprint arXiv:2305.14045*, 2023.

635

636 Jason Lee, Jiafei Duan, Haoquan Fang, Yuquan Deng, Shuo Liu, Boyang Li, Bohan Fang, Jieyu
 637 Zhang, Yi Ru Wang, Sangho Lee, et al. Molmoact: Action reasoning models that can reason in
 638 space. *arXiv preprint arXiv:2508.07917*, 2025.

639

640 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 641 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 642 arXiv:2408.03326*, 2024.

643

644 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
 645 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
 646 imitators. *arXiv preprint arXiv:2311.01378*, 2023.

647

648 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
 649 Andy Zeng. Code as policies: Language model programs for embodied control. In *2023 IEEE
 650 International Conference on Robotics and Automation (ICRA)*, pp. 9493–9500. IEEE, 2023.

648 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 649 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 650 Processing Systems*, 36:44776–44791, 2023.

651
 652 Yuhan Lu, Yixuan Fan, Beixing Deng, Fangfu Liu, Yali Li, and Shengjin Wang. VI-grasp: a 6-dof
 653 interactive grasp policy for language-oriented objects in cluttered indoor scenes. In *2023 IEEE/RSJ
 654 International Conference on Intelligent Robots and Systems (IROS)*, pp. 976–983. IEEE, 2023.

655 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
 656 Hongsheng Li. Uir1: Enhancing action prediction of gui agents by reinforcement learning. *arXiv
 657 preprint arXiv:2503.21620*, 2025.

658 Gen Luo, Ganlin Yang, Ziyang Gong, Guanzhou Chen, Haonan Duan, Erfei Cui, Ronglei Tong,
 659 Zhi Hou, Tianyi Zhang, Zhe Chen, et al. Visual embodied brain: Let multimodal large language
 660 models see, think, and control in spaces. *arXiv preprint arXiv:2506.00123*, 2025.

661
 662 Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
 663 Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics
 664 and Automation Letters*, 2023.

665 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 666 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 667 and Automation Letters*, 7(3):7327–7334, 2022.

668
 669 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 670 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 671 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

672 Meinard Müller. *Information retrieval for music and motion*. Springer, 2007.

673
 674 OpenAI. hello-gpt-4o. *OpenAI Blog*, May 2024. URL <https://openai.com/index/hello-gpt-4o/>.

675
 676 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 677 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 678 models. *arXiv preprint arXiv:2501.09747*, 2025.

679
 680 Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and Michael S Ryoo. Understanding long
 681 videos with multimodal language models. *arXiv preprint arXiv:2403.16998*, 2024.

682 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 683 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 684 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

685
 686 Arijit Ray, Jiafei Duan, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha
 687 Kembhavi, Bryan A Plummer, Ranjay Krishna, Kuo-Hao Zeng, et al. Sat: Spatial aptitude training
 688 for multimodal language models. *arXiv e-prints*, pp. arXiv–2412, 2024.

689
 690 Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan,
 691 Christine Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi, et al. Robovqa:
 692 Multimodal long-horizon reasoning for robotics. In *2024 IEEE International Conference on
 693 Robotics and Automation (ICRA)*, pp. 645–652. IEEE, 2024.

694
 695 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 696 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 697 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

698
 699 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 700 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 701 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

702
 703 Yide Shentu, Philipp Wu, Aravind Rajeswaran, and Pieter Abbeel. From llms to actions: latent codes
 704 as bridges in hierarchical robot control. In *2024 IEEE/RSJ International Conference on Intelligent
 705 Robots and Systems (IROS)*, pp. 8539–8546. IEEE, 2024.

702 Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stan Birchfield.
 703 Robospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics.
 704 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15768–15780,
 705 2025a.

706 Zirui Song, Guangxian Ouyang, Mingzhe Li, Yuheng Ji, Chenxi Wang, Zixiang Xu, Zeyu Zhang, Xiao-
 707 qing Zhang, Qian Jiang, Zhenhao Chen, et al. Maniplvm-r1: Reinforcement learning for reasoning
 708 in embodied manipulation with large vision-language models. *arXiv preprint arXiv:2505.16517*,
 709 2025b.

710 BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Minglan Lin, Zhiyu Li, Zhou Cao,
 711 Pengwei Wang, Enshen Zhou, Yi Han, et al. Robobrain 2.0 technical report. *arXiv preprint*
 712 *arXiv:2507.02029*, 2025.

713 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 714 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 715 policy. *arXiv preprint arXiv:2405.12213*, 2024.

716 Qwen Team. Qwen3-vl: Sharper vision, deeper thought, broader action. *Qwen Blog*, September 2025. URL <https://qwen.ai/blog?id=99f0335c4ad9ff6153e517418d48535ab6d8afef&from=research.latest-advancements-list>.

717 Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots that use language.
 718 *Annual Review of Control, Robotics, and Autonomous Systems*, 3(1):25–55, 2020.

719 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 720 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 721 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing
 722 Systems*, 37:87310–87356, 2024.

723 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 724 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
 725 robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

726 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 727 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 728 *arXiv preprint arXiv:2203.11171*, 2022.

729 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 730 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 731 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025.

732 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 733 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 734 neural information processing systems*, 35:24824–24837, 2022.

735 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
 736 in visual-based spatial intelligence. *arXiv preprint arXiv:2505.23747*, 2025.

737 Runsen Xu, Weiyao Wang, Hao Tang, Xingyu Chen, Xiaodong Wang, Fu-Jen Chu, Dahua Lin, Matt
 738 Feiszli, and Kevin J Liang. Multi-spatialmllm: Multi-frame spatial understanding with multi-modal
 739 large language models. *arXiv preprint arXiv:2505.17015*, 2025.

740 Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu,
 741 Mu Cai, Seonghyeon Ye, Joel Jang, et al. Magma: A foundation model for multimodal ai agents.
 742 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 14203–14214,
 743 2025.

744 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 745 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 1(2):6,
 746 2023.

756 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 757 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 758 *information processing systems*, 36:11809–11822, 2023.

759

760 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 761 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 762 *arXiv preprint arXiv:2503.14476*, 2025.

763 Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
 764 Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
 765 prediction for robotics. *arXiv preprint arXiv:2406.10721*, 2024.

766

767 Yifu Yuan, Haiqin Cui, Yibin Chen, Zibin Dong, Fei Ni, Longxin Kou, Jinyi Liu, Pengyi Li, Yan
 768 Zheng, and Jianye Hao. From seeing to doing: Bridging reasoning and decision for robotic
 769 manipulation. *arXiv preprint arXiv:2505.08548*, 2025a.

770 Yifu Yuan, Haiqin Cui, Yaoting Huang, Yibin Chen, Fei Ni, Zibin Dong, Pengyi Li, Yan Zheng, and
 771 Jianye Hao. Embodied-r1: Reinforced embodied reasoning for general robotic manipulation. *arXiv*
 772 *preprint arXiv:2508.13998*, 2025b.

773 Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
 774 control via embodied chain-of-thought reasoning. *arXiv preprint arXiv:2407.08693*, 2024.

775

776 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 777 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
 778 *preprint arXiv:2503.18892*, 2025.

779 Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
 780 Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
 781 awareness for generalist robotic policies. *arXiv preprint arXiv:2412.10345*, 2024.

782

783 Enshen Zhou, Jingkun An, Cheng Chi, Yi Han, Shanyu Rong, Chi Zhang, Pengwei Wang, Zhongyuan
 784 Wang, Tiejun Huang, Lu Sheng, et al. Roborefer: Towards spatial referring with reasoning in
 785 vision-language models for robotics. *arXiv preprint arXiv:2506.04308*, 2025.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

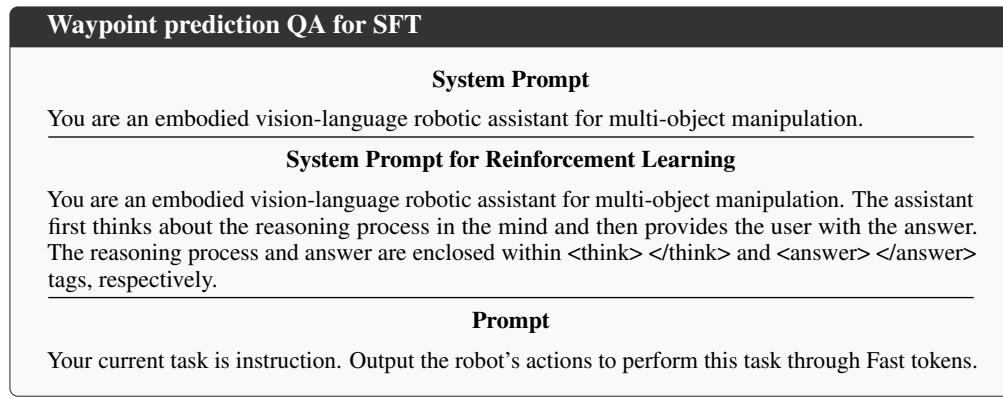
805

806

807

808

809

810 A EXPERIMENT DETAILS
811812 A.1 COMPUTING COST
813814 We use 8×H200 GPUs for MLLM training, requiring approximately 30 hours for SFT and 1 hour
815 for reinforcement learning. For VLA training, we use 2×A100 GPUs, with each 10K training steps
816 taking about 1 hour of computation.
817818 A.2 IMPLEMENTATION DETAILS FOR VLA TRAINING
819820 Our implementation refers to the GR00T-N1.5 codebase² (GEAR, 2025), adopting the same archi-
821 tecture with an initialized diffusion policy action expert. The expert takes as input the hidden states
822 from the 18-th layer of Qwen2.5VL-7B-Ins (Bai et al., 2025). Hyperparameters for policy fine-tuning
823 follow those of the official GR00T-N1.5 implementation unless otherwise specified.
824825 A.3 TRAINING DATASETS
826827 For supervised fine-tuning (SFT), we prepare a diverse set of datasets covering both general MLLM
828 capability and embodied reasoning. To preserve general multimodal ability, we use 100K samples
829 from LLaVA-OneVision (single-view only) (Li et al., 2024). For embodied reasoning, we include
830 300K samples from RefSpatial (Zhou et al., 2025), 200K from RoboPoint (Yuan et al., 2024), 50K
831 from EgoPlan-IT (Chen et al., 2023), and 500K from our own multi-view instruction dataset. To
832 enhance robot-specific embodied reasoning, we incorporate 100K samples each from ShareRobot (Ji
833 et al., 2025) and RobotVQA (Sermanet et al., 2024), 150K from our RoboAlign VQA, and 300K
834 from BridgeV2 (Walke et al., 2023) and Droid (Khazatsky et al., 2024) Robot QA (predicting
835 movements such as “move right,” “move left,” the current 7-DoF state, and a future sequence of
836 10 states). Since conventional robot imitation environments do not take video inputs, video-based
837 datasets (RobotVQA, EgoPlan-IT, ShareRobot) are converted into single-frame inputs by extracting
838 the last frame. For reasoning data, we include 50K multiple-choice QA samples converted from our
839 RoboAlign VQA dataset and another 50K derived from SAM2 (Ravi et al., 2024), which queries
840 spatial relations among key objects. Of these, 30K samples are used to train the reasoning distillation
841 model. After augmenting with generated data and applying correctness filtering, the final reasoning
842 dataset consists of 76K samples. In total, the MLLM training set contains 1.88M QA samples. For
843 FAST token prediction (Pertsch et al., 2025), we use the subset of BridgeV2 dataset (400K samples).
844 For reinforcement learning, we further use a 12.8K subset of the BridgeV2 FAST token prediction
845 data. The training for FAST token prediction follows the prompt template shown in Figure 5.
846859 Figure 5: **Prompt for FAST Token generation** We use this prompt template for both FAST token
860 prediction and reinforcement learning.
861862
863 ²<https://github.com/NVIDIA/Isaac-GR00T>

864
865
866
867
868
869
870
871
872
873
874
875
876
877
Table 9: **K-Nearest Neighbor Accuracy.** We measure how accurately MLLM representations can
predict underlying states using KNN classification on 20 trajectories from a LIBERO task.

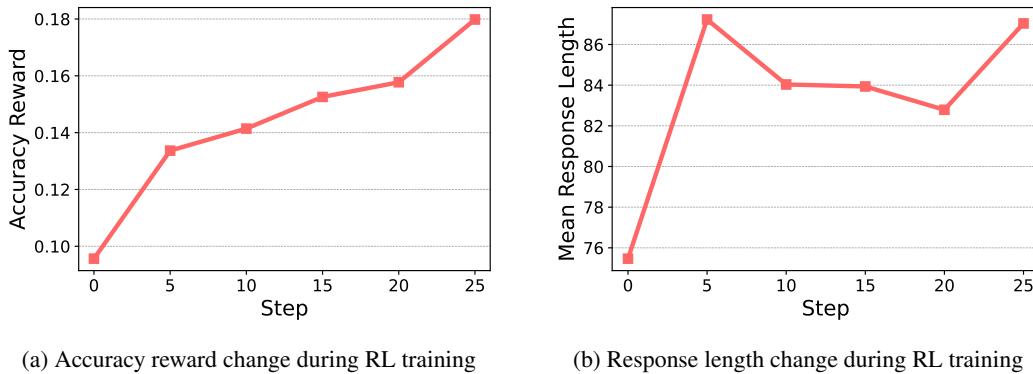
Method	Acc. (%)
Qwen3VL-8B-Ins (Team, 2025)	39.06
w/ ROBOALIGN (SFT)	43.23
w/ ROBOALIGN (SFT + RL)	69.79

B ADDITIONAL ANALYSIS

B.1 K-NEAREST NEIGHBORHOOD BASED REPRESENTATION ANALYSIS

In this section, we analyze how ROBOALIGN affects the underlying MLLM representations. We hypothesize that explicit aligning low-level actions enables the model to learn more discriminative and fine-grained features for action generation. To evaluate this, we perform a KNN classification experiment that measures how accurately the MLLM representation can predict similar underlying states. We select 20 training trajectories from one of the LIBERO long-horizon tasks, "put the white mug on the left plate and put the yellow and white mug on the right plate." We assign each timestep to 32 classes using Dynamic Time Warping (DTW) (Müller, 2007) over robot states. We then evaluate whether the MLLM, receiving only vision and task instruction, can recover the correct underlying class using a KNN classifier ($k = 5$) applied to its hidden representation. As shown in Table 9, ROBOALIGN (SFT+RL) produces substantially more discriminative representations than both baselines, improving KNN accuracy from 39.06% to 69.79%. This result indicates that the RL alignment stage significantly sharpens the model's ability to encode fine-grained state information. Distinct representation help to generate accurate actions, and these results help to understand the mechanism of ROBOALIGN's performance improvement.

B.2 RL TRAINING PROCESS



905
906
907
908
909
Figure 6: **Training metrics for reinforcement learning in ROBOALIGN.** Validation performance
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586

918 to pick it up."). These quantitative and qualitative results together demonstrate that RL training is
 919 successfully improving the model's ability to align reasoning with actionable steps.
 920

921 **Question:** Your current task is move the orange cloth to the top of the right burner. Output the robot's
 922 actions to perform this task through Fast tokens.

923 **GT Answer:**
 924 <action_start><action_486|><action_265|><action_268|><action_116|><action_269|><action_end>

925 **ROBOALIGN (SFT) Answer:**
 926 '<think>To perform the task of moving the orange cloth to the top of the right burner, the robot needs
 927 to first approach the cloth, then grasp it, and finally move it to the right burner. The actions should be
 928 sequential and purposeful, focusing on the cloth and the burner in question.</think><answer>
 929 <action_start><action_266|><action_709|><action_268|><action_116|><action_269|><action_end>

930 Reward: 0.5 (Format 1.0 / Accuracy 0.0)
 931 **ROBOALIGN (SFT+RL) Answer:** <think>To perform the task of moving the orange cloth to the top
 932 of the right burner, the robot needs to first approach and align its gripper with the cloth. Once aligned,
 933 it will need to close the gripper to pick up the cloth, lift it, and then move it to the right burner before
 934 releasing it. **The robot's current position suggests it is already aligned with the cloth, ready to pick it**
 935 **up.**</think><answer>
 936 <action_start><action_486|><action_265|><action_268|><action_116|><action_269|><action_end>

937 Reward: 1.0 (Format 1.0 / Accuracy 1.0)

938
 939 **Figure 7: Example of model response**
 940

941 **C USE OF AI TOOLS**

942 We acknowledge that a large language model (LLM) was used to refine the phrasing and grammar of
 943 the manuscript.

944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971