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ABSTRACT

In recent years, state-of-the-art vision—language—action models (VLAs) have been
built upon pre-trained multimodal large language models (MLLMs). However,
how to systematically train MLLMs to improve VLA performance remains an
open problem. While prior approaches primarily focus on strengthening embodied
reasoning via linguistic actions, the modality gap limits the transferability of
language-based knowledge to non-linguistic low-level actions produced by VLAs.
To address this problem, we propose a novel framework ROBOALIGN that aligns
MLLM representations with low-level actions, thereby producing MLLMs well-
suited for VLA. Specifically, we achieve action alignment through reinforcement
learning, where the model generates action tokens via zero-shot reasoning in natural
language. To validate the effectiveness of ROBOALIGN, we train VLAs by adding
a diffusion-based action head on top of an MLLM backbone and evaluate them on
major robotics benchmarks. Specifically, training base MLLMs with ROBOALIGN
improves the performance on robotic tasks by 17.5%, 18.9%, and 106.6% on
LIBERO, CALVIN, and real-world robotic environments, respectively. Moreover,
ROBOALIGN outperforms models aligned only with language-described actions
or with supervised fine-tuning based approaches such as ECoT, demonstrating its
effectiveness and broad applicability.

1 INTRODUCTION

Vision—-language—action models (VLAs) have recently demonstrated remarkable success in robotics
(Brohan et al., 2022; 2023; Driess et al., 2023). By integrating the visual perception, language
understanding, and common-sense knowledge of multimodal large language models (MLLMs),
VLAs provide a foundation for training generalizable robotic policies in real-world scenarios (Yang
et al., 2023; Huang et al., 2022b; Tellex et al., 2020; Huang et al., 2022a; Hu et al., 2023). Specifically,
policies are obtained either through discrete action token predictions by MLLMs (Kim et al., 2024;
Pertsch et al., 2025; Kim et al., 2025b) or through continuous action prediction by external action
experts that operate on latent states of MLLMs (Black et al., 2024; Bjorck et al., 2025; Team et al.,
2024). This approach allows leveraging the extensive pretrained knowledge within MLLMs, enabling
the development of generalizable policies even with a limited amount of robotics data.

However, the performance and generalization of VLAs are often limited by the underlying MLLMs,
which struggle with key embodied tasks required for action generation, such as spatial reasoning
(Tong et al., 2024; Zhou et al., 2025; Cheng et al., 2024) and temporal reasoning (Ahn et al., 2022;
Sermanet et al., 2024). To address this limitation, researchers have developed various embodied
question-answering tasks designed to improve reasoning skills for robotic manipulation. These
include tasks such as answering high-level action questions (Chen et al., 2025; Lynch et al., 2023),
responding to spatial questions about object relationships (Chen et al., 2024a; Xu et al., 2025),
grounding points or bounding boxes in images to identify affordance-related locations (Yuan et al.,
2024; Song et al., 2025a), and predicting future visual trajectories of end-effectors (Ji et al., 2025;
Yuan et al., 2025a). While these tasks have been primarily addressed through supervised fine-tuning
(SFT), recent approaches have applied reinforcement learning (RL) schemes (e.g., DeepSeek-R1; Guo
et al. 2025) to encourage reasoning, leading to significant improvements in performance (Azzolini
et al., 2025; Kim et al., 2025a; Song et al., 2025b; Huang et al., 2025a).
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Stage 1: Alignment via Robotics-Aware SFT

Stage 2: Alignment via GRPO w/ Low-Level Actions

Q: What are the normalized bounding
box coordinates of the left cabinet?

————

A: The normalized bounding box
coordinates for the left cabinet are
[0.350, 0.100, 0.600, 0.400].

-- Chain-of-Thought Reasoning Data
Q: What high-level action is the robot
performing right now for 'sweep into
pile'? Options: (A)...

A: <think> The action "sweep into pile"
typically... </think> <answer>(C) Close
4 gripper</answer>

-~
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-- Low-Level Action Token Generation
% Q: Move the purple cloth to the middle
lower side of the table.
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Figure 1: Overview of ROBOALIGN framework. ROBOALIGN directly aligns MLLM representa-
tions with low-level action generation using reasoning-incentivized reinforcement learning (Guo et al.,
2025). The framework consists of two stages: (i) Stage 1 integrates embodied reasoning, zero-shot
reasoning, and FAST-tokenized low-level action generation via supervised fine-tuning, and (ii) Stage
2 optimizes responses through reinforcement learning to improve token-level action accuracy and
better alignment. The resulting model serves as an MLLLM tailored for effective VLA training.
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Despite recent successes in enhancing the embodied rea-

soning of MLLMs, it remains unclear whether these im-
provements directly translate into improved low-level ac-
tion generation in VLAs, since language and low-level
action modalities are inherently different and not naturally
aligned. Moreover, such training is typically conducted
through SFT, but it increases the risk of catastrophic for-
getting (Chu et al., 2025), potentially weakening other
capabilities of MLLMs essential for policy generation by
VLAs. Motivated by this concern, we conducted experi-
ments by training VLAs on top of open-source MLLMs "
specialized in embodied reasoning. Our experiments show N\oéa\
that these specialized models indeed yield limited perfor- <
mance gains compared to the VLA model built upon the
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Figure 2: Performance on LIBERO.
VLAS built upon MLLMs specialized for

Contribution. To address these limitations, we iden- embodied reasoning (fine-tuned variants

tify the necessity of aligning MLLMs directly using non-
linguistic low-level actions. Motivated by this insight, we
introduce ROBOALIGN, a training framework designed
to directly align MLLM representations with low-level
action generation, while coupling embodied reasoning
capabilities with low-level actions.

of Qwen2.5-VL-7B-Ins) fail to signif-
icantly improve performance and often
degrade it compared to the baseline VLA
based on the original model. In contrast,
ROBOALIGN achieves significant gains,
as detailed in Section 5.

The key idea of ROBOALIGN is an RL-based fine-tuning

process that trains the MLLM to generate low-level action

tokens as the direct output of embodied reasoning. This allows the model to explore diverse embodied
reasoning trajectories obtained through sampling and strengthens the coupling between reasoning and
action generation, resulting in strong alignment between MLLM’s internal knowledge and low-level
actions. Moreover, this RL-based alignment reduces the risk of catastrophic forgetting compared to
SFT, which is advantageous for preserving its general-purpose knowledge. Specifically, our method
first fine-tunes the MLLM with SFT to enable the model to generate low-level actions through
zero-shot reasoning, and then optimizes the model to further refine this reasoning process using
GRPO (Shao et al., 2024) to maximize the action-accuracy reward.
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To evaluate the effectiveness of ROBOALIGN, we train MLLMs with our framework and test the
performance on a suite of robotic benchmarks, including simulation environments such as LIBERO
(Liu et al., 2023) and CALVIN (Mees et al., 2022), as well as real-world robot settings. Specifically,
we attach a diffusion-based action head to the frozen MLLM backbone and fine-tune it to generate
low-level actions. Our experiments show that models trained with ROBOALIGN achieve substantial
performance gains over the baseline models, with relative improvements of 17.5% on LIBERO,
18.9% on CALVIN, and 106.6% in the real-world setup. Moreover, we find that our approach is more
effective than other alignment approaches such as high-level action prediction (13.1% v.s. 17.5%) or
point trajectory prediction (15.2% v.s. 17.5%) on the LIBERO benchmark, respectively.

Furthermore, to examine if ROBOALIGN also improves embodied reasoning capabilities of MLLMs,
we evaluated ROBOALIGN on a diverse set of benchmarks for general image understanding (Chen
et al., 2024b), spatial reasoning (Song et al., 2025a; Yuan et al., 2024; Fu et al., 2024), and embodied
reasoning for robotics (Kim et al., 2025a). On the embodied reasoning tasks, ROBOALIGN achieve
state-of-the-art performance on embodied reasoning tasks, outperforming not only commercial
general-purpose models such as GPT-40 (OpenAl, 2024), but also specialized embodied MLLMs,
such as RoboBrain2.0 (Team et al., 2025). Notably, this is accomplished while preserving the
model’s performance on general image understanding. This result shows that our RL-based alignment
enhances the general capabilities of MLLMs, in contrast to SFT-based alignment methods such as
ECoT (Zawalski et al., 2024), which often degrades performance on these embodied tasks.

2 RELATED WORK

Multimodal large language models for robot control. Efforts to leverage the visual processing
capabilities, commonsense, and world knowledge of multimodal large language models (MLLMs) for
robot policy decision have shown consistent success. In particular, MLLMs have demonstrated strong
performance in high-level action planning. Concretely, prior work has explored generating predefined
atomic action skills to directly control robots (Liang et al., 2023; Tellex et al., 2020; Luo et al., 2025),
or producing high-level actions and plans that condition subsequent low-level actions (Driess et al.,
2023; Yang et al., 2023; Huang et al., 2022b;a; Hu et al., 2023). These approaches have been further
extended toward more precise action generation, either by enabling MLLM:s to produce policies in an
end-to-end manner (Kim et al., 2024; Pertsch et al., 2025; Kim et al., 2025b) or by training action
experts that consume latent states instead of language outputs (Team et al., 2024; Li et al., 2023;
Shentu et al., 2024; Black et al., 2024; Bjorck et al., 2025; GEAR, 2025). We investigate how to
better align MLLMs with low-level actions to enhance such robot control performance.

Multimodal large language model for embodied reasoning. With the increasing application of
MLLMs to embodied environments such as robot manipulation, their capabilities for tasks requiring
spatial and temporal reasoning have been enhanced. For spatial reasoning, prior work has enhanced
3D scene understanding by leveraging VQA data to train models that convert information from 2D
and 3D vision inputs (Chen et al., 2024a; Ray et al., 2024; Zhou et al., 2025; Wu et al., 2025). To
further improve performance in specific robotic tasks, some approaches have trained models to predict
bounding boxes or points associated with affordances and manipulation-relevant spatial cues (Yuan
et al., 2024; Song et al., 2025a; Lu et al., 2023; Ji et al., 2025). For temporal reasoning, researchers
have extracted high-level actions (Chen et al., 2025; Lynch et al., 2023; Chen et al., 2025; Huang
et al., 2024; Chen et al., 2023), 2D point trajectories of object movement from egocentric videos of
humans or robots to construct VQA (Huang et al., 2025a; Yang et al., 2025; Ranasinghe et al., 2024;
Zheng et al., 2024; Lee et al., 2025). Nevertheless, these approaches only contribute indirectly to
low-level action prediction.

Encouraging reasoning through reinforcement learning. Chain-of-Thought (CoT) prompt-
ing (Wang et al., 2022; Yao et al., 2023; Kim et al., 2023; Wei et al., 2022) has been widely applied
to both LLMs and MLLMs in zero-shot, few-shot, and supervised fine-tuning (SFT) settings (Muen-
nighoff et al., 2025), effectively improving answer quality. Recently, DeepSeek-R1 (Guo et al., 2025)
proposed a training approach specialized for CoT, in which reasoning is explicitly enforced during
the response process, and the entire reasoning trace is optimized using the reinforcement learning
algorithm with rewards derived from the final answer. This training paradigm has demonstrated
that, compared to SFT, models can achieve stronger performance and generalization across diverse
domains, including mathematics (Zeng et al., 2025; Yu et al., 2025), agents (Lu et al., 2025; Jin et al.,
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2025), visions (Shen et al., 2025; Huang et al., 2025b;b), and embodied reasoning (Kim et al., 2025a;
Song et al., 2025b; Huang et al., 2025a; Yuan et al., 2025a;b), while requiring significantly less data,
in some cases even a single example (Wang et al., 2025). In this work, we introduce a reinforcement
learning scheme based on low-level action prediction, aligning the MLLM’s representations more
directly with robot control.

3 PRELIMINARIES

FAST action tokenization. We adopt FAST tokenization (Pertsch et al., 2025) to integrate low-level
actions into MLLMs, as it has been shown to be effective not only for end-to-end policy learning but
also for representation learning (Black et al., 2025; Driess et al., 2025). Our action is defined as a
D-dimensional vector representing the end-effector’s state, which consists of its Cartesian position
(z,y, z), orientation (roll, pitch, yaw), and gripper state (Open/Close). An action sequence over a
horizon of H timesteps forms a chunk, a;.py = [[a1,1,¢1,2,---,01,D],---,[GH 1, 2, -, an D]
To improve compactness, FAST tokenization transforms the action chunk a;.z into the frequency
domain using a discrete cosine transform (DCT; Ahmed et al. 2006). The resulting DCT coefficients
are quantized and flattened into a sequence. This sequence is then compressed into discrete tokens
using byte-pair encoding (BPE; Gage 1994), resulting in T, = FAST(a;.), where each token is
mapped to one of 2K special tokens added to the MLLM’s vocabulary for training and generation.

Encouraging reasoning with GRPO. To encourage explicit reasoning, we train the model to
generate intermediate thoughts enclosed within <think>. . .</think> before producing a final
answer. Training is conducted with Group Relative Policy Optimization (GRPO; Shao et al. 2024),
where the policy is optimized jointly for format correctness and answer accuracy. Specifically,
let the current policy be denoted as 7y,,. For a given query ¢ ~ P(Q), we sample G responses
[01,...,0¢] ~ e, (q). Each response is evaluated by a pre-defined reward model R(g, o;), which
assigns a reward r; based on format and answer accuracy. We then compute an advantage by

normalizing the reward using the standard deviation, A; = %ﬁg(r) GRPO optimizes the policy

by maximizing these advantages while applying a KL penalty against a reference policy:

Joreo (0) = Eqrp(Q) {01 }E ~ray (1) l
(D
- Z ( ) Oz|q) A; Cllp <7r9(02|q))71 —&, 1+ €> Al) — ﬂDKL(W0|7Tref)‘| s

T o1 (OZ |q) T4 (Oi |C]

where € and [ are hyperparameters for clipping and KL penalty.

4 ROBOALIGN: ALIGN EMBODIED REASONING WITH LOW-LEVEL ACTIONS

In this section, we introduce ROBOALIGN, a training framework that directly aligns multi-modal
large language models (MLLMs) with low-level actions through reinforcement learning (RL). While
doing so, ROBOALIGN is designed to preserve the general capabilities of MLLMs and simultane-
ously enhance embodied reasoning ability. A key challenge, however, is that off-the-shelf MLLMs
cannot generate specialized low-level actions (e.g., FAST tokens) in a zero-shot manner, making RL
inapplicable. To address this, we introduce a two-stage training pipeline. First, we apply supervised
fine-tuning (SFT) to equip the model with the initial ability to predict FAST tokens through zero-shot
reasoning, while preserving the general abilities of MLLMs and enhancing embodied reasoning.
Second, building on this ability, we apply RL on this SFT model to further strengthen embodied
reasoning and improve FAST token prediction accuracy. The overall process is illustrated in Figure 1.

4.1 STAGE 1: INTEGRATING LOW-LEVEL ACTION WITH MLLM USING SFT

The primary objective of this SFT stage is to equip the MLLM with the ability to generate FAST
action tokens, which is a prerequisite for the subsequent RL stage, while simultaneously preserving
its general vision-language capabilities and enhancing its embodied reasoning skills. To achieve this,
we curate a data mixture from four sources: (i) a variety of open-source SFT datasets for embodied
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Table 1: Example of the ROBOALIGN response. Incorporating reasoning data during SFT effectively
transfers zero-shot reasoning ability to FAST token generation process. Without such data, the model
produces only minimal reasoning which reduces the diversity of reasoning samples and hinders RL.

Question: Your current task is ‘pick up cup from the table’. Output the robot’s actions
to perform this task through Fast tokens.

Model Answer (Trained w/ reasoning datasets): <think>To pick up the cup
from the table, the robot needs to move its gripper towards the cup, position it
correctly, close the gripper to secure the cup, and then lift it up. Given the cur-
rent state of the gripper being open and positioned above the cup, the immedi-
ate next action would be to move down towards the cup to prepare for grasp-
ing.</think><answer><laction_startl><laction_266I><laction_299/> ...

Model Answer (Trained w/o reasoning datasets): <think>Go to the cup.</think>
<answer><laction_startI><laction_266I><laction_299I>...

reasoning and general understanding, (ii) our custom ROBOALIGN VQA dataset for robotic embodied
reasoning, (iii) specialized reasoning datasets designed to improve zero-shot reasoning of MLLMs,
and (iv) robotic dataset with FAST tokens. We describe the process for building our custom datasets
in this section, with full details for all data sources and configurations available in Appendix A.

ROBOALIGN VQA. While existing VQA datasets are useful for general embodied reasoning, high-
quality VQA specifically grounded in robotic information remains limited. For example, datasets
such as ShareRobot (Ji et al., 2025) and RoboVQA (Sermanet et al., 2024) use robot imagery but
focus on high-level QA tasks, lacking the fine-grained, spatial-temporal information needed for
low-level control. To address this gap, we develop a data generation pipeline that feeds robot images
and associated metadata, e.g., bounding boxes, end-effector states, and both high and low-level
actions, into a powerful large model, i.e., gemini-2.5 pro (Hassabis et al., 2025). The model
then automatically generates a diverse set of high-quality VQA, captioning, and grounding QA pairs.

Reasoning dataset with zero-shot CoT. To preserve the MLLM’s zero-shot reasoning ability during
SFT and transfer it to the action generation process, we incorporate a specialized reasoning dataset
into our training mixture. This dataset is created by distilling outputs from a reasoning model that is
trained with GRPO to generate step-by-step reasoning. Specifically, we first train the reasoning model
on spatial and robot-related embodied MCQAs for distillation, following Kim et al. (2025a). From
this model, for a given prompt, we sample multiple reasoning outputs. These outputs are then filtered
using a combination of rule-based rewards and correctness checks. Table | shows that including this
specialized reasoning data during SFT enables the effective transfer of reasoning ability to FAST
token generation, while the absence of such data results in limited zero-shot reasoning.

FAST token generation dataset. To enable FAST token prediction, we first extend the MLLM’s
vocabulary by adding two special marker tokens <ACTION_START>, <ACTION_END> and 2K
FAST tokens. The training data is then constructed from the BridgeV2 dataset (Walke et al., 2023)
in a QA format. Each sample pairs a robot image with a fixed instruction, where the ground-truth
answer is the corresponding sequence of FAST tokens.

The resulting data mixture, consisting of our custom and open-source datasets, is used to fine-tune
the MLLM with SFT, providing a strong foundation for subsequent RL training stage.

4.2 STAGE 2: ALIGNING EMBODIED REASONING WITH LOW-LEVEL ACTION USING RL

In the second stage, we use RL to directly align the MLLM with low-level actions, i.e., FAST
tokens, further refining the model to be better suitable for VLA adaptation. Specifically, we optimize
the model’s embodied reasoning process to directly improve the accuracy of FAST action token
generation. To create the data for this stage, we adapt the FAST token dataset from Stage 1. In
particular, each sample’s input instruction is augmented with a prompt that requires explicit reasoning
within <think>...</think> tags before producing the FAST token sequence.
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We define the reward as the arithmetic mean of two components: a format reward 7y € {0,1}
indicating whether the output correctly adheres to the required reasoning format, and an accuracy
reward 1, € [0, 1] measuring FAST token prediction accuracy. In particular, the accuracy reward r,
is computed by measuring the prefix similarity between the generated action token sequence 7%,

and the target sequence 7.5, normalized by the target length:

1
ro = —max{i € {1,...,m}: T5 = T}"¥}. 2)
= : :

The final reward is given by r = (rf + r,)/2. This formulation encourages the model to generate
both correctly formatted and accurate FAST token sequences. Building on the constructed training
dataset and reward function, we then apply GRPO (Shao et al., 2024) to further optimize the MLLM.

5 EXPERIMENT

In this section, we design experiments to answer the following research questions:

o Does training with ROBOALIGN improve both MLLMs and the VLASs built upon them?
o Is aligning with low-level actions more effective than alternative alignment methods?
o Is RL-based alignment in ROBOALIGN more effective than SFT-based alignment?

5.1 EXPERIMENTAL SETUP

Training data. For supervised fine-tuning (SFT), we pre-
pare a diverse set of datasets covering both general MLLM
capability and Fast token prediction. In total, 1.88M sam-
ples are used for MLLM-related tasks. For FAST token
prediction, we use the subset of BridgeV2 (Walke et al.,
2023) dataset (400K samples), yielding 2.28M samples
overall. For reinforcement learning (RL), we further use a
12.8K subset of the BridgeV2 FAST token prediction data.
More details are provided in Appendix A.

Baseline models. To validate the effectiveness of
ROBOALIGN, we prepare two baselines: (i) a model
trained only on MLLM data and (ii) a model trained only
on FAST token prediction using the full BridgeV?2 dataset
(1.88M samples). Both are trained for one epoch following
the same SFT train schema as in ROBOALIGN.

Figure 3: Examples of Observations.
Visual inputs for training and evalua-
Benchmarks. We evaluate VLA performance in tion (clockwise from top left): BridgeV2
LIBERO (Liu et al., 2023) and CALVIN (Mees et al., for FAST token training, CALVIN, real-
2022) (see Figure 3 for the examples). robot, and LIBERO benchmark.

e LIBERO: This benchmark uses a Franka Panda Arm to perform manipulation tasks grouped
into four categories: spatial, object, goal, and long-horizon. Each category consists of 10 tasks.
Training uses the provided dataset covering all tasks, and evaluation runs 50 trials per task (500
trials per category).

¢ CALVIN: This benchmark also employs a Franka Panda Arm and consists of 34 distinct tasks.
Training uses data collected from environments A, B, and C for 100K steps, after which zero-shot
evaluation is performed in a novel environment D. Performance is measured by the success rate
of executing five consecutive instruction chains, with a total of 1,000 chains evaluated.

Implementation details. We train our models based on Qwen2.5VL-7B-Ins (Bai et al., 2025). For
SFT, we follow the official Qwen2.5VL training repository. The vision encoder is frozen, and we use
a cosine scheduler with a learning rate of 2 x 107>, a warmup ratio of 0.03 and training for 1 epoch.
For RL, we use the EasyR1 repository', training all parameters from scratch with a rollout batch size
of 512, update batch size of 128, and 5 samples per prompt. We apply a constant learning rate of
1 x 1075 and train for one epoch. For VLA experiments, we adapt diffusion-based action head on

"https://github.com/hiyouga/EasyR 1
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Table 2: LIBERO success rates (%) for VLAs built upon MLLMs that were fine-tuned with various
methods, evaluated over 500 trials per category. Each model is evaluated by training a newly-
initialized, diffusion-based action head on the LIBERO dataset while the MLLM backbone remains
frozen. ROBOALIGN shows particularly large improvements in the Long and Goal categories
compared to other training methods.

Method | Spatial Object Goal Long | Avg.
Qwen2.5VL-7B-Ins (Bai et al., 2025) 95.2 95.0 424 632 | 739
w/ Language-Only SFT 91.0 94.4 67.8 65.0 | 79.6
w/ Action-Only SFT 89.8 95.8 82.8 57.6 | 81.5
w/ ROBOALIGN (SFT) 92.8 97.4 59.0 65.6 | 78.7
w/ ROBOALIGN (SFT + RL) 93.8 96.0 87.2 700 | 86.8

Table 3: CALVIN ABC—D success rates (%) for VLAs built upon MLLMs that were fine-tuned with
various methods, evaluated over 1000 trials. Each model is evaluated by training a newly-initialized,
diffusion-based action head on the CALVIN dataset while the MLLM backbone remains frozen.
While all baselines show drops in task completions of length 4 and 5, ROBOALIGN consistently
improves performance across all sequence.

Task completed in a row (%) T Succ. Len.
Method 1 2 3 4 s (Avg)
Qwen2.5VL-7B-Ins (Bai et al., 2025) | 77.8 55.0 38.6 26.6 18.1 2.16
w/ Language-Only SFT 874 622 419 252 153 2.32
w/ Action-Only SFT 66.1 347 153 7.1 3.2 1.26
w/ ROBOALIGN (SFT) 746 49.6 31,5 212 122 1.89
w/ ROBOALIGN (SFT+RL) 87.6 672 47.1 328 222 2.57

top of an MLLM backbone and train newly-initialized diffusion-based action head on robot datasets
while keeping the MLLM backbone frozen. Action experts are newly trained for each benchmark
environment with a batch size of 32. Training steps are set to 60K for LIBERO, 100K for CALVIN
(see detail in Appendix A)

5.2 MAIN RESULTS

As shown in Tables 2, 3, MLLMs trained with % B Quenz 5VL7B-nstruct| 3.
ROBOALIGN, which combines SFT and RL, achieve bl

the highest performance across all simulations. The 80 o e e 27
SFT stage alone yields moderate improvements, sug- 3, 24
gesting that most of the performance gain comes from g o
the RL stage. In particular, ROBOALIGN demon- @ 60 213
strates a significant increase in success rates on long- & 0 . %
horizon tasks, which are more intricate and com- § -9
plex than other types of tasks. For example, in ¢ 40 15
CALVIN (Table 3), ROBOALIGN achieves the high- " 12

est task completions of length-5 success rate (18.1%
— 22.2%), whereas all other training methods show 20

a decline performance in here.. Similarly, in LIBERO Ficure 4: Summary of VLA performance.
(Table 2), the Long category improves to 70% with Cogmparison of VLAy performarl:ce across dif-
ROBOALIGN, compared to only ~2% gains from  foene MpLM training methods on LIBERO
other methods. and CALVIN. ROBOALIGN achieves the
Another notable finding is in the Goal category of ~highest gains across all settings.

LIBERO, which requires handling different instruc-

tions in the same environment. Here, ROBOALIGN improves performance dramatically from 42.4%
to 87.2%. However, models trained only with MLLM data show limited improvements. Specifically,
in CALVIN they achieve higher success in task completions of length-1 (77.8% — 87.4%) but
experience a drop in task completions of length-5 performance (18.1% — 15.3%). Similarly, in
LIBERO they improve in the Goal category (42.4% — 67.8%) but yield only marginal gains in the
Long category (63.2% — 65.6%). These results indicate that embodied reasoning abilities learned

LIBERO CALVIN
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Table 4: Real robot success rates (%) for VLAs built upon MLLMs that were fine-tuned with various
methods, evaluated over 96 trials per task. Each model is evaluated by training a newly-initialized,
diffusion-based action head on the real-world robotic dataset while the MLLM backbone remains
frozen. We find that ROBOALIGN is also effective in real-world settings.

Method/ stage \ Box to bowl Box to plate  Basket to bowl Plate to basket \ Avg.
Qwen2.5VL-7B-Ins (Bai et al., 2025) 16.7 70.8 20.8 20.8 32.3
w/ ROBOALIGN (SFT) 87.5 58.3 375 375 55.2
w/ ROBOALIGN (SFT+RL) 87.5 58.3 70.8 50.0 66.7

Table 5: Compatibility with different models. We apply ROBOALIGN to a different MLLM
backbone (Qwen3VL-8B-Ins) to validate its generalizability. We report success rates (%) on the
LIBERO benchmark, averaged over 500 trials per category. ROBOALIGN consistently improves
overall performance, with particularly significant gains in the Long category.

Method | Spatial Object Goal Long | Avg.
Qwen3VL-8B-Ins (Team, 2025) 94.2 96.4 90.0 60.0 | 852
w/ ROBOALIGN (SFT) 96.2 97.4 933 71.0 | 89.5
w/ ROBOALIGN (SFT + RL) 95.6 99.6 952 78.6 | 92.5

through language can enhance performance on relatively simple tasks, but offer limited improve-
ments on more complex and demanding tasks. When trained only with VLA data, we observe large
in-domain gains, particularly in LIBERO’s Goal category (42.4% — 82.8). However, performance
drops significantly on long-horizon tasks in both CALVIN and LIBERO. We hypothesize that while
FAST token training strengthens alignment between instructions and low-level actions in-domain, it
also induces forgetting of general MLLM capabilities, leading to reduced zero-shot generalization.

5.3 ABLATION STUDY AND ANALYSES

Real robot experiments. To examine whether the improvements of ROBOALIGN on VLA per-
formance extend beyond simulation to real-robot settings, we conduct experiments using a Franka
Research 3 robot arm across four distinct pick-and-place tasks. Each task involves moving a different
object (teddy bear, box, cup, sponge). Training is performed with 60 demonstrations per task, and
evaluation consists of 24 trials per object, totaling 96 trials per task. The VLA setup follows the same
configuration as in the main experiments, with each task trained for 30K steps. As shown in Table 4,
ROBOALIGN consistently improves performance even in real-robot settings.

Compatibility with different models. To assess whether ROBOALIGN generalizes to other architec-
tures, we conducted experiments using another MLLM backbone, Qwen3-VL-8B-Ins. For the MLLM
training phase, we utilized 5K samples for RL, while maintaining all other training setup. After
training, all models are converted into VLAs and evaluated on the LIBERO simulation environments.
As shown in Table 5, we observed an overall performance increase, with particularly significant gains
in the Long category. This trend is consistent with the results observed in Table 2. These results
demonstrate that ROBOALIGN effectively generalizes across different MLLM architectures.

Comparison with embodied alignment strategies. To evaluate the effectiveness of aligning with
low-level action by ROBOALIGN, we compare it with two commonly used embodied MLLM training
tasks: (i) predicting high-level actions expressed in language descriptions and (ii) predicting 2D visual
trajectories of the end effector. For a fair comparison, all models are trained with RL on the same
BridgeV2 images as ROBOALIGN, encouraging embodied reasoning in both cases. For high-level
action alignment, we convert movements such as “move right” or “move left”” into multiple-choice
QA format and provide rewards based on correctness (Kim et al., 2025a). For 2D visual trajectory
prediction, we use data from ShareRobot and adopt the same reward formulation as ThinkAct (Huang
et al., 2025a). Since ShareRobot contains only 6K samples, training is limited to this size. After
training, all models are converted into VLAs and evaluated on the LIBERO simulation environments.
As shown in Table 6, ROBOALIGN achieves the largest performance improvement. In contrast, the
alternative methods show notable gains in the LIBERO Goal category but remain limited on long-
horizon tasks. This trend is consistent with our main results in Section 5.3 and further demonstrates
the advantage of direct alignment with low-level actions.
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Table 6: Impact of alignment strategies on VLA. We compare different RL alignment strategies
on the LIBERO benchmark, reporting success rates (%), evaluated over 500 trials per category. All
experiments start from the same SFT model and use an identical RL setup, with only the alignment
target varying between experiments. ROBOALIGN consistently improves performance and uniquely
enhances long-horizon tasks, where other methods degrade.

Method | Spatial Object Goal Long | Avg.

ROBOALIGN (SFT) 92.6 97.4 652 64.0 | 79.1
w/ Language-described high-level action alignment 91.6 94.6 90.0 582 | 83.6
w/ Robot 2d point trajectory forecasting alignment 92.4 95.6 87.8 64.6 | 85.1
w/ Low-level Action alignment (Ours) 93.8 96.0 872 70.0 | 86.8

Table 7: Comparison with SFT-based alignment. We compare our RL-based alignment against
an SFT-based baseline that jointly trains reasoning and low-level actions using the ECoT (Zawalski
et al., 2024) dataset. Both methods are fine-tuned from the ROBOALIGN SFT model and evaluated on
the LIBERO benchmark, reporting success rates (%), evaluated over 500 trials per category. While
the SFT-based baseline degrades performance, ROBOALIGN achieves significant improvements.

Method | Spatial Object Goal Long | Avg.
ROBOALIGN (SFT) 92.6 97.4 652 64.0 | 79.1
w/ SFT-based Alignment (ECoT) 84.6 90.8 49.6 456 | 67.7
w/ RL-based Alignment (Ours) 93.8 96.0 872 70.0 | 86.8

Comparison with SFT-based alignment. We further compare RL-based alignment in ROBOALIGN
against SFT-based alignment. Specifically, we consider ECoT (Zawalski et al., 2024), which aligns
reasoning and low-level actions through SFT. For this experiment, we use the ECoT dataset while
keeping the action space in the form of FAST tokens. Both methods are trained on the same
12.8K samples on top of the ROBOALIGN SFT model, with one epoch of SFT using identical
hyperparameters. Then, the resulting models are converted into VLAs and evaluated on the LIBERO
simulation environments. As shown in Table 7, the SFT-based approach even reduces performance
compared to RL. We attribute this to the limited generalization of SFT, where knowledge aligned
on BridgeV2 transfers poorly to LIBERO, as well as to forgetting effects introduced during SFT.
Consistently, when evaluated on general MLLM benchmarks, the ECoT-trained model shows a
degradation in performance, confirming the limitations of SFT-based alignment.

Performance on MLLM benchmarks. To examine whether ROBOALIGN enhances embodied
reasoning and generalist capabilities of MLLM, we evaluate performance across diverse MLLM
benchmarks. We use MMStar (Chen et al., 2024b) for general VQA ability, Robospatial-Home (Song
et al., 2025a), Where2Place (Yuan et al., 2024), and the depth components of BLINK (Fu et al., 2024)
for spatial reasoning. For robot embodied reasoning, we use Robot-R1 Bench (Kim et al., 2025a),
which provides detailed assessments of embodied reasoning abilities including planning, subtask
decomposition, movement, and spatial reasoning, all based on BridgeV2. As shown in Table 8,
ROBOALIGN outperforms specialized embodied reasoning models such as Cosmos-Reasonl (Az-
zolini et al., 2025), RoboBrain2.0 (Team et al., 2025), and VeBrain (Luo et al., 2025) across embodied
reasoning tasks, while maintaining strong performance on general MLLM benchmarks. In contrast,
Cosmos-Reasonl and RoboBrain2.0 show clear drops in general task performance. Furthermore,
RL-based alignment with low-level actions does not reduce MLLM capability, but instead improves
it. We attribute this to the alignment of embodied reasoning with low-level action generation, which
simultaneously enhances both action accuracy and embodied reasoning performance.

6 CONCLUSION

We proposed ROBOALIGN, a training framework for multimodal large language models (MLLMs)
tailored to vision—language—action models (VLA) by directly aligning MLLM’s representations with
low-level action policies. Our approach leverages reinforcement learning to improve low-level action
prediction accuracy through embodied reasoning. We evaluated ROBOALIGN across diverse robotic
environments and MLLM benchmarks, and demonstrated that it consistently delivers substantial
gains in embodied reasoning performance within MLLM tasks as well as in the VLA domain across
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Table 8: Performance on multimodal benchmarks. We evaluate ROBOALIGN and other MLLMs
on general image understanding (MMStar), spatial reasoning (RoboSpatial, Where2Place, BLINK,
and robot embodied reasoning (Robot-R1 Bench) benchmarks. Our initial SFT model, ROBOALIGN
(SFT), performs on par with specialized embodied-reasoning MLLMs, and RL training further boosts
performance across the overall MLLM benchmarks. Values marked with * are taken from prior work
(Team et al., 2025; Duan et al., 2024).

Model ‘ MMStar Robot-R1 Bench (0-3) RoboSpatial Where2Place Blink (Rel. Depth)
GPT-40-2024-11-20 (Hurst et al., 2024) | 65.10% 1.55 44.42* 20.41* 77.90*
Qwen2.5-VL-7B-Ins (Bai et al., 2025) 60.30 1.02 36.29 11.35 55.64
Cosmos-Reason1-7B (Azzolini et al., 2025) 54.40 1.19 38.81* 5.51* 68.57*
RoboBrain2.0-7B (Team et al., 2025) 35.80 1.17 54.23* 63.59* 83.95*
VeBrain-8B (Luo et al., 2025) 61.90 1.02 42 .48* 11.34* 79.68*
ROBOALIGN (SFT) 62.47 1.14 48.86 51.66 87.10
ROBOALIGN (SFT+RL) 62.80 1.38 50.86 54.49 87.90

both short and long horizon tasks. In contrast, language-only embodied reasoning fine-tuning yields
limited or even degraded performance on complex scenarios. These results establish ROBOALIGN as
an effective and generalizable approach for advancing VLA training.
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A EXPERIMENT DETAILS

A.1 COMPUTING COST

We use 8xH200 GPUs for MLLM training, requiring approximately 30 hours for SFT and 1 hour
for reinforcement learning. For VLA training, we use 2xA 100 GPUs, with each 10K training steps
taking about 1 hour of computation.

A.2 IMPLEMENTATION DETAILS FOR VLA TRAINING

Our implementation refers to the GROOT-N1.5 codebase’ (GEAR, 2025), adopting the same archi-
tecture with an initialized diffusion policy action expert. The expert takes as input the hidden states
from the 18-th layer of Qwen2.5VL-7B-Ins (Bai et al., 2025). Hyperparameters for policy fine-tuning
follow those of the official GROOT-N1.5 implementation unless otherwise specified.

A.3 TRAINING DATASETS

For supervised fine-tuning (SFT), we prepare a diverse set of datasets covering both general MLLM
capability and embodied reasoning. To preserve general multimodal ability, we use 100K samples
from LLaVA-OneVision (single-view only) (Li et al., 2024). For embodied reasoning, we include
300K samples from RefSpatial (Zhou et al., 2025), 200K from RoboPoint (Yuan et al., 2024), 50K
from EgoPlan-IT (Chen et al., 2023), and 500K from our own multi-view instruction dataset. To
enhance robot-specific embodied reasoning, we incorporate 100K samples each from ShareRobot (Ji
et al., 2025) and RobotVQA (Sermanet et al., 2024), 150K from our RoboAlign VQA, and 300K
from BridgeV2 (Walke et al., 2023) and Droid (Khazatsky et al., 2024) Robot QA (predicting
movements such as “move right,” “move left,” the current 7-DoF state, and a future sequence of
10 states). Since conventional robot imitation environments do not take video inputs, video-based
datasets (RobotVQA, EgoPlan-IT, ShareRobot) are converted into single-frame inputs by extracting
the last frame. For reasoning data, we include 50K multiple-choice QA samples converted from our
RoboAlign VQA dataset and another 50K derived from SAM?2 (Ravi et al., 2024), which queries
spatial relations among key objects. Of these, 30K samples are used to train the reasoning distillation
model. After augmenting with generated data and applying correctness filtering, the final reasoning
dataset consists of 76K samples. In total, the MLLM training set contains 1.88M QA samples. For
FAST token prediction (Pertsch et al., 2025), we use the subset of BridgeV2 dataset (400K samples).
For reinforcement learning, we further use a 12.8K subset of the BridgeV2 FAST token prediction
data. The training for FAST token prediction follows the prompt template shown in Figure 5.

Waypoint prediction QA for SFT

System Prompt

You are an embodied vision-language robotic assistant for multi-object manipulation.

System Prompt for Reinforcement Learning

You are an embodied vision-language robotic assistant for multi-object manipulation. The assistant
first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively.

Prompt

Your current task is instruction. Output the robot’s actions to perform this task through Fast tokens.

Figure 5: Prompt for FAST Token generation We use this prompt template for both FAST token
prediction and reinforcement learning.

*https://github.com/NVIDIA/Isaac-GROOT
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Table 9: K-Nearest Neighbor Accuracy. We measure how accurately MLLM representations can
predict underlying states using KNN classification on 20 trajectories from a LIBERO task.

Method | Acc. (%)
Qwen3VL-8B-Ins (Team, 2025) 39.06
w/ ROBOALIGN (SFT) 43.23
w/ ROBOALIGN (SFT + RL) 69.79

B ADDITIONAL ANAYLSIS

B.1 K-NEAREST NEIGHBORHOOD BASED REPRESENTATION ANALYSIS

In this section, we analyze how ROBOALIGN affects the underlying MLLM representations. We
hypothesize that explicit aligning low-level actions enables the model to learn more discriminative
and fine-grained features for action generation. To evaluate this, we perform a KNN classification
experiment that measures how accurately the MLLM representation can predict similar underlying
states. We select 20 training trajectories from one of the LIBERO long-horizon tasks, "put the
white mug on the left plate and put the yellow and white mug on the right plate." We assign each
timestep to 32 classes using Dynamic Time Warping (DTW) (Miiller, 2007) over robot states. We
then evaluate whether the MLLM, receiving only vision and task instruction, can recover the correct
underlying class using a KNN classifier (k = 5) applied to its hidden representation. As shown in
Table 9, ROBOALIGN (SFT+RL) produces substantially more discriminative representations than
both baselines, improving KNN accuracy from 39.06% to 69.79%. This result indicates that the RL
alignment stage significantly sharpens the model’s ability to encode fine-grained state information.
Distinct representation help to generate accurate actions, and these results help to understand the
mechanism of ROBOALIGN’s performance improvement.

B.2 RL TRAINING PROCESS
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Figure 6: Training metrics for reinforcement learning in ROBOALIGN. Validation performance
during RL training: (a) accuracy reward increases steadily, while (b) response length remains stable.

Figures 6 and 2 illustrate how the average response length and accuracy reward evolve during the RL
training of ROBOALIGN. The average response length remains stable, while the accuracy reward
gradually increases, indicating effective learning.

Table 7 provides qualitative examples before and after RL training. Prior to training, responses mainly
describe high-level plans with minimal detail on immediate actions (e.g., “the robot needs to first
approach the cloth”). After RL training, the model generates more concrete action descriptions, such
as “the robot needs to first approach and align its gripper with the cloth. Once aligned, it will need to
close the gripper to pick up the cloth.”. In addition, a novel element of situational awareness has been
introduced (e.g., "The robot’s current position suggests it is already aligned with the cloth, ready
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to pick it up."). These quantitative and qualitative results together demonstrate that RL training is
successfully improving the model’s ability to align reasoning with actionable steps.

Question: Your current task is move the orange cloth to the top of the right burner. Output the robot’s
actions to perform this task through Fast tokens.

GT Answer:
<laction_startl><laction_486I><laction_265I><laction_268I><laction_116I><laction_269I><laction_endI|>

ROBOALIGN (SFT) Answer:

’<think>To perform the task of moving the orange cloth to the top of the right burner, the robot needs
to first approach the cloth, then grasp it, and finally move it to the right burner. The actions should be
sequential and purposeful, focusing on the cloth and the burner in question.</think><answer>
<laction_startI><laction_266I><laction_709I><laction_268|><laction_116I><laction_269I><laction_end|>

Reward: 0.5 (Format 1.0 / Accuracy 0.0)

ROBOALIGN (SFT+RL) Answer: <think>To perform the task of moving the orange cloth to the top
of the right burner, the robot needs to first approach and align its gripper with the cloth. Once aligned,
it will need to close the gripper to pick up the cloth, lift it, and then move it to the right burner before
releasing it. The robot’s current position suggests it is already aligned with the cloth, ready to pick it
up.</think><answer>

<laction_startl><laction_486I><laction_265I><laction_268I><laction_116I><laction_269I><laction_end|>

Reward: 1.0 (Format 1.0 / Accuracy 1.0)

Figure 7: Example of model response

C USE OF Al TooLs

We acknowledge that a large language model (LLM) was used to refine the phrasing and grammar of
the manuscript.
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