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Abstract

Vision-language models are pre-trained by aligning image-text pairs in a common space to deal with open-set visual concepts. Recent
works adopt fixed or learnable prompts, i.e., classification weights are synthesized from natural language descriptions of task-relevant
categories, to reduce the gap between tasks during the pre-training and inference phases. However, how and what prompts can improve
inference performance remains unclear. In this paper, we explicitly clarify the importance of incorporating semantic information into
prompts, while existing prompting methods generate prompts without sufficiently exploring the semantic information of textual
labels. Manually constructing prompts with rich semantics requires domain expertise and is extremely time-consuming. To cope
with this issue, we propose a knowledge-aware prompt learning method, namely Confounder-pruned Knowledge Prompt (CPKP),
which retrieves an ontology knowledge graph by treating the textual label as a query to extract task-relevant semantic information.
CPKP further introduces a double-tier confounder-pruning procedure to refine the derived semantic information. Adhering to the
individual causal effect principle, the graph-tier confounders are gradually identified and phased out. The feature-tier confounders
are eliminated by following the maximum entropy principle in information theory. Empirically, the evaluations demonstrate the
effectiveness of CPKP in few-shot inference, e.g., with only two shots, CPKP outperforms the manual-prompt method by 4.64% and
the learnable-prompt method by 1.09% on average.

Keywords: Multi-modal model, Large-scale pre-training, Prompt learning, Maximum entropy, Knowledge graph

1. Introduction

As a promising and tractable surrogate for large-scale super-
vised visual representation learning methods, large-scale self-
supervised vision-language pre-training methods, e.g., CLIP
Radford et al. (2021) and ALIGN Jia et al. (2021), jointly learn
image and text representations with two modality-specific en-
coders by aligning the corresponding image-text pairs, which is
achieved by adopting contrastive loss in pre-training. Benefiting
from pre-training on large-scale data, models learn numerous
visual concepts so that the learned representations have a strong
generalization and can be transferred to various tasks.

Zhou et al. (2022) observes that the zero-shot generalization
performance of the pre-trained vision-language model heavily
relies on the form of the text input. Feeding pure labels, i.e.,
textual names of categories, into the text encoder leads to de-
generate performance. To tackle this issue, recent works adopt
various prompts to augment the textual labels Zhou et al. (2022);
Derakhshani et al. (2023); Khattak et al. (2023). In the inference
stage, the classification weights, i.e., textual label features, are
obtained by providing the text encoder with prompts describing
candidate categories. The image feature generated by the image
encoder is compared with these label features for classification.

Email address: chuxiong2016@iscas.ac.cn (�Chuxiong Sun)
1Equal contribution.

Figure 1 summarizes the typical prompt generation paradigms.
The paradigm in Figure 1 a rigidly applies the fixed prompt
template, which suffers from a dilemma that a specific prompt
template has inconsistent boosts for different tasks. A motivating
example, proposed by Zhou et al. (2022), shows that using “a
photo of a [Y]” as a prompt for CLIP achieves an accuracy of
60.86% on Flowers102 Nilsback et al. (2008), and using a more
describing prompt, i.e., “a flower photo of a [Y]”, can improve
the performance to 65.81%, where “[Y]” presents the label text.
However, such an improvement is reversed on Caltech101 Li
et al. (2004), where the accuracy of using “a [Y]” is 82.68%,
while using “a photo of [Y]” only achieves 80.81%.

To tackle this dilemma, several works Zhu et al. (2023); Zhou
et al. (2022); Gao et al. (2021); Jin et al. (2022); Lin et al. (2023)
explore learning prompts from limited downstream labeled data,
e.g., few-shot scenarios, which is shown in Figure 1 b. Gen-
erally, these methods rely on empirical risk loss to optimize
the learnable prompt, while both the meaning of the learned
prompts and why they work remain unclear. We attribute this
in part to the fact that the semantic information of text labels
is not explicitly explored, and such a deficiency further degen-
erates the performance of visual-language models in few-shot
scenarios. We argue that the label-related semantic information
is critical for improving the performance of pre-trained models.
To further confirm our hypothesis, we conduct a motivating com-
parison. Figure 2 demonstrates that both the semantic prompt
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Figure 1: Comparison of different prompt generation paradigms. a: The
paradigm of using the prompt with fixed templates Schick and Schütze (2021);
Radford et al. (2021). b: The learning paradigms of recent benchmark works,
including two major categories: the upper paradigm adopts a certain number
of updatable tokens to generate adaptive prompts, and the tokens are learnable
during training Zhou et al. (2022); Rao et al. (2021); the lower paradigm uses
the same prompt with fixed templates as in a, but further injects an adapter
after the fixed text encoder of the pre-trained vision-language model, and the
adapter is trainable during inference on downstream tasks, including the adapter
training and prediction Gao et al. (2021); Rao et al. (2021). c: The proposed
learning paradigm, which directly learn a prompt from the labels by leveraging
the effective semantic information from an ontology knowledge graph.

and a longer semantic prompt further improve the performance
of CLIP. In contrast, the improvement of a longer semantic
prompt over the semantic prompt is limited, which proves that
the improvement of CLIP’s performance relies on the addition
of semantic information rather than simply adding more words.

To this end, we propose an innovative knowledge-aware
prompt learning approach for improving few-shot inference
of pre-trained vision-language models, namely, Confounder-
pruned Knowledge Prompt (CPKP). As illustrated in Figure
1 c, CPKP explores the semantic information associated with
the label text by using labels as queries to retrieve an ontology
knowledge graph. In practice, we observe that certain derived
knowledge is redundant for downstream tasks, which may de-
generate the performance of our method, e.g., specific relation
types may negatively affect the prediction of the graph. The over-
redundant information contained by the learned feature exacer-
bates acquiring discriminative information. Therefore, CPKP
introduces a double-tier confounder-pruning procedure to refine
the derived label-related knowledge representation. In graph-tier,
inspired by the principle in benchmark works Granger (1969);
Lin et al. (2021), CPKP gradually prunes the task-irrelevant
relation types, which is treated as graph-level confounders2. In
feature-tier, CPKP reduces feature-level confounders, i.e., the

2The term confounder is used in its idiomatic sense, which is orthogonal to
the existing statistical sense in Structural Causal Models Pearl (2009); Glymour
et al. (2016) or other specific fields.
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Figure 2: Comparison of different prompt forms for CLIP. The results of vision-
language model inference experiments are shown in the histogram, where grey
bars denote the prompt without semantic information which CLIP uses, brown
bars denote the prompt with simple coarse-grained semantic information, and
purple bars denote the prompt using more words to describe similar semantic
information.

redundant information in features, by following the principle
of maximum entropy Nakamura (2000); Liu et al. (2022a) in in-
formation theory. Empirically, the evaluations demonstrate that
CPKP is effective for few-shot inference. The contributions of
this paper are four-fold:

• We present a motivational study on the improvement of
pre-trained visual-language models’ few-shot inference in
downstream applications through prompting learning meth-
ods, and identify the importance of exploring the semantic
information of label text.

• For effectively mining semantic information from the label
text, we propose a confounder-pruned knowledge prompt,
which derives label-related semantic information by retriev-
ing an ontology knowledge graph.

• We propose a double-tier confounder-pruning approach to
remove task-redundant information from the label-related
knowledge representation.

• Empirically, we conduct comprehensive comparisons to
prove the superiority of our method in few-shot inference.

2. Related Work

Vision-Language Models. Recent development of joint learn-
ing on vision and language representations achieves impressive
success in various fields Anderson et al. (2018); Antol et al.
(2015); Gao et al. (2019); Kim et al. (2018); Huang et al. (2019);
You et al. (2016). A critical issue is that few high-quality anno-
tated multi-modal data are available. Therefore, Lu et al. (2019);
Tan and Bansal (2019); Chen et al. (2019); Li et al. (2020) are de-
signed to be pre-trained on massive unannotated data by taking

2
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advantage of Transformer Vaswani et al. (2017). Such large-
scale pre-trained vision-language models have great potential in
the adaptation to various downstream tasks by learning univer-
sal representations via prompting Jia et al. (2021); Zhang et al.
(2020). A representative approach is CLIP Radford et al. (2021),
which pre-trains modality-specific encoders using 400 million
image-text pairs and achieves impressive performance across a
wide range of downstream tasks.

Prompt Design. Since directly applying pre-trained mod-
els to downstream tasks often leads to degenerate performance,
template-based prompting methods Radford et al. (2021); Schick
and Schütze (2021); Shin et al. (2020); Jiang et al. (2020) are
proposed to address this issue. However, such template-based
prompts have a critical issue: the optimal prompt may be ex-
cluded despite the large-scale candidate template library. To
perform effective and data-efficient improvement on downstream
tasks, simple yet effective adapter-based approaches Houlsby
et al. (2019); Gao et al. (2021); Zhang et al. (2021) are intro-
duced, which can be treated as a post-model prompt. Addi-
tionally, some methods Zhou et al. (2022); Rao et al. (2021);
Derakhshani et al. (2023); Khattak et al. (2023) are developed
to automatically learn prompts without relying on the template
library. However, these approaches do not explore the semantic
information of the label text during the inference stage. In this
paper, we prove the importance of incorporating label-relevant
semantic information into prompts and propose to derive such
information by leveraging an ontology knowledge graph.

Knowledge Graph. Knowledge graphs include general do-
main knowledge graphs Vrandecic and Krötzsch (2014); Carlson
et al. (2010); Xu et al. (2017); Speer et al. (2017) and specific do-
main knowledge graphs Harland (2012); Ferrucci et al. (2010);
Tang et al. (2008). Specifically, ontology knowledge graphs
Geng et al. (2021) only have the ontology entities, i.e., con-
ceptual types, for instance, Wikidata-ZS and NELL-ZS Qin
et al. (2020). To understand the graph-based information from
knowledge graphs, Graph embedding Goyal and Ferrara (2018);
Wang et al. (2017); Glorot et al. (2013); Socher et al. (2013)
is proposed, which maps the high-dimensional graph data into
the low-dimensional vector, e.g., TransE Bordes et al. (2013),
TransR Lin et al. (2015), RESCAL Nickel et al. (2011), and
KG-BERT Yao et al. (2019). Besides, Graph Neural Network
(GNN)-based methods are proposed to mine graph structure
information, e.g., KGCN Wang et al. (2019). For our approach,
we refine the knowledge graph representation by eliminating the
task-irrelevant and redundant information.

3. Preliminaries

Vision-Language Pre-training. CLIP Radford et al. (2021)
introduces a pre-training approach to learning semantic knowl-
edge from large amounts of image-text data and consists of an
image encoder and a text encoder. Both encoders are trained
jointly using a contrastive loss Chen et al. (2020). Suppose h
denotes the image features extracted by the image encoder f I(·)
for an image x and {li}Ki=1 denotes a set of label features extracted
by the text encoder f T (·) from prompts {pi}

K
i=1 with a form of

“a photo of a [Y].”, where K is the number of classes, and [Y]

presents a specific class name, e.g., “dog”, “cat”, or “flower”.
The prediction probability is computed by

P (y = i|h) =
exp

(
<li,h>
τ

)
∑K

j=1 exp
(
<l j,h>
τ

) , (1)

where y denotes the semantically correct category for x, τ is the
temperature hyper-parameter in CLIP, and < ·, · > denotes the
cosine similarity.

Graph Representation Learning. Let G = (V, E) be an
attributed graph, where V is the node set and E is the edge set.
Given a graph dataset G = Gi, i ∈ ⟦1,NG⟧, where Gi is sampled
i.i.d from the distribution P (G), and NG represents the number
of graphs in G. The objective of graph representation learning is
to learn an encoder f G(·) : G → RdG

, where RdG
denotes a dG-

dimensional embedding space and f G(Gi) is the representation
of Gi.

4. Methodology

The overall architecture of CPKP is illustrated in Figure 33.
CPKP consists of two stages: 1) ontology-enhanced knowledge
embedding derives the label-related subgraph from an ontol-
ogy knowledge graph by using the label token as a query; 2)
double-tier confounder-pruning removes the task-irrelevant and
redundant information from graph representations.

4.1. Learnable Prompt with Ontology-enhanced Knowledge Em-
bedding.

We propose to retrieve an ontology knowledge graph by treat-
ing an input label as the query and further capture the correspond-
ing high-order knowledge representation through a GNN. Given
an input label [Y]i, we start by locating the 1-hop label-relevant
subgraph Gi, which is performed by obtaining the knowledge
graph entity with the largest semantic similarity to [Y]i and re-
trieving all neighbor entities that are directly connected to it by
an edge.

Label-specific Prompt. From the experiments in Figure
2, we derive a common assumption for prompting pre-trained
vision-language models:

Assumption 4.1. (Semantic information in prompts). Intro-
ducing label-relevant semantic information in prompts boosts
the performance of the pre-trained vision-language model in
downstream inference tasks.

Holding Assumption 4.1, we propose to effectively add label-
relevant semantic information into learnable prompts. The label-
specific prompt set {pi}

K
i=1 is generated by

pi = (µ + λ · φ ([Y]i)) ⊕ b ([Y]i), (2)

where µ is a set of learnable feature vectors, which are randomly
initialized by Gaussian distributions. φ (·) denotes the function

3We are aware of the drawbacks of reusing notations. “i”s, used in Gi and
{li}Ki=1, are two irrelevant indexes of random variables for simplicity.

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4909583

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



dog
cat

flower
…

[Y]

Confounder-pruned Knowledge Prompt
Labels

Text
Encoder Label 

Features

…

Ontology
Knowledge
Graph

Query Subgraph

Derive
Knowledge
Subgraph

Double-tier 
confounder

-pruning

Image
Encoder

Image
Feature

Image

dogmax

[Y]
Pruning

GNN

{[Y]}

InputTrain

Feature-tier
Confounder-pruning

Augmentation

Maximum
Entropy

Figure 3: The architecture of CPKP. The intuition behind our method is to directly learn a prompt with label-related semantic information, which is achieved by
introducing refined knowledge from an external knowledge graph.

of our proposed CPKP for encoding a label with rich semantic
information, which will be detailed presented in Section 4.2,
and λ is the coefficient that controls the balance between µ
and φ (·). b ([Y]i) denotes the lower-cased byte pair encoding
representation of label [Y]i, and ⊕ is a concatenation function.
Note that the output of φ (·) is a vector with the same dimension
as b ([Y]i), e.g., 512 for CLIP. Feeding prompts {pi}

K
i=1 to the

text encoder f T (·), we obtain the label features {li}Ki=1, and the
prediction probability is computed by Equation 1.

Label-shared Prompt. From the perspective of revisiting the
training data for the vision-language model, we observe that the
input text does not focus on describing the label-specific and
discriminative semantic information; on the contrary, words with
semantic information shared by different labels appear in a large
body of descriptive text. For the examples “a [golden retriever]
runs on the grass with its tail wagging” and “an [Alaskan] sits
on a couch with a floppy tail”, there only exists the label-shared
information, i.e., “tail”, but no label-specific information. Such a
phenomenon is common in the description of fine-grained labels,
and we thus hold an extended assumption:

Assumption 4.2. (Generalized semantic information in
prompts). Label-specific semantic information could be task-
redundant to prompt pre-trained vision-language models, while
generalized label-shared semantic information is crucial for
generating effective prompts.

We thus propose a label-shared prompt form by

pi =

(
µ + λ · ψ

(⌊{
φ
(
[Y] j

)}K

j=1

⌉))
⊕ b ([Y]i), (3)

where ⌊·⌉ presents a cascade concatenation function, detailed by⌊{
φ
(
[Y] j

)}K

j=1

⌉
= φ ([Y]1) ⊕ φ ([Y]2) ⊕ . . . ⊕ φ ([Y]K), and ψ (·)

presents a linear mapping function in CPKP. We provide the

interpretation of learned prompts and the case study of label-
shared and label-specific prompts in Section 6.

4.2. Confounder-pruned Graph Representation

As mentioned previously, we employ a double-tier
confounder-pruning procedure to achieve the desired task-
relevant graph representation, which includes: 1) graph-tier
confounder-pruning; and 2) feature-tier confounder-pruning.

Graph-tier Confounder-pruning. We refine the subgraph
by performing the graph-tier confounder-pruning to remove the
task-irrelevant information and encode the pruned subgraph into
a vector by the function φ (·) in Equation 2 and Equation 3,
which is defined by

φ ([Y]i) = gi = f G (κ (Gi)) , (4)

where κ (·) denotes the proposed graph-tier confounder-pruning
function, and f G (·) is implemented by GNN.

We demonstrate confounder-pruned graph representation in
Figure 4. Given the label-relevant knowledge subgraph Gi and
the set of relation-types {rm}

NR

m=1 in the subgraph, where NR

denotes the number of relation-types, we aim to remove the
relation-types that are decoupled from the prediction of Gi. To
this end, we capture the individual causal effect Goldstein et al.
(2015); Lin et al. (2021) of the knowledge subgraph Gi with the
relation-type rm on the label feature li. Graph Rule denotes the
process of quantitatively computing a score to ascertain whether
the prediction of the graph is related to a specific pruned relation-
type. Specifically, we quantify the contribution of a relation-type
rm to the prediction of the whole model, e.g., the output of the
sequential model f G (·) and f T (·), by measuring the reduction
in joint model error, formulated as

∆ϵ,rm = ϵκ(¬rm)(Gi) − ϵGi , (5)

4
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Figure 4: An example of the rationale of the graph-tier confounder-pruning for graph representations. We refine the derived knowledge subgraph Gi by pruning the
edges that are causally decoupled from the downstream task. We determine whether a relation-type rm is predictive of the graph by iteratively removing the edges
related to the relation-type rm and then checking the oscillation of the result, which is computed by following a specific graph rule. Only causally related edges are
kept, and others are pruned. Note that the graph encoder f G (·) is fixed throughout the process.

where ϵGi denotes the joint model error of the f G (·) and f T (·),

i.e., the cross-entropy loss defined by LCE(
{
< l j, h >

}K

j=1
,Y),

and Y is the ground-truth label. ϵκ(¬rm)(Gi) denotes the joint model
error excluding the relation-type rm.

Considering that the determination of whether a variable is
predictive of the output requires sufficiently trained joint models,
we adopt a truncated exponential moving weighted average ap-
proach, i.e., the exponential moving weighted average approach
is adopted from the β-th epoch from the last epoch. Therefore,
∆ϵ,rm is transformed into ∆̄ϵ,rm as follows:

∆̄ϵ,rm =
(

(1 − α) · ∆N t

ϵ,rm
+ α (1 − α) · ∆N t−1

ϵ,rm
+ . . .+

αβ−1 (1 − α) · ∆N t−β+1
ϵ,rm

)/(
1 − αβ

)
,

(6)

where α is the balancing coefficient, and N t denotes the total
training epoch number.

We determine the relation between rm and predicting the graph
by rm is predictive o f Υ, ∆̄ϵ,rm > 0

rm is NOT predictive o f Υ, ∆̄ϵ,rm ≤ 0,
(7)

where Υ represents the classification based on the image repre-
sentation h and the text representations

{
l j

}K

j=1
.

∆̄ϵ,rm measures the contribution of a relation type rm. We
prune those relation types with negative effects and visualize
the process of confounder-pruning in Section 6. However, rep-
resentations learned conventionally contain certain irremovable
redundancy. To remedy this deficiency, we further introduce the
feature-tier confounder-pruning technique.

Feature-tier Confounder-pruning. The feature-tier redun-
dancy in the learned representations, dubbed the feature-tier
confounder, explicitly degenerates the information entropy con-
tained by representations, further resulting in the over-fitting
and representation collapse issues. To cope with such problems,
we propose to optimize the GNN to acquire the maximum en-
tropy of representations, thereby explicitly reducing the risk of
over-redundancy. Inspired by the data coding theory Liu et al.
(2022b), we adopt a computationally tractable surrogate that
measures the minimal coding length in lossy data coding to
estimate the entropy. Specifically, suppose there exist a batch
of K knowledge subgraph instances G = {Gi}

K
i=1 and the corre-

sponding representations with D dimensions f G (G) ∈ RK×D,
the minimal coding length can be defined as Liu et al. (2022b);
Yi et al. (2007):

MCL ≜
(K + D

2

)
log det

(
ID +

K
Dϵ2 f G (G)⊤ f G (G)

)
, (8)

where ID presents a D × D identity matrix, and ϵ presents the
distortion upper-bound of the encoding procedure. In practice,
we conduct the Taylor series expansion to Equation 8 and derive

MCLr≤2

= Tr
(

K + D
2

( K
Dϵ2 f G (G)

⊤

f G (G) −
1
2

( K
Dϵ2 f G (G)

⊤

f G (G)
)2
))

=
K + D

2

 D∑
i=1

(
ξii −

1
2
ξii

2
)
−

1
2

D∑
i=1

D∑
j,i

ξi j
2

 ,
(9)

and
ξ =

K
Dϵ2 f G (G)

⊤

f G (G), (10)
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Algorithm 1 CPKP(SPE) training
Input: The annotated image datasets Xtr for the training phase
of few-shot learning. The corresponding label set

{
[Y] j

}K

j=1
.

Batch size n. Total training epoch number N t. Coefficients λ,
α, β and γ.
Initialize: The learnable neural network parameters θ for the
graph encoder f G

θ (·) and ϑ for the learnable feature vectors µ,
which share a learning rate ℓ. The fixed pre-trained parameters
for the text encoder f T (·) and the image encoder f I(·).
repeat

# training phase o f f ew − shot learning
for t-th training iteration do

Sample a batch X̄tr, Ȳ tr = {xi, yi}
tn
i=(t−1)n ∈ Xtr

# generate label f eatures without pruning{
l j

}K

j=1
= f T

((
µϑ + λ · f G

θ

(
G j

))
⊕ b

(
[Y] j

))
θ ← θ− ℓ ·∆θ

(
LCE(

{
< l j, f I

(
X̄tr

)
>
}K

j=1
, Ȳ tr)+ γLFTCP

)
ϑ← ϑ−ℓ ·∆ϑ

(
LCE(

{
< l j, f I

(
X̄tr

)
>
}K

j=1
, Ȳ tr)+γLFTCP

)
# computing joint model error di f f erentiation
if t >

(
N t − β

)
then

# f ixing f I (·) , f T (·) , and f G (·)
for m-th relation type iteration do

Init L∆m
t
= 0

for 1 ≤ t′ ≤ t do
Sample X̄tr, Ȳ tr = {xi, yi}

t′n
i=(t′−1)n ∈ Xtr

# cross − entropy loss without pruning{
l j

}K

j=1
= f T

((
µϑ + λ f G

θ

(
G j

))
⊕ b

(
[Y] j

))
Lm = LCE(

{
< l j, f I

(
X̄tr

)
>
}K

j=1
, Ȳ tr)

# cross − entropy loss with pruning
# remove rm and derive κ(¬rm)

(
G j

){
l j

}K

j=1
= f T

((
µϑ + λ f G

θ (κ(¬rm)(G j))
)
⊕ b

(
[Y] j

))
L

(¬rm)
m = LCE(

{
< l j, f I

(
X̄tr

)
>
}K

j=1
, Ȳ tr)

L∆m
t
+ = L

(¬rm)
m − Lm

end for
end for
L̄∆m

t
=

(
(1 − α) · L∆m

t
+ α (1 − α) · L∆m

t−1
+ . . . +

αt−N t+β−1 (1 − α) · L∆m
N t−β+1)/(1 − αt−N t+β

)
end if

end for
until θ and ϑ converge
# con f irming relation types
Confirm the relation between the graph prediction and rm by
considering L̄∆m

N t

where Tr (·) denotes the trace of a matrix, r denotes the order
of the expanded Taylor series, and f G (G) represents the di-
mensional normalized representations. In practice, we propose
to compute ξ in a double-view manner to provide a sufficient
regularization of representations, and Equation 10 is re-written

Algorithm 2 CPKP(SPE) test
Input: The annotated image datasets Xte for the test phase
of few-shot learning. The corresponding label set

{
[Y] j

}K

j=1
.

Batch size n. Coefficient λ.
Initialize: The learned neural network parameter θ for the
graph encoder f G

θ (·). The fixed pre-trained parameters for the
text encoder f T (·) and the image encoder f I(·).
# test phase o f f ew − shot learning
for t-th test iteration do

Sample a batch X̄te, Ȳ te = {xi, yi}
tn
i=(t−1)n ∈ Xte

# generate label f eatures with
# graph − tier con f ounder − pruning
# per f orm con f ounder − pruning and derive κ

(
G j

){
l j

}K

j=1
= f T

((
µϑ + λ · f G

θ

(
κ
(
G j

)))
⊕ b

(
[Y] j

))
Y predict = max

j

{
< l j, f I

(
X̄te

)
>
}K

j=1

end for

by

ξ =
K

Dϵ2 f G (G)
⊤

f G (G)′, (11)

where f G (G)′ denotes representations of another view, which
is generated by combining distortions with f G (G). Under suf-
ficient optimization, considering K

Dϵ2 is a constant, we derive
that the trace of ξ is constant, and each element of {ξii}

D
i=1 is a

constant value.
To acquire the objective of maximizing the minimum coding

length, we simplify Equation 9 by eliminating the constant val-
ues {ξii}

D
i=1 and coefficients, i.e., K and D. The well-refined loss

function of the feature-tier confounder-pruning is implemented
as follows:

LFTCP =

D∑
i=1

D∑
j,i

ξi j
2. (12)

Our complete method is called CPKP 4. Considering two
forms of prompts that are discussed in Section 4.1, we abbreviate
label-specific prompt and label-shared prompt as SPE and SHR,
respectively. We take CPKP(SPE) as an example to demonstrate
the pipeline in Algorithm 1 and Algorithm 2.

5. Experiments

Datasets. The experiments are conducted on 11 publicly
available image classification datasets: ImageNet Deng et al.
(2009), Caltech101 Li et al. (2004), StandfordCars Krause et al.
(2013), FGVCAircraft Maji et al. (2013), Flowers102 Nilsback
et al. (2008), OxfordPets Parkhi et al. (2012), Food101 Bossard
et al. (2014), SUN397 Xiao et al. (2010), UCF101 Soomro et al.
(2012), DTD Cimpoi et al. (2014), and EuroSAT Helber et al.
(2019). We collect the details of datasets in Table 1. Note that
for Caltech101, the “BACKGROUND Google” and “Faces easy”

4Unless otherwise specified, CPKP refers to CPKP using the label-shared
prompt, i.e., CPKP(SHR).

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4909583

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Table 1: The details of benchmark datasets for few-shot learning experiments.

Datasets Classes Train Val Test
ImageNet 1,000 1.28M N/A 50,000
Caltech101 100 4,128 1,649 2,465
OxfordPets 37 2,944 736 3,669
StanfordCars 196 6,509 1,635 8,041
Flowers102 102 4,093 1,633 2,463
Food101 101 50,500 20,200 30,300
FGVCAircraft 100 3,334 3,333 3,333
SUN397 397 15,880 3,970 19,850
DTD 47 2,820 1,128 1,692
EuroSAT 10 13,500 5,400 8,100
UCF101 101 7,639 1,898 3,783

Table 2: Statistics of the adopted ontology knowledge graphs. # Ent. denotes
the number of entities. # Triples denotes the amount of relation triples. #
Train/Dev/Test denotes the number of relations for training/validation/test.

Dataset # Ent. # Triples # Train/Dev/Test
Nell-ZS 1,186 3,055 139/10/32
Wikidata-ZS 3,491 10,399 469/20/48

classes are discarded. For the video dataset, UCF101, the mid-
dle frame of each video is used as input to the image encoder.
These datasets cover general object classification tasks, scene
recognition tasks, action recognition tasks, fine-grained classifi-
cation tasks, and specialized tasks such as texture recognition
and satellite image recognition, which constitute a comprehen-
sive benchmark.

Baselines. We compare our approach with three major base-
line models: 1) CLIP Radford et al. (2021), which is based on
manual prompts, and we follow the instructions for prompt en-
sembling in Radford et al. (2021) and input seven corresponding
prompt templates into the CLIP text encoder; 2) CLIP using
linear probing Radford et al. (2021), which is implemented by
following Radford et al. (2021); Tian et al. (2020), and we train
a linear classifier on top of high-quality pre-trained CLIP’s fea-
tures; 3) CoOp Zhou et al. (2022), which automatically designs
the prompt templates, and for fair comparisons, we adopt the
best variants of CoOp.

Ontology Knowledge Graphs. We provide detailed descrip-
tions of the candidate knowledge graphs in Table 2. Nell-ZS
is constructed based on NELL Carlson et al. (2010), while
Wikidata-ZS is based on Wikidata Vrandecic and Krötzsch
(2014). Both Nell and Wikidata are well-configured, large-scale
knowledge graphs with official relation descriptions, and the tex-
tual descriptions of Nell-ZS and Wikidata-ZS contain abundant
information.

Training Details. We set the maximum epoch to 200, 100,
and 50 for 16/8 shots, 4/2 shots, and 1 shot, respectively, while
the maximum epoch on ImageNet is fixed to 50 for all shots. Un-
less otherwise specified, ResNet-50 He et al. (2016), and Trans-
former Vaswani et al. (2017) are used as the corresponding im-
age and text encoders. We initially adopt Wikidata-ZS Qin et al.
(2020) as the target ontology knowledge graph, while we also

1e-4 1e-3 1e-2 1e-1 1
The value of the corresponding coefficient 
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Figure 5: Parameter study on λ. We choose the best coefficient value of λ as
10−3 in benchmark experiments. The shade denotes the range of experimental
results.

conduct experiments to evaluate our method using Nell-ZS Qin
et al. (2020) in Section 5. We randomly sample half of the train-
ing data to confirm the graph prediction-related relation types.
The set of learnable feature vectors µ is randomly initialized by
zero-mean Gaussian distributions with a standard deviation of
0.02. We set α = 0.8, β = 5.0 and γ = 1.0. Figure 5 reports the
results of the model with different λ values based on Flowers102
at 1 shot. The parameter study is conducted on the validation
set. To explore the influence of λ, we fix other experimental
settings and select λ from the range of {10−4, 10−3, 10−2, 0.1, 1}.
We can observe that the score reaches the maximum when the λ
is 10−3, indicating that an appropriate tuning of the impact of the
knowledge embedding to guide the training of learnable label
features, i.e., µ, can indeed promote the performance of CLIP
on downstream tasks. However, overemphasizing the impact of
knowledge embedding on training may degenerate the ability
of the learnable features µ to fit appropriate prompts needed for
downstream tasks by using gradient back-propagation, so that
the performance of CLIP is weakened. The setting of λ is shared
among different downstream tasks. Table 3 shows the settings
of λ for different datasets.

Few-shot Inference. We train our model with 1, 2, 4, 8, and
16 shots respectively, and evaluate it on test sets. The experimen-
tal results on 11 benchmark datasets are demonstrated in Figure
6, and the average results over three runs are shown in the top-
left subfigure. We observe that CPKP achieves superior results
under settings of different shots. With the increase of shots, each
compared method achieves better performance, while CPKP
still outperforms benchmark methods. Table 4 shows the perfor-
mance gap between CPKP using 16 shots and CLIP using differ-
ent manual prompts on all datasets. The results demonstrate that
CPKP outperforms the best CLIP variant by a significant margin
on most datasets, further proving our proposed Assumption 4.1
and the effectiveness of CPKP. Table 5 demonstrates the improve-
ments achieved by the knowledge-aware learnable prompt (klp)
over the conventional learnable prompt (clp). Specifically, the
improvements reach 2.58%, 1.68%, and 1.90% on fine-grained
image classification datasets, including DTD, Flowers102, and
Food101, respectively.

Ontology-enhanced Knowledge Prompt. Figure 7 reports
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Table 3: The Settings of λ for different datasets.

Pets Flowers Aircraft DTD EuroSAT Cars Food SUN Cal UCF IN
λ 1e-1 1e-3 1e-2 1e-2 1e-3 1e-3 1e-1 1e-1 1e-1 1e-3 1e-1
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Figure 6: The performance of few-shot inference on 11 datasets. KP represents the variant of CPKP using no pruning.
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Figure 7: Comparison of leveraging two different knowledge graphs, i.e., Nell-
ZS and Wikidata-ZS.

the results of the model trained on four datasets with 8 shots
using Wikidata-ZS or NELL-ZS ontology knowledge graph. We
observe that CPKP and the variant KP achieve better perfor-
mance when using the Wikidata-ZS knowledge graph compared
to using NELL-ZS. We reckon the reason is that Wikidata-ZS
has more detailed relations and entities, empowering our method
to locate label-specific knowledge subgraphs, which is consis-
tent with our proposed Assumption 4.1. However, we also

observe that the difference between the performance of CPKP
using Wikidata-ZS and using Nell-ZS is not extremely large
on some benchmark datasets, e.g., Food101 and OxfordPets.
According to Assumption 4.2, we speculate that although Nell-
ZS lacks enough label-specific knowledge, it contains sufficient
generalized label-related knowledge for certain datasets. For
example, Nell-ZS does not include entities such as “chocolate”
and “potato”, but it contains “concept:food”, enabling the knowl-
edge subgraph of “concept:food” can be used for many labels.
This further demonstrates that the important content of prompts
may not contain label-specific and discriminative information,
and generalized label-shared semantic information is crucial for
generating effective prompts.

Graph-tier Confounder-pruning. To support the superiority
of the proposed graph-tier confounder-pruning, we compare the
CPKP using label-specific prompt with CPKP using random
pruning, as shown in Table 6. Specifically, the corresponding
last two columns are the performance gaps between the proposed
methods and CPKP using random pruning instead of the pro-
posed graph-tier confounder-pruning, e.g., the accuracy achieved
by CPKP using random pruning minus the accuracy achieved
by our proposed methods. We observe that the complete CPKP
outperforms CPKP using random pruning on all downstream
tasks, and KP can even outperform CPKP using random pruning
on most downstream tasks. We reckon that the random pruning
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Table 4: Comparison with hand-crafted prompts. “∆” denotes the performance
gap between CPKP and the best CLIP model using the coarse-grained semantic
prompt.

Datasets Hand-crafted Prompts CPKP ∆

a photo of a [Y] 60.86
OxfordFlowersa flower photo of a [Y] 65.85 94.76 +28.62

a photo of a [Y], a type of flower 66.14
a photo of a [Y] 15.72

FGVCAircraft an aircraft photo of a [Y] 16.65 30.76 +13.48
a photo of a [Y], a type of aircraft17.28
a photo of a [Y] 83.73

OxfordPets a pet photo of a [Y] 86.21 86.23 +0.02
a photo of a [Y], a type of pet 85.77
a photo of a [Y] 39.83

DTD a photo of a [Y] texture 40.25 63.53 +21.10
[Y] texture 42.43
a photo of a [Y] 24.12

EuroSAT a satellite photo of [Y] 37.38 83.67 +46.29
a photo of a [Y], a type of sate 31.41
a photo of a [Y] 55.61

StanfordCars a car photo of a [Y] 55.86 73.27 +17.28
a photo of a [Y], a type of car 55.99
a photo of a [Y] 75.20

Food101 a food photo of [Y] 77.50 74.82 -2.68
a photo of [Y], a type of food 77.31
a photo of a [Y] 58.19

ImageNet an object photo of a [Y] 57.99 62.36 +4.07
a photo of a [Y], a type of object 58.29
a photo of a [Y] 86.25

Caltech101 an object photo of a [Y] 85.92 91.47 +4.13
a photo of a [Y], a type of object 87.34
a photo of a [Y] 58.49

SUN397 a scene photo of a [Y] 60.70 69.05 +8.35
a photo of a [Y], a type of scene 60.48
a photo of a [Y] 58.37

UCF101 an action photo of a [Y] 61.49 76.08 +14.59
a photo of a [Y], a type of action 60.40

may incorrectly remove the task-relevant semantic relations in
the acquired knowledge graph, and some relations containing
task-irrelevant noise information could be preserved. There-
fore, the performance of CPKP using random pruning could be
degraded.

Feature-tier Confounder-pruning. We visualize the repre-
sentations learned by CPKP variants on the ImageNet dataset
in Figure 8. CPKP w/ FTCP indicates CPKP with feature-tier
confounder-pruning, while CPKP w/o FTCP indicates CPKP
without feature-tier confounder-pruning. Concretely, the learned
prompt feature representations are projected into an RGB-styled
color image. Different colors indicate different types of in-
formation in features. The abscissa axis denotes the feature
dimensions, and the ordinate axis presents various categories.
The more different colors represent the less similar feature di-
mensions. The two left plots illustrate the contributions of
dimensions to a specific category classification, and the right
plots demonstrate the similarities between feature dimensions.
These visualizations substantiate the superiority of the feature-

Feature Dimensional Difference

C
PK

P 
w

/ F
TC

P
C

PK
P 

w
/o

 F
TC

P

Figure 8: The visualization of representations learned by variants of CPKP in
ImageNet.

tier confounder-pruning technique in addressing the feature re-
dundancy issue.

6. Further Analysis

Interpreting the Learned Prompts. Figure 9 shows that the
original input text of CLIP indeed contains several words with
rich semantic information. Such a fact proves that our proposed
assumptions are reliable. We interpret the learned prompt by
transforming the learned feature vector into the word closest to
the corresponding vector in the hidden space. Table 7 shows the
visualized feature vectors of µ learned by CPKP on benchmark
datasets. We observe that there exist words that are task-relevant,
e.g., “cat”, “cag” and “furry” for OxfordPets, “ford” and “electr”
for StanfordCar. From the experimental results demonstrated in
Table 8, we observe that the vectors learned by CoOp Zhou et al.
(2022) are basically ambiguous words, such as, “mul”, “leng”,
“vish”, “traveled”, “check”, “c”, “darwin”, “:]”, “un”, “ldnt”,
“"/”, and “@”, etc. This substantiates that CoOp can hardly learn
task-relevant lexical features, since its training is only based on
the gradient back-propagation without sufficiently exploring the
task-relevant semantic information. Concretely, our proposed
CPKP empowers the model to learn task-relevant feature vectors
with rich semantic information.

Case Study of Label-shared Prompt and Label-specific
Prompt. We describe the label-shared and label-specific infor-
mation in Section 4.1. Specifically, label-shared information
denotes the information shared by all alternative categories; for
instance, for the classification of dogs and cats, the semantic
information shared by all categories is that they are animals.
Label-specific information denotes the information only belong-
ing to a specific category; for instance, for the classification of
dogs and cats, cats are felines and quiet, while dogs are canines
and active.

As shown in Table 9, we demonstrate the examples of label-
shared semantic information or label-specific semantic infor-
mation in the ontology knowledge graph WIKI-ZS. Each row
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Table 5: Comparison between the conventional learnable prompt (abbreviated as “clp”) and the knowledge-aware learnable prompt (abbreviated as “klp”) under the
setting of 2 shots. △ denotes the gain of “klp” over “clp”.

OxfordPets Flowers102 FGVCAircraft DTD EuroSAT StanfordCars Food101 SUN397 Caltech101 UCF101 ImageNet Average
CLIP + clp 82.64 77.51 18.68 45.15 61.50 58.28 72.49 59.48 87.93 64.09 57.81 62.32
CLIP + klp 84.76 79.19 19.62 47.73 58.24 58.88 74.39 61.75 87.88 63.65 61.44 63.41

△ +2.12 +1.68 +0.94 +2.58 -3.26 +0.60 +1.90 +2.27 -0.05 -0.44 +3.63 +1.09

Table 6: The performance achieved by CPKP using random pruning.

Example Datasets
Avg △KP △CPKPnum Pets Flowers Aircraft DTD EuroSAT Cars Food SUN Cal UCF IN

1-shot 81.22 71.88 17.07 40.92 45.61 45.59 65.65 48.10 81.45 56.00 42.32 54.16 +0.11 -1.38
2-shots 79.35 80.97 19.05 43.20 58.23 48.22 63.37 50.28 81.87 57.91 46.11 57.14 -0.00 -2.37
4-shots 82.73 88.32 23.25 51.46 66.46 56.97 67.03 56.36 85.53 62.75 50.65 62.86 -0.17 -2.15
8-shots 82.43 92.77 29.36 58.35 77.10 65.63 68.69 60.44 87.62 68.94 54.73 67.82 -0.21 -1.29
16-shots 84.99 95.71 34.47 62.17 83.52 73.40 71.64 64.82 91.22 73.88 58.95 72.25 -0.30 -0.87

blue cat full 
moon postcard

blue and white 
checkered t-
shirt

blue and black 
panther 
football colors 
acrylic pai...

heterochromia 
cat cross eyed 
alos

cool logo t-
shirt
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neck cashmere 
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i voted sticker keep calm and 
carry on 
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flowers
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cute kitty 
image

pam pam le 
chat blanc aux 
yeux de 2 
couleurs qu...

Figure 9: Real-world examples of input pairs for CLIP in the pre-training phase, including descriptive text and images.

represents a triple in the knowledge graph, i.e., (head entity,
relation, tail entity). Accordingly, the label-shared semantic
information of all examples is “vehicle”, and the label-specific
semantic information includes “crew member” for “Soyuz TMA-
8”, “use” for “Tesla Model S”, “powered by” for “electric vehi-
cle”, and several semantic words (including “commanded by”,
“location of landing”, “part of the series”, and “watercraft”) for
“vehicle”. Such a case study can prove that compared with the
label-specific semantic information, the label-shared semantic
information “vehicle” is more meaningful to prompt the pre-
trained CLIP, because in the pre-training phase of CLIP, the
input text descriptions corresponding to such input images are

more likely to contain the label-shared semantic information
“vehicle” than the label-specific words.

Figure 10 provides the direct head-to-head comparison be-
tween the label-specific and label-shared prompts. We observe
that, on average, our method using the label-shared prompt leads
to better performance, consistent with the main results demon-
strated in Figure 6. In terms of when the label-shared prompt
or the label-specific prompt may be more effective, we have the
following suggestions. For generic objects (ImageNet and Cal-
tech101), scenes (SUN397), actions (UCF101), and most fine-
grained objects (Food101, OxfordPets, StanfordCars, and DTD),
using the label-shared prompt achieves better performance. But
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Table 7: Visualization of feature vectors µ with the length of 16 learned by CPKP. We derive the words by measuring the Euclidean distances between word
embeddings and each specific feature vector of µ, and the quantified distances are shown in parentheses. N/A represents non-Latin characters. The task-relevant words
are marked in BOLD.

# OxfordPets SUN397 StanfordCar UCF101 EuroSAT
1 cat (1.5036) picked (2.5679) ford (1.3172) ,& (1.2602) py (2.1087)
2 brightest (2.3180) N/A (2.2843) hun (1.3301) dot (1.4643) contrasting (2.0325)
3 rj (3.1393) though (1.6125) electr (2.0140) support (1.0559) glau (1.0764)
4 minat (1.9015) on (2.4797) N/A (0.9406) patients (1.3442) qadri (1.8790)
5 cag (2.1252) wolff (2.8140) N/A (1.7079) zhu (2.0469) un (0.9153)
6 imo (1.3375) can (2.2054) parades (1.6918) n (1.1065) poignant (0.7527)
7 ulties (1.9407) , (1.7601) exemp (1.6267) spani (2.0404) asin (0.9094)
8 finds (1.1166) ][ (1.3146) ofa (1.9606) vais (1.2858) akh (0.7184)
9 gas (1.0581) crazy (1.6973) e (1.9894) vacancies (1.3342) almost (0.7762)

10 N/A (0.9488) front (1.8723) safetyfirst (1.7781) exempt (1.5754) uploading (0.9065)
11 furry (1.0785) beth (3.8847) cki (1.5057) sang (1.3391) lower (1.0842)
12 N/A (1.7903) allthe (1.5069) ils (1.9784) N/A (1.3065) watch (1.0168)
13 txwx (0.9706) bel (1.5420) ot (1.9794) won (1.7255) montene (1.5863)
14 ulty (3.1569) third (1.7776) digits (1.9339) N/A (1.8748) moy (1.1838)
15 dders (1.2218) maid (2.8479) 1 (1.9641) vivian (1.7552) inindia (1.1385)
16 kha (1.1789) ..... (2.8771) kes (1.7112) although (1.5254) define (1.1644)

Table 8: Visualization of context vectors with the length of 16 learned by CoOp.

# UCF101 SUN397 StanfordCars Eurosat OxfordPets Flowers102
1 pewdie (1.6189) ][ (2.3275) y (1.4562) ow (0.7612) tosc (2.5952) mul (1.4018)
2 N/A N/A flips (1.3660) wba (0.7127) judge (1.2635) leng (1.3333)
3 beh (1.6185) appears (1.6177) $ (1.6816) N/A fluffy (1.6099) vish (1.5693)
4 ern (1.0291) imprisonment (1.3888) N/A longtime (0.6693) cart (1.3958) N/A
5 runner (1.6778) private (2.3183) N/A ff (0.5972) harlan (2.2948) traveled (1.6146)
6 sc (1.5346) indigen (2.1600) thats (1.5860) 6 (0.6079) paw (1.3055) check (1.1094)
7 N/A _( (1.8676) N/A arre (0.5725) incase (1.2215) c (1.3797)
8 jel (1.2151) antly (2.1406) N/A prou (0.8177) bie (1.5454) N/A
9 frustr (1.2002) chiev (1.9715) => (1.4286) kp (0.7543) snuggle (1.1578) darwin (1.9828)
10 safe (1.1404) clut (1.7267) ails (1.9450) eling (0.5951) along (1.8298) :] (1.2083)
11 fill (1.7019) eck (1.7848) u (2.2869) op (0.7235) enjoyment (2.3495) un (2.0066)
12 ar (1.4778) +(2.314) ty (2.2074) pap (0.7339) jt (1.3726) ldnt (1.8293)
13 yyyyyy (1.8229) islam (2.0727) th (1.9125) shelter (0.7196) improving (1.3198) temperature (1.4219)

14 pple (2.2329) kest (2.2443) size (1.6790) ak (0.8664) srsly (1.6759) / (1.2637)
15 im (1.9048) lucrative (2.2234) N/A N/A asteroid (1.3395) N/A
16 bourne (1.3172) kz (2.4315) fanfest (1.7902) mar (0.9001) N/A @ (1.4321)

on two specific fine-grained datasets (Flowers102 and FGVCAir-
craft) and a satellite image dataset (EuroSAT), the label-specific
prompt is preferred. In addition to differences in categorical
objects, we also observe that using the label-specific prompt can-
not achieve comparable performance to using the label-shared
prompt in challenging few-shot scenarios, e.g., fewer than eight
shots. We reckon the reason behind such an observation is that
the label-specific prompt version has more parameters than the
label-shared prompt version (the label-specific prompt has the
same number of learnable feature vectors µ as the number of
categories, while the label-shared prompt only has a fixed num-
ber of µ, e.g., 16). Therefore, using the label-specific prompt
requires more data for training.

Visualization of Graph-tier Confounder-pruning. CPKP
can effectively remove several task-irrelevant relations. We
visualize the process of the proposed confounder-pruning. Fig-
ure 11 illustrates two examples on Food101 and StanfordCars,
demonstrating different relation-types correlated with predicting
the graph on different datasets. The results in Figure 6 further
support the effectiveness of the proposed confounder-pruning.

7. Conclusion

In this paper, we find the importance of the textual label’s
semantic information for prompting the pre-trained vision-
language model through empirical observation. To explore such
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Figure 10: Detailed head-to-head comparisons between label-specific and label-shared prompts on 11 datasets.
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Figure 11: Visualization of the graph-tier confounder-pruning, demonstrating
that CPKP removes task-irrelevant relations.

semantic information, we propose a knowledge-aware prompt
learning approach called CPKP, which complements semantic
information for the input label text by leveraging an ontology
knowledge graph and further refining the derived label-relevant
subgraph by the proposed double-tier confounder pruning. The

Table 9: The case study of label-shared and label-specific semantic information
in WIKI-ZS with the appropriate link complementation.

Target Triple
entity Head Relation Tail
Soyuz vehicle example Soyuz TMA-8

TMA-8 crew member example Soyuz TMA-8
Tesla use example Tesla Model S

Model S electric vehicle example Tesla Model S
electric powered by example electric vehicle
vehicle electric vehicle range vehicle

electric vehicle example Tesla Model S

vehicle instance_of
Wikidata property
related to transport

vehicle relationship vessel
vehicle example Soyuz TMA-8

vehicle commanded by domain vehicle
location of landing domain vehicle

electric vehicle range vehicle
part of the series domain vehicle

watercraft subclass_of vehicle

extensive experimental comparisons prove the superiority of
CPKP over benchmark manual prompt methods and conven-
tional learnable prompt methods in few-shot inference.
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