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ABSTRACT

Traditional Music Information Retrieval (MIR) tasks like
Optical Music Recognition (OMR) and Automatic Music
Transcription (AMT) typically rely on specialized, single-
task models. We challenge this paradigm by proposing a
unified framework that trains a single Transformer on mul-
tiple cross-modal translation tasks simultaneously. Our
approach is enabled by two key contributions: a novel
large-scale dataset (YTSV) with over 1,300 hours of paired
score-image and audio data, and a unified tokenization
scheme that converts all music modalities into a common
sequence format. Experiments show our multitask model
significantly outperforms specialized baselines, reducing
the OMR symbol error rate from 24.58% to a state-of-the-
art 13.67%. Most notably, our framework achieves the first
successful end-to-end generation of audio directly from a
score image, marking a significant breakthrough in cross-
modal music understanding and generation.

1. INTRODUCTION

Music can be represented in various forms, including score
images, machine-readable formats like MusicXML, per-
formance data such as MIDI, and audio recordings. Music
Information Retrieval (MIR) has long focused on translat-
ing between these modalities through tasks like Automatic
Music Transcription (AMT) and Optical Music Recogni-
tion (OMR), as shown in Figure 1. Historically, these tasks
have been addressed with specialized models and datasets
[1–4].

In this paper, we challenge this fragmented approach by
proposing a unified framework that learns multiple trans-
lation tasks simultaneously within a single model. Our
work is inspired by how human musicians perform sight-
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Figure 1: Conventional cross-modal conversion tasks in
music information retrieval research.

reading: directly translating a score image into an expres-
sive audio performance without an explicit intermediate
symbolic step. To this end, we introduce the novel task
of direct score-image-to-performance-audio generation, a
challenging feat that requires joint mastery of recognition
and synthesis.

Our unified approach is enabled by two key contri-
butions. First, we introduce the YouTube Score Video
(YTSV) dataset, a new large-scale collection of over 1,300
hours of paired score images and performance audio. Sec-
ond, we employ a unified tokenization scheme that con-
verts all modalities into a common sequence format, allow-
ing a single Transformer model to treat diverse translation
tasks as a sequence-to-sequence problem. Our experiments
show that this multitask learning paradigm not only en-
ables novel cross-modal generation but also enhances the
performance of established subtasks like OMR, demon-
strating a synergistic relationship between modalities.

2. PROBLEM FORMULATION AND RELATED
WORK

We consider four primary music modalities: Score Image
(raw sheet music pixels), Symbolic Notation (semantic
information, as in MusicXML), MIDI (expressive perfor-
mance timings), and Audio (recorded sound). As illus-



Figure 2: The four modalities of music representation used
in this paper.

trated in Figure 2, these modalities exist on a spectrum.
We group translation tasks into two directions: Image-to-
Audio (I2A) and Audio-to-Image (A2I).

Recent work in AMT and OMR has shifted towards
end-to-end, sequence-to-sequence models using Trans-
formers [5–8]. These advances, however, still rely on task-
specific models and are often constrained by the limited
availability of paired training data, particularly for OMR
[9]. Our work builds on this trend but extends it by unify-
ing these disparate tasks into a single multitask framework,
addressing data scarcity with our new YTSV dataset and
exploring the synergistic potential of joint training.

3. METHODS

Our approach hinges on unifying multimodal music trans-
lation as a sequence-to-sequence task. This is achieved
through a common tokenization framework and a multi-
task Transformer architecture.

3.1 Multimodal and Multitask Approaches

Inspired by unified models in other domains [10, 11], we
train a single model on a diverse set of music transla-
tion tasks. Unlike previous works, we tackle novel chal-
lenges like direct score-image-to-audio generation and ad-
dress data scarcity by incorporating our large-scale YTSV
dataset (Table 1). We demonstrate that even without ex-
plicit note-level annotations, jointly training on image-
audio pairs improves performance on related tasks like
OMR and AMT by allowing the model to learn shared mu-
sical structures.

3.2 Tokenization

To create a unified input format, we convert all modalities
into sequences of discrete tokens.

• Image and Audio Tokens: Continuous data like
score images and audio are tokenized using a Resid-
ual Quantized VAE (RQVAE) [12] and a Descript
Audio Codec (DAC) [13], respectively. These mod-
els discretize the raw data into compact token se-
quences. Further details on preprocessing and aug-
mentation are in Appendix D.

• Linearized MusicXML (LMX): We use the con-
cise, linearized MusicXML format proposed by [8]
for representing symbolic notation.

Subset Modalities N HImg MXL MIDI Aud
YTSV

√
- -

√
433,920 1,341

GrandStaff
√ √

- - 7,661 ∗23
OLiMPiC

√ √
- - 17,945 ∗47

MusicNet - - △
√

330 33
MAESTRO - -

√ √
1,276 199

SLakh - -
√ √

2,100 145
BPSD

√ √
△

√
32 14

Table 1: Data Distribution of Combined Datasets with
Aligned Modalities.

Category Videos Segments Duration (hrs)
Solo Piano 9,052 232,029 762.34
Accompanied Solo 912 47,373 141.83
String Quartet 594 48,470 138.48
Others (Chamber) 1,659 106,048 298.65
Total 12,217 433,920 1,341

Table 2: Data distribution of the YouTube Score Video
dataset after filtering

• MIDI-Like Tokens: We adopt the event-based
MIDI tokenization scheme from YourMT3+ [14],
which quantizes performance data into discrete
events.

3.3 Model Architecture

As depicted in Figure 3, we use a single encoder-decoder
Transformer architecture for all tasks within a given direc-
tion (I2A or A2I). All modalities are mapped to a unified
token space. To handle different tasks, we provide a tar-
get modality embedding as a hint to the model. For image
and audio, which use multiple token streams (codebooks),
we employ a sub-decoder module [11] to generate tokens
for each codebook in parallel. The model is trained with
a standard cross-entropy loss. Detailed mathematical for-
mulations are available in Appendix A.

4. YOUTUBE SCORE VIDEO DATASET

A major bottleneck in multimodal music research is the
lack of large-scale, aligned data. To address this, we intro-
duce the YouTube Score Video (YTSV) dataset. We col-
lected 12,217 score-following videos, where sheet music
slides are synchronized with a performance audio, as seen
in Figure 4. This provides a rich source of weakly aligned
image-audio pairs.

After an extensive data processing pipeline—including
slide segmentation, system cropping using a fine-tuned
YOLOv8 model (Figure 9), and rigorous filtering—we cu-
rated a dataset of 433,920 segments, totaling over 1,300
hours (Table 2). While these pairs lack symbolic data, they
are the cornerstone of our multitask training, enabling the
model to learn direct image-to-audio translation. Full de-
tails on data collection and processing are in Appendix C.

5. EXPERIMENTS

We structure our experiments around the I2A and A2I di-
rections, training two separate models. The complete train-



Figure 3: Overview of our proposed unified multimodal translation framework. We employ a single Transformer encoder-
decoder model for each direction—one for Image-to-Audio direction (I2A) tasks and another for Audio-to-Image direction
(A2I) tasks. Each model jointly handles multiple translation tasks. All modalities are discretised into token sequences,
enabling end-to-end, multitask training entirely at the token level. Note that we train separate models for I2A and A2I
directions; the two directions do not share weights.

Figure 4: An example from one of the videos collected for
the YouTube Score Video dataset. Slides of sheet music
are aligned to the corresponding points in audio.

ing corpus combines our YTSV dataset with several pub-
lic datasets like GrandStaff, OLiMPiC, MusicNet, MAE-
STRO, SLakh, and BPSD, as summarized in Table 1.

5.1 Implementation

Our Transformer models consist of 12 encoder and 12 de-
coder layers. To stabilize training, we employ a curriculum
learning strategy, starting with data-rich tasks (e.g., OMR
or AMT) before introducing the more challenging direct
image-audio translation tasks. Model configurations and
the curriculum schedule are detailed in Table 11. Further
implementation details are in Appendix B.

5.2 Evaluation Metrics

We use modality-appropriate metrics for each task.

• OMR: Symbol Error Rate (SER) [8] on LMX to-
kens.

• AMT: Note-F1 score from mir_eval [15].

• Image-to-Audio: We first transcribe the generated
audio to MIDI with Onsets and Frames [16] and
compute note onset F1-score against the reference
after dynamic time warping (DTW) alignment. We
also report Fréchet Audio Distance (FAD) [17] for
perceptual quality.

Figure 5: Attention patterns from a selected transformer
head showing direct correlation between image token re-
gions (top) and generated audio tokens (bottom).

• Audio-to-Image: We perform OMR on the gener-
ated image and compute the Earth Mover’s Distance
(EMD) [18] between the predicted and ground truth
LMX token distributions (for pitch and duration).

Details on the DTW-F1 and EMD calculations are in Ap-
pendix E.

6. RESULTS

6.1 Image-to-Audio Generation

As shown in Table 3, our unified model successfully gen-
erates audio from score images. The model trained only
on the I2A task performs poorly. However, adding OMR
and MIDI-to-audio synthesis tasks dramatically improves
both note accuracy (F1 score) and audio quality (FAD).
This confirms that learning related subtasks is crucial. Our
direct end-to-end approach achieves comparable note ac-
curacy and superior audio quality (lower FAD) to a multi-
stage pipeline (OMR → MIDI → Audio), which often
suffers from propagated OMR errors that are musically



Metric F1 Score ↑ FAD ↓
Method Dataset BPSD YTSV-T11 BPSD YTSV-T11

Onset Tolerance (ms) 50 100 200 50 100 200 – –
Direct I2A: YTSV-P (Image-to-Audio Only) 23.49 34.51 44.15 27.05 43.32 53.02 0.422 0.317
Direct I2A: OMR + Image-to-Audio 48.67 64.30 74.01 51.60 67.92 75.98 0.098 0.056
Direct I2A: OMR + Image-to-Audio + MIDI-to-Audio 48.36 64.63 74.92 52.66 68.45 76.24 0.081 0.055
Multi-stage: OMR + Image-to-Audio + MIDI-to-Audio 50.91 70.40 79.96 – – – 0.137 –
Multi-stage: Zeus → VirtuosoNet → MSD 45.52 59.35 69.36 – – – 0.330 –
DAC Reconstruction (Upper-bound) 68.83 82.39 87.47 82.28 86.43 88.76 0.050 0.035

Table 3: Image-to-audio accuracy reported as onset F1 (↑) and FAD (↓). The model jointly trained on all three I2A tasks
achieves the best direct generation results.

Method EMD ↓
Pitch Duration

Audio-to-Image Only 4.6436 0.4873
+ AMT 2.8880 0.4377
+ LMX-to-Image 2.6350 0.4317
GT Random Pairing Baseline 3.4921 0.9936
RQVAE Reconstruction 0.8990 0.1301
GT Image 0.4865 0.1113

Table 4: Audio-to-image generation accuracy in EMD on
BPSD.

Figure 6: One example from audio-to-image translation.

jarring. Attention visualizations (Figure 5) confirm the
model learns to read the score sequentially to generate cor-
responding audio.

6.2 Audio-to-Image Generation

The A2I task is inherently challenging. Results in Ta-
ble 4 show that jointly training with auxiliary tasks (AMT
and LMX-to-image rendering) significantly improves the
model’s ability to generate plausible notation, as measured
by EMD. While the generated images (Figure 6) are not yet
publication-quality, they demonstrate that the model cap-
tures key musical elements from the audio.

To evaluate the quality of the generated results, we
strongly encourage readers to refer to the actual audio and
video examples provided on our demo page 1 .

6.3 OMR, MIDI-to-Audio, and AMT

Our unified training approach yields significant benefits for
subtasks. For OMR (Table 5), adding image-audio and
even non-overlapping MIDI-audio tasks progressively im-
proves performance, achieving a new state-of-the-art SER
of 13.67% on the scanned OLiMPiC test set. This demon-
strates strong synergistic learning. For MIDI-to-audio syn-

1 https://sakem.in/u-must/

Method OLiMPiC BPSD
Synth Scanned Scanned

OMR-only 15.90 24.58 45.39
+ Image-to-Audio 10.57 15.45 23.85
+ MIDI-to-Audio 9.72 13.67 23.36
Zeus 10.10 14.45 31.24

Table 5: OMR Results in SER. Lower is better.

Method F1 ↑ FAD ↓50ms 100ms 200ms
MIDI-to-Audio Only 26.61 64.86 88.20 0.201
+ OMR + I2A 39.37 66.63 84.66 0.143

Table 6: MIDI-to-audio synthesis accuracy in F1 and FAD
on BPSD.

Method MusicNet MAESTROStr WW
AMT-only 87.21 72.04 89.40
+ Audio-to-Image 87.28 72.61 89.38
+ LMX-to-Image 87.25 75.52 89.45
Maman et al. 81.8 84.2 89.7

Table 7: AMT results in note onset F1 score for test set.
Higher is better.

thesis (Table 6), joint training improves both temporal
precision (F1) and audio quality (FAD). For AMT (Ta-
ble 7), the improvements are modest, likely because exist-
ing datasets like MAESTRO are already large and provide
high-quality supervision.

7. CONCLUSION

We presented the first unified model for music modal trans-
lation capable of successful score image-to-audio gener-
ation and state-of-the-art OMR performance. This high-
lights the potential of holistic, multitask learning for music
information processing. We also introduced the large-scale
YTSV dataset, emphasizing the value of scanned score im-
ages as a data source.

Limitations remain: A2I generation quality is not yet
practical, and AMT improvements were modest. Future
work will focus on improving audio/image codecs, explor-
ing self-supervised alignment on the YTSV dataset, and
developing a single, unified model for both I2A and A2I
directions, potentially with a decoder-only architecture.
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A. MATHEMATICAL FORMULATION OF
MULTIMODAL TOKENIZATION AND UNIFIED

TRANSLATION MODEL

A.1 Tokenizers and Unified Vocabulary

We denote a modality by the calligraphic symbol X ∈
{I,A,N ,M} for Image, Audio, musical Notation
(LMX), and MIDI performance, respectively. The cor-
responding raw data X are written with roman capitals
I, A,N,M . Each modality owns a tokenizer encoder FX
and an inverse tokenizer decoder GX such that:

FX (X) = z
(X )
1:LX

, GX
(
z
(X )
1:LX

)
≈ X. (1)

Hence, z(X )
1:LX

is the discrete-token representation of X and
LX is its length. Every modality has its own vocabulary
VX , yet all tokens ultimately live in a shared space V , al-
lowing a single Transformer to translate between any pair
of modalities. For the continuous modalities—score im-
ages and audio—we learn residual vector-quantised tok-
enizers. Both tokenizers employ d = 4 unshared code-
books, each of cardinality κ = 1024. Consequently, each
time-step yields a bundle of d code indices zt,1, . . . , zt,d ∈
{0, . . . , κ−1}, so the discrete representation is a 2-D array
of shape LX×d.

A.1.1 Score images, X = I

RQVAE compresses each image patch by a factor of C =
16. Given a score image that contains K musical sys-
tems, RQVAE produces token sequences which are then
flattened in vertical reading order and concatenated with a
separator token [SEP].

A.1.2 Audio, X = A

All audio is resampled to fs = 44.1 kHz (mono) and tok-
enized with DAC using hop size h = 512 samples. This re-
sults in a sequence of token bundles of length LA =

⌈
Tfs
h

⌉
for an audio of T seconds.

A.1.3 Linearized MusicXML, X = N

Notation data are stored as linearized MusicXML
(LMX) [8]. For consistency, its single token stream is
padded to match the d = 4 codebook structure of con-
tinuous modalities.

A.1.4 MIDI, X = M

We adopt the YourMT3+ MIDI-like event vocabulary
(10ms quantisation) [14]. This token stream is also padded
to d = 4 codebooks.

A.1.5 Unified Vocabulary, V

The total vocabulary V is the union of all modality-specific
vocabularies and special control tokens ([SOS], [EOS],
[SEP], [PAD]).

A.2 Model Architecture

A.2.1 Input embedding

For source modality X and target modality Y , each input
token zi is embedded as:

ei = TokEmb(z(X )
i )︸ ︷︷ ︸

token

+ PosEmbX (i)︸ ︷︷ ︸
modality-specific pos. enc.

+TgtEmbY︸ ︷︷ ︸
target hint

.

(2)

A.2.2 Sequence-to-Sequence Model

The encoder E processes the source token sequence to pro-
duce hidden states H; the decoder D autoregressively gen-
erates the target token sequence.

A.2.3 Sub-Decoder Module Dsub

To generate the d = 4 parallel tokens for image and audio,
a one-layer Transformer sub-decoder Dsub is used at each
timestep of the main decoder.

A.3 Training Objective

The model is trained with a standard cross-entropy loss,
maximizing the likelihood of the ground truth target se-
quence given the source sequence. During softmax calcu-
lation, tokens from non-target modalities are masked.

B. EVALUATION DETAILS

B.1 DTW Alignment for Onset F1 Computation

To evaluate onset detection accuracy for the Image-to-
Audio (I2A) task while accounting for potential tempo-
ral misalignments, we employ Dynamic Time Warping
(DTW). We first transcribe both the ground truth and the
model-generated audio into MIDI piano rolls. The DTW
algorithm then operates in one dimension, warping the
time axis of the generated piano roll to best match the
ground truth, which handles variations in tempo and tim-
ing while preserving pitch information. This alignment al-
lows for a more accurate computation of onset F1 scores
by correctly pairing musical events. Figure 7 illustrates
this process.

B.2 Token Distribution Histograms for EMD
Computation

For Audio-to-Image (A2I) evaluation, we compute the
Earth Mover’s Distance (EMD) between token distribu-
tions of the generated and ground truth notation. After gen-
erating a score image from audio, we use an OMR model to
extract its Linearized MusicXML (LMX) token sequence.
We then create frequency histograms for pitch tokens and
duration tokens separately. To account for potential meter
interpretation errors (e.g., a model outputting a piece in 2/2
time instead of 4/4), we compute the EMD for duration to-
kens with temporal shifts of -1, 0, and +1 on the histogram
bins and select the minimum value, allowing for a more
flexible evaluation. Figure 8 shows examples of these his-
tograms.



((a))

((b))

((c))

Figure 7: Piano roll visualizations of 22 Ground Truth
MIDI, (b) MIDI transcribed from our I2A model’s output,
and (c) the result of DTW-aligning (b) to (a) for evaluation.

((a))

((b)) ((c))

Figure 8: Token distribution histograms for EMD calcu-
lation: (a) pitch tokens, (b) duration tokens (no shift), and
(c) duration tokens with a +1 shift applied to the prediction
to improve alignment.

C. YOUTUBE SCORE VIDEO DATASET DETAILS

C.1 Metadata Extraction and Standardization

To enable robust data filtering, we used the Claude-3.5-
Sonnet large language model to extract structured metadata
(e.g., composer, instrumentation, year) from the titles of all
12,217 collected videos. This allowed us to programmati-
cally filter the dataset based on musical characteristics. We
also performed extensive standardization to unify piece ti-
tles and normalize composer names, resolving duplicates
and variations. The aggregated results of the categories
from extracted metadata are shown in the Table 9.

C.2 Data Processing Pipeline

Our processing pipeline involves three main steps:

1. Slide Segmentation: A rule-based algorithm ana-
lyzes video frames to detect the precise timing of

Figure 9: Illustration of the music system detection
pipeline using the fine-tuned YOLOv8. Music systems de-
tected by fine-tuned YOLOv8 are notated with blue boxes,
and detected staff lines are notated with red boxes. Note
that the red boxes detect the staff height near clefs, not the
clefs themselves.

slide transitions, accommodating both instantaneous
cuts and animated effects like crossfades. This ex-
tracts individual score slides and their corresponding
audio segments. Silent segments (e.g., title cards)
are subsequently filtered out.

2. System Cropping: To handle visual inconsisten-
cies, we fine-tuned a YOLOv8 model on manually
labeled data to detect and crop each musical system
(a line of music) from the score slides. A second
YOLOv8 model detects staff-line height for normal-
ization, ensuring all systems are resized consistently.

3. Statistical Filtering: We apply rigorous filtering
based on statistical properties. This includes remov-
ing poor-quality or color-inverted scans using pixel
intensity metrics, discarding segments with anoma-
lous dimensions or significant overlap between de-
tected systems, and enforcing temporal constraints
(3-20 seconds) on audio duration to eliminate out-
liers.

C.3 Test Set: YTSV-T11

To evaluate performance on in-the-wild scanned scores, we
manually curated a test set, YTSV-T11, consisting of 11
diverse piano pieces from the YTSV dataset, for which we
verified there were no duplicates in the training set.

D. RQVAE AND DAC TOKENIZATION DETAILS

D.1 RQVAE Model for Score Images

Our RQVAE model was adapted specifically for sheet mu-
sic tokenization.

D.1.1 Architecture

It processes single-channel grayscale images and uses four
unshared codebooks, each with 1024 codes, and a model
dimension of 256. We removed attention blocks to ensure



Field Description Example Value
YT Id Unique YouTube video identifier 0oRyPLnPeFw
Title of Video Original video title as displayed on YouTube Walton -

Passacaglia
(1982) for solo
cello [w/ score]

Duration Video length in MM:SS format 10:06
Composer Full Name Complete name of the composer William Walton
Title of piece Name of the musical composition Passacaglia
Opus number Catalog number of the composition (null if unavailable) null
Instrumentation Categorization of musical forces from predefined set:

[orchestral, concerto, solo, duet, trio,
quartet, quintet, larger chamber music,
choral, wind band, non-classical, vocal,
unknown]

solo

Category Specific genre or form description cello solo
Piano Included Boolean indicating presence of piano part False
String Included Boolean indicating presence of string instruments True
Wind Included Boolean indicating presence of wind instruments False
Voice Included Boolean indicating presence of vocal parts False
Year Year of composition 1982
Staff Count Two numbers indicating single-melody instrument staves and

piano staves, separated by hyphen
1-0

Table 8: Content Metadata Fields

Figure 10: Example patches showing the 16×16 pixel res-
olution of individual tokens

the model focuses on local features like noteheads rather
than global image structure.

D.1.2 Compression

We use a 16x compression strategy, which ensures that
each token corresponds to a small image patch, fine-
grained enough to capture musical details (Figure 10).

D.1.3 Training

We implemented a resolution-adaptive training strategy,
using different crop sizes and batch sizes for different in-
put resolutions to handle the wide variety of score lay-
outs (Figure 11). Instead of a standard perceptual loss, we
used a weighted MSE loss between activations of an OMR
model’s encoder to better preserve musically relevant fea-
tures.

D.1.4 Augmentation

To enhance robustness, we generated 32 augmented ver-
sions of image tokens for each image using pixel shifts (4
vertical shifts and 8 horizontal shifts) (Figures 12 and 13).

D.2 DAC Model for Audio

For audio tokenization, we retrained a Descript Audio
Codec (DAC) model.

D.2.1 Configuration

The model uses a hop size of 512 samples on 44.1kHz
mono audio, resulting in 86 tokens per second. It employs
four unshared codebooks with 1024 codes each.

D.2.2 Training

We retrained the model specifically on classical music au-
dio, rather than diverse sounds, to achieve a richer and
more efficient representation for our target domain.

D.2.3 Augmentation

To improve robustness to slight temporal variations, we
generated nine variants through temporal shifts ranging
from -20 to +20 samples at five-sample intervals, with each
five-sample shift corresponding to approximately 0.113
milliseconds (Figure 17).

E. MODEL AND TRAINING DETAILS

E.1 Architecture and Initialization

Our Transformer models feature 12 encoder and 12 de-
coder layers, a model dimension of 1024, a feed-forward
hidden size of 4096, and 16 attention heads. For image and
audio tokens, the embedding matrix was initialized with
the learned codebook embeddings from the pretrained RQ-
VAE and DAC models, respectively.



Category Description Videos Segments Duration (hrs)
Piano Solo Solo piano compositions 9052 232029 762.34
Accompanied Solo Solo compositions for a non-piano instrument with pi-

ano accompaniment
912 47373 141.83

String Quartet Compositions for two violins, viola, and cello 594 48470 138.48
Others Compositions not classified under predefined cate-

gories
454 24912 69.13

Unaccompanied Solo Solo compositions for a single non-piano instrument 207 3542 11.24
Guitar Solo Solo compositions for classical guitar 192 1976 6.97
Piano Trio Compositions for piano, violin, and cello 254 22736 68.51
Organ Solo Solo compositions for organ 161 5923 20.01
Piano Quintet Compositions for piano and string quartet 109 13382 34.69
Piano Quartet Compositions for piano, violin, viola, and cello 84 9168 26.07
Harpsichord Solo Solo compositions for harpsichord 84 17419 43.93
Woodwind Ensemble Ensembles consisting only of woodwind instruments 63 3784 10.05
Other Wind Ensemble All kinds of wind ensembles beyond the woodwind

family
51 3206 8.06

Table 9: Aggregated Category Counts and Durations of Metadata

Composer Work YouTube ID Included Segments
Clara Schumann Piano Sonata in G minor Pw4fMNMO90U 74
Friedrich Gulda Prelude and Fugue V2h23Dsw57A 31
Alexander Borodin Petite Suite 7vBkBCa3n4o 31
Lev Abeliovich 5 Pieces for Piano 07zYLY1YTj0 29
Carl Czerny Studio No. 29 Op. 409 J5WRTAYtaOg 24
Mily Balakirev Mazurka No. 5 BqAWfT76pJY 19
Alexander Borodin Petite Suite 38P9U3WRX9w 15
Giovanni Sgambati Vecchio minuetto EXNifef40vU 14
Giovanni Sgambati 2 Concert Etudes olBJh_5rv2c 10
Carl Czerny Album élégant des Dames Pianistes Vol.3 n_Sn48u1t94 3
Carl Czerny Romance Op. 755 No. 12 4Pa4x9SDNdw 1

Table 10: List of the videos in YTSV-T11

E.2 Training Procedure

We trained each model for 600,000 updates using the
AdamW optimizer with a total batch size of 24 sequence
pairs on two NVIDIA H100 GPUs. The learning rate
started at 1 × 10−4 and decayed to 1 × 10−5 following
a cosine schedule with a 2,000-step linear warmup.

E.3 Curriculum Learning

To stabilize training, we employed a curriculum learn-
ing strategy where tasks were introduced gradually. I2A
Model: We started with only OMR (image-to-notation) ex-
amples. After 15k steps, we added MIDI-to-audio synthe-
sis. Finally, at 50k steps, we introduced the direct image-
to-audio task. A2I Model: We began with only AMT
(audio-to-MIDI). After 40k steps, we added notation-to-
image rendering. The direct audio-to-image task was in-
troduced at 70k steps.

This approach allows the model to learn representations
on simpler, data-rich subtasks before tackling the more
complex, end-to-end translation challenges.



Figure 11: Comparison between input sheet music (top) and model reconstruction (bottom), demonstrating reconstruction
artifacts in staff lines when a model trained only on 64×64 pixel image crops processes 256×256 pixel inputs(unseen image
size).

(a) Codebook 1 (43.88%) (b) Codebook 2 (13.27%)

(c) Codebook 3 (11.22%) (d) Codebook 4 (2.04%)

Figure 12: Token difference visualization for one-pixel horizontal shifts across codebooks. Each subplot shows the token
changes for an individual codebook, with white indicating unchanged tokens and black indicating changed tokens. Per-
centages in parentheses represent the proportion of tokens that remained unchanged.

(a) Codebook 1 (16.84%) (b) Codebook 2 (4.08%)

(c) Codebook 3 (3.06%) (d) Codebook 4 (0.51%)

Figure 13: Token difference visualization for one-pixel vertical shifts across codebooks. Each subplot shows the token
changes for an individual codebook, with white indicating unchanged tokens and black indicating changed tokens. Per-
centages in parentheses represent the proportion of tokens that remained unchanged.



Figure 14: 1 sample shifted
1: 75.71% 2: 52.38% 3: 45.71% 4: 33.33%

Total: 51.79%

Figure 15: 5 sample shifted
1: 21.63% 2: 3.72% 3: 3.26% 4: 0.93%

Total: 7.38%

Figure 16: 10 sample shifted
1: 4.42% 2: 0.47% 3: 0.00% 4: 0.00%

Total: 1.22%

Figure 17: Visualization of token differences for varying temporal shifts in audio samples. Each subplot demonstrates the
impact of different shift magnitudes. The visualization displays token changes across each of the four codebooks, with
white representing unchanged tokens and black indicating changed tokens. Reported percentages show the token retention
rate for each codebook (1-4) individually, followed by the total retention rate across all codebooks.



M
od

el
s

M
od

el
Si

ze
Ta

sk
In

tr
od

uc
tio

n
(t

ra
in

gi
ng

st
ep

)
D

im
en

si
on

E
nc

/D
ec

L
ay

er
s

H
ea

ds
Su

b-
D

ec
H

ea
ds

O
M

R
/A

M
T

M
2A

/L
2I

I2
A

/A
2I

O
M

R
O

nl
y

51
2

12
8

8
0

–
–

Im
ag

e-
to

-A
ud

io
O

nl
y

76
8

12
10

10
–

–
0

M
ID

I-
to

-A
ud

io
O

nl
y

51
2

4
8

8
–

0
–

O
M

R
+

Im
ag

e-
to

-A
ud

io
10

24
12

16
8

0
–

15
,0

00
O

M
R

+
Im

ag
e-

to
-A

ud
io

+
M

ID
I-

to
-A

ud
io

10
24

12
16

8
0

15
,0

00
50

,0
00

A
M

T
O

nl
y

76
8

12
12

8
0

–
–

A
ud

io
-t

o-
Im

ag
e

O
nl

y
76

8
12

10
10

–
–

0
A

M
T

+
A

ud
io

-t
o-

Im
ag

e
10

24
12

16
8

0
–

40
,0

00
A

M
T

+
A

ud
io

-t
o-

Im
ag

e
+

L
M

X
-t

o-
Im

ag
e

10
24

12
16

8
0

40
,0

00
70

,0
00

Ta
bl

e
11

:
Tr

an
sf

or
m

er
m

od
el

co
nfi

gu
ra

tio
ns

an
d

ta
sk

in
tr

od
uc

tio
n

st
ep

s.
T

he
up

pe
r

bl
oc

k
co

nt
ai

ns
I2

A
m

od
el

s,
th

e
lo

w
er

co
nt

ai
ns

A
2I

m
od

el
s.

N
um

be
rs

in
"T

as
k

In
tr

od
uc

tio
n"

co
lu

m
ns

in
di

ca
te

th
e

tr
ai

ni
ng

st
ep

at
w

hi
ch

a
ta

sk
is

in
tr

od
uc

ed
.


	1. Introduction
	2. Problem Formulation and Related Work
	3. Methods
	3.1. Multimodal and Multitask Approaches
	3.2. Tokenization
	3.3. Model Architecture

	4. YouTube Score Video Dataset
	5. Experiments
	5.1. Implementation
	5.2. Evaluation Metrics

	6. Results
	6.1. Image-to-Audio Generation
	6.2. Audio-to-Image Generation
	6.3. OMR, MIDI-to-Audio, and AMT

	7. Conclusion
	8. References
	A. Mathematical Formulation of Multimodal Tokenization and Unified Translation Model
	A.1. Tokenizers and Unified Vocabulary
	A.1.1. Score images, X=I
	A.1.2. Audio, X=A
	A.1.3. Linearized MusicXML, X=N
	A.1.4. MIDI, X=M
	A.1.5. Unified Vocabulary, V

	A.2. Model Architecture
	A.2.1. Input embedding
	A.2.2. Sequence-to-Sequence Model
	A.2.3. Sub-Decoder Module Dsub

	A.3. Training Objective

	B. Evaluation Details
	B.1. DTW Alignment for Onset F1 Computation
	B.2. Token Distribution Histograms for EMD Computation

	C. YouTube Score Video Dataset Details
	C.1. Metadata Extraction and Standardization
	C.2. Data Processing Pipeline
	C.3. Test Set: YTSV-T11

	D. RQVAE and DAC Tokenization Details
	D.1. RQVAE Model for Score Images
	D.1.1. Architecture
	D.1.2. Compression
	D.1.3. Training
	D.1.4. Augmentation

	D.2. DAC Model for Audio
	D.2.1. Configuration
	D.2.2. Training
	D.2.3. Augmentation


	E. Model and Training Details
	E.1. Architecture and Initialization
	E.2. Training Procedure
	E.3. Curriculum Learning


