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ABSTRACT

Deep learning-based antimicrobial peptide (AMP) discovery faces critical chal-
lenges such as limited controllability, lack of representations that efficiently model
antimicrobial properties, and low experimental hit rates. To address these chal-
lenges, we introduce OmegAMP, a framework designed for reliable AMP genera-
tion with increased controllability. Its diffusion-based generative model leverages a
novel conditioning mechanism to achieve fine-grained control over desired physic-
ochemical properties and to direct generation towards specific activity profiles,
including species-specific effectiveness. This is further enhanced by a biologically
informed encoding space that significantly improves overall generative perfor-
mance. Complementing these generative capabilities, OmegAMP leverages a
novel synthetic data augmentation strategy to train classifiers for AMP filtering,
drastically reducing false positive rates and thereby increasing the likelihood of
experimental success. Our in silico experiments demonstrate that OmegAMP deliv-
ers state-of-the-art performance across key stages of the AMP discovery pipeline,
enabling us to achieve an unprecedented success rate in wet lab experiments. We
tested 25 candidate peptides, 24 of them (96%) demonstrated antimicrobial activity,
proving effective even against multi-drug resistant strains. Our findings underscore
OmegAMP’s potential to significantly advance computational frameworks in the
fight against antimicrobial resistance.

1 INTRODUCTION

Antimicrobial resistance, ranking as the third leading cause of death in 2019 (Murray et al., 2022),
poses a critical threat to human health. As existing therapeutics prove insufficient, antimicrobial
peptides (AMPs) emerge as a promising alternative with transformative potential. These short,
biologically active sequences offer broad-spectrum antimicrobial activity, with a reduced likelihood
of resistance development compared to traditional antibiotics (Fjell et al., 2012). Their function is
governed by key physicochemical properties—such as charge, length, and hydrophobicity—which
influence peptide structure, membrane interaction, and ultimately, antimicrobial efficacy. Controlling
these features is essential for maximizing antimicrobial efficacy and ensuring synthesizability.
Discovering AMPs is resource-intensive, making computational methods essential to save time and
minimize costs. These computational approaches generally fall into two categories: generative
models for de novo AMP design (Szymczak et al., 2023; Chen et al., 2024; Van Oort et al., 2021), and
discriminative models that distinguish peptides with respect to antimicrobial activity (Li et al., 2022;
Lawrence et al., 2021; Veltri et al., 2018). Despite important progress, current methods face key
challenges: (i) Limited controllability: Existing generative models lack mechanisms for inherent,
nuanced control, preventing them from directly generating AMPs with desired physicochemical
and functional properties. This, in turn, constrains the exploration of diverse activity profiles and
the generation of distinct peptides, such as target-specific AMPs (Szymczak & Szczurek, 2023).
(ii) Ineffective embedding: An adequate peptide embedding is crucial for generative fidelity and
fine-grained control. Yet, existing approaches present limitations: while biologically agnostic
embeddings (e.g., one-hot) lack useful inductive biases, complex latent spaces of protein language
models hinder precise conditioning and control. Consequently, neither effectively incorporates
biological information to facilitate the targeted generation of AMPs. (iii) Low Experimental Hit
Rates: Effective peptide selection is crucial for reducing the cost of discovering novel therapeutics,
yet current frameworks often suffer from low success rates (Wan et al., 2024). This is primarily due
to ineffective generation and unreliable classifier-based filtering that lack specificity, struggle with
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Figure 1: OmegAMP provides practitioners the ability to generate AMPs conditioned on key physic-
ochemical properties, like length, charge, and hydrophobicity. Our generative model enables more
complex objective targeting via Property and Subset conditioning.

shuffled sequences, produce many false positives, and overfit to limited training data (Porto et al.,
2022).
Addressing these limitations, we introduce OmegAMP, a framework that synergistically integrates
controlled AMP generation, see Fig. 1, with robust filtering to reliably design candidate AMPs. Our
contributions can be summarized as follows:

1. A versatile conditioning mechanism that enables the fine-grained control over desired AMP
attributes. We showcase a first-in-class capability in generating AMPs with an increased proba-
bility of targeting specific bacterial species, highlighting the potential for targeted therapeutics.

2. A novel biologically-inspired peptide embedding scheme, leveraged by our diffusion model for
state-of-the-art performance in de novo AMP generation.

3. An unprecedented experimental hit rate achieved through controllable generation and
stringent filtering. We complement our proposed generative process with a synthetic data
augmentation strategy to train classifiers that drastically reduce false positive rates. Our approach
bridges the gap between in silico design and wet-lab validation by increasing the likelihood of
experimental success.

2 RELATED WORK

AMP Generation Several machine learning approaches have been developed for generating novel
AMP sequences, differing in their underlying models, data representations, and ability to incorporate
desired properties (conditional generation). Initial methods used Variational Autoencoders (VAEs),
e.g. HydrAMP (Szymczak et al., 2023) employed a conditional VAE (cVAE) with specialized
regularization, conditioning generation on predicted AMP activity. AMPGAN (Van Oort et al., 2021)
combined VAEs with Generative Adversarial Networks (GANs) to enable conditioning based on
factors like target microbes and MIC values. More recently, diffusion models have been applied.
AMP-Diffusion, Diff-AMP, and ProT-Diff (Chen et al., 2024; Wang et al., 2024a;b) perform diffusion
directly within the latent spaces derived from large protein language models (e.g., ESM2 (Lin et al.,
2022), ProtT5 (Elnaggar et al., 2021)), though typically without conditional control.

AMP Classification Classification methods can be broadly categorized as either deep learning-
based or ensemble tree-based, using features like position-specific encodings (e.g., one-hot, language
model embeddings), global physicochemical properties, and sequence statistics. Early deep learn-
ing approaches include AMPScanner (Veltri et al., 2018), using RNNs and CNNs on numerical
encodings, AMPlify (Li et al., 2022), employing BiLSTMs on one-hot vectors, and AMPpredMFA
(Li et al., 2023), combining LSTMs and Attention layers to operate at the residue and di-residue
level. Concurrently, ensemble methods like amPEPpy (Lawrence et al., 2021) proved effective, using
Random Forests with global sequence descriptors that combine physicochemical and sequence-based
features. Recently, methods like SenseXAMP (Zhang et al., 2023) have used neural networks to fuse
language model embeddings and protein descriptors to perform classification. Specialized classifiers
that prioritize false-positive rates have also been developed. PyAMPA (Ramos-Llorens et al., 2024),
for example, operates on tokenized di-peptide features with a biologically motivated filtering.
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3 OMEGAMP

3.1 GENERATION

Our generative model, denoted as Mθ, is a Denoising Diffusion model which incorporates two
main innovations: a novel biologically informed peptide embedding and a flexible conditioning
scheme designed for diverse target objectives. For stable and diverse generation, particularly under
conditional constraints,Mθ incorporates self-conditioning (Chen et al., 2022) and the CADS sampler
(Sadat et al., 2023). We provide a detailed background on diffusion and our general conditioning
principles in App. A.1.
At its core, the denoising network is a 1D UNet (Ronneberger et al., 2015) operating on noisy
instances of our biologically informed peptide embedding. This UNet architecture integrates linear
attention layers (Katharopoulos et al., 2020) and a central self-attention mechanism (Vaswani et al.,
2023), drawing inspiration from the TransUNet architecture (Chen et al., 2021). Within this, we
integrate a flexible conditioning scheme by injecting conditioning information throughout all network
layers. Following the approach of Rombach et al. (2022), representations of the conditioning vector
are concatenated not only with the initial noisy input zt but also with intermediate feature maps at
various stages of the denoising network, as illustrated in Fig. 1. This methodology enables the model
to directly incorporate relevant target peptide properties into the denoising process.
Comprehensive details regarding model hyperparameters and the datasets used for training are
available in App. B.1 and C, respectively.

Peptide Embedding To provide a biologically informed space for the generative model to op-
erate on, we propose an embedding scheme, where each amino acid a ∈ A (along with a special
padding token PAD) is mapped to a K-dimensional vector E(a) = [f1(a), f2(a), . . . , fK(a)]. This
embedding is constructed by applying a set of K pre-selected physicochemically-inspired scales
{f1, f2, . . . , fK}, where each scale fi : A∪{PAD} → R transforms an amino acid into a real-valued
biochemical property relevant to antimicrobial function. Conversely, to decode the embeddings back
to amino-acids, the amino acid encoding E(a) must be invertible, a property ensured if E(a) is injec-
tive. The decoding procedure then operates by identifying the amino acid a′ whose K-dimensional
encoding E(a′) is L2-closest to the target embedding vector. A concrete implementation for the
encoding and decoding procedure is provided in App. B.2.
Selection of Biologically Informative Scales The choice of the specific amino acid scales for
our embedding E(a) is crucial for capturing properties directly relevant to antimicrobial activity
and peptide structure. We therefore curated a set of 5 scales designed to provide complementary
biochemical information pertinent to AMP function: (1) Hydrophobicity: The Wimley-White
scale (Wimley & White, 1996) quantifies amino acid membrane affinity and insertion propensity.
(2) Charge: The isoelectric point (pI) indicates the pH at which an amino acid carries no net electrical
charge, helping to distinguish acidic and basic residues. (3-4) Structural Propensities: The Levitt
scale (Levitt, 1978) captures secondary structure tendencies, while the Transmembrane Propensity
scale (Zhao & London, 2006) informs about transmembrane helix formation. (5) Antimicrobial
Correlation: The Average Amino Acid Surface Area Index (AASI) (Juretic et al., 2009) is directly
correlated with antimicrobial activity and selectivity. Together, these scales imbue our embedding
E(a) with a multifaceted biochemical profile essential for effective AMP generation; see App. E for
a background on amino acid scales.

Conditioning Scheme Effective AMP design requires the control of activity, physiocochemical
and structural features. We propose a conditioning scheme that aligns well with our embedding
and enables targeted generation through explicit control of underlying physicochemical attributes.
For any given peptide sequence s, we define a function cond(s) that maps the input sequence to
a vector representing key controllable properties: being an AMP, length, net charge and overall
hydrophobicity.

cond(s) :=

 1AMP(s)
|s|

Charge(s)
Hydroph.(s)

 . (1)

Importantly, cond(s) can be readily obtained, as the AMP property is set to 1 if the peptide originates
from curated AMP databases, and is set to 0 otherwise. The length, charge and hydrophobicity
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properties can be obtained via known biological algorithms. Our focus on deterministically accessible
properties prevents the risk of conditioning on noisy labels, a common pitfall when using trained
classifiers on scarce data (Szymczak & Szczurek, 2023). During inference, a user can specify a target
profile by providing desired values for these properties (or indicating an omission ∅ for unconstrained
attributes), which then forms the conditional input to the generative model, denoted by c. Importantly,
this framework retains generality, as AMP unconditional generation is achieved by omitting all
properties but the AMP property, which is set to 1.
To make our generative modelMθ adhere to such target profiles, we introduce a conditional training
objective. This objective allows the model to learn the relationship between peptide sequences and
varying subsets of their properties. To do this, for each training sequence s, we first compute the full
property vector cond(s) and then generate multiple conditioning vectors c by selectively masking its
elements in various ways. Let m be a binary mask sampled from a distribution Dmask. The modified
conditioning vector is then c = cond(s) ⋄m, where ⋄ symbolizes an operation that applies the mask
(e.g., replacing masked elements with a special token). The general conditional loss is then:

Lconditional(θ) := Es∼Q,m∼Dmask [Linstance(θ, s, cond(s) ⋄m))] , (2)

where Linstance(θ, s, c) is an instance-level loss quantifying the error for a single data sample s,
sampled from a distribution of sequences Q, given conditioning information c, specific to the
generative framework. Let E(s) denote the biologically-inspired embedding of peptide s, for
diffusion models the instance loss equates to:

Linstance(θ, s, c) := Et,zt

[∥∥Êθ(zt, t, c)−E(s)
∥∥2
2

]
. (3)

In our specific implementation, the AMP property is always included in c. For the remaining three
properties (Length, Charge, Hydrophobicity), we uniformly at random choose to keep k ∈ {0, 1, 2, 3}
of them active, effectively sampling a binary mask m that selects k properties. This training strategy
encourages the model to learn how each specified property (and combinations thereof) influences
sequence generation, enabling versatile conditional control.
Generalizability Our conditioning scheme facilitates targeted exploration of the AMP landscape.
Given that for any AMP target distribution, we can characterize its sample space by the true underlying
set of desired sequences Starget, each such target distribution possesses a corresponding set of property
vectors Ctarget = {cond(s) | s ∈ Starget}. By conditioning on such vectors c ∈ Ctarget, and assuming
a sufficiently expressive generative modelMθ, we can generate a candidate set SG that is highly
enriched with, and ideally contains, the desired sequences (Starget ⊆ SG). The subsequent task then
becomes effectively filtering SG, using computational classifiers or experimental validation, to isolate
sequences that best match Starget. Thus, the main challenge for enhancing generation for complex
targets lies in effectively translating criteria into a representative set of conditioning vectors that guide
Mθ towards the desired region of the peptide space. These vectors should aim to effectively cover
Starget while ensuring the generated candidate pool is focused enough to reduce reliance on extensive
and costly downstream filtering.
Conditioning Strategy The challenge of translating complex criteria characterizing Starget into a set
of conditioning vectors representative for Ctarget motivates two practical methodologies for generating
appropriate conditioning inputs.

(1) Property Conditioning (PC) allows practitioners to translate expert knowledge into specified
ranges for the properties within cond(·). Conditioning vectors are then formed by sampling
each property value independently from its pre-defined range. This offers flexibility but may not
capture inherent correlations between properties.

(2) Subset Conditioning (SC) enables the use of a known set of example sequences Ssample =
{s′1, . . . , s′M} from Starget (e.g., a set of known peptides that are active against E. coli). Here,
conditioning vectors are directly computed {cond(s′1), . . . , cond(s′M )}. Sampling conditional
inputs from this set implicitly preserves property correlations present in the target sequences,
offering an empirical approximation of a portion of Ctarget.

These approaches enable distinct strategies for targeted generation: either by directly defining desired
property ranges (PC) or by leveraging properties of known peptides that satisfy the intended target
(SC).
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3.2 FILTERING

To obtain highly confident and reliable filters, we trained XGBoost classifiers using augmented
datasets that contain synthetic negative sequences, complemented with a custom loss function that
balances the contributions of sequences with known labels and synthetic sequences. We provide
additional details regarding the data used for training, the classifier features, and hyperparameters
in App. C, D.1 and D.2, respectively. The trained classifiers include a general classifier for AMP
property, as well as strain- and species-specific classifiers that predict activity against specific bacterial
targets. In App. F, we expand on the definitions of strain and species activity.

Synthetic Negatives For Classifier Training To enhance the robustness of AMP classifiers and
minimize false positives, we incorporate synthetic data that, by construction, are non-AMPs. Let
S1L = {s ∈ AL | y = 1} represent the set of AMP sequences of length L. We propose three
mechanisms of constructing synthetic negatives:

(1) Purely Random Sequences (R): Generate sequences s = (a1, . . . , aL), where each amino acid
ai ∼ U(A) is independently drawn from the uniform distribution over the amino acid space A.

(2) Shuffled AMP Sequences (S): Given a known AMP sequence s ∈ S1L, generate a shuffled
sequence π(s), where π ∈ PL is a random permutation from the symmetric group PL.

(3) Mutated AMP Sequences (M): Starting from a known AMP sequence s ∈ S1L, randomly select
5 distinct positions p = {p1, p2, . . . , p5}, with 1 ≤ pk ≤ L for k = 1, . . . , 5. For each selected
position pk ∈ p, replace the amino acid apk

with a new amino acid a′pk
∼ U(A \ {apk

}).

Random sequences maintain the original length profile while disrupting functional patterns, preventing
the model from relying solely on length distributions. Shuffled sequences preserve permutation-
invariant properties such as overall charge and hydrophobicity but modify the sequence order,
prompting the model to look beyond these global characteristics. Mutated sequences introduce
controlled changes at specific positions while largely preserving the original sequence context,
discouraging over-reliance on individual residues. In App. G, we provide theoretical and empirical
motivations for the expected inactivity of those sequences.
Integrating experimentally validated peptides (Experimentally Validated, EV) with synthetic se-
quences possessing inferred labels is challenging given the small but non-zero probability of mis-
labelling in the synthetic data. To address this varying data quality alongside class imbalance, we
propose a weighted binary cross-entropy loss, see App. D.3, that weighs EV sequences more favorably
than non-EV sequences. Therefore, allowing the use of an expanded version of our limited labeled
set while prioritizing the accurate distinction of experimentally verified peptides.

Challenging Negative Controls for Evaluation Due to the limited number of EV inactive se-
quences (< 1000 sequences) and to emulate the real-world imbalancedness between AMP/Non-AMP
sequences, we select three additional sources of inactive sequences for model evaluation:

(1) Signal Peptides (Sig): Biologically functional peptides that guide proteins to their proper
cellular destinations for secretion or transport.

(2) Metabolic Peptides (Met): A class of functional peptides that regulate metabolic pathways and
maintain the body’s energy homeostasis.

(3) Added-Deleted AMP Sequences (AD): Starting from a known AMP sequence s ∈ S1L, se-
quentially apply 5 modifications, each randomly chosen to be an insertion of an amino acid
a′ ∼ U(A) at a random position, or a deletion of an existing amino acid at a random position.

Signal and metabolic peptides present a challenge for models trained to classify AMPs, as they
require the model to differentiate between antimicrobial, signal, and metabolic functions. These types
of negative sequences are never seen during the training of AMP classifiers, making them a fair test
of performance. Even more difficult to detect are Added-Deleted sequences, which mimic imperfect,
yet AMP-like, outputs from generative models. Unlike the other synthetic Non-AMP sources, AD
sequences are not included in the classifiers’ training data. They retain the core AMP structure but
contain subtle changes that render them inactive, making them a particularly difficult test for the
model’s ability to discern true functionality.
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Table 1: Performance on a held-out test set of EV AMPs and various non-AMP sources. Robustness
is the misclassification rate (%) on these challenging negatives. Grey columns denote test sets from
sources entirely unseen during training (Sig, Met, AD), while other synthetics (R, S, M) are unseen
sequences from Non-AMP sources known to the model.

Performance Metrics Robustness (↓) (Misclassification Rate %)

Model AUPRC (↑) Prec@100 (↑) TPR (↑) FPR (↓) LR+ (↑) Bio Non-AMPs Synthetic Non-AMPs
Sig Met AD R S M

amPEPpy 14.8 50.6 94.2 40.1 2.4 15.1 38.0 82.8 31.2 87.6 73.7
AMPlify 16.7 41.6 96.1 36.0 2.7 7.2 31.8 87.3 23.3 86.4 80.9
AMPpredMFA 5.5 6.8 99.4 77.5 1.3 65.2 75.7 99.3 97.7 99.7 99.5
AMPScanner 9.7 12.7 96.3 51.3 1.9 37.6 41.1 81.5 25.8 81.5 80.4
HydrAMP-AMP 11.9 16.0 94.9 53.7 1.8 37.7 30.7 84.2 33.7 86.1 75.0
HydrAMP-MIC 14.9 15.2 81.6 21.3 3.8 8.9 2.3 46.0 2.5 56.8 43.2
SenseXAMP-classifier 14.8 20.0 97.9 67.5 1.5 49.1 55.2 90.1 48.4 88.3 90.4
PyAMPA 4.2 13.4 27.0 13.4 2.0 6.7 6.9 31.2 3.8 27.9 20.4
OmegAMP 56.9 90.4 43.5 0.3 138.1 0.0 0.4 0.5 0.0 0.4 0.7

4 EXPERIMENTS

4.1 AMP CLASSIFICATION

In this subsection, we analyze OmegAMP classifier’s ability to recognize antimicrobial activity in
the context of AMP/non-AMP distinction. To view the capabilities of OmegAMP classifiers in
specialized settings like species- and strain-specific activity, please refer to App. J.1.

False positive rates are drastically reduced across natural and synthetic non-AMP sources To
evaluate our proposed classification scheme from Sec. 3.2, we compare OmegAMP with existing
baseline models, using the model checkpoints released alongside their original papers: amPEPpy, AM-
Plify, AMPpredMFA, AMPScanner, two classifier models from HydrAMP, SenseXAMP-classifier,
and PyAMPA (Lawrence et al., 2021; Zhang et al., 2023; Li et al., 2023; Veltri et al., 2018; Szymczak
et al., 2023; Li et al., 2022; Ramos-Llorens et al., 2024). In order to assess the classifiers’ robustness
to challenging false positives, we train the general OmegAMP classifier on a union of EV data and
negative synthetic datasets (see App. C). The training is conducted using 5-fold cross-validation, with
20% of the EV data held out for testing, and all results are averaged across the 5 folds.
For robustness, we focus on the models’ ability to identify AMPs within sets of challenging non-
AMPs. The evaluation dataset is composed of EV data and challenging negative sequences including
∼10k Signal and ∼17k Metabolic peptides extracted from Peptipedia (Cabas-Mora et al., 2024),
as well as 10k AD synthetic sequences. This selection was performed to make our evaluation
reflect real-world requirements. We report the false positive rate (FPR), true positive rate (TPR),
Precision@100 (precision for the top 100 sequences by model logits), and the Positive Likelihood
ratio (LR+ = TPR/FPR), a metric widely used to assess the practical relevance of diagnostic tools
(Deeks & Altman, 2004). We provide the Area Under the Precision-Recall Curve (AUPRC) as this
metric is independent of threshold selection. For completeness, we additionally report the fraction of
sequences predicted to be an AMP for each source of non-AMPs, including the Random, Shuffled
and Mutated Sequences.
Tab. 1 shows that while baseline classifiers achieve high TPRs, they tend to misclassify non-AMPs
as AMPs, leading to large FPRs and low LR+ ratios. This weakness is particularly exposed when
evaluating the robustness of these methods to challenging natural and synthetic Non-AMP sequences.
In these settings baseline methods tend to consistently misclassify non-AMPs as AMPs, whereas,
OmegAMP has misclassification rates < 1% for all considered non-AMP sources. Additionally, the
superior Prec@100 (90.4%) and AUPRC (56.9) scores are practically significant, as they ensure
that the highest-scoring sequences are highly likely to be true AMPs. Overall, our findings establish
OmegAMP as a reliable filter of inactive peptides, therefore, meeting the requirements of real-world
discovery pipelines.

4.2 AMP GENERATION

We next present a detailed analysis of OmegAMP’s capabilities to generate realistic AMP sequences
and a thorough inspection of its ability to meet pre-specified physicochemical criteria.
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Table 2: Performance comparison across generative models. We report the percentage of predicted
positives (HydrAMP-MIC classifier, OmegAMP classifier), along with Fitness Score, Diversity,
Uniqueness and Novelty. Results signaled with * come from k-fold-cross validation averaging.

Gen. Model HydrAMP-MIC OmegAMP Class. Fitness Score Diversity Uniqueness Novelty
EV AMPs (Data) 81.6 43.5* 0.16 0.62 - -

AMPGAN 31.6 0.3 0.10 0.57 100 100
Diff-AMP 27.8 0.0 0.08 0.63 100 100
HydrAMP 44.1 0.0 0.09 0.70 100 100
AMP-Diffusion 42.8 2.2 0.11 0.64 91 100
OmegAMP 33.8 10.5 0.13 0.64 94 98
OmegAMP-PC 70.2 14.8 0.16 0.60 98 99
OmegAMP-SC 64.1 16.4 0.15 0.61 95 97

Table 3: Embedding scheme ablation with respect
to generative performance on unconditional metrics.
Columns are as in Tab. 2.

Gen. Model Omeg. Class. Fit. Score Div. Uniq.

Omeg. w/ Numeric 2.5 0.11 0.61 98
Omeg. w/ One-hot 6.6 0.12 0.63 97
Omeg. − {charge scale} 8.4 0.12 0.64 96
Omeg. − {hydroph. scale} 9.6 0.13 0.64 95
OmegAMP 10.5 0.13 0.64 94

Table 4: Embedding scheme ablation with
respect to generative performance on condi-
tional metrics. Metrics consist of MAEs in
std units.

Gen. Model MAE (in std units) (↓)
Length Charge Hydroph.

Omeg. w/ Numeric 0.00 0.77 0.63
Omeg. w/ One-hot 0.08 0.17 0.19
Omeg. − {charge scale} 0.08 0.24 0.19
Omeg. − {hydroph. scale} 0.35 0.18 0.22
OmegAMP 0.04 0.16 0.18

OmegAMP generator achieves state-of-the-art performance To contextualize OmegAMP’s
generative model, see Sec. 3.1, and demonstrate its performance relative to existing AMP generators,
we analyse both the antimicrobial activity and sequence diversity of OmegAMP-generated sequences
relative to those produced by baselines: AMPGAN, Diff-AMP, HydrAMP, and AMP-Diffusion
(Van Oort et al., 2021; Wang et al., 2024a; Szymczak et al., 2023; Chen et al., 2024). We evaluate 50k
samples per model when available. In addition, we evaluate OmegAMP in two conditional settings:
Property Conditioning, referred to as OmegAMP-PC, with expert-defined property intervals of charge
2 to 10, hydrophobicity −0.5 to 0.8, and lengths between 5 and 30; and Subset Conditioning, labeled
as OmegAMP-SC, which incorporates subset conditioning on the EV General AMP sequences
described in App. C. To assess these samples, we use metrics for generation quality, diversity,
uniqueness and novelty, presented in detail in App. H. Furthermore, we report the antimicrobial
potential according to the two best-performing classifiers from Tab. 1, namely HydrAMP-MIC and
OmegAMP’s classifier. Finally, we provide fitness scores (Li et al., 2024) as a proxy for amphiphacity,
a key feature related to AMP activity.
Our comparison in Tab. 2 highlights OmegAMP’s superior ability to generate high-quality AMP
sequences, as reflected in its higher AMP classification and fitness scores. The low fitness (≤ 0.11)
exhibited by all baseline models indicates limited functional relevance of their outputs. Moreover,
OmegAMP variants with conditional guidance, OmegAMP-PC and OmegAMP-SC, achieve the
highest scores as per classifiers HydrAMP-MIC and OmegAMP, as well as the highest fitness,
with OmegAMP-PC matching the fitness scores observed for EV AMPs. This suggests that our
embedding scheme and conditioning guidance strategies increase the biological quality of generated
sequences. Therefore, while all models produce diverse, unique, and novel sequences (diversity:
0.60 ≥, uniqueness: ≥ 94%, novelty: ≥ 97%), only OmegAMP combines these characteristics with
superior predicted antimicrobial activity, highlighting its effectiveness in the generation of novel
AMPs.

OmegAMP’s embedding scheme is crucial for generative performance To assess the individual
contribution of our biologically-informed peptide embedding from Sec. 3.1, we ablate distinct
embedding schemes within OmegAMP, evaluating their impact on unconditional generation quality,
identical to Sec. 4.2, and conditional control over key physicochemical properties. These ablated
representations include biology-agnostic schemes (Numeric and One-hot encoding) and partial
versions of our proposed embedding (removing either charge or hydrophobicity scales). To evaluate
the impact on conditional control, we conduct an additional study where models are conditioned on
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Figure 2: a) Subset conditioning shows that generating sequences based on those active against a
specific species increases the likelihood of producing active sequences. b) Property conditioning
reliably generates peptides with charge and hydrophobicity values that approximate the pre-specified
target.

only one property at a time (omitting others). For this, we generate 10K samples using conditioning
vectors uniformly sampled from the AMP training set. We then compute the Mean Absolute Error
(MAE) between the pre-specified conditioning values and the properties of the generated sequences,
normalizing each property’s MAE by its standard deviation in the training set.
The findings from this ablation study clearly illustrate the benefits of our chosen embedding. Our
ablations concerning unconditional generation quality in Tab. 3 demonstrate that replacing our biology-
informed embedding with numeric or one-hot encodings substantially reduces AMP prediction rates,
as well as fitness scores, and diversity. Furthermore, removing either the charge or hydrophobicity
scales from the embedding also results in lowered AMP prediction rates, confirming the criticality of
these features for generating high-quality, AMP-like sequences. In terms of conditional control, see
Tab. 4, the full OmegAMP model achieves the lowest MAE for charge (0.16) and hydrophobicity
(0.18) and competitive performance for length (0.04). The ablations reveal that removing specific
scales weakens control over the corresponding property: for instance, individually omitting the charge
and hydrophobicity scale increase the MAE from 0.16 to 0.24 and 0.18 to 0.22, respectively. These
results underscore the direct relevance of each scale in enabling precise conditional control over its
corresponding property. This property is also preserved in the more challenging multi-conditioning
setting, see App. I.4.
We therefore conclude that our biologically-informed embedding is an essential component un-
derpinning OmegAMP’s performance. It provides the fine-grained control over physicochemical
properties that is necessary to move beyond unconditional generation and tackle the nuanced demands
of creating peptides with complex target profiles, as we demonstrate next in Sec. 4.3.

4.3 TARGETED AMP GENERATION

Building upon OmegAMP’s capabilities to adhere to pre-specified physicochemical properties re-
ported in Tab. 4 and the conditioning scheme provided in Sec. 3.1, we leverage Subset Conditioning
to generate sequences with improved efficacy against target bacteria, and Property Conditioning to
reliably generate AMPs with target physicochemical patterns.

Subset conditioning enables bacteria-specific AMP generation To evaluate OmegAMP in the
Subset Conditioning (SC) mode, we sample 10k peptides for multiple reference sets, including EV
AMPs and sets of sequences known to be active against specific bacterial species. For the resulting
bacteria-specific sequences and sequences from OmegAMP’s unconditional mode, we compute the
fraction of predicted positives according to our species-specific classifiers.
As shown in Fig. 2 a, subset conditioning drastically increases the fraction of predicted positives
when compared to unconditional sampling. Notably, all subset-conditioned sequences achieve the
highest AMP probabilities for their respective target classifiers (indicated by ticks). For instance,
conditioning on sequences active against A. Baumannii allows the generation of peptides with an
increased likelihood of efficacy against this species. From these results, we conclude that a smaller set
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of high-quality conditioning vectors outperforms a larger set of mediocre ones, consider the smaller
set of A. Baumannii (750 sequences) and the larger set of general EV AMPs (4209 sequences). For
this species, the high-quality set achieves a more than two-fold improvement. Our results demonstrate
that OmegAMP’s generative model with subset conditioning reliably aligns generated peptides with
desired activity profiles.

Property conditioning closely follows physicochemical targets To assess OmegAMP’s Property
Conditioning (PC), we sample 2k sequences, conditioned on specific target values for length (range
10-30) and three charge/hydrophobicity pairs. These pairs correspond to the (25th, 25th), (75th, 50th),
and (25th, 75th) percentiles of their respective properties in our training set. For each target pair, we
display the probability density of obtained charge and hydrophobicity values. We indicate each target
pair by a colored cross.
Fig. 2 b shows that our model generates sequences that approximate the pre-specified constraints,
such as a target pair of charge=4 and hydrophobicity=0.16 (colored in orange). Additionally, we
observe a noticeable separation between the 3 regions, highlighting our model’s ability to explore
different antimicrobial clusters. These novel capabilities enable a new paradigm in AMP discovery,
allowing practitioners to selectively explore specific physicochemical profiles.

Table 5: Comparison of generative models
showing fraction of peptides meeting charge
(C), length (L), hydrophobicity (H) and their
simultaneous combination (C & L & H) crite-
ria.

Gen. Model C L H C & L & H
EV AMPs (Data) 88.2 88.9 82.4 65.8

AMP-GAN 72.9 80.0 93.4 55.1
Diff-AMP 66.9 100.0 97.7 66.9
HydrAMP 58.3 99.9 89.4 50.5
AMP-Diffusion 62.3 62.2 94.4 39.1

OmegAMP 67.9 83.9 87.0 49.4
OmegAMP-SC 87.3 87.7 82.5 64.3
OmegAMP-PC 95.0 96.0 97.8 89.2

Property conditioning adheres to expert-defined
intervals Tab. 5 evaluates the capacity of various
generative models to produce peptides within expert-
defined physicochemical ranges associated with in-
creased antimicrobial potential and synthesizability
(charge: 2–10, length: 5–30, hydrophobicity: −0.5
to 0.8). We follow the experimental setting from
Sec. 4.2 and compare OmegAMP variants against
established baselines and a reference datasets (EV
AMP). OmegAMP-PC exhibits state-of-the-art per-
formance, satisfying individual constraints at rates
exceeding 94% and achieving a combined success
rate of 89.18%. Notably, this surpasses all baseline
models suggesting superior capability in generating peptides with balanced and realistic properties.
These findings underscore OmegAMP’s ability to precisely adhere to complex design criteria, allow-
ing practitioners to generate candidates that meet strict experimental requirements without relying on
computationally expensive post-generation filtering.

4.4 WET-LAB VALIDATION

To validate OmegAMP’s capabilities in a real-world setting, we performed an experimental evaluation
of 25 peptides generated by our framework. These candidates were first designed using OmegAMP’s
conditional generative model and then prioritized for synthesis using our activity classifiers to
maximize the likelihood of success. We synthesized these peptides and determined their Minimum
Inhibitory Concentration (MIC) against a panel of clinically relevant pathogens. To see further details,
we encourage the reader to take a look at App. K. To contextualize OmegAMP’s performance, we
compare our findings to previously reported experimental success rates of other approaches, including
AMP-Diffusion, HydrAMP, CLaSS, and Joker (Torres et al., 2025b; Szymczak et al., 2023; Das et al.,
2021; Porto et al., 2018). Success is measured as the cumulative fraction of peptides with activity at
or below a given MIC threshold for at least one bacterial strain.
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Figure 3: AMP success rate across various MIC thresh-
olds for OmegAMP and baseline methods.

OmegAMP delivers state-of-the-art suc-
cess rate and potency The experimen-
tal results, summarized in Fig. 3, show
that OmegAMP outperforms all baseline
methods. At the standard activity thresh-
old of 32 µg/ml, OmegAMP achieved a
near-perfect 96% success rate, substan-
tially higher than AMP-Diffusion (∼73%),
HydrAMP (∼58%), and other methods.
More importantly, the results highlight the
superior potency of OmegAMP-designed
peptides. The success rate curve for
OmegAMP rises sharply at very low MIC
values, achieving an 80% success rate at
just 4 µg/ml and over 90% at 8 µg/ml. In
contrast, no baseline method surpassed a 40% success rate at these highly potent concentrations. This
demonstrates that our framework not only generates active peptides but also candidates with strong,
clinically relevant efficacy.

High efficacy against multi-drug resistant (MDR) pathogens A critical test for any AMP discov-
ery platform is its ability to generate peptides effective against resistant pathogens. The performance
of OmegAMP peptides tested exclusively against our panel of MDR strains was outstanding, achiev-
ing a success rate of 92% at 8 µg/ml. This result, nearly mirroring the overall success rate, confirms
that OmegAMP does not overfit to non-resistant strains but effectively designs peptides capable of
combating the most challenging pathogens.

5 CONCLUSION

In this work, we present OmegAMP, a principled framework for reliable conditional generation of
AMPs. OmegAMP offers unprecedented control, enabling both species-specific peptide design and
the generation of broad-spectrum antimicrobials. By incorporating diverse and effective conditioning
mechanisms, it pushes the boundaries of controllable AMP generation, bringing computational design
closer to real-world applications. Additionally, OmegAMP advances discriminator-guided filtering,
leveraging a classifier that offers a substantial false positive rate reduction when compared to existing
methods across multiple types of non-AMP sequences. The success of our computational framework
was confirmed through wet-lab validation, where 24 out of 25 designed peptides (96%) demonstrated
antimicrobial activity. These peptides proved to be highly potent, even against multi-drug resistant
pathogens, bridging the gap between in silico design and tangible therapeutic candidates. These
findings highlight OmegAMP’s potential to accelerate the discovery of novel antimicrobial agents to
combat the urgent threat of antimicrobial resistance.
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IMPACT STATEMENT

Our work on reliable conditional generation of AMPs has the potential to advance antimicrobial
discovery, especially in low-data regimes. However, the ability to generate novel bioactive sequences
could be misused to design harmful peptides. We do not intend for our research to be used in such a
manner and encourage responsible applications aligned with public health and safety.

LLM USAGE

This paper was written with the assistance of (Gemini-2.5, 2025), which was used to enhance language
clarity and flow. All content has been reviewed and edited to ensure originality and accuracy.
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Minter, David J Weston, and Jessy L Labbé. ampeppy 1.0: a portable and accurate antimicrobial
peptide prediction tool. Bioinformatics, 2021.

Jun Lei, Lichun Sun, Siyu Huang, Chenhong Zhu, Ping Li, Jun He, Vienna Mackey, David H Coy,
and Quanyong He. The antimicrobial peptides and their potential clinical applications. American
journal of translational research, 11(7):3919, 2019.

Michael Levitt. Conformational preferences of amino acids in globular proteins. Biochemistry, 1978.

Changjiang Li, Quan Zou, Cangzhi Jia, and Jia Zheng. Amppred-mfa: an interpretable antimicrobial
peptide predictor with a stacking architecture, multiple features, and multihead attention. Journal
of Chemical Information and Modeling, 2023.

Chenkai Li, Darcy Sutherland, S Austin Hammond, Chen Yang, Figali Taho, Lauren Bergman, Simon
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A PRELIMINARIES

A.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are powerful tools
for approximating unknown data distributions, p(x), by creating a mapping between a simple prior
distribution, often chosen to be Gaussian, and the target data distribution. This process consists of
two main steps: forward process and reverse process.
In the forward diffusion step, a data sample x ∼ p(x), where x ∈ Rd, is transformed into a series
of latent variables {z1, . . . , zt, . . . , zT }, where t refers to time t ∈ {1, . . . , T}. These variables
progressively move from the data distribution towards the prior distribution over a sequence of
timesteps. This transformation is modeled as a Markov chain, where noise is incrementally added
at each step. For the Gaussian setting, the noise level is controlled by a variance schedule, βt. Its
cumulative product, αt =

∏t
i=1 βi, determines the extent of perturbation applied at each timestep.

The perturbed data zt becomes:
zt =

√
αtx+

√
1− αtϵ,

where ϵ represents Gaussian noise, ϵ ∼ N (0, I), with I being the identity matrix.
In the reverse process, the noising of the forward process is inverted. Starting with pure Gaussian
noise, zT ∼ N (0, I), the model learns to iteratively denoise the latent variables to reconstruct
samples resembling the original data distribution.
To optimize this process, a loss function is used to minimize the reconstruction error:

L = Ex,t,zt

[∥∥x̂θ(zt, t)− x
∥∥2
2

]
,

where x̂θ represents the model’s predicted reconstruction of the original data. Samples can be
efficiently generated during the reverse process using various methods, such as DDPM (Ho et al.,
2020) and DDIM (Song et al., 2020).
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A.1.1 CONDITIONING IN DDPM

In conditional models, additional information or context c ∈ Rd′
can guide the generation process

to produce samples with desired properties. For diffusion models, the conditioning information c
is incorporated into the reverse process by modifying the denoiser x̂θ(zt, t) to also depend on c,
resulting in x̂θ(zt, t, c). In such models, c can represent labels, attributes, or feature embeddings.
Notably, strong reliance on conditioning during sampling can lead to diversity loss or mode collapse
due to peaked conditional distributions. To address this, Sadat et al. (2023) propose the Condition-
Annealed Diffusion Sampler (CADS), which introduces controlled noise into the conditioning vector
during sampling to balance diversity and specificity. The noised condition is defined as:

ĉt =
√
γ(t)c+ s

√
1− γ(t)ϵ,

where s controls the added noise, γ(t) is the annealing schedule, and ϵ ∼ N (0, I). The annealing
schedule γ(t) transitions from 0 at t ≈ T (pure noise) to 1 at t ≈ 0 (final denoising). During
inference, the score function∇zt log pθ(zt|ĉ), which can be directly estimated using the denoising
model x̂θ(zt, t, ĉ), smoothly shifts from the unconditional score∇zt log pθ(zt) at high noise levels
to the conditional term as the noise decreases. This approach allows CADS to maintain the diversity
of unconditional models while effectively guiding the generation toward the desired conditioning
properties.

A.2 XGBOOST

While deep learning models have achieved significant success across diverse domains, Gradient
Boosted Decision Trees (GBDTs), particularly implementations like XGBoost (Chen & Guestrin,
2016), remain highly competitive for supervised learning on tabular data, often demonstrating superior
performance in various benchmarks compared to deep learning alternatives (Grinsztajn et al., 2022).
We consider the application of XGBoost to binary classification. Given a dataset D = {(xi, yi)}Ni=1

where xi ∈ RM represents the feature vector for the i-th instance and yi ∈ {0, 1} is its corresponding
binary label, the objective is to learn a predictive function. XGBoost constructs an ensemble model
comprising K additive regression trees (CARTs (Breiman, 2017)) belonging to a function space F .
The predicted probability for an instance xi is given by:

ŷi = σ

(
K∑

k=1

fk(xi)

)
, fk ∈ F , (4)

where each fk maps the input features xi to a continuous score associated with a leaf node in the k-th
tree, and σ(·) is the sigmoid function. The functions {fk}Kk=1 are learned iteratively by minimizing
the following regularized objective function:

L =

N∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk), (5)

where l(yi, ŷi) is a differentiable loss function suitable for binary classification (e.g., logistic loss),
and Ω(fk) is a regularization term penalizing the complexity of the k-th tree (typically based on the
number of leaves and the magnitude of leaf scores).

B GENERATIVE MODEL DETAILS

B.1 HYPERPARAMETER SELECTION & TRAINING REPRODUCIBILITY

To train our generative model we leveraged a NVIDIA gpu-GTX1080 with 8GB RAM. The model
was trained for 72 hours. The hyperparameter details are presented in Tab. 6.
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Table 6: Model Hyperparameters and Architecture Details
Parameter Value Type
Beta Schedule cosine Diffusion Model
CADS-τ1 0.5 Diffusion Model
CADS-τ2 0.9 Diffusion Model
CADS-noise-scale 0.1 Diffusion Model
Timesteps 1000 Diffusion Model
Optimizer radam Diffusion Model
Batch Size 128 Diffusion Model
Learning Rate 0.001 Diffusion Model
LR Scheduler Exponential Decay Diffusion Model
Epochs 1500 Diffusion Model

Hidden Channels 32 Denoising Architecture
Downsampling Layers 3 Denoising Architecture
Downsampling Factor 2 Denoising Architecture
Upsampling Mode nearest Denoising Architecture
UNet Layer Resnet Block + Linear Attention Denoising Architecture
Total Parameters 35,173,368 Denoising Architecture

B.2 EMBEDDING SCHEME

B.2.1 ENCODING

We define the encoding algorithm that transforms a peptide sequence into a fixed-size, residue-level
embedding representation. Each amino acid in the input sequence is encoded as a K-dimensional
vector using a predefined set of amino acid property scales {f1, f2, . . . , fK}. If the sequence length
is shorter than the maximum length M , padding tokens are used to fill the remaining positions.
For each position i in the sequence (or padding), we compute the corresponding embedding vector
ei = [f1(a), f2(a), . . . , fK(a)], where a is the amino acid or padding token at position i. The
resulting matrix E ∈ RK×M contains the full embedded representation of the input sequence. The
full encoding process is formalized in Algorithm 1.

Algorithm 1 Peptide Sequence Encoding
Require: Peptide sequence s, maximum length M , amino acid scales {f1, . . . , fK}

1: Initialize E as an K ×M zero matrix
2: for i = 1, . . . ,M do
3: if i ≤ length(s) then
4: a← s[i]
5: else
6: a← PAD
7: end if
8: e← [f1(a), . . . , fK(a)]
9: E[:, i]← e

10: end for
11: return E

B.2.2 DECODING

Following the proposed embedding scheme, we establish the decoding algorithm used to con-
vert the embeddings back to the corresponding peptide sequences. As established before, for
every amino-acid and padding token, we can compute a corresponding residue-level encoding
ei ← [f1(a), f2(a), . . . , fK(a)], therefore we can map embeddings by iteratively finding the closest
encoding within the 21 possible encodings (20 amino-acids + padding token). Additionally, for
simplicity, we terminate decoding after encountering a padding token. We formalize our decoding
process in Algorithm 2.
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Algorithm 2 Embedding Decoding
Require: Embedding E, maximum length M , amino acid scales {f1, f2, . . . , fK}

1: s← ∅
2: for i = 1, . . . ,M do
3: a← argmina′∈A∪{PAD} ∥E[:, i]− [f1(a

′), . . . , fK(a′)]∥2
4: if a ̸= PAD then
5: s← s ∪ {a}
6: else
7: return s
8: end if
9: end for

10: return s

C DATASETS

In this section we describe the datasets used for the training of generative model and the classifiers in
OmegAMP.

Generative Dataset The generative dataset comprises a diverse collection of AMP and general
peptide sequences from well-established databases of length at most 100:

• AMP sequences: 36,262 sequences from AMPScanner (Veltri et al., 2018), dbAMP (Jhong
et al., 2022), and DRAMP (Shi et al., 2022).

• General peptide sequences: 774,405 sequences from Peptipedia (Cabas-Mora et al., 2024),
consisting of functional peptides extracted from Uniprot (Consortium, 2022) that were
classified as Antibacterial, Anti Gram + or Anti Gram - by Peptipedia’s prediction algorithms.

This dataset provides a broad representation of peptide sequences for training the generative model.
We deliberately select peptides that are similar to AMPs to incentivize the generative model to
learn meaningful activity patterns, while retaining scientific rigor by representing them in distinct
groupings. Although some labeling noise may arise from discrepancies in source databases, the
dataset’s scale is essential for learning robust sequence representations.

Classifier Datasets Classifiers in OmegAMP are trained on two crucial data sources: Experimen-
tally Verified (EV) datasets and a non-EV component, ensuring a reliable basis for training and
evaluation.
To account for potency and specificity of AMPs, we construct a set of high quality datasets which
consist of experimentally validated peptides with known activity values against target microbes.
To this purpose, peptide sequences together with their Minimal Inhibitory Concentration (MIC)
measurements were downloaded from DBAASP database (Pirtskhalava et al., 2021). We exclude
sequences which contain non-standard amino acids, and sequences with non-standard C- and N-
terminus. We further standardize the experimental conditions with respect to the medium and colony
forming unit (CFU).
For the general AMP/non-AMP classification we consider as positives peptides with MIC≤ 32µg/mL
against at least one bacterial strain, and as negatives sequences with MIC ≥ 128µg/mL for all strains.
For the strain- and species- specific classification, we select peptides, which were experimentally
proven to show activity against the microbes of interest. A peptide is considered as active (positive)
against a specific strain or species if its MIC ≤ 32µg/mL and inactive (negative) if its MIC ≥
128µg/mL.
Additionally, the non-EV consists exclusively of non-AMPs and is composed by a dataset of non-
AMPs from AMPlify (Li et al., 2022), coupled with 100k synthetic sequences per each source
(random, shuffled, mutated), see Sec. 3.2 for further details.
The resulting dataset composition is summarized in Tab. 7.
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Table 7: Dataset statistics for classifier training, grouped by data source. EV stands for Experimentally
Validated

EV Dataset Group Positives Negatives

Yes

General 4209 920
Species - A. baumannii 750 243
Species - E. coli 2939 1086
Species - K. pneumoniae 685 421
Species - P. aeruginosa 1632 935
Species - S. aureus 2385 1230
Strain - A. baumannii (ATCC 19606) 313 105
Strain - E. coli (ATCC 25922) 1671 541
Strain - K. pneumoniae (ATCC 700603) 278 121
Strain - P. aeruginosa (ATCC 27853) 825 423
Strain - S. aureus (ATCC 25923) 988 423
Strain - S. aureus (ATCC 33591) 60 58
Strain - S. aureus (ATCC 43300) 278 106

No

AMPlify’s non-AMPs – 127,983
Synthetic Random – 100,000
Synthetic Shuffled – 100,000
Synthetic Mutated – 100,000

It is important to note that the non-EV component remains the same across all classification tasks,
while the EV dataset varies depending on the task. For instance, for the classifier that determines
sequences active against A. baumannii we have only 750 EV positives and 243 EV negatives.

D CLASSIFIER DETAILS

D.1 CLASSIFIER FEATURES

Our XGBoost classifiers are trained on a comprehensive set of 276 features engineered to capture
a wide range of physicochemical and sequence-based properties critical for antimicrobial activity.
These features are derived directly from the peptide sequences and can be grouped into three main
categories.

Global Peptide Descriptors We compute a total of 156 global descriptors that summarize the
overall physicochemical characteristics of a peptide sequence. This set includes fundamental prop-
erties such as molecular weight, peptide length, isoelectric point (pI), aromaticity, and instability
index. Additionally, we incorporate multiple metrics for charge and hydrophobicity, which are
known to be key drivers of antimicrobial function. These features provide a sequence-level summary
of the peptide. For the calculation of these descriptors, we rely on established and widely-used
bioinformatics libraries, including Biopython (Chapman & Chang, 2000), modlAMP (Müller et al.,
2017), Peptides (Larralde, 2021), and Peptidy (Özçelik et al., 2025).

Amino Acid Composition To provide an overview of a peptide’s makeup, we include a set of
20 features representing the amino acid composition. This is calculated as the relative frequency
(fraction) of each of the 20 standard amino acids within a given sequence. This feature set offers a
permutation-invariant view of the building blocks of the peptide, which is essential for distinguishing
between peptides with different residue preferences.

Exponential Moving Average of Amino Acid Scales To capture sequential information and local
physicochemical context without the overhead of complex sequence models, we introduce a set of
features based on the Eisenberg Amino-Acid Scale (Eisenberg et al., 1984). To this end, we use the
Exponential Moving Average (EMA) of the residues in the forward direction, i.e., from beginning to
end, to provide features that can be easily used in a decision tree setting. We provide features for the
first 100 positions.
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D.2 HYPERPARAMETER SELECTION & TRAINING REPRODUCIBILITY

To train our classifiers, we utilized a regular CPU, and the training took approximately 30 minutes.
The hyperparameter details are presented in Tab. 8.

Table 8: Classifier Hyperparameters
Parameter / Setting Value / Configuration
Classifier Type XGBoost
Maximum Estimators 5000
Maximum Tree Depth 6
Early Stopping Enabled

Patience 50 rounds
Validation Set Size 3% of training data

D.3 LOSS FUNCTION

As introduced in the main text, our weighted binary cross-entropy loss addresses both data quality and
class imbalance. For a training set containing N0 non-AMP and N1 AMP sequences, each sample’s
contribution is adjusted by a weight function ω(s) that factors in the data source:

ω(s) = ω1I{s is EV} + ω0I{s is not EV} . (6)

Here, the terms ω1 := N0+N1

2N1 and ω0 := N0+N1

2N0 are standard class-balancing weights that ensure
equal total contribution from the positive and negative classes, respectively.
This formulation effectively prioritizes the high-confidence EV data. Since our positive set consists
entirely of EV sequences and the negative set is dominated by non-EV synthetic data (see App. C),
the ratio N1

N0 is small. Consequently, the weight ω1 assigned to EV samples is significantly larger
than the weight ω0 assigned to non-EV samples, focusing the model’s learning on experimentally
verified examples.

E AMINO-ACID SCALES

Amino acid scales represent the physicochemical properties of amino acids often derived from
biochemical experiments (Wilce et al., 1995). It is important to note that no consensus exists on the
optimality of any single scale (Simm et al., 2016). This lack of consensus is expected because these
scales are derived from distinct biochemical experiments and numerical methods. Consequently, the
usefulness of each scale is closely tied to its specific application.
An important observation is that not all scales provide an injective mapping. For example, the
Kyte-Doolittle scale assigns the same value (−3.5) to Asparagine, Aspartic Acid, Glutamine, and
Glutamic Acid. This leads to unsuitable mappings when invertibility is required, as injectivity is a
necessary property for the existence of an inverse function.
For completeness, we provide a table with the scales used in the embedding scheme (see Tab. 9).
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Table 9: Amino-acid scales utilized in the embedding scheme. WW* defines a slightly altered version
of the Wimley-White scale, and TM reads Transmembrane Propensity scale.

AA WW* pI Levitt TM AASI
A -0.03 6.01 1.290 11.200 1.89
R -0.74 10.76 0.960 0.500 1.91
N -0.28 5.41 0.900 2.900 2.33
D -1.23 2.85 1.040 2.900 3.13
C 0.71 5.05 1.110 4.100 1.73
Q -0.51 5.65 1.270 1.600 3.05
E -2.02 3.15 1.440 1.800 3.14
G 0.37 6.06 0.560 11.800 2.67
H -0.89 6.00 1.220 2.000 3.00
I 0.81 6.05 0.970 8.600 1.97
L 1.06 6.01 1.300 11.700 1.74
K -0.99 9.60 1.230 0.500 2.28
M 0.61 5.74 1.470 1.900 2.50
F 1.63 5.49 1.070 5.100 1.53
P -0.38 6.30 0.520 2.700 0.22
S 0.17 5.68 0.820 8.000 2.14
T 0.07 5.60 0.820 4.900 2.18
W 2.35 5.89 0.990 2.200 2.00
Y 1.44 5.64 0.720 2.600 2.01
V 0.27 6.00 0.910 12.900 2.37

F SPECIES/STRAIN ACTIVITY

For clarity and completeness, we provide a formal definition for species/strain activity. In particular,
we claim that a peptide is active against a bacterial strain if it satisfies the following definition:
Definition 1. A peptide s ∈ AL is considered active against a bacterial strain b ∈ B if and only if
MIC(b, s) ≤ 32µg/mL.

Additionally, we state that a peptide is active against a specific bacterial species if it is active against
at least one strain of that species.
Definition 2. A peptide s ∈ AL is considered active against a bacterial species if and only if
it demonstrates activity against at least one strain of that species {b1, b2, . . .} ⊆ B. Formally,
∃b ∈ {b1, b2, . . .} : MIC(b, s) ≤ 32µg/mL.

In these definitions, we use the Minimum Inhibitory Concentration (MIC), which is defined as the
lowest peptide concentration needed to inhibit visible bacterial growth under standard experimental
conditions. Moreover, we utilize the 32µg/mL threshold because of its prominence in various
experimental work (Torres et al., 2025a; Szymczak et al., 2023). Finally, we note that when inferring
species-specific activity, there exists an implicit assumption on the considered set of bacterial strains,
since, due to practical limitations, we often don’t have data for all known strains.

G INACTIVITY OF SYNTHETIC DATA

Theoretical Motivation Let S1L = {s ∈ AL | y = 1} represent the set of AMP sequences of
length L. The probability of a random sequence s ∈ AL being an AMP is:

P(y = 1 | s) = |S
1
L|
|A|L

.

As shuffling an AMP typically disrupts its activity (Porto et al., 2022), we can estimate:

P(y = 1 | s) ≤ 1

|{π(s) | π ∈ PL}|
≈ 1

L!
,
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where PL is the symmetric group of permutations of L elements, and π(s) represents the application
of a permutation π to the sequence s. Note that this upper bound is rather generous as it implicitly
assumes that every sequence can be shuffled into an AMP, which is highly unlikely. For N sampled
sequences s of length L, where each sequence s = (a1, a2, . . . , aL) consists of i.i.d. amino acids ai
drawn from the uniform distribution over the amino acid space A, ai ∼ U(A), the expected number
of AMPs is bounded by:

E
[ N∑

i=1

Xi

]
= N · P(y = 1 | s) ≤ N

L!
,

where Xi ∼ Bernoulli(P(y = 1 | s) ). These observations imply that for N ≈ 106 and large L, i.e.
L > 10, the expected number of AMPs is small, strengthening the claim that synthetic sequences are
expected to be inactive.

Empirical Motivation Prior research has shown that antimicrobial sequences constitute a small
fraction (less than 5%, even with lenient definitions) of both random (Tucker et al., 2018) and shuffled
sequences (Porto et al., 2022; Loose et al., 2006). Furthermore, to see that there exists a distribution
shift between active sequences and synthetic sequences, we evaluate the OmegAMP classifier and
other external classifiers on the external dataset from Tucker et al. (2018) in App. J.4. Despite the
difference of AMP criteria between datasets, we see classifiers consistently displaying a statistically
significant ability to distinguish active from synthetic sequences, thus strengthening the claim that
these sets are separable by a decision boundary, which, given the binary nature of the problem, implies
that the synthetic sequences are likely inactive.
We also investigate the physicochemical distributions and other key metrics across sequences from
the EV AMP dataset, the EV non-AMP dataset, and synthetic sets including random, shuffled, and
mutated sequences, as illustrated in Fig. 4. We find noticeable distribution shifts in Fitness Score and
Pseudo Perplexity when comparing natural EV AMPs to synthetic sequences. Specifically, AMPs
consistently demonstrate significantly higher fitness scores than all categories of synthetic sequences
(random, shuffled, and mutated). This distinction is particularly important as higher fitness scores
are known indicators of peptide functionality and antimicrobial activity. The synthetic sequences
often fall outside these optimal ranges, suggesting they occupy regions of sequence space less likely
to display antimicrobial properties. Furthermore, we observe distinct patterns in physicochemical
properties such as charge and hydrophobicity, which further differentiate AMPs from random and
mutated sequences. Higher Pseudo Perplexity of synthetic sequences indicates that they are less
biologically plausible. These differences strongly suggest that generating sequences randomly,
through shuffling or by mutating original AMPs is unlikely to produce AMPs.
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Figure 4: Empirical distributions of physicochemical (charge, hydrophobicity) and model-derived
(fitness score, pseudo perplexity) characteristics for natural EV AMPs, EV non-AMPs, and synthetic
sequences. Natural AMPs display higher fitness scores and lower pseudo perplexity when compared
to other synthetic sequences.

H METRICS

In the main text, we utilize various metrics to assess the quality of generated peptides. Here, we
provide a detailed explanation of how these metrics are computed for a set of sequences S := {si}Ni=1.

Diversity We compute this metric by calculating the average normalized alignment between two
peptides. Alignment can be defined as the largest possible subset of ordered characters that both
sequences share, as originally proposed in Needleman & Wunsch (1970).

Diversity(S) = 100(
N
2

) ×∑
si∈S

∑
sj∈S\{si}

Alignment(si, sj)
min(length(si), length(sj))

Uniqueness To obtain the Uniqueness of a set of sequences, we compute the percentage of distinct
sequences within the set.

Uniqueness(S) = |{si|si /∈ {s1, . . . , si−1}}|
N

× 100
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Table 10: Hydrophobicity and helix propensity scales used in fitness calculation.

AA h hx
A 0.25 0.00
R -1.80 0.21
N -0.64 0.65
D -0.72 0.69
C 0.04 0.68
Q -0.69 0.39
E -0.62 0.40
G 0.16 1.00
H -0.40 0.61
I 0.73 0.41
L 0.53 0.21
K -1.10 0.26
M 0.26 0.24
F 0.61 0.54
P -0.07 3.16
S -0.26 0.50
T -0.18 0.66
W 0.37 0.49
Y 0.02 0.53
V 0.54 0.61

Novelty To obtain the novelty of a set of sequences, we compute the number of non-overlapping
sequences between the aforementioned set of sequences and the EV AMPs, which we denote withH.

Novelty(S) = |{si|si /∈ H|
N

× 100

Fitness Score Let θ := 100×π
180 , i.e. the equivalent of 100 degrees in radians, and both h and hx

denote the amino-acid scales presented in Tab. 10, then we can define the Fitness-Score (Li et al.,
2024).

Fitness-Score(S) = 1

N
×

∑
(a1,...,aL)∈S

√(∑L
i=1 h(ai) cos(iθ)

)2
+
(∑L

i=1 h(ai) sin(iθ)
)2

∑L
i=1 e

hx(ai)

Pseudo-Perplexity Let pϕ denote a density estimator for 1-amino-acid masked language modelling,
which in our case consists of ESM2 (Lin et al., 2022). Then, we can define the Pseudo-Perplexity
metric as follows:

Pseudo-Perplexity(S) = 1

N
×

∑
(a1,...,aL)∈S

exp

{
− 1

L

L∑
i=1

log pϕ
(
ai | a1, . . . , ai−1, ai+1, . . . , aL

)}

I FURTHER EXPERIMENTS GENERATION

I.1 GENERATIVE DATASET ABLATION

To quantify the impact of including the large-scale ”General Peptide Sequences” from Peptipedia in
our training data, we performed an ablation study where we trained the generative model exclusively
on the curated ”AMP sequences” (approx. 36k sequences), excluding the 774k general peptides,
see App. C for dataset details. We evaluated the models on unconditional generation metrics and
conditional controllability. These metrics are described in Sec. 4.2.
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As shown in Tab. 11, removing the general peptide sequences results in a degradation of performance
across key metrics. Specifically, the model trained on the full dataset (OmegAMP) achieves a higher
OmegAMP classification rate (10.5% vs 8.1%) and a higher Fitness Score (0.13 vs 0.11), indicating
better biological plausibility. Furthermore, the full model demonstrates superior controllability,
with significantly lower Mean Absolute Errors (MAE) for Length (0.04 vs 0.23), Charge (0.16 vs
0.27), and Hydrophobicity (0.18 vs 0.27). These results confirm that exposing the model to a larger,
chemically diverse set of peptide sequences is crucial for learning robust representations that facilitate
both high-quality generation and precise physicochemical control.

Table 11: Ablation study assessing the impact of including the general peptide sequences to the
training set. We compare the full OmegAMP model against a variant trained without the large-scale
general peptide sequences. The evaluation utilizes the metrics presented in Sec. 3.1

Gen. Model Omeg. Class. Fit. Score Div. Uniq. MAE (in std units) (↓)
Length Charge Hydroph.

OmegAMP w/o General Peptides 8.1 0.11 0.60 96 0.23 0.27 0.27
OmegAMP 10.5 0.13 0.64 94 0.04 0.16 0.18

I.2 EMBEDDING QUALITY COMPARISON

To compare the quality of the OmegAMP biologically-informed embedding against established protein
language model representations, we compared it with ESM-2 embeddings (Lin et al., 2022). We
trained XGBoost regressors to predict five key physicochemical properties (Charge, Hydrophobicity,
Instability Index, Boman Index, and Aliphatic Index) using different embedding schemes as input
features. We utilized the ”AMP Sequences” subset of the generative dataset, see App. C, and applied
a 5-fold cross-validation scheme.
Tab. 12 reports the Mean Absolute Error (MAE) for each property. The OmegAMP embedding
consistently achieves the lowest MAE across all tested properties compared to both PCA-reduced
and Average-Pooled ESM-2 embeddings. For instance, the MAE for Charge prediction is 0.526 for
OmegAMP versus 0.556 for ESM-2 (Avg. Pooling). This suggests that our compact, biologically-
inspired embedding provides an explicit and chemically rich representation where physicochemical
properties are more linearly separable and easier to decode than in the larger, generic latent spaces of
protein language models.

Table 12: Performance of different peptide embeddings on predicting physicochemical properties.
Lower MAE indicates a representation that better captures the underlying physicochemical attributes.

Embedding Type MAE (avg ± std) (↓)
Charge Hydrophobicity Instability Index Boman Index Aliphatic Index

ESM-2 (PCA) 0.683 ± 0.007 0.084 ± 0.001 19.55 ± 0.17 0.448 ± 0.005 12.06 ± 0.09
ESM-2 (Avg. Pooling) 0.556 ± 0.004 0.067 ± 0.000 18.30 ± 0.16 0.359 ± 0.005 10.20 ± 0.08
OmegAMP 0.526 ± 0.010 0.063 ± 0.001 15.70 ± 0.21 0.328 ± 0.004 8.12 ± 0.15

I.3 AMINO-ACID FREQUENCY COMPARISON

For further analysis of generated peptides we provide the amino-acid frequencies for all considered
generative models, see Fig. 5. The amino acid frequency distribution of unconditional OmegAMP-
generated sequences closely aligns with that of the AMP training data. This alignment suggests that
our generative model effectively captures key sequence-level features characteristic of AMPs, and
can produce biologically relevant candidates.
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Figure 5: Amino acid frequency distribution comparison between OmegAMP-generated sequences
and AMP training data. The close alignment shows that OmegAMP captures key AMP sequence
features, ensuring biologically relevant generation.

I.4 ON CONTROLLING MULTIPLE PROPERTIES SIMULTANEOUSLY

Following the experimental setup of the single-property controllability evaluation Sec. 4.2, we assess
OmegAMP’s ability to control multiple physicochemical properties simultaneously. We conditioned
the model to generate peptides adhering to target values for all three properties—Charge, Length,
and Hydrophobicity—at once. The results, presented in Tab. 13, compare the Mean Absolute Error
(MAE) for both single- and multi-property conditioning. The MAEs remain low in the multi-property
setting, showing only a slight increase from the single-property baseline. This demonstrates that
OmegAMP can robustly handle the more challenging multi-property conditioning task without a
significant drop in performance.

Table 13: Mean Absolute Errors (MAEs) in standardized units for different conditioning modes of
OmegAMP. Lower values indicate better performance.

Conditioning Mode MAE (in std units) (↓)
Length Charge Hydroph.

OmegAMP Single-Property 0.04 0.16 0.18
OmegAMP Multi-Property 0.27 0.20 0.20

To further visualize OmegAMP’s ability to precisely target specific physicochemical regions, we per-
formed a grid sweep analysis. We conditioned the model on a Cartesian product grid of Target Charge
values {0, 2, 4, 6, 8, 10} and Target Hydrophobicity values {−0.5,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8}, sam-
pling 250 sequences per pair.
Fig. 6 displays the deviation (Mean Absolute Error) between the target and generated properties.
The heatmaps demonstrate that OmegAMP maintains high controllability (low deviation, indicated
by lighter colors) across the majority of the biologically feasible landscape. Higher deviations are
observed in biochemically constrained regions where satisfying both properties simultaneously is
physically difficult (e.g., extremely high charge combined with high hydrophobicity).
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Figure 6: Heatmaps illustrating conditional controllability. The plots show the Mean Absolute Error
between target and generated values for Charge (left) and Hydrophobicity (right) across a defined
target grid.

I.5 ANALYSIS OF CONDITIONING STRATEGIES: PC VS. SC

In the main text, we observed that Property Conditioning (PC) using expert-defined ranges often
yields higher classifier scores than Subset Conditioning (SC). To investigate whether this is due to the
ranges selected or the conditioning method itself, we evaluated PC using the exact same property
ranges inherent to the SC exemplar sets (which are typically much wider and include ”low-hit-rate”
zones).
Tab. 14 shows that when PC is forced to sample from the broader, less targeted ranges used in SC
(e.g., Length 2-98 vs expert 10-30), its performance drops significantly (OmegAMP Class. 3.2%
vs 14.8%). This confirms that the superior performance of PC in our main results is driven by the
explicit guidance provided by expert knowledge, which directs the model toward high-probability
activity zones. Conversely, SC is valuable when specific distributional correlations of a target species
are needed, even if it involves sampling from harder-to-model regions.

Table 14: Performance comparison investigating the impact of property ranges on conditioning
strategies.

Gen. Model HydrAMP-MIC OmegAMP Class. Fitness Score Diversity Uniqueness Novelty
OmegAMP 33.8 10.5 0.13 0.64 94 98
OmegAMP-PC (SC Property Ranges) 40.6 3.2 0.12 0.57 93 100
OmegAMP-PC (Expert Ranges) 70.2 14.8 0.16 0.60 98 99
OmegAMP-SC 64.1 16.4 0.15 0.61 95 97

J FURTHER EXPERIMENTS CLASSIFICATION

J.1 SPECIES/STRAIN SPECIFIC CLASSIFICATION

We further evaluate species- and strain-specific classifiers as outlined in Sec. 3.2 to test whether the
performance of our general classifier, see Tab. 1, generalizes to narrower biological contexts with
limited training data.
To accomplish this, we train strain- and species- specific classifiers on their respective dataset, which
we detail in App. C. Otherwise, we follow the experimental setup as described in Sec. 4.1. The
results in Tab. 15 demonstrate that OmegAMP’s strong performance generalizes to species- and
strain-specific classification. Despite fewer training samples, these specialized models show TPR,
FPR, and LR+ values comparable or superior to the general classifier (Tab. 1), with LR+ reaching up
to 28488.5.
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Table 15: Performance metrics for species and strain-specific OmegAMP classifiers. Columns are as
in Tab. 1.

Performance Metrics Robustness (Misclassification Rate %)

Target AUPRC (↑) Prec@100 (↑) TPR (↑) FPR (↓) LR+ (↑) Bio Non-AMPs Synthetic Non-AMPs
Sig Met AD R S M

A. baumannii 47.6 75.7 33.5 0.0 762.1 0.0 0.1 0.1 0.0 0.1 0.1
E. coli 61.4 95.2 44.9 0.2 289.8 0.0 0.1 0.3 0.0 0.3 0.6
K. pneumoniae 58.3 87.7 39.9 0.0 2017.7 0.0 0.0 0.0 0.0 0.1 0.2
P. aeruginosa 54.6 88.4 37.9 0.1 562.8 0.0 0.1 0.2 0.0 0.2 0.3
S. aureus 53.4 86.2 38.2 0.1 259.0 0.0 0.2 0.2 0.0 0.4 0.4

A. baumannii ATCC19606 54.7 85.5 39.5 0.0 3594.2 0.0 0.0 0.0 0.0 0.0 0.1
E. coli ATCC25922 56.9 89.8 39.6 0.1 460.0 0.0 0.1 0.2 0.0 0.2 0.3
K. pneumoniae ATCC700603 64.6 92.5 47.0 0.0 8551.6 0.0 0.0 0.0 0.0 0.1 0.1
P. aeruginosa ATCC27853 58.9 87.7 41.5 0.0 1608.3 0.0 0.0 0.1 0.0 0.1 0.1
S. aureus ATCC25923 48.5 79.9 32.2 0.0 761.6 0.0 0.0 0.1 0.0 0.2 0.1
S. aureus ATCC33591 23.6 70.0 15.7 0.0 28488.5 0.0 0.0 0.0 0.0 0.0 0.0
S. aureus ATCC43300 47.2 80.3 31.7 0.0 2750.7 0.0 0.0 0.0 0.0 0.1 0.1

Furthermore, their prediction rates for synthetic negatives are consistently lower that those of the
baselines. This improved discriminative ability highlights OmegAMP’s practical utility for precise
predictions across diverse biological contexts.

J.2 SYNTHETIC DATA ABLATION

To validate the inclusion of each type of synthetic sequences (Random, Shuffled, and Mutated) to
the training set presented in Sec. 3.2, we perform an ablation study that analyzes these contributions
separately. Apart from the implied adjustments to the training, the experimental setup is identical to
that of Sec. 4.1.
Tab. 16 demonstrates that including specific synthetic datasets into the training yields improvement
not only across the respective synthetic probabilities, but also for types of inactive sequences unseen
during training, namely Signal and Metabolic peptides, as well as the more challenging Added-Deleted
Synthetics. In summary, when compared with its ablations, OmegAMP displays the highest AUPRC,
Prec@100, and LR+ of 56.9, 90.4%, and 138.1, respectively. These improvements, along with a
drastically reduced misclassification rate for unseen inactive types, suggest that synthetic sequence
augmentation and a weighted loss function aid our classifier in learning genuine sequence-function
relationships rather than spurious correlations —a conclusion supported by our interpretability
analysis in App. J.5— thereby enhancing its ability to generalize to unseen antimicrobial peptides.
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Table 16: Performance Metrics for OmegAMP ablations with varying integration of synthetic
negatives and loss formulations. Columns are as in Tab. 1.

Performance Metrics Robustness (Misclassification Rate %)

Model AUPRC (↑) Prec@100 (↑) TPR (↑) FPR (↓) LR+ (↑) Bio Non-AMPs Synthetic Non-AMPs
Sig Met AD R S M

Omeg. − {R, S, M} 19.0 36.2 95.9 5.7 3.5 4.6 6.6 85.6 5.7 95.1 77.4
Omeg. − {S, M} 27.1 52.6 93.2 21.9 4.3 4.0 3.1 69.6 0.4 89.9 54.7
Omeg. − {M} 49.1 83.6 62.7 2.3 27.5 0.1 1.0 6.9 0.0 0.8 17.2
OmegAMP 56.9 90.4 43.5 0.3 138.1 0.0 0.4 0.5 0.0 0.4 0.7

J.3 SENSITIVITY TO MISLABELLING

To evaluate the robustness of the OmegAMP classifier to potential label noise in the training
data—specifically the risk that synthetic mutations might inadvertently produce active peptides—we
conducted a sensitivity analysis. We performed 5-fold cross-validation where we systematically
corrupted the training labels by flipping M positive labels (EV AMPs) to negatives, simulating
mislabeling events.
As illustrated in Fig. 7, the classifier’s performance remains highly stable even as the number of
corrupted labels increases. The AUPRC and Precision@100 metrics show negligible degradation
until approximately 1,000 positive samples are corrupted (representing roughly one-third of the
positive class). This resilience is attributable to our weighted loss function (see App. D.3), which
prioritizes high-confidence EV data, allowing the model to learn robust decision boundaries despite
the presence of noise.

Figure 7: Robustness analysis of the OmegAMP classifier against training label noise. The plots
track the model’s performance in terms of AUPRC (top) and Precision@100 (bottom) as a function
of the number of positive labels intentionally corrupted (flipped) per fold during training.

J.4 EXTERNAL DATASET

To validate OmegAMP and contextualize its performance externally, we use the dataset from Tucker
et al. (2018) to assess our classifier against all baselines reported in Sec. 4.1. This dataset contains
random sequences, out of which less than 5% were shown to be AMPs. Importantly, our dataset
and the aforementioned external dataset have distinct AMP definitions: our MIC-based criterion
requires activity at 32µg/mL, see App. F, contrasting with the more lenient definition in Tucker et al.
(2018), which employs a surface display system to identify peptides with any detectable antimicrobial
activity. Nevertheless, the negative examples from this dataset should be classified as inactive under

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

any definition. Therefore, a good classification scheme should be able to perform well, especially
with respect to metrics that assess the TPR/FPR trade-off, like LR+.

Table 17: AMP classifiers performance on the dataset published by Tucker et al. (2018). Includes True
Positive Rate (TPR), False Positive Rate (FPR), Positive Likelihood Ratio (LR+), overall Precision,
and Precision@100.

TPR FPR LR+ Precision Precision@100
amPEPpy 36.860 34.623 1.065 1.896 3.000
AMPlify 25.516 22.515 1.133 2.011 5.000
AMPpredMFA 100.000 100.000 1.000 1.779 2.000
AMPScanner 32.750 26.866 1.219 2.210 1.000
HydrAMP-AMP 34.864 31.452 1.109 1.972 4.000
HydrAMP-MIC 4.670 2.081 2.244 3.914 10.000
SenseXAMP-classifier 46.870 44.680 1.049 1.866 13.000
PyAMPA 2.265 1.409 1.607 2.833 5.000
OmegAMP 0.064 0.010 6.560 10.638 11.000

The results, presented in Tab. 17, indicate that most of the baseline methods greatly overestimate
the number of positive samples in this dataset, as indicated by high FPRs. Additionally, all models
but AMPpredMFA display TPR and FPR that are, on average, lower than those observed in our
primary study, see Tab. 1. The aforementioned deviation between our experimentally validated
dataset and the one from Tucker et al. (2018) is also reflected in this result. Notably, and consistent
with our previous analysis, the LR+ and Prec@100 values showed other baselines performing near
random-choice levels, while OmegAMP achieved statistically significant results. These findings
from an independent test set further underscore OmegAMP’s superior ability to discriminate between
AMPs and non-AMPs, even across varying definitions.

J.5 CLASSIFIER INTERPRETABILITY ANALYSIS

To investigate the biological principles learned by the OmegAMP general classifier, we conducted a
feature importance analysis on the trained XGBoost model. The results show that a single feature, the
mean charge of the peptide at physiological pH (7.0), was overwhelmingly dominant. This feature’s
high importance is underscored by its presence in 30% of the decision nodes across the tree ensemble.
This finding confirms that the classifier has learned a well-established biological principle: the net
positive charge of an AMP is a powerful predictor of its antimicrobial function. This charge facilitates
the critical initial electrostatic attraction between the peptide and the negatively charged bacterial
membranes, a key step for the peptide to exert its antimicrobial effect (Lei et al., 2019).

K EXPERIMENTAL VALIDATION

To validate OmegAMP’s design in real-world applications, we conducted rigorous experimental vali-
dation of OmegAMP-designed peptides. The primary target was to assess whether our framework’s
in silico performance translates into actual wet-lab biological activity. To this end, we synthesized 25
promising candidates and evaluated their efficacy against a panel of 17 clinically relevant bacterial
strains, including eight multidrug-resistant (MDR) pathogens, which pose a significant threat to
global health.

K.1 EXPERIMENTAL DESIGN AND METHODS

Peptide Design and Selection The 25 peptides for wet-lab validation were chosen through a
comprehensive in silico pipeline designed to maximize the likelihood of success. We first generated
two large pools of 50,000 candidate peptides using OmegAMP-SC (Subset Conditioning) and
OmegAMP-PC (Property Conditioning). These pools were then filtered to retain only peptides with
physicochemical properties within expert-defined ranges known to favor synthesizability and activity
(charge: 2 to 10; length: 10 to 30; hydrophobicity: -0.5 to 0.8). After removing duplicates and
sequences already present in known AMP databases, the remaining candidates were ranked using
the OmegAMP general classifier and other predictors. Based on this final ranking, we selected 25
peptides for synthesis: 15 from the OmegAMP-SC pool and 10 from the OmegAMP-PC pool. The
selected sequences are labeled s1, s2, ..., s25 to protect proprietary information.
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Table 18: The 17 bacterial strains used for experimental validation. Strains marked with MDR are
multi-drug resistant.

ID Bacterial Strain
AB1 A. baumannii ATCC 19606
AB2MDR A. baumannii ATCC BAA-1605
EC1 E. coli ATCC 11775
EC2 E. coli AIC221
EC3MDR E. coli AIC222
EC4MDR E. coli ATCC BAA-3170
KP1 K. pneumoniae ATCC 13883
KP2MDR K. pneumoniae ATCC BAA-2342
PA1 P. aeruginosa PAO1
PA2 P. aeruginosa PA14
PA3MDR P. aeruginosa ATCC BAA-3197
SE1 S. enterica ATCC 9150
SE2 S. enterica Typhimurium ATCC 700720
SA1 S. aureus ATCC 12600
SA2MDR S. aureus ATCC BAA-1556
EFS1MDR E. faecalis ATCC 700802
EFU1MDR E. faecium ATCC 700221

Bacterial Strains and Culture Conditions The pathogenic strains used in this study included
Acinetobacter baumannii ATCC 19606; A. baumannii ATCC BAA-1605 (resistant to ceftazidime,
gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem, and meropenem);
Escherichia coli ATCC 11775; E. coli AIC221; E. coli AIC222 (resistant to polymyxin); E. coli
ATCC BAA-3170 (resistant to colistin and polymyxin B); Klebsiella pneumoniae ATCC 13883; K.
pneumoniae ATCC BAA-2342 (resistant to ertapenem and imipenem); Pseudomonas aeruginosa
PAO1; P. aeruginosa PA14; P. aeruginosa ATCC BAA-3197 (resistant to fluoroquinolones, β-lactams,
and carbapenems); Salmonella enterica ATCC 9150; S. enterica subsp. enterica Typhimurium ATCC
700720; Staphylococcus aureus ATCC 12600; S. aureus ATCC BAA-1556 (methicillin-resistant);
Enterococcus faecalis ATCC 700802 (vancomycin-resistant); and Enterococcus faecium ATCC
700221 (vancomycin-resistant). Tab. 18 presents a structured view of these strains. Additionally,
Pseudomonas strains were grown on selective Pseudomonas Isolation Agar, whereas all other bacteria
were cultured in Luria-Bertani (LB) agar and broth. Each strain was initiated from a single colony,
incubated overnight at 37 ◦C, and then diluted 1:100 into fresh medium to reach mid-logarithmic
growth phase.

Minimal Inhibitory Concentration (MIC) Assays MIC values were determined by broth microdi-
lution using untreated 96-well microplates. Peptides were prepared as twofold serial dilutions (1-64
µmol L−1) in sterile water and mixed at a 1:1 ratio with LB medium containing 4×106 CFU mL−1

of bacteria. The MIC was defined as the lowest peptide concentration that fully prevented visible
bacterial growth after 24 h of incubation at 37 ◦C. Each assay was performed independently in
triplicate.

K.2 OMEGAMP PEPTIDES SHOW HIGH POTENCY AND VALIDATE CLASSIFIER DESIGN

Unprecedented Experimental Hit Rate, Broad-Spectrum Activity and High Potency We share
the measured MIC values (the lower, the better, with MIC ≤ 32µg/mL considered the activity
threshold) for all considered strains in Tab. 19. A remarkable 24/25 sequences are active against
at least one bacterial strain, respectively. Therefore, yielding a 24/25=96% hit rate, which, to the
best of our knowledge, is the highest reported hit rate for any AMP experiment. Additionally, two
of the peptides (s2 and s23) are active against all tested strains, and overall, the peptides show
broad-spectrum activity.
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Table 19: Experimentally measured Minimum Inhibitory Concentration (MIC, in µg/mL) for 25
OmegAMP-generated peptides against Gram-negative and Gram-positive bacterial strains. ‘-‘ indi-
cates no observed activity.

ID AB1 AB2 EC1 EC2 EC3 EC4 KP1 KP2 PA1 PA2 PA3 SE1 SE2 SA1 SA2 EFS1 EFU1
s1 4 8 32 8 16 32 16 64 - 32 - 8 16 64 32 - 1
s2 2 2 8 2 2 2 4 2 16 2 8 1 2 16 16 16 2
s3 4 4 4 4 2 4 8 16 64 16 32 4 8 - - - 8
s4 8 8 32 4 16 8 - - 16 16 8 2 8 32 64 - 16
s5 16 32 - - - - - - - - - - 16 4 - - 8
s6 8 4 64 4 16 16 64 - 16 16 16 4 8 64 - - 16
s7 2 4 8 2 8 4 64 8 4 8 2 1 8 32 64 - 4
s8 4 8 32 8 16 32 16 - 32 - 32 2 16 64 - - 2
s9 4 2 32 8 16 4 - - 64 16 32 4 8 - - - 8
s10 2 2 32 4 4 4 32 8 32 32 8 1 4 16 32 - 4
s11 32 16 32 16 8 16 32 - - 64 - 32 32 16 16 64 16
s12 - - - - - - - - - - - - - 64 - - -
s13 32 32 8 8 16 8 - - - 16 64 8 32 64 - 32 4
s14 - - - - - - - - - - - - - 4 - - 32
s15 4 16 - 16 16 8 - - - - - 16 2 1 - 32 1
s16 4 2 4 2 2 4 1 4 8 2 4 2 2 16 32 - 2
s17 16 4 32 4 16 8 - - 8 16 1 1 4 - 32 - 1
s18 8 4 - 32 - 8 - - - - - 8 32 - - - 4
s19 4 2 16 2 2 2 - - 4 4 2 1 4 - 64 - 2
s20 16 8 16 4 16 8 64 32 4 8 2 2 4 32 32 - 1
s21 8 8 32 4 16 8 - 32 32 16 16 2 8 - - - 2
s22 1 4 8 4 8 4 2 8 16 8 8 2 4 - - - 2
s23 2 2 4 1 2 2 16 8 2 2 1 1 2 8 8 8 1
s24 16 4 64 16 32 4 - - 32 32 4 2 8 64 - - 2
s25 64 16 - 32 32 16 - - - 64 2 2 16 - - - 8

The clinical relevance and high potency of the generated peptides are further underscored by their per-
strain hit rates at stringent MIC thresholds (Tab. 20). The analysis reveals exceptional performance:
for every bacterial strain tested, at least one peptide demonstrated high potency with an MIC of
≤ 8µg/mL, as observed by the non-zero values for all values in the ≤ 8 column. Crucially, this
effectiveness extends to the most challenging bacteria, with numerous peptides showing strong
activity against multi-drug resistant strains (AB2, EC3, EC4, KP2, PA3, SA2, EFS1, EFU1). These
results confirm OmegAMP’s ability to generate potent and therapeutically relevant candidates for
high-priority pathogens.

Table 20: Fraction of the 25 tested peptides active against each bacterial strain at various MIC
thresholds (µg/mL).

ID ≤ 1 ≤ 2 ≤ 4 ≤ 8 ≤ 16 ≤ 32 ≤ 64

AB1 0.04 0.20 0.48 0.64 0.80 0.88 0.92
AB2MDR 0.00 0.24 0.52 0.72 0.84 0.92 0.92
EC1 0.00 0.00 0.12 0.28 0.36 0.68 0.76
EC2 0.04 0.20 0.52 0.68 0.80 0.88 0.88
EC3MDR 0.00 0.20 0.24 0.36 0.76 0.84 0.84
EC4MDR 0.00 0.12 0.40 0.68 0.80 0.88 0.88
KP1 0.04 0.08 0.12 0.16 0.28 0.36 0.48
KP2MDR 0.00 0.04 0.08 0.24 0.28 0.36 0.40
PA1 0.00 0.04 0.16 0.24 0.40 0.56 0.64
PA2 0.00 0.12 0.16 0.28 0.56 0.68 0.76
PA3MDR 0.08 0.24 0.32 0.48 0.60 0.72 0.76
SE1 0.24 0.60 0.72 0.84 0.88 0.92 0.92
SE2 0.00 0.12 0.32 0.60 0.72 0.84 0.84
SA1 0.00 0.00 0.00 0.04 0.20 0.32 0.52
SA2MDR 0.00 0.00 0.00 0.04 0.12 0.36 0.48
EFS1MDR 0.00 0.00 0.00 0.04 0.08 0.12 0.16
EFU1MDR 0.20 0.48 0.64 0.80 0.92 0.96 0.96
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Table 21: Classifier performance metrics of the 25 experi-
mentally evaluated peptides.

Classifier P TP FP TN FN TPR FPR
General 24 11 0 1 13 0.46 0.00
Species - A. baumannii 23 8 0 2 15 0.35 0.00
Species - E. coli 22 8 0 3 14 0.36 0.00
Species - K. pneumoniae 12 3 1 12 9 0.25 0.08
Species - P. aeruginosa 20 9 0 5 11 0.45 0.00
Species - S. aureus 11 5 2 12 6 0.45 0.14

Classifier Backtest Validates Low
FPR Goal Following the wet-lab ex-
periments, we performed a backtest
analysis to evaluate how well our clas-
sifiers’ in silico predictions held up
against the experimental ground truth.
The results, shown in Tab. 21, strongly
validate our design philosophy of pri-
oritizing high specificity to minimize
costly false positives. Across the general and most species-specific models, the False Positive Rate
(FPR) was exceptionally low, reaching 0.00 for four of the six classifiers. This confirms that the mod-
els are highly effective at correctly identifying inactive peptides — a critical objective for reducing
experimental costs. The reported True Positive Rate (TPR) is consistent with our in silico findings, see
Sec. 4.1, showing that the observed in silico performance translates to real-world settings. Ultimately,
these findings show that OmegAMP classifiers serve as a stringent, high-confidence filter, ensuring
that peptides selected for synthesis have a high probability of being active, thereby enhancing the
overall efficiency and success rate of the discovery pipeline.

L LIMITATIONS & FUTURE WORK

Contextual Specificity of Activity Definition. The definition of peptide activity, as detailed in
App. F, is inherently linked to the specific bacterial strains incorporated into the analysis. This strain-
dependent characterization is a well-understood consideration within the broader field of antimicrobial
peptide research, rather than a limitation unique to our model or approach. It follows that a peptide
active against a strain not included in our study would be classified as inactive under our defined
criteria, irrespective of its potential efficacy against a wider spectrum of bacteria. Consequently,
our reported results and conclusions regarding peptide activity are interpreted within the specific
context of the evaluated strains, a necessary and common delimitation when investigating the complex
landscape of peptide-bacterial interactions.

Generalization to Novel Peptide Space and Property Extrapolation. While our experiments in
Sec. 4 demonstrate robust performance for both generative and discriminative models on important
benchmarks, their application to truly novel chemical and functional spaces presents considerations
common to many data-driven models. Current publicly available peptide datasets, upon which our
models are trained, often exhibit certain prevalent structural and activity patterns. Consequently,
assessing performance on peptides with radically divergent characteristics, or those representing
entirely new classes of activity, remains an open and important challenge for the field. Similarly, our
evaluation of property conditioning focused on target values within the empirically observed ranges
of the training data, where performance is well-characterized. The ability of conditional generative
models to reliably extrapolate to property combinations significantly outside these validated ranges is
an active area of research, and performance in such regimes warrants dedicated future investigation.
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M REBUTTAL OUTCOMES

Extending the Conditioning Space A key advantage of OmegAMP is the flexibility of its con-
ditioning mechanism. To demonstrate the ability to incorporate additional biophysical properties,
we retrained the model with the Instability Index included in the conditioning vector. This property
serves as a proxy for protease stability.
Results in Tab. 22 show that the model successfully incorporates this new constraint. While there
is a trade-off, as controlling the Instability Index is inherently more challenging (MAE 0.86) and
leads to a slight reduction in control over other properties, the model generates peptides with higher
overall Fitness Scores (0.14). This confirms that OmegAMP can be extended to target multi-objective
criteria including stability, toxicity, or other computable properties, provided reliable data exist.

Table 22: Ablation study on extending the conditioning space. We compare the standard OmegAMP
with a version trained to also control the Instability Index.

Gen. Model Omeg. Class. Fit. Score Div. Uniq. MAE (in std units)
Length Charge Hydroph. Inst. Index

OmegAMP w/ Inst. Index 8.7 0.14 0.64 96 0.19 0.17 0.20 0.86
OmegAMP 10.5 0.13 0.64 94 0.04 0.16 0.18 -

Generative Evaluation with External Classifiers To ensure that the high predicted activity of
OmegAMP-generated sequences is not an artifact of system-internal consistency bias (i.e., scoring
samples with a classifier trained on similar data distributions), we evaluated the generative models
using two independent, third-party classifiers: amPEPpy and AMPlify. These were selected for their
strong baseline performance in Tab. 1.
The results in Tab. 23 confirm the findings reported in the main text. OmegAMP variants consistently
achieve the highest predicted activity rates across all external classifiers. Notably, OmegAMP-PC
achieves 87.7% and 84.5% predicted positives on amPEPpy and AMPlify, respectively, significantly
outperforming baseline generative models like AMPGAN and Diff-AMP. This cross-validation
by independent models provides strong evidence that OmegAMP generates high-quality peptide
candidates with genuine antimicrobial potential.

Table 23: Performance comparison across generative models using independent external classifiers
(amPEPpy, AMPlify) to verify generated sequence quality.

Gen. Model HydrAMP-MIC OmegAMP Class. amPEPpy AMPlify Fitness Score Diversity Uniqueness Novelty
EV AMPs (Data) 81.6 43.5* 94.1 96.1 0.16 0.62 - -

AMPGAN 31.6 0.3 50.4 49.1 0.10 0.57 100 100
Diff-AMP 27.8 0.0 50.4 13.5 0.08 0.63 100 100
HydrAMP 44.1 0.0 56.4 59.3 0.09 0.70 100 100
AMP-Diffusion 42.8 2.2 28.9 11.8 0.11 0.64 91 100
OmegAMP 33.8 10.5 65.3 64.1 0.13 0.64 94 98
OmegAMP-PC 70.2 14.8 87.7 84.5 0.16 0.60 98 99
OmegAMP-SC 64.1 16.4 87.1 88.9 0.15 0.61 95 97
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