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ABSTRACT

Model ensemble can effectively improve the accuracy of neural machine transla-
tion, which is accompanied by the cost of large computation and memory require-
ments. Additionally, model ensemble cannot combine the strengths of transla-
tion models with different decoding strategies since their translation probabilities
cannot be directly aggregated. In this paper, we introduce an ensemble learning
framework based on knowledge distillation to aggregate the knowledge of mul-
tiple teacher models into a single student model. Under this framework, we in-
troduce word-level ensemble learning and sequence-level ensemble learning for
neural machine translation, where sequence-level ensemble learning is capable of
aggregating translation models with different decoding strategies. Experimental
results on multiple translation tasks show that, by combining the two ensemble
learning methods, our approach achieves substantial improvements over the com-
petitive baseline systems and establishes a BLEU score of 31.13 in the WMT14
English-German translation task.1

1 INTRODUCTION

Neural Machine Translation (NMT) has achieved impressive performance over the past several years
(Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani et al., 2017). Model
ensemble is an effective and widely used technique to improve the translation accuracy of NMT.
However, model ensemble requires to simultaneously run multiple models during decoding and
take their average probabilities for prediction, which significantly increases the computational cost
and memory requirements. Another limitation is that it cannot aggregate translation models with
different decoding strategies. For example, although it is known that left-to-right (L2R) and right-
to-left (R2L) translation models are complementary (Zhang et al., 2018; 2020), these two kinds of
models cannot be directly aggregated due to their different translation directions.

Knowledge distillation approaches (Hinton et al., 2015) learn a smaller student network through
distilling knowledge from a larger teacher network. It is a natural idea to apply this technique to
aggregate the knowledge of multiple models into a single model (Furlanello et al., 2018; Fukuda
et al., 2017; Zhu et al., 2018; Asif et al., 2019). In neural machine translation, sequence-level
knowledge distillation is proposed by Kim & Rush (2016) and then applied in Ensemble Distillation
(Freitag et al., 2017), Online Distillation (Wei et al., 2019) and Transductive Ensemble Learning
(Wang et al., 2020) to exploit the knowledge of multiple translation models. However, we argue
that these methods either do not fully exploit the knowledge of every individual model (Freitag
et al., 2017; Wei et al., 2019) or become computationally expensive during decoding (Wang et al.,
2020). Besides, these methods have common limitations that they ignore the usage of word-level
knowledge distillation and the complementarity of different decoding strategies.

In this work, we introduce an ensemble learning framework based on knowledge distillation to
exploit the knowledge of multiple trained models and aggregate them into a single model. We
take these trained models as teachers and the desired model as the student. Unlike the traditional
knowledge distillation scenario, the student model has the same size as teachers, and we expect the
student to be stronger than every individual teacher after aggregating their knowledge.

1We will release the source code and the created SEL training data for reproducibility.
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To fit this scenario, we extend the knowledge distillation technique in NMT to the scene of multiple
teachers, which gives two methods for ensemble learning, namely Word-level Ensemble Learn-
ing (WEL) and Sequence-level Ensemble Learning (SEL). WEL is the extension of word-level
knowledge distillation, which uses the predicted probabilities of all teacher models as the target
distribution. Similarly, SEL is extended from sequence-level knowledge distillation. Compared
to WEL, SEL allows teacher models to have different decoding strategies and hence can combine
their strengths. We further introduce Sequence-Word Ensemble Learning (SWEL) to combine the
strengths of word-level and sequence-level ensemble learning. In summary, our contributions are:

• We introduce an ensemble learning framework based on knowledge distillation and develop
WEL and SEL under this framework.

• We propose to combine the strengths of different decoding strategies in SEL.
• We introduce SWEL to combine sequence-level and word-level ensemble learning.

We conduct experiments on WMT14 English-German translation, WMT16 English-Romanian
translation and WMT17 Chinese-English translation. Experimental results show that our approach
achieves substantial improvements over the competitive baseline systems and establishes a BLEU
score of 31.13 in the WMT14 English-German translation.

2 BACKGROUND

2.1 NEURAL MACHINE TRANSLATION

Deep neural networks with autoregressive encoder-decoder framework have achieved great success
on machine translation. Given a source sentence X and a target sentence Y = {y1, ..., yT }, autore-
gressive NMT models the translation probability sequentially as:

p(Y |X; θ) =

T∏
t=1

p(yt|y<t,X, θ), (1)

where θ are model parameters, y<t = {y1, · · · , yt−1} is the translation history and p is the prob-
ability distribution. The standard training objective is the cross-entropy loss, which minimizes the
negative log-likelihood:

LNLL(θ) = −
T∑

t=1

log(p(yt|y<t,X, θ)). (2)

During inference, decoding algorithms such as greedy search and beam search are applied to gener-
ate the translation. If there are multiple models available, we can combine these models to get better
translations. Assume we have n models θ1:n and the i-th model predicts the distribution pi, then the
ensemble of n models predicts the distribution e as follows:

e(yt|y<t,X, θ1:n) =
1

n

n∑
i=1

pi(yt|y<t,X, θi). (3)

In addition to the mainstream L2R decoding, there are other decoding strategies for NMT that
are attracting attention, including R2L decoding, non-autoregressive decoding (Gu et al., 2017),
insertion-based decoding (Gu et al., 2019) and synchronous bidirectional decoding (Zhang et al.,
2020). Unfortunately, translation probabilities of these models cannot be directly averaged like in
Eq.(3), making it difficult to combine their strengths.

2.2 KNOWLEDGE DISTILLATION FOR NMT

Knowledge distillation (Hinton et al., 2015) describes a class of methods for training a smaller
student network to perform better by learning from a larger teacher network. Assume that we are
learning a classifier p(y|x; θ) with |V| classes, and we have access to a learned teacher distribution
q(y|x). Instead of minimizing the cross-entropy with the observed data, knowledge distillation uses
the teacher distribution q(y|x) as target and minimizes the loss:

LKD(θ) = −
|V|∑
k=1

q(y = k|x)× log p(y = k|x; θ). (4)
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In autoregressive L2R neural machine translation, since the standard training objective is the cross-
entropy loss, knowledge distillation for multi-class cross-entropy can be applied as follows:

LWord-KD(θ) = −
T∑

t=1

|V|∑
k=1

q(yt = k|y<t,X)× log p(yt = k|y<t,X, θ), (5)

where V is the target vocabulary set. The student model is trained to mimic the teacher’s prediction
at each decoding step, so this method is called Word-level Knowledge Distillation (Word-KD) (Kim
& Rush, 2016). Word-KD can be applied to other NMT models like R2L NMT. The limitation is
that the student and teacher must have the same decoding strategy. Ideally, we would like the student
model to mimic the teacher’s actions at the sequence-level:

LSeq-KD(θ) = −
∑
Y

q(Y |X)× log p(Y |X, θ). (6)

This method is called Sequence-level Knowledge Distillation (Seq-KD) (Kim & Rush, 2016), which
is intractable due to the exponential large search space. The simplest approximation is to replace the
teacher distribution q by a one-hot distribution, which has the probability 1 on the translation result
of the teacher model. The loss is then:

LSeq-KD(θ) ≈ −
∑
Y

1{Y = Ŷ } log p(Y |X, θ) = − log p(Ŷ |X, θ), (7)

where Ŷ is the output from running beam search with the teacher model. In summary, sequence-
level knowledge distillation suggests to: (1) train a teacher model, (2) run beam search over the
training set with this model and replace the target-side by the translation result, (3) train the student
model with cross-entropy on this new dataset.

3 APPROACH

In this section, we present an ensemble learning framework based on knowledge distillation to aggre-
gate the knowledge of multiple trained models into a single model. We take these trained models as
teachers and the desired model as the student. Then we extend the knowledge distillation technique
in NMT to the scene of multiple teachers, which gives two methods namely word-level ensemble
learning and sequence-level ensemble learning. We then propose sequence-word ensemble learning
to combine the strengths of these two methods.

3.1 WORD-LEVEL ENSEMBLE LEARNING

We first introduce Word-level Ensemble Learning (WEL), where the student model aggregates the
knowledge of teachers in word-level. Assume we have access to n learned teachers where the i-th
teacher has distribution qi, and the student model has distribution p. Teachers and the student are
required to have the same decoding strategy, and we assume them to be autoregressive L2R NMTs.
To distill knowledge from multiple teachers, we simply collect the distillation losses from every
teacher and use their sum to train the student model:

LWEL(θ) = −
n∑

i=1

T∑
t=1

|V|∑
k=1

qi(yt = k|y<t,X) log p(yt = k|y<t,X, θ). (8)

To compute the WEL loss, we can calculate the probability distribution predicted by each teacher
and use their average as the target distribution. WEL can be understood as a special case of word-
level knowledge distillation, where the teacher model is the ensemble of multiple individual models.
Following Kim & Rush (2016), we introduce a hyperparameter α to interpolate the WEL loss and
the original cross-entropy loss, which in practice achieves better performance:

L(θ) = α

n
LWEL(θ) + (1−α)LNLL(θ). (9)
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3.2 SEQUENCE-LEVEL ENSEMBLE LEARNING

In WEL, the constraint is that those teacher models and the student model must have the same de-
coding strategy, which limits the ability of WEL since the student can only learn from homogeneous
teachers. Here, we introduce the Sequence-level Ensemble Learning (SEL), which does not have
this limitation so the student model can combine the strengths of different decoding strategies.

Assume that we have access to multiple learned teachers and they can be divided into m groups
where each group corresponds to a decoding strategy, and the i-th group contains ri models. We use
qij to denote the j-th teacher in the i-th group. Similarly, we collect the sequence-level distillation
losses from these teachers to train the student model:

LSEL(θ) = −
m∑
i=1

ri∑
j=1

∑
Y

qij(Y |X)× log p(Y |X, θ). (10)

The loss is intractable due to the exponential large search space. We first propose two methods to
approximate the SEL loss, namely single-model approximation and ensemble-model approximation,
and then combine them to obtain a better approximation.

Single-Model Approximation The idea of single-model approximation is to approximate the SEL
loss by applying the approximation method used in Eq.(7) for every single teacher. We use Ŷij to
denote the beam search result of qij and use the corresponding one-hot distribution to approximate
qij as follows:

LSEL(θ) ≈ −
m∑
i=1

ri∑
j=1

∑
Y

1{Y = Ŷij} log p(Y |X, θ) = −
m∑
i=1

ri∑
j=1

log p(Ŷij |X, θ). (11)

The process of the above single-model approximation can be summarized as: (1) train n teacher
models, (2) use every teacher model to run beam search over the training set and concatenate the
translation results as target-side, (3) train the student model on this new dataset.

Ensemble-Model Approximation Since teacher models have been divided into groups according to
the decoding strategy, models in the same group can be directly aggregated. On this basis, ensemble-
model approximation suggests approximating the SEL loss in the group-level. Firstly, we rewrite
the SEL loss as follows:

LSEL(θ) = −
m∑
i=1

ri
∑
Y

∑ri
j=1 qij(Y |X)

ri
× log p(Y |X, θ). (12)

Notice that in the above equation, there arem teacher distributions where the i-th teacher distribution
is the probability distribution averaged over the i-th group, which motivates us to use the ensemble
of the i-th group to approximate this distribution. We use Ŷi to denote the beam search result of the
ensemble of the i-th group and approximate the SEL loss as follows:

LSEL(θ) ≈ −
m∑
i=1

ri log p(Ŷi|X, θ). (13)

The above ensemble-model approximation treats each group as a whole and directly distills knowl-
edge from the group. Models in the i-th group are first aggregated to decode the training set, and
then the translation result is repeated for ri times as target-side. Actually, ensemble distillation (Fre-
itag et al., 2017) is a special case of ensemble-model approximation when all teacher models have
the same decoding strategy.

Combination To obtain a better approximation, we combine the above two methods and use both
single models and ensembles to approximate the SEL loss. For simplicity, we ignore the coefficient
ri and directly concatenate all translation results to build the training bitext for SEL. In addition, we
concatenate the original training bitext and the distillation bitext to train the student model, which
shows better performance in practice (Gordon & Duh, 2019; Freitag et al., 2017). In summary, the
target side of the final training bitext includes: (1) beam search results of single models, (2) beam
search results of ensembles of groups, (3) the original reference.
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Algorithm 1 SWEL
Input: training corpus D = (X1:M,Y1:M), teacher models qij , the number of groups m, the

number of SEL teachers n, the number of models ri
Output: the student model p
1: initialize the SEL dataset D̃ = D
2: for i← 1 to m do
3: use the ensemble of group i to decode the training corpus X1:M, get the result Ŷ1:M

i

4: D̃ = D̃ ∪ (X1:M, Ŷ1:M
i )

5: for j ← 1 to ri do
6: use qij to decode the training corpus X1:M, get the result Ŷ1:M

ij

7: D̃ = D̃ ∪ (X1:M, Ŷ1:M
ij )

8: set different random seeds to train n models {s1, · · · , sn} on the SEL dataset D̃
9: set {s1, · · · , sn} as teacher models and apply WEL to train the student model p on D̃

10: return the student model p

3.3 SEQUENCE-WORD ENSEMBLE LEARNING

Compared to SEL, WEL can accurately distill knowledge from teachers but cannot aggregate mod-
els with different decoding strategies. Besides, SEL can explore the decoding path of teacher models
during training, while WEL can only decode in the path of reference sentences and hence suffers
from the exposure bias problem (Bengio et al., 2015). This motivates us to combine these two meth-
ods so that WEL can also benefit from the larger exploration space and diverse decoding strategies.

We combine these two methods in a pipeline manner and call it Sequence-Word Ensemble Learning
(SWEL) since it sequentially applies the sequence-level and word-level ensemble learning. We first
obtain the training bitext for SEL and set different random seeds to train n SEL models on the SEL
dataset. Then WEL can be directly applied to aggregate these n models into one. The detailed
process of SWEL is summarized in Algorithm 1. We denote the number of teachers for SEL as n′.
In SWEL, we need to train n + n′ teachers in total. If we reverse the pipeline to apply WEL first
and SEL later, then we need to train nn′ teachers in total, which greatly increases the training cost.
Therefore, we use SWEL instead of WSEL to combine these two ensemble learning methods.

4 RELATED WORK

In neural machine translation, the idea of distilling knowledge from multiple models into a sin-
gle model was first proposed by ensemble distillation (Freitag et al., 2017), which is within the
sequence-level knowledge distillation framework but uses the ensemble of multiple models as a
teacher. Wei et al. (2019) proposed online distillation to on-the-fly generate a teacher model from
checkpoints. Wang et al. (2019); Bi et al. (2019) further proposed to apply multi-agent learning in
NMT, where agents learn advanced knowledge from others and work together to improve translation
quality. Tan et al. (2019) applied knowledge distillation in multilingual machine translation where
the multilingual model distills knowledge from individual models. Nguyen et al. (2019) proposed to
diversify the training data by using multiple forward and backward models to augment the original
training dataset. Recently, Wang et al. (2020) proposed Transductive Ensemble Learning, which
uses all individual models to translate the test set and then fine-tune a strong model on the translated
synthetic corpus.

Regarding the combination of different decoding strategies, previous works mainly focus on exploit-
ing R2L decoding to enhance the L2R decoding procedure. Rerank-based approaches (Liu et al.,
2016; Sennrich et al., 2016b) utilize R2L translation models to rescore L2R translations. Some re-
searchers (Zhang et al., 2019; Hassan et al., 2018; Yang et al., 2018) attempt to exploit R2L decoding
through incorporating a regularization term into the training objective. Zhang et al. (2018) proposed
to extract information from hidden states of the R2L decoder to guide the L2R generation. Zhang
et al. (2020) proposed synchronous bidirectional inference to generate outputs using both L2R and
R2L decoding simultaneously and interactively.
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5 EXPERIMENTS

5.1 SETUP

We evaluate our method on three translation tasks of different scales, including WMT16 English-
Romanian translation, WMT14 English-German translation and WMT17 Chinese-English transla-
tion. For English-German translation and Chinese-English translation, we use both standard tok-
enized case-sensitive BLEU (Papineni et al., 2002) and detokenized case-insensitive SacreBLEU2

(Post, 2018) as the automatic metric. For English-Romanian translation, we only report the Sacre-
BLEU since the difference between the two BLEU scores is very small (<0.1).

For English-Romanian translation, we use the WMT16 corpus consisting of 600k sentence pairs
for the training. We take newsdev2016 and newstest2016 as validation and test sets. For English-
German translation, we use the WMT14 corpus consisting of 4.5M sentence pairs for the training.
The validation set is newstest2013, and the test set is newstest2014. For Chinese-English trans-
lation, the WMT17 corpus consists of 24M sentence pairs, and we remove all duplicates and use
the resulted 20.6M sentence pairs for the training. The newsdev2017 is used as the validation set
and newstest2017 as the test set. For English-Romanian and English-German translation, we merge
the source and target training sets and learn a BPE (Sennrich et al., 2016a) model with 32K merge
operations. For Chinese-English translation, we use BPE with 32K merge operations on both sides.

We implemented our approach based on the Transformer model (Vaswani et al., 2017). We use the
base version of Transformer for English-Romanian translation and the big version of Transformer
for English-German translation. For Chinese-English translation, we conduct experiments on both
base and big versions of Transformer. All models are optimized with Adam (Kingma & Ba, 2014).
We use 8 NVIDIA V100 GPUs for the training. Following Ott et al. (2018), we accumulate the
gradients for 16 batches in English-German translation. The batch size is 4096 for Transformer base
and 3584 for Transformer big.

We set different random seeds to obtain multiple teacher models. We report the average BLEU score
when we have multiple models with different seeds. For WEL, all teacher models and the student
model are autoregressive L2R NMTs. Due to the memory limitation, the number of teacher models
is 3 by default. The hyperparameter α to interpolate the two losses is set to be 0.75 for WEL and
0.5 for SWEL. For SEL, the student model is the autoregressive L2R NMT. Teacher models, unless
otherwise specified, are 3 L2R NMTs and 3 R2L NMTS. The model size of the student model and
teacher models are the same. For SEL and SWEL, we halve the original dropout to match the size
of training data.

5.2 MAIN RESULTS

Baseline Results For English-German and English-Romanian translation, we report our system
results along with some relative or competitive systems results in Table 1. Comparing with existing
systems, we can see that our baseline system, the L2R Transformer, is already very competitive. R2L
Transformer is slightly weaker than L2R in the two translation tasks, so it is reasonable to use the
L2R model as a student in the following experiments. The ensemble of 6 models brings considerable
BLEU improvements, which is accompanied by the cost of large computation requirements.

Ensemble Learning Results Our WEL system distills knowledge from 3 L2R Transformers, which
achieves substantial improvements but still underperforms the direct ensemble. SEL additional ag-
gregate the knowledge of 3 R2L Transformers into the L2R student, which even surpasses the per-
formance of ensemble baseline in the WMT14 dataset. Finally, SWEL distills knowledge from 3
SEL models, which combines the strengths of sequence-level and word-level ensemble learning and
achieves the best performance. In the WMT14 English-German translation task, SWEL establishes
a BLEU score of 31.13, which yields an improvement of 2.23 BLEU over the baseline.

Results on Large-Scale dataset In Table 2, we report our system results on the large-scale Chinese-
English translation task. We can see that our methods are still very effective on the large-scale
dataset. On both Transformer base and Transformer big, SWEL improves the L2R baseline by
nearly 2 BLEU scores.

2https://github.com/mjpost/sacreBLEU
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WMT14 En-De WMT16 En-Ro
BLEU SacreBLEU SacreBLEU

Existing NMT systems
BIFT (Zhang et al., 2020) 29.21 – –
Multi-Agent (Bi et al., 2019) 29.67 – –
Multi-Agent Dual (Wang et al., 2019) 30.05 – –
ADMIN (Liu et al., 2020) 30.10 29.50 –
MSC (Wei et al., 2020) 30.56 – –
MultiBranch (Yang et al., 2020) 30.80 29.90 –

Our implementations
Ensemble Distillation (Freitag et al., 2017) 30.09 29.58 34.31
Data Diversification (Nguyen et al., 2019) 30.31 29.72 34.60
L2R Transformer 28.90 28.30 33.25
Ensemble of 6 L2R Transformers 30.33 29.64 35.18
R2L Transformer 28.13 27.61 32.95
Ensemble of 6 R2L Transformers 29.62 29.01 34.98

Our Methods
WEL (3L2R) 29.78 29.23 34.30
SEL (3L2R+3R2L) 30.80 30.16 34.76
SWEL (3SEL) 31.13 30.46 35.14

Table 1: BLEU and SacreBLEU scores for English-German and English-Romanian translation on
WMT test sets. The number and types of teacher models are indicated in parentheses.

Transformer base Transformer big
BLEU SacreBLEU BLEU SacreBLEU

L2R Transformer 24.51 24.03 25.35 24.78
Ensemble of 6 L2R Transformers 26.19 25.68 26.84 26.30
R2L Transformer 23.82 23.37 24.28 23.75
Ensemble of 6 R2L Transformers 25.46 24.98 25.49 24.94
WEL (3L2R) 25.29 24.75 25.97 25.41
SEL (3L2R+3R2L) 26.31 25.82 27.00 26.45
SWEL (3SEL) 26.52 25.99 27.23 26.64

Table 2: BLEU and SacreBLEU scores for Chinese-English translation on the WMT17 test set. The
number and types of teacher models are indicated in parentheses.

5.3 ABLATION STUDY

In sequence-level ensemble learning, we proposed single-model approximation and ensemble-model
approximation to approximate the distillation loss, and the original training bitext is also preserved.
Here we conduct experiments on the validation set of WMT16 English-Romanian translation to
check their influence on SEL by leaving them out respectively. Results are given in Table 3.

System SacreBLEU
L2R Transformer 33.61

SEL (3L2R+3R2L) 35.60
− single-model 35.18
− ensemble-model 35.35
− original bitext 35.23
− 3 L2R 35.22
− 3 R2L 34.93

Table 3: Ablation study for SEL on the WMT16 English-Romanian translation task.
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Table 3 shows that all three factors help the model achieve higher performance. Single-model ap-
proximation performs better than the ensemble-model approximation, indicating that some useful
information may be lost after ensemble. Hence it is necessary for the student model to distill knowl-
edge directly from every single model. The original bitext is also indispensable, which may contain
some information ignored by teachers. Removing L2R teachers or R2L teachers will degrade the
student performance, indicating that both the two groups of teachers are necessary.

5.4 NUMBER OF TEACHERS

In this section, we study the impact of the number of teachers on student performance on WMT14
English-German translation. For SEL, half of the teacher models are L2R NMTs and the other
half are R2L NMTs, and we increased the number of SEL teachers from 0 to 8. For WEL, all
teacher models are L2R NMTs. Due to the memory limitation, we only increased the number of
WEL teachers from 0 to 4. Figure 1 shows the BLEU scores of WEL and SEL over the number of
teachers. We can see that learning from more teacher models generally results in a stronger student
model, but the marginal benefits also become smaller. The current number of teachers for SEL and
WEL is reasonable, where we can get a strong student model and avoid too much training cost.

Figure 1: The BLEU scores of WEL and SEL on the validation set of WMT14 English-German
translation.

5.5 COMPLEMENTARITY OF NMT MODELS

In SEL, we use 3 L2R NMTs and 3 R2L NMTs as teachers, which is based on the prior knowledge
that L2R models and R2L models are complementary, as L2R models tend to generate good prefixes
and R2L models tend to generate good suffixes (Zhang et al., 2018; 2019; 2020). However, this
conclusion is drawn by observing the translation results and has not been strictly verified. In this
section, we aim to find a general method to identify useful teacher models for SEL. We first define
a sufficient condition for the complementarity of NMT models and then verify the complementarity
among L2R NMTs, R2L NMTs and NATs (Gu et al., 2017). Finally, we explore different variants
of SEL and find that complementary teachers can improve the student performance in SEL.

Definition NMT models A and B are complementary if it satisfies a<b and c>d in the table below.

Teacher A Teacher B

Student A a b

Student B c d

Table 4: a, b, c and d are BLEU scores of students when applying sequence-level knowledge distil-
lation with different teachers. The target-side includes the teacher translation and original reference.

In the definition above, we give a sufficient condition for the complementarity of two models. Intu-
itively, when A prefers B as a teacher and B prefers A as a teacher during sequence-level knowledge
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distillation, there must be some complementary knowledge in these two models. In the following,
we conduct experiments on the WMT14 dataset to see whether L2R Transformer is complementary
to the R2L Transformer and NAT. We use the Mask-Predict NAT (Ghazvininejad et al., 2019) as a
representative of NAT models.

Table 5: BLEU scores on the validation set of
WMT14 English-German translation.

L2R Teacher R2L Teacher

L2R Student 27.58 27.90

R2L Student 27.61 26.82

Table 6: BLEU scores on the validation set of
WMT14 English-German translation.

L2R Teacher NAT Teacher

L2R Student 27.58 26.41

NAT Student 26.53 24.83

From Table 5 and 6, we can see that the L2R Transformer is indeed complementary to R2L Trans-
former, hence it is reasonable for SEL to learn from 3 L2R teachers and 3 R2L teachers. However,
the sufficient condition fails in table 6, suggesting that NAT may be not complementary to the L2R
Transformer. We speculate that the main reason is that current NAT models still have a large perfor-
mance gap with autoregressive models. In appendix A.1, we conduct complementarity experiments
on another dataset where the performance gap is smaller, and the conclusion changes.

Teachers 3L2R 6L2R 3L2R+3NAT 3L2R+3R2L 3L2R+3R2L+3NAT

BLEU 27.95 28.09 27.68 28.57 28.34

Table 7: BLEU scores of SEL on the validation set of WMT14 English-German translation.

Table 7 shows the performance of SEL when using L2R Transformers, R2L Transformers and Mask-
Predict NATs as teachers. R2L Transformers improve the performance of SEL while NAT models
degrade it, which is consistent with the complementarity of models. From the experiments in ap-
pendix A.1 and above, we conclude that complementarity can help us find appropriate teachers for
SEL since complementary teachers can improve the student performance in SEL.

6 CONCLUSION

In this paper, we introduce an ensemble learning framework based on knowledge distillation to
aggregate the knowledge of multiple teacher models into a single student model. Under this frame-
work, we propose sequence-word ensemble learning, which combines strengths of word-level and
sequence-level ensemble learning and achieves substantial improvements over the baseline systems.
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A APPENDIX

A.1 COMPLEMENTARITY ON ANOTHER DATASET

In section 5.5, we show that L2R Transformer and R2L Transformer are complementary while L2R
Transformer and Mask-Predict NAT are not. We speculate that the main reason is that current
NAT models have a large performance gap with autoregressive models. In this section, we conduct
complementarity analysis on the NIST Chinese-English dataset, which consists of 1.25M sentence
pairs for training. We report the standard tokenized case-sensitive BLEU on the NIST02 test set
for analysis. We use the base version of Transformer for both L2R and R2L models to make the
performance gap smaller. Firstly, we list the BLEU scores of L2R Transformer, R2L Transformer
and Mask-Predict NAT in table 8.

Models L2R R2L NAT

BLEU 46.69 45.84 45.73

Table 8: BLEU scores on the validation set of NIST Chinese-English translation.

Table 8 shows that in this dataset, the performance gap between NAT and autoregressive models is
not very large. Then we analyze the complementarity between these models by definition. From
Table 9 and 10, we find that the L2R Transformer is complementary with both the R2L Transformer
and Mask-Predict NAT, which change the conclusion in section 5.5. Therefore, we speculate that
NAT models and autoregressive models are indeed complementary, but the complementarity can
only be observed when the performance gap is not too large, which raise the necessity of developing
better non-autoregressive models.

Table 9: BLEU scores on the validation set of
NIST Chinese-English translation.

L2R Teacher R2L Teacher

L2R Student 48.40 49.32

R2L Student 48.58 47.72

Table 10: BLEU scores on the validation set
of NIST Chinese-English translation.

L2R Teacher NAT Teacher

L2R Student 48.40 48.90

NAT Student 47.89 47.16

Teachers 3L2R 6L2R 3L2R+3NAT 3L2R+3R2L 3L2R+3R2L+3NAT

BLEU 48.97 49.03 49.55 50.12 50.44

Table 11: BLEU scores of SEL on the validation set of NIST Chinese-English translation.

Table 11 shows the performance of SEL when using L2R Transformers, R2L Transformers and
Mask-Predict NATs as teachers. We can see that both R2L models and NAT models improve the
student performance, suggesting that the complementarity can help us to select useful models to
serve as SEL teachers.

A.2 PREFIXES AND SUFFIXES

Our approaches achieve substantial BLEU improvements over the baseline systems, but it remains
unknown where does our model translate better. In this section, we conduct a study on the generation
quality of prefixes and suffixes. We cut the translation and golden reference from the middle and
divide them into left and right halves. Then we calculate the left BLEU and right BLEU respectively
to roughly measure the generation quality of prefixes and suffixes. We conduct experiments on the
validation set of WMT14 English-German and report the results in Table 12.

We can see that WEL improves the translation on both prefixes and suffixes, and the SEL improve-
ments mainly rely on the generation of better suffixes. As L2R models tend to generate good prefixes
and R2L models tend to generate good suffixes, it confirms our conclusion that the student model
benefit from learning complementary knowledge from teachers.
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System Left BLEU Right BLEU
R2L Transformer 24.99 23.62
L2R Transformer 25.92 23.47
WEL(3L2R) 26.68 24.19
SEL(3L2R+3R2L) 26.94 25.14
SWEL 27.13 25.40

Table 12: Left BLEU and Right BLEU on the validation set of WMT14 English-German translation.

A.3 SWEL TRAINING DATASET

We proposed to combine SEL and WEL by applying WEL on the SEL dataset. There is an alternative
that we train teacher models on the SEL dataset but train the student model on the original dataset.
We conduct experiments on the validation set of WMT16 English-Romanian translation to compare
these two methods. Figure 2 shows their alpha-BLEU curves.

Figure 2: The BLEU scores on the validation set of WMT16 English-Romanian translation.

We can see that when alpha is 1, these two method become equivalent. In other cases, training on
the SEL dataset consistently performs better. Besides, it shows stable performance over the hyper-
parameter alpha.

A.4 TRAINING TIME ANALYSIS

In this section, we conduct a rough analysis on the training time of our proposed methods. We take
the training time of the baseline model as the unit of training time.

For WEL, assume that we use 3 teachers, then the pretrain time is 3x. We need these 3 teacher
models to do forward calculation to provide their probability distributions, which approximately
double the training time. So the total training time is about 3x + 2x = 5x for WEL.

For SEL, assume that we use 3 L2R teachers and 3 R2L teachers, then the training dataset is 9 times
the size of the original data. In terms of the training time, it takes about 1.5 times of the original
training time to converge, so the total training time is about 6x + 1.5x = 7.5x for SEL.

For SWEL, we need to pretrain 6 teachers first, and then conduct WEL on the SEL dataset. Based
on the above discussions, the training time is about 6x + 5 * 1.5x = 13.5x.
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