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Abstract

Recent advances in mechanistic interpretability have shown that many features of
deep learning models can be captured by dictionary learning approaches such as
sparse autoencoders. However, our geometric intuition for how features arrange
themselves in a representation space is still limited. ‘“Toy-model” analyses have
shown that in an idealized setting features can be arranged in local structures,
such as small regular polytopes, through a phenomenon known as superposition.
Yet these local structures have not been observed in real language models. In
contrast, these models display rich structures like ordered circles for the months
of the year or semantic clusters which are not predicted by current theories. In
this work, we introduce Bag-of-Words Superposition (BOWS), a framework in
which autoencoders with a ReLU in the decoder are trained to compress sparse,
binary bag-of-words vectors drawn from Internet-scale text. This simple set-
up reveals the existence of a linear regime of superposition, which appears in
ReLU autoencoders with small latent sizes or which use weight decay. We show
that this linear PCA-like superposition naturally gives rise to the same semanti-
cally rich structures observed in real language models. Code is available under
https://anonymous.4open.science/r/correlations-feature-geometry-AF54.

1 Introduction

A key challenge in understanding the inner workings of deep learning (DL) models is the fact that
they seem to encode features in superposition [Elhage et al., |2022]]. This allows the models to
represent more features than they have neurons, at the cost of allowing some interference between
the features, making neurons polysemantic and harder to interpret. |Elhage et al.| [2022] showed
that autoencoders (AEs) with a ReLU in the decoder can leverage the non-linearity to encode
sparse features in superposition forming local geometries like regular polytopes. However, these
local geometries have not been observed in real models. In contrast, real language models display
semantically rich geometries, such as ordered circles for the months of the year [Engels et al.| [2025]]
or semantically related features clustering together [Bricken et al.,[2023]]. Our lack of understanding
of feature geometry has recently been highlighted as one of the key open problems in mechanistic
interpretability [Sharkey et al.l [2025]] (further discussion of related work is provided in Appendix [A).

In this work, we introduce the bag-of-words superposition framework (BOWS), which mimics the
writing and reading of information from the residual stream of models like transformers. In the BOWS
framework, we encode bag-of-words representations of internet text into a lower dimensional latent
space using an AE with a ReLU in the decoder, similar to the one used by|Elhage et al|/[2022]. BOWS
shows that when encoding features with realistic correlations, AEs can learn principal components
(PCs) of the data in a linear form of superposition which gives rise to structure in the weights that
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Figure 1: Autoencoding synthetic correlated features reveals different kinds of superposition
in non-linear networks. Weight pattern inner products (W? W) at convergence for AEs encoding
d = 12 synthetic features with a cyclic covariance structure, varying latent size m. Top Row (Linear
AE): Always reflects the top m principal components of the covariance. For m = 2, it captures the
circular structure representing all 12 features. Bottom Row (ReLU AE): Mimics the linear AE for
small m (linear regime, e.g., m = 2, 3), but diverges for larger m, forming antipodal pairs (non-linear
“shattered” regime, e.g., m = 4 to m = 11) to better utilize the ReLU for interference reduction.

reflects the structure in the data correlations. We also find that this linear superposition is more
prevalent under tight bottlenecks (latent dimension < input size) and with the use of weight decay.

2 BOWS: Realistic data in superposition

We now describe the BOWS setup and the training procedure used throughout the paper.

Dataset. Let C be a corpus of English text segmented into records (lines or paragraphs). After
word-level tokenization, we construct a vocabulary of the V' most frequent words, discarding common
stop-words and prepositions. This vocabulary includes words such as sun, code, and January which
often correspond to linear features in sparse autoencoders trained on language data [Engels et al.|
2025, Bricken et al., 2023]]. Each record is then encoded as a binary bag-of-words vector x € {0, 1}V
whose j-th component is 1 iff the j-th vocabulary word appears in the record.

We choose a context size, c € N. For every contiguous block of ¢ records we take the element-wise
logical OR of their individual vectors, obtaining a single sample. The resulting dataset is

D = {Xi}ilih X; € {071}‘/7 (1)
where N is the number of c-record chunks in the corpus.

All experiments in this paper use the WikiText-103 corpus [Merity et al.,[2017]. With V' = 10,000
and ¢ = 20 we obtain N = 1,801,255 training examples. We refer to this pre-processed collection as
WikiText-BOWS.

Autoencoder. We use the autoencoder setup introduced in|Elhage et al.|[2022] to study superposition,
consisting of an encoder with weights W € R™*V and bias b € RY, where the input x € RV is
reconstructed using a ReLU AE with reconstruction loss:

LreLu-AE(X, W,b) = ||x — ReLUW"Wx + b)||3 @)

We also use a Linear AE as a baseline with loss:
['Linear—AE(xa Wv b) = ||X - (WTWX + b) | ‘g (3)

3 A minimal example of linear and non-linear superposition

When features are i.i.d, as in [Elhage et al.| [2022], a Linear AE can only capture one feature per
principal component, all of them represented orthogonally with no superposition. Under these i.i.d.
assumptions, superposition (representing d > m features) seems intrinsically linked to mechanisms
involving non-linearities or specific geometric arrangements like polytopes designed to actively
manage interference between non-orthogonal features.

However, features in real-world data, such as words or concepts in natural language, are rarely
independent. They exhibit rich correlation patterns driven by semantic relationships and contextual
co-occurrence. This correlation structure significantly lowers the effective rank of the feature space
compared to the i.i.d. case. In this section we show how linear and non-linear AEs can leverage these
correlations to represent more features than they have latent dimensions by learning PCs.
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Figure 2: Linear superposition appears in ReLU AEs which have small latent sizes (a) or are
trained with weight decay (d), giving rise to semantic clusters. UMAP projections of word
embeddings from AEs of different latent dimensions (m) and weight decay values (wd). Points are
colored by semantic category (e).

3.1 PCA as a form of linear superposition

Linear AEs with a latent dimension m are known to span the subspace defined by the top m PCs
of the data, if the data is centered (or the top m singular vectors if the data is not centered) [Baldi
and Hornik, |1989]]. Thus, if the input data consists of correlated features x € {0, l}V such that the
top m < V singular vectors explain 95% of the variance, a linear AE can attain an average R?
score of 0.95 by capturing the top m singular vectors in a purely linear reconstruction. We argue
that leveraging these correlations to encode V features in an m-dimensional space should itself be
considered a fundamental form of superposition.

Figure [I| (top row, Linear) demonstrates this clearly using our BOWS setup. A Linear AE trained to
reconstruct d = 12 features from a synthetic data distribution, generated with a cyclic covariance
structure (mimicking concepts such as months or days of the week). Even with a highly compressed
latent space (m = 2), the linear AE successfully represents all 12 features by arranging their
corresponding weight vectors (W columns, visualized via W7 W) according to the top two principal
components of the cyclic covariance matrix, which naturally form a circle. This explicitly shows that
linear dimensionality reduction enables a form of superposition (d = 12 > m = 2) by exploiting
feature correlations, without requiring any non-linearity.

3.2 Two regimes of superposition in non-linear AEs

How does this picture change when we instead use the ReLU AE? Our key finding is that the behavior
depends critically on the degree of compression (m/d).

Linear superposition and the PCA-regime. When the bottleneck is very tight (m < d), the best
the ReLU AE can do is capture the large-variance components of the data. In this simple setting, the
ReLU AE behaves remarkably similarly to the Linear AE. As seen in Figure[I] (bottom row, ReLU,
m = 2, 3), the ReLU AE also recovers the circular structure dictated by the top principal components.
This might indicate that the benefit of using the ReLU to form specialized structures for interference
mitigation is outweighed by the need to capture the fundamental covariance structure first.

Non-linear superposition shatters the covariance structure. Figure [I| (bottom row, ReLU, m > 6)
hows that as m increases, the ReLU AE abandons the circular PCA structure and instead uses the
ReLU to represent features as antipodal pairs. This specific geometry is one of the cases studied by
Elhage et al.| [2022]], whereby features are placed in anti-correlated pairs such that activating one
feature negatively activates its antipodal partner, which is then zeroed out by the ReLU. Crucially,
each antipodal pair is almost perfectly uncorrelated with every other pair. We term this non-linear
superposition, where the global covariance structure is increasingly broken or “shattered” in favor of
local geometries optimized for the non-linearity.

Structure disappears as features become orthogonal. As the latent size approaches the input
size (m = 12), the AE weights converge to the identity, representing each feature orthogonally (no
circular structure) for a perfect reconstruction.
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Figure 3: Circular representation of months arises from real data covariance via PCA. (a)
Empirical correlation matrix of month words in the WikiText-103 BOWS dataset, showing cyclic
correlations. (b) Top 2 PCs of binary word occurrence data for the 12 month, reveals a circle. (c)
PCA applied to the 12 learned encoder features (W columns) for months from a ReLU AE trained
on WikiText-BOWS with (m = 1000), projected onto their top 2 PCs, also recovers the circular
structure. This suggests the AE inherits the structure from the data via PCA-like compression.

4 Linear superposition explains feature geometry in realistic data

We now explore the pheonmenon of linear superposition in our WikiText BOWS setting and show
that it replicates the circular structures for the months of the year observed in |Engels et al.|[2025] as
well as the semantic clusters observed in|Bricken et al.|[2023]).

In Figure 2] we show that under small latent sizes (m = 200) words are clustered by semantic category.
This structure disappears as latent size increases (m = 600) but extends to larger latent sizes if we
introduce weight decay Figure[2] This suggests that these kinds of structures are to be expected in the
residual stream of real language models which encode many features in superposition and are trained
using weight decay.

Similarly, in Figure [3|we show that the months of the year are correlated with a cyclic structure, such
that taking the PCs of the binary word occurrences yields a circle and this structure is reflected in the
weights of a ReLU AE trained on this data. These results suggest that this circular geometry may not
be actively constructed by language models for a specific non-linear function like modular addition
[Engels et al.| [2025]], but rather passively inherited from the statistical structure of the input data
when subjected to dimensionality reduction.

5 Discussion

Summary of findings. In this work, we have highlighted the existence of two kinds of superposition,
linear and non-linear. We argue that features in linear superposition inherit their structure from
their covariance matrix, explaining previously observed, sematically rich structures in language
models [Bricken et al., 2023} |Engels et al., 2025]]. We show this on synthetic data, where two distinct
superposition regimes (linear and non-linear) arise (Section[3)), as well as in realistic internet data
where semantic clusters and circles also appear as a byproduct of linear superposition (Section [).

Limitations and future work. This work provides a proof of existence for linear superposition
in ReLU AEs and highlights how this can give rise to semantically rich structures akin to the ones
observed in real language models. However, while the data used in this work is more realistic than
that of previous studies on toy models, more work is required to understand under what circumstances
linear superposition appears in real models. While our BOWS setup is designed to mimic the residual
stream of a transformer, it does not model the ability of transformers to move features between token
representations using the attention mechanism.

The BOWS framework, while simple, gives rise to many kinds of interesting behavior that this paper
only begins to cover. Interesting avenues for future work include studying BOWS setups with untied
encoder and decoder weight as well as using BOWS as a setup as an SAE evaluation setting in which
we know the ground truth features which are encoded in superposition.
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Appendix
A Related work

Superposition. |[Elhage et al.|[2022]] introduced superposition as an explanation for neuron polyse-
manticity. This view of DL models inspired SDL approaches like sparse autoencoders to decompose
model activations into an overcomplete basis of linear features [|Gurnee et al., |2023| Huben et al.|
2024, Bricken et al.| [2023]]. This approach has successfully been scaled to frontier language models
and multimodal models by |Gao et al.|[2025]] and [Templeton et al.|[2024].

Feature geometry. Park et al.|[2024] proposed a formalization of the LRH and proposed an inner
product that preserves language structure. [Park et al.| [2025] studied how features with hierarchical
relations are encoded in language models. |Li et al.|[2025]] showed that language models represent
integers in a helix structure to perform modular addition echoing the results from |[Nanda et al.|[2023]
on transformers trained for modular addition. (Gurnee and Tegmark! [2024] showed that longitude
and latitude as well as a notion of time, are encoded as linear features in language models. The
main results highlighted in this paper are circular structures formed by features and semantic feature
clusters, described in [Engels et al.|[2025]] and Bricken et al.| [2023]] respectively. These findings
sparked a discussion around the potential limitations of SDL approaches and the LRH suggested by
this non-linearly encoded semantic information [Sharkey et al., 2025].

Structure in word representations. Classic work on distributional semantics and word embeddings
(e.g., Word2Vec [Mikolov et al.|, [2013]], GloVe [Pennington et al.,[2014]]) demonstrated that training
simple models on large text corpora leads to vector spaces where geometric relationships capture
surprisingly sophisticated semantic and syntactic relationships. [Levy and Goldberg| [2014] showed
that methods like Word2Vec with negative sampling implicitly factorize the Pointwise Mutual
Information (PMI) matrix shifted by a constant, while others show connections to PCA or SVD on
co-occurrence counts or PMI [Allen and Hospedales|, 2019].

B Implementation details

WikiText-BOWS:. All the models trained in the WikiText BOWS setup use a cosine annealing
scheduler with a starting learning rate of 1e — 3 and are trained for 20 epochs with a batch size of
1024.

Synthetic “Months” dataset. Each document is a 12-bit vector x € {0, 1}12 whose entries stand for
the calendar months. One sample is generated as follows.

1. Latent month angle. Pick a discrete month m € {0, ..., 11} (uniformly or by cycling) and
add Gaussian blur:

2

0=""m + e, e~ N(0,07).
12

2. Embed on the unit circle. z = [COS 0, sin G]T € R2.

3. Project onto month directions. Let

11
W = [(cos 2k sin %)] o € R12%2

whose k-th row corresponds to month k. Compute log-odds ¢, = 8 Wyz + b, where b < 0

fixes the global sparsity and 5 > 0 controls sharpness.

4. Binary activations. Draw the bits independently:

z), ~ Bernoulli(o(¢x)), o(u) = k=1,...,12.

1
14+e—u>
With g¢=0 and large 5 the code is nearly one-hot; decreasing § or increasing oy mixes neighbouring
months, producing a rank-2 correlation structure that is analytically tractable yet retains the extreme
sparsity of real bag-of-words data.

UMAP plots and semantic clusters. For the UMAP plots in Figure 1 and Figure 3, the categories
are created by using Gemini 2.5 Pro to split the top 4000 words into categories, with each category
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Figure 5: Reconstructions at different latent-vector sizes. Top: “Months” dataset; middle: “Roman
numerals”; bottom: corresponding latent size m.

inspected and refined by hand. The exact word to category mappings can be found in the code
provided in the supplementary material. The UMAP plots are made with 15 neighbors, a min distance
of 0.01, and a cosine metric.

C More detailed example of groups of feature geometrv in BOWS

In the main paper we only show the feature struc- el

tures some representative latent sizes due to space Hospital ‘-'-},_},eatmem
constraints. In Figure [5|we show the structures stud- il
ied in Figure 6 for an extended range of latent sizes.

Similarly, in Figure [6] we show UMAP plots for a

more complete range of latent sizes for models with a |
context size of 1 record (top) and 50 records (bottom). | e !

We see that the larger context size introduces more : TR Suolved
correlations in the data, extending the prevalence of S O bspeces
linear superposition, where-as semantic clusters dis- forming  *4**
appear quickly with a context size of 1.

normally

usuallyofedis =0

- ac‘d‘,reac.tlon

We also show a zoomed in version of one of the RS ot N It

UMAP plots in Figure[d This figure highlights the .

rich structure of the features beyond simple cluster-

ing of high-level classes. We see that words corre- Figure 4: Zooming into the cluster for sci-
sponding to sciences are clustered together, but within ~ence features in the UMAP plot with a latent
this high level cluster, sub-groups like words about ~size of 200, we observe sub-sclusters within
medicine (top left), astronomy (lower left), chemistry it. Medical features are in the top left while

(lower center) and biology (center) are also grouped ~astronomy features are in the lower left and
in smaller clusters. chemestry features are in the lower center.

C.1 Some examples beyond 2D

Beyond the 2D examples presented in the main paper, we include 2 examples showing that the days
of the week and months of the year have structure beyond a 2D circle (Figure 8). This is clear in the
case of the months where an ondulation in the third principal component is present beyond the 2D
circular structure.

D Superposition on correlated and uncorrelated data

In Figure[7] we show the superposition patterns for the values of m missing in Figure 1, as well as a
comparison with the weight patterns of AEs trained on i.i.d. data. In the i.i.d. case 12 features are
drawn from a Bernoulli distribution with the same average frequencies as in the cyclic case. Figure
highlights that linear superposition only appears in the presence of feature correlations. In the i.i.d.
case, AEs behave more like they do in [Elhage et al.|[2022], even when d = 2, the ReLU IID model
uses the 2 dimensions to represent 4 features as antipodal pairs, with strong negative dot products
within the pairs filtered out by the ReL.U.
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Figure 6: UMAP embeddings of features from AEs trained with context size of 1 record (top) and 50
records (bottom) across different latent sizes. The plot shows that semmantic structure remains for a
larger fraction of context sizes when the contex window is larger, as it introduces additional, longer

range correlations.
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Figure 7: Extension of Figure 1 to include all values of m between 2 and 12, as well as a comparison

with the weight patterns for AEs trained on data in the i.i.d. case.

E A tail of partially reconstructed features

An interesting observation is that some features seem to appear in
the correct semantic cluster while the AE is only able to capture a
small fraction of their variance (e.g. R? < 0.3). In Figure@]we show
that wether we filter for features with lower or higher reconstruction

scores (R? < 0.3 or R? > 0.3) they still form semantic clusters.

An explanation for why features with very small R? scores seem to
have semantically meaningful representations is that, if a model is
learning principal components of the data, it might project all the

features, even uncommon ones, onto these principal components.

This would mean that the representations of these features is only
their projection onto some principal components, even if they only
explain a small fraction of their variance, explaining the observed
structure in poorly represented features.

F Implications for the linear representation

(b) Days

Figure 8: 3-D PCA of the em-
beddings for the words and
the days in a WikiText BOWS
setup.
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Figure 9: UMAP embeddings at different latent-vector sizes including only features with R? < 0.3
(top) and R? > 0.3 (bottom). Semantic clusters at different latent sizes are still observed in both,
although this effect is combined with an increase in the number of features above the threshold in the
lower one.

hypothesis

While the linear representation hypothesis (LRH) is one of the pillars of current mechanistic inter-
pretability (MI) approaches. There is still no consensus on the correct formulation of this hypothesis.
The LRH can be taken to mean that internal features of a model correspond to activations along
one-dimensional directions in activation space [Engels et al.,[2025]]. However, the LRH can also be
formalized around the mathematical notion of linearity meaning the representation of two features is
the addition of their representations and scaling a feature corresponds to scaling its representation
[Elhage et al.,|2021].

While some works have suggested that observed feature geometry like the ordered circles formed
by the months undermine the first definition [Engels et al., 2025/ [Sharkey et al., [2025]], our results
show that these structures can emerge from the compression and reconstruction of one-dimensionally
linear features. This means that these structures do not necessarily undermine either formulation of
the LRH.

An interesting line of research would be to explore if presence-coding features can have value-coding
components. Findings like the fact that city representations in language models can be projected
linearly onto a coordinates subspace [Gurnee and Tegmarkl, 2024], or that integers can be projected
onto a helix subspace [Li et al. 2025]] could be understood through this lens. In this view, city
representations could have a coordinate-coding component and integers could have a size-coding
component as well as sine and cosine coding components which combine to make a helix structure.

Overall, our findings show that rich feature geometry can be explained away by linear superposition
recovering the structure inherent in the data, without appealing to non-linearly encoded information
with a functional role in calculation. However, we believe the existence of value-coding features
could be in conflict or an exception to features being mathematically linear.

G Other dimensionality reduction methods

To verify that the semantic clusters are not dependent on the choice of dimensionality reduction
method, we include t-SNE [van der Maaten and Hinton, [2008|] and PACMARP [Tuncer et al., [2015] as
two alternatives in fig.[T0]
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Figure 10: We show the latent representations of the top 4000 most frequent words using UMAP
(left) t-SNE (middle) and PACMAP (right) to highlight that these semantic clustering results are not

dependent on the choice of dimensionality reduction technique.
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