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Abstract

Recent advances in mechanistic interpretability have shown that many features of1

deep learning models can be captured by dictionary learning approaches such as2

sparse autoencoders. However, our geometric intuition for how features arrange3

themselves in a representation space is still limited. “Toy-model” analyses have4

shown that in an idealized setting features can be arranged in local structures,5

such as small regular polytopes, through a phenomenon known as superposition.6

Yet these local structures have not been observed in real language models. In7

contrast, these models display rich structures like ordered circles for the months8

of the year or semantic clusters which are not predicted by current theories. In9

this work, we introduce Bag-of-Words Superposition (BOWS), a framework in10

which autoencoders with a ReLU in the decoder are trained to compress sparse,11

binary bag-of-words vectors drawn from Internet-scale text. This simple set-up12

reveals the existence of a linear regime of superposition, which appears in ReLU13

autoencoders with small latent sizes or which use weight decay. We show that this14

linear PCA-like superposition naturally gives rise to the same semantically rich15

structures observed in real language models.16

1 Introduction17

A key challenge in understanding the inner workings of deep learning (DL) models is the fact that18

they seem to encode features in superposition [Elhage et al., 2022]. This allows the models to19

represent more features than they have neurons, at the cost of allowing some interference between20

the features, making neurons polysemantic and harder to interpret. Elhage et al. [2022] showed21

that autoencoders (AEs) with a ReLU in the decoder can leverage the non-linearity to encode22

sparse features in superposition forming local geometries like regular polytopes. However, these23

local geometries have not been observed in real models. In contrast, real language models display24

semantically rich geometries, such as ordered circles for the months of the year [Engels et al., 2025]25

or semantically related features clustering together [Bricken et al., 2023]. Our lack of understanding26

of feature geometry has recently been highlighted as one of the key open problems in mechanistic27

interpretability [Sharkey et al., 2025] (further discussion of related work is provided in Appendix A).28

In this work, we introduce the bag-of-words superposition framework (BOWS), which mimics the29

writing and reading of information from the residual stream of models like transformers. In the BOWS30

framework, we encode bag-of-words representations of internet text into a lower dimensional latent31

space using an AE with a ReLU in the decoder, similar to the one used by Elhage et al. [2022]. BOWS32

shows that when encoding features with realistic correlations, AEs can learn principal components33

(PCs) of the data in a linear form of superposition which gives rise to structure in the weights that34

reflects the structure in the data correlations. We also find that this linear superposition is more35

prevalent under tight bottlenecks (latent dimension ≪ input size) and with the use of weight decay.36
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Figure 1: Autoencoding correlated features reveals different kinds of superposition in non-linear
networks. Weight pattern inner products (WTW) at convergence for AEs encoding d = 12 synthetic
features with a cyclic covariance structure, varying latent size m. Top Row (Linear AE): Always
reflects the top m principal components of the covariance. For m = 2, it captures the circular
structure representing all 12 features. Bottom Row (ReLU AE): Mimics the linear AE for small
m (linear regime, e.g., m = 2, 3), but diverges for larger m, forming antipodal pairs (non-linear
“shattered” regime, e.g., m = 4 to m = 11) to better utilize the ReLU for interference reduction.

2 BOWS: Realistic data in superposition37

We now describe the BOWS setup and the training procedure used throughout the paper.38

Dataset. Let C be a corpus of English text segmented into records (lines or paragraphs). After39

word-level tokenization, we construct a vocabulary of the V most frequent words, discarding common40

stop-words and prepositions. This vocabulary includes words such as sun, code, and January which41

often correspond to linear features in sparse autoencoders trained on language data [Engels et al.,42

2025, Bricken et al., 2023]. Each record is then encoded as a binary bag-of-words vector x ∈ {0, 1}V43

whose j-th component is 1 iff the j-th vocabulary word appears in the record.44

We choose a context size, c ∈ N. For every contiguous block of c records we take the element-wise45

logical OR of their individual vectors, obtaining a single sample. The resulting dataset is46

D = {xi}Ni=1, xi ∈ {0, 1}V , (1)

where N is the number of c-record chunks in the corpus.47

All experiments in this paper use the WikiText-103 corpus [Merity et al., 2017]. With V = 10,00048

and c = 20 we obtain N = 1,801,255 training examples. We refer to this pre-processed collection as49

WikiText-BOWS.50

Autoencoder. We use the autoencoder setup introduced in Elhage et al. [2022] to study superposition,51

consisting of an encoder with weights W ∈ Rm×V and bias b ∈ RV , where the input x ∈ RV is52

reconstructed using a ReLU AE with reconstruction loss:53

LReLU−AE(x,W,b) = ||x− ReLU(WTWx+ b)||22 (2)

We also use a Linear AE as a baseline with loss:54

LLinear-AE(x,W,b) = ||x− (WTWx+ b)||22 (3)

3 A minimal example of linear and non-linear superposition55

When features are i.i.d, as in Elhage et al. [2022], a Linear AE can only capture one feature per56

principal component, all of them represented orthogonally with no superposition. Under these i.i.d.57

assumptions, superposition (representing d > m features) seems intrinsically linked to mechanisms58

involving non-linearities or specific geometric arrangements like polytopes designed to actively59

manage interference between non-orthogonal features.60

However, features in real-world data, such as words or concepts in natural language, are rarely61

independent. They exhibit rich correlation patterns driven by semantic relationships and contextual62

co-occurrence. This correlation structure significantly lowers the effective rank of the feature space63

compared to the i.i.d. case. In this section we show how linear and non-linear AEs can leverage these64

correlations to represent more features than they have latent dimensions by learning PCs.65
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Figure 2: Linear superposition appears in ReLU AEs which have small latent sizes (a) or are
trained with weight decay (d), giving rise to semantic clusters. UMAP projections of word
embeddings from AEs of different latent dimensions (m) and weight decay values (wd). Points are
colored by semantic category (e).

3.1 PCA as a form of linear superposition66

Linear AEs with a latent dimension m are known to span the subspace defined by the top m PCs67

of the data, if the data is centered (or the top m singular vectors if the data is not centered) [Baldi68

and Hornik, 1989]. Thus, if the input data consists of correlated features x ∈ {0, 1}V such that the69

top m ≪ V singular vectors explain 95% of the variance, a linear AE can attain an average R270

score of 0.95 by capturing the top m singular vectors in a purely linear reconstruction. We argue71

that leveraging these correlations to encode V features in an m-dimensional space should itself be72

considered a fundamental form of superposition.73

Figure 1 (top row, Linear) demonstrates this clearly using our BOWS setup. A Linear AE trained74

to reconstruct d = 12 features from a synthetic data, generated with a cyclic covariance structure75

(mimicking concepts such as months or days of the week). Even with a highly compressed latent76

space (m = 2), the linear AE successfully represents all 12 features by arranging their corresponding77

weight vectors (W columns, visualized via WTW) according to the top two principal components78

of the cyclic covariance matrix, which naturally form a circle. This explicitly shows that linear79

dimensionality reduction enables a form of superposition (d = 12 > m = 2) by exploiting feature80

correlations, without requiring any non-linearity.81

3.2 Two regimes of superposition in non-linear AEs82

How does this picture change when we instead use the ReLU AE? Our key finding is that the behavior83

depends critically on the degree of compression (m/d).84

Linear superposition and the PCA-regime. When the bottleneck is very tight (m ≪ d), the best85

the ReLU AE can do is capture the large-variance components of the data. In this simple setting, the86

ReLU AE behaves remarkably similarly to the Linear AE. As seen in Figure 1 (bottom row, ReLU,87

m = 2, 3), the ReLU AE also recovers the circular structure dictated by the top principal components.88

This might indicate that the benefit of using the ReLU to form specialized structures for interference89

mitigation is outweighed by the need to capture the fundamental covariance structure first.90

Non-linear superposition shatters the covariance structure. Figure 1 (bottom row, ReLU, m ≥ 6)91

hows that as m increases, the ReLU AE abandons the circular PCA structure and instead uses the92

ReLU to represent features as antipodal pairs. This specific geometry is one of the cases studied by93

Elhage et al. [2022], whereby features are placed in anti-correlated pairs such that activating one94

feature negatively activates its antipodal partner, which is then zeroed out by the ReLU. Crucially,95

each antipodal pair is almost perfectly uncorrelated with every other pair. We term this non-linear96

superposition, where the global covariance structure is increasingly broken or “shattered” in favor of97

local geometries optimized for the non-linearity.98

Structure disappears as features become orthogonal. As the latent size approaches the input99

size (m = 12), the AE weights converge to the identity, representing each feature orthogonally (no100

circular structure) for a perfect reconstruction.101
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Figure 3: Circular representation of months arises from data covariance via PCA. (a) Empirical
correlation matrix of month words in the WikiText-103 BOWS dataset, showing cyclic correlations.
(b) Top 2 PCs of binary word occurrence data for the 12 month, reveals a circle. (c) PCA applied to the
12 learned encoder features (W columns) for months from a ReLU AE trained on WikiText-BOWS
with (m = 1000), projected onto their top 2 PCs, also recovers the circular structure. This suggests
the AE inherits the structure from the data via PCA-like compression.

4 Linear superposition explains feature geometry in realistic data102

We now explore the pheonmenon of linear superposition in our WikiText BOWS setting and show103

that it replicates the circular structures for the months of the year observed in Engels et al. [2025] as104

well as the semantic clusters observed in Bricken et al. [2023].105

In Figure 2 we show that under small latent sizes (m = 200) words are clustered by semantic category.106

This structure disappears as latent size increases (m = 600) but extends to larger latent sizes if we107

introduce weight decay Figure 2. This suggests that these kinds of structures are to be expected in the108

residual stream of real language models which encode many features in superposition and are trained109

using weight decay.110

Similarly, in Figure 3 we show that the months of the year are correlated with a cyclic structure, such111

that taking the PCs of the binary word occurrences yields a circle and this structure is reflected in the112

weights of a ReLU AE trained on this data. These results suggest that this circular geometry may not113

be actively constructed by language models for a specific non-linear function like modular addition114

[Engels et al., 2025], but rather passively inherited from the statistical structure of the input data115

when subjected to dimensionality reduction.116

5 Discussion117

Summary of findings. In this work, we have highlighted the existence of two kinds of superposition,118

linear and non-linear. We argue that features in linear superposition inherit their structure from119

their covariance matrix, explaining previously observed, sematically rich structures in language120

models [Bricken et al., 2023, Engels et al., 2025]. We show this on synthetic data, where two distinct121

superposition regimes (linear and non-linear) arise (Section 3), as well as in realistic internet data122

where semantic clusters and circles also appear as a byproduct of linear superposition (Section 4).123

Limitations and future work. This work provides a proof of existence for linear superposition124

in ReLU AEs and highlights how this can give rise to semantically rich structures akin to the ones125

observed in real language models. However, while the data used in this work is more realistic than126

that of previous studies on toy models, more work is required to understand under what circumstances127

linear superposition appears in real models. While our BOWS setup is designed to mimic the residual128

stream of a transformer, it does not model the ability of transformers to move features between token129

representations using the attention mechanism.130

The BOWS framework, while simple, gives rise to many kinds of interesting behavior that this paper131

only begins to cover. Interesting avenues for future work include studying BOWS setups with untied132

encoder and decoder weight as well as using BOWS as a setup as an SAE evaluation setting in which133

we know the ground truth features which are encoded in superposition.134
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Appendix230

A Related work231

Superposition. Elhage et al. [2022] introduced superposition as an explanation for neuron polyse-232

manticity. This view of DL models inspired SDL approaches like sparse autoencoders to decompose233

model activations into an overcomplete basis of linear features [Gurnee et al., 2023, Huben et al.,234

2024, Bricken et al., 2023]. This approach has successfully been scaled to frontier language models235

and multimodal models by Gao et al. [2025] and Templeton et al. [2024].236

Feature geometry. Park et al. [2024] proposed a formalization of the LRH and proposed an inner237

product that preserves language structure. Park et al. [2025] studied how features with hierarchical238

relations are encoded in language models. Li et al. [2025] showed that language models represent239

integers in a helix structure to perform modular addition echoing the results from Nanda et al. [2023]240

on transformers trained for modular addition. Gurnee and Tegmark [2024] showed that longitude241

and latitude as well as a notion of time, are encoded as linear features in language models. The242

main results highlighted in this paper are circular structures formed by features and semantic feature243

clusters, described in Engels et al. [2025] and Bricken et al. [2023] respectively. These findings244

sparked a discussion around the potential limitations of SDL approaches and the LRH suggested by245

this non-linearly encoded semantic information [Sharkey et al., 2025].246

Structure in word representations. Classic work on distributional semantics and word embeddings247

(e.g., Word2Vec [Mikolov et al., 2013], GloVe [Pennington et al., 2014]) demonstrated that training248

simple models on large text corpora leads to vector spaces where geometric relationships capture249

surprisingly sophisticated semantic and syntactic relationships. Levy and Goldberg [2014] showed250

that methods like Word2Vec with negative sampling implicitly factorize the Pointwise Mutual251

Information (PMI) matrix shifted by a constant, while others show connections to PCA or SVD on252

co-occurrence counts or PMI [Allen and Hospedales, 2019].253

B Implementation details254

WikiText-BOWS:. All the models trained in the WikiText BOWS setup use a cosine annealing255

scheduler with a starting learning rate of 1e− 3 and are trained for 20 epochs with a batch size of256

1024.257

Synthetic “Months” dataset. Each document is a 12-bit vector x ∈ {0, 1}12 whose entries stand for258

the calendar months. One sample is generated as follows.259

1. Latent month angle. Pick a discrete month m ∈ {0, . . . , 11} (uniformly or by cycling) and260

add Gaussian blur:261

θ =
2π

12
m + ε, ε ∼ N (0, σ2

θ).

2. Embed on the unit circle. z =
[
cos θ, sin θ

]⊤ ∈ R2.262

3. Project onto month directions. Let263

W =
[
(cos 2πk

12 , sin 2πk
12 )

]11
k=0

∈ R12×2,

whose k-th row corresponds to month k. Compute log-odds ℓk = βWkz + b, where b < 0264

fixes the global sparsity and β > 0 controls sharpness.265

4. Binary activations. Draw the bits independently:266

xk ∼ Bernoulli
(
σ(ℓk)

)
, σ(u) = 1

1+e−u , k = 1, . . . , 12.

With σθ=0 and large β the code is nearly one-hot; decreasing β or increasing σθ mixes neighbouring267

months, producing a rank-2 correlation structure that is analytically tractable yet retains the extreme268

sparsity of real bag-of-words data.269

UMAP plots and semantic clusters. For the UMAP plots in Figure 1 and Figure 3, the categories270

are created by using Gemini 2.5 Pro to split the top 4000 words into categories, with each category271
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Figure 5: Reconstructions at different latent-vector sizes. Top: “Months” dataset; middle: “Roman
numerals”; bottom: corresponding latent size m.

inspected and refined by hand. The exact word to category mappings can be found in the code272

provided in the supplementary material. The UMAP plots are made with 15 neighbors, a min distance273

of 0.01, and a cosine metric.274

C More detailed example of groups of feature geometry in BOWS275
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Figure 4: Zooming into the cluster for sci-
ence features in the UMAP plot with a latent
size of 200, we observe sub-sclusters within
it. Medical features are in the top left while
astronomy features are in the lower left and
chemestry features are in the lower center.

In the main paper we only show the feature struc-276

tures some representative latent sizes due to space277

constraints. In Figure 5 we show the structures stud-278

ied in Figure 6 for an extended range of latent sizes.279

Similarly, in Figure 6, we show UMAP plots for a280

more complete range of latent sizes for models with a281

context size of 1 record (top) and 50 records (bottom).282

We see that the larger context size introduces more283

correlations in the data, extending the prevalence of284

linear superposition, where-as semantic clusters dis-285

appear quickly with a context size of 1.286

We also show a zoomed in version of one of the287

UMAP plots in Figure 4. This figure highlights the288

rich structure of the features beyond simple cluster-289

ing of high-level classes. We see that words corre-290

sponding to sciences are clustered together, but within291

this high level cluster, sub-groups like words about292

medicine (top left), astronomy (lower left), chemistry293

(lower center) and biology (center) are also grouped294

in smaller clusters.295

C.1 Some examples beyond 2D296

Beyond the 2D examples presented in the main paper, we include 2 examples showing that the days297

of the week and months of the year have structure beyond a 2D circle (Figure 8). This is clear in the298

case of the months where an ondulation in the third principal component is present beyond the 2D299

circular structure.300

D Superposition on correlated and uncorrelated data301

In Figure 7 we show the superposition patterns for the values of m missing in Figure 1, as well as a302

comparison with the weight patterns of AEs trained on i.i.d. data. In the i.i.d. case 12 features are303

drawn from a Bernoulli distribution with the same average frequencies as in the cyclic case. Figure 7304

highlights that linear superposition only appears in the presence of feature correlations. In the i.i.d.305

case, AEs behave more like they do in Elhage et al. [2022], even when d = 2, the ReLU IID model306

uses the 2 dimensions to represent 4 features as antipodal pairs, with strong negative dot products307

within the pairs filtered out by the ReLU.308
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Figure 6: UMAP embeddings of features from AEs trained with context size of 1 record (top) and 50
records (bottom) across different latent sizes. The plot shows that semmantic structure remains for a
larger fraction of context sizes when the contex window is larger, as it introduces additional, longer
range correlations.

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

Li
ne

ar
 II

D

Covariance

0 1 2 3 4 5 6 7 8 9 10 11

d=2

0 1 2 3 4 5 6 7 8 9 10 11

d=3

0 1 2 3 4 5 6 7 8 9 10 11

d=4

0 1 2 3 4 5 6 7 8 9 10 11
d=5

0 1 2 3 4 5 6 7 8 9 10 11

d=6

0 1 2 3 4 5 6 7 8 9 10 11

d=7

0 1 2 3 4 5 6 7 8 9 10 11

d=8

0 1 2 3 4 5 6 7 8 9 10 11

d=9

0 1 2 3 4 5 6 7 8 9 10 11

d=10

0 1 2 3 4 5 6 7 8 9 10 11

d=11

0 1 2 3 4 5 6 7 8 9 10 11

d=12

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

Re
LU

 II
D

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

Li
ne

ar
 C

yc
lic

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

Re
LU

 C
yc

lic

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.10

0.05

0.00

0.05

0.10

0.10

0.05

0.00

0.05

0.10

Figure 7: Extension of Figure 1 to include all values of m between 2 and 12, as well as a comparison
with the weight patterns for AEs trained on data in the i.i.d. case.

E A tail of partially reconstructed features309

0.4

0.2

0.0

0.2

0.4

Principal Component 1 0.4

0.2

0.0

0.2

0.4

Pri
nci

pa
l C

om
po

ne
nt 

2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Pr
in

cip
al

 C
om

po
ne

nt
 3

January
February

March

April

May

June

July
August

September

October

November

December

(a) Months

0.2
0.1

0.0
0.1

0.2
0.3

Principal Component 1
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Pri
nc

ipa
l C

om
po

ne
nt 

2

0.3

0.2

0.1

0.0

0.1

0.2

Pr
in

cip
al

 C
om

po
ne

nt
 3

Monday

Tuesday

Wednesday

Thursday

Friday
Saturday

Sunday

(b) Days

Figure 8: 3-D PCA of the em-
beddings for the words and
the days in a WikiText BOWS
setup.

An interesting observation is that some features seem to appear in310

the correct semantic cluster while the AE is only able to capture a311

small fraction of their variance (e.g. R2 < 0.3). In Figure 9 we show312

that wether we filter for features with lower or higher reconstruction313

scores (R2 < 0.3 or R2 > 0.3) they still form semantic clusters.314

An explanation for why features with very small R2 scores seem to315

have semantically meaningful representations is that, if a model is316

learning principal components of the data, it might project all the317

features, even uncommon ones, onto these principal components.318

This would mean that the representations of these features is only319

their projection onto some principal components, even if they only320

explain a small fraction of their variance, explaining the observed321

structure in poorly represented features.322

F Implications for the linear representation323

hypothesis324

While the linear representation hypothesis (LRH) is one of the pillars of current mechanistic inter-325

pretability (MI) approaches. There is still no consensus on the correct formulation of this hypothesis.326

The LRH can be taken to mean that internal features of a model correspond to activations along327

one-dimensional directions in activation space [Engels et al., 2025]. However, the LRH can also be328

formalized around the mathematical notion of linearity meaning the representation of two features is329

9



m = 100 m = 200 m = 400 m = 600 m = 800 m = 1000

Figure 9: UMAP embeddings at different latent-vector sizes including only features with R2 < 0.3
(top) and R2 > 0.3 (bottom). Semantic clusters at different latent sizes are still observed in both,
although this effect is combined with an increase in the number of features above the threshold in the
lower one.

the addition of their representations and scaling a feature corresponds to scaling its representation330

[Elhage et al., 2021].331

While some works have suggested that observed feature geometry like the ordered circles formed332

by the months undermine the first definition [Engels et al., 2025, Sharkey et al., 2025], our results333

show that these structures can emerge from the compression and reconstruction of one-dimensionally334

linear features. This means that these structures do not necessarily undermine either formulation335

of the LRH. On the other hand, our results in Section 5 do suggest that some features used by DL336

models can be value-coding meaning they can encode concrete trigonometric values or coordinates337

along linear directions which do not fulfill the constraints for mathematical linearity. For example338

scaling the value of a cosine-coding feature leads to a different (and potentially invalid) cosine value,339

rather than a stronger activation of the same cosine value.340

An interesting line of research would be to explore if presence-coding features can have value-coding341

components. Findings like the fact that city representations in language models can be projected342

linearly onto a coordinates subspace [Gurnee and Tegmark, 2024], or that integers can be projected343

onto a helix subspace [Li et al., 2025] could be understood through this lens. In this view, city344

representations could have a coordinate-coding component and integers could have a size-coding345

component as well as sine and cosine coding components which combine to make a helix structure.346

Overall, our findings show that rich feature geometry can be explained away by linear superposition347

recovering the structure inherent in the data, without appealing to non-linearly encoded information348

with a functional role in calculation. However, we believe the existence of value-coding features349

could be in conflict or an exception to features being mathematically linear.350

G Other dimensionality reduction methods351

To verify that the semantic clusters are not dependent on the choice of dimensionality reduction352

method, we include t-SNE [van der Maaten and Hinton, 2008] and PaCMAP [Tuncer et al., 2015] as353

two alternatives in fig. 10.354
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Figure 10: We show the latent representations of the top 4000 most frequent words using UMAP
(left) t-SNE (middle) and PaCMAP (right) to highlight that these semantic clustering results are not
dependent on the choice of dimensionality reduction technique.
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