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ABSTRACT

Prompt tuning is an efficient way to adapt large foundation models. It introduces
learnable prompts with the input data tokens, offering a practical alternative to
full model finetuning. However, when prompts are trained on base/target tasks,
they often overfit, leading to reduced performance on novel, unseen tasks. To
address this limitation, various techniques leverage global image semantics to
improve accuracy on unseen tasks while maintaining performance on base tasks.
However, they often overlook the rich fine-grained local information that could be
crucial for capturing finer semantics and improving generalisation. In this work,
we propose a modular approach to prompt tuning that leverages local semantics
by incorporating patch-level information, representing the first integration of such
semantics in this context. Specifically, we integrate patch-level information across
vision, text, and predictions through three consistency mechanisms: 1) Patch-based
consistency loss that aligns patches from the prompted input image with those
from the same image processed by a frozen model, while also enforcing inter-view
consistency by applying the loss across different views, capturing fine-grained
regional dependencies and improving vision representation quality; 2) Text prompt
consistency loss, where view-specific text prompts are tailored and regularised to
maintain coherence across views; 3) Vision features for each view, enriched with
patch-level information, are used to generate predictions based on view-tailored text
features. These predictions are then regularised across views, complementing the
earlier consistency mechanisms and contributing to a cohesive overall framework.
Our approach outperforms existing methods across multiple benchmarks, including
base-to-novel generalisation, domain generalisation, and cross-dataset evaluation.
These results underscore the potential of integrating fine-grained details for more
robust and adaptable prompts, marking a step forward in foundation model tuning.

1 INTRODUCTION

Foundation models, such as CLIP (Radford et al., 2021), have demonstrated impressive zero-shot
performance across a wide range of tasks, showcasing their adaptability and potential for general
applications. However, when it comes to task-specific performance, these models often fall short,
compared to specialised models. Fine-tuning foundation models to obtain task-specific models can
address this gap, but it is computationally expensive, time-consuming, and impractical when we have
only limited data. To overcome these limitations, prompt tuning has emerged as an efficient alternative
for adapting large foundation models like CLIP (Zhou et al., 2021). This method introduces learnable
prompts to make minor adjustments, while keeping the rest of the model frozen, drastically reducing
the computational overhead (Zhou et al., 2021; 2022; Zhu et al., 2022; Yao et al., 2023; Khattak et al.,
2022; Derakhshani et al., 2022; Khattak et al., 2023; Roy & Etemad, 2023; Zhang et al., 2023).

Despite its efficiency, prompt tuning tends to overfit on base classification task which includes a
subset of base classes, and diminishes generalisation to novel, unseen tasks. Models fine-tuned with
prompts can underperform on unseen tasks, compared to CLIP’s original zero-shot capabilities (Zhou
et al., 2022). This overfitting is due to a loss of generalisation, where the model becomes too tailored
to the specific training data, limiting its broader applicability. To address this issue, various strategies
have been proposed, such as generating text prompts conditioned on image features (Zhou et al., 2022;
Zang et al., 2022), treating prompt learning as a Bayesian inference problem (Derakhshani et al.,
2022), aligning prompt updates with gradients from non-prompted predictions (Zhu et al., 2022),
and applying consistency-based regularisation to the model’s output features and logits (Khattak
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et al., 2023; Roy & Etemad, 2023). Among these, multi-modal frameworks that regularise output
features and logits with zero-shot CLIP, using ℓ1-norm or cosine similarity (Khattak et al., 2023; Roy
& Etemad, 2023), have shown notable success in improving generalisation.

Existing methods, such as PromptSRC and CoPrompt, focus primarily on global text and vision fea-
tures, overlooking the rich local information in image patches. Self-supervised frameworks (Yun et al.,
2022; Li et al., 2022; Atito et al., 2022) incorporate patches but primarily optimize patch-level losses
without addressing cross-modality consistency. Adapter based methods, such as CoPrompt (Roy &
Etemad, 2023), also fail to capture rich patch-level details for vision feature generation. In contrast,
our approach integrates patch-level features across multiple components, leveraging inter-view and
intra-patch-level consistency to address finer-grained variability beyond global consistency. By using
patches for both vision feature, text and logit regularization and conditioning text prompts, our
method improves feature generation and class predictions, enhancing generalization.

Specifically, we introduce a novel patch-level consistency loss that enforces both intra-view and
inter-view consistency, aligning patch representations across different views. While prior works focus
on global consistency, we apply intra-view regularisation to the prompted patch features from the
anchor view with zero-shot anchor patches. In addition to promote further consistency and to design
a non-trivial regularisation, we enforce inter-view consistency which maintains patch consistency
across different views of an image by adding an extra guidance for generalisable prompts. An extra
augmented view is generated and patch consistency loss is applied with most similar zero-shot anchor
patches. Here, both the anchor and augmented prompted patch features are projected through a
convolutional layer to obtain better feature representations. This combined intra-view and inter-view
consistency ensures robust prompt tuning and significantly enhances generalisation.

In addition to regularizing the vision branch, we also focus on the text branch by leveraging local
information and inter-view variations. To achieve this, we generate view-tailored text prompts based
on view-specific clustered patch features. Unlike CoCoop (Zhou et al., 2022), which relies on global
semantics for text prompt generation, our approach incorporates local patch features for a more
refined prompt. Finally, view-specific text features are generated from each of the view-tailored
prompts. To further regularize the view-tailored text prompts, we apply an ℓ1-loss between the
anchor-view and augmented-view text features, with a stop-gradient applied to the anchor-view
output. This ensures inter-view consistency in the text branch and promotes the generalizability of
the learned text prompts.

Lastly, patch-level information is integrated with vision features by averaging projected patch tokens
and combining them with class token features to produce enhanced vision outputs. These outputs are
used to compute logits via a dot product with view-specific text features, further regularized with
KL-Divergence between anchor and augmented view logits, applying a stop-gradient to the anchor
view.

Our Patch-Aware Prompting (PAP) framework achieves superior performance over previous methods
across diverse tasks, including base-to-novel generalization, domain generalization, and cross-dataset
evaluation. By seamlessly integrating patch-level information and addressing both intra-view and inter-
view variations, PAP enhances generalization and robustness in prompt tuning. While PAP includes
multiple components, each is specifically designed to address distinct challenges in leveraging patch-
level information, with their collective effectiveness validated through extensive ablation studies.
This ensures a reliable and efficient pipeline for adapting foundation models to downstream tasks.

2 RELATED WORK

Foundation models based on image-text alignment have demonstrated strong zero-shot performance,
but finetuning them is computationally expensive and often leads to reduced generalisation (Radford
et al., 2021; Yao et al., 2021; Jia et al., 2021; Zhai et al., 2021; Yuan et al., 2021). As a result, many
applications leverage these models as feature extractors with task-specific components (Vidit et al.,
2023; Yu et al., 2023; Lin et al., 2023; Yi et al., 2023; Yun et al., 2023; Bousselham et al., 2023).
Prompt learning offers an efficient alternative by adapting vision-language models with task-specific
prompts while keeping the base model frozen, thus avoiding the challenges of full finetuning (Zhou
et al., 2021). However, prompts trained on base classes tend to generalise poorly to unseen classes.
To address this, several methods apply regularisation techniques—such as loss constraints, input
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conditioning, or different strategies/components (Zhou et al., 2022; Khattak et al., 2023; Roy &
Etemad, 2023; Derakhshani et al., 2022)—to improve generalisation and ensure better adaptation
across both base and novel classes.

CoCoop (Zhou et al., 2022), UniVL (Zang et al., 2022), and MaPLe (Khattak et al., 2022) regularise
prompts by conditioning inputs with global information. CoCoop uses vision features to condition
text prompts, UniVL jointly learns vision and text prompts via a small neural network, and MaPLe
synchronises vision and text prompts across layers. In contrast, our method conditions text prompts
at the input layer using rich patch information and regularises output features with a loss function.
PromptSRC (Khattak et al., 2023) and CoPrompt (Roy & Etemad, 2023) focus on feature and predic-
tion regularisation with zero-shot CLIP knowledge. PromptSRC regularises global embeddings and
logits while aggregating prompts across epochs, whereas CoPrompt enhances feature learning with
an adapter (Gao et al., 2021). Our approach emphasises finer patch-level feature regularisation and
inter-view consistency. Independently developed, Long et al. (2024) uses clustered patch tokens for
text prompts but lacks inter-view consistency and patch integration into predictions, underperforming
compared to PromptSRC. Prograd (Zhu et al., 2022) and Bayesian Prompt (Derakhshani et al., 2022)
propose different strategies for prompt regularisation. Prograd (Zhu et al., 2022) updates prompts
only when their gradients align with zero-shot knowledge, while ProDA (Lu et al., 2022) enforces a
Gaussian distribution on prompts to reduce bias. Bayesian Prompt (Derakhshani et al., 2022) views
prompt tuning through a Bayesian lens to improve generalisation.

In contrast to these regularisation methods, recent studies focus on improving base class perfor-
mance (Zhang et al., 2023) or distilling knowledge from a larger teacher model (Li et al., 2024).
DePT (Zhang et al., 2023) decouples the learning of base and novel classes by adding a classification
head specifically for base classes, improving base class performance while maintaining results on
novel classes. PromptKD (Li et al., 2024) distills a larger CLIP-L/14 model into a smaller CLIP-B/16
model, enhancing overall performance. CasPL Wu et al. (2024), utilizing the larger CLIP-L/14 model
for distilling adaptable prompts, follows a two-stage process: learning adaptable prompts via unsu-
pervised learning and training boosting prompts using prior prompt-tuning methods. Orthogonally,
MetaPrompt (Park et al., 2024) applies meta-learning for prompt tuning by learning a regulariser.
Unlike these methods, we maintain the existing training pipeline, avoid distilling from larger models,
and focus on improving performance through loss functions and by exploiting fine-grained details.

Our Patch-Aware Prompting (PAP) differs from existing regularisation techniques by incorporating
patch-level information at multiple stages. We regularise vision embeddings at the patch level
across both similar and different views for more effective regularisation. Additionally, we use
patch information to generate view-specific text prompts, which are further regularised to maintain
consistency across views. Finally, we enhance the vision embeddings with patch-level information
while also regularising logits at the inter-view level. This design allows our model to perform
competitively across several evaluation benchmarks.

3 METHODOLOGY

We propose a novel prompt tuning framework that leverages rich, local contextual information to
maintain the generalisability of CLIP to novel tasks, while improving performance on base tasks.
Our framework is a modular component that can be applied to previous global prompt consistency
methods (Khattak et al., 2023; Roy & Etemad, 2023; Zhang et al., 2023). By incorporating patch-
level information, we design components that further regularize the prompt learning process. Unlike
earlier approaches that rely on global feature embeddings (Khattak et al., 2023; Roy & Etemad,
2023) or architectural modifications (Zhou et al., 2022; Zhu et al., 2022) to enhance generalisability,
our method focuses on local information. Fig. 1 depicts the overall architecture of the proposed
Patch-Aware Prompting framework.

First, we introduce a novel vision patch regularisation loss. This loss regularizes the patch outputs
generated by our framework with zero-shot predictions from CLIP (Radford et al., 2021), ensuring
consistency at the patch level. To handle inter-view variance among different crops typically sampled
during training, we add another view called the augmented view of the image and apply a patch loss
using zero-shot predictions from the anchor view. This ensures consistent representation with CLIP,
both within similar views and across different views of an image. To maintain inter-view consistency
at the textual level and incorporate rich local context, we generate view-specific text prompts for both
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Figure 1: Patch-Aware Prompting (PAP) Framework: Patch information from anchor and augmented
views is integrated into (A)vision, (B)text branches and (C)predictions. View-tailored text prompts
are conditioned on patch clusters, with intra-view and inter-view losses applied to vision patches and
inter-view consistency losses applied to text prompts and patch enhanced predictions.

the anchor and augmented views. This process differs from previous frameworks that rely on global
image features (Zhou et al., 2021; Zang et al., 2022) by utilising patches that contain fine-grained
details. We use the Voronoi algorithm (Voronoi, 1908) to cluster patch features, creating biases that
guide the text prompt initialization. We further regularise these prompts using a text loss that ensures
consistency between the text features generated from the anchor and the augmented prompts. This
alignment across view-specific prompts improves generalisability.

Lastly, we combine the patch-level information to generate enhanced vision features. The final vision
feature is a combination of the class token embedding and the average of the patch token embeddings.
This ensures that patch-level information is included, providing a comprehensive representation of the
image. We then compute the logits by taking the dot product of the enhanced vision and text output
features. To maintain consistency not only at the feature level but also in class predictions across
views, we regularize the logits using a KL-divergence loss between the predictions from anchor and
augmented views. We provide further details of our architecture in the following sections along with
preliminaries.

3.1 PRELIMINARIES

Let f and g represent the image and text encoders of CLIP, respectively. The input image X ∈
RCH×H×W is divided into M patch tokens after the projection layer. The vision transformer encoder
receives the input Xin = {ecls, e1, . . . , eM}, consisting of the class token ecls and the patch tokens.
After passing through the vision encoder f , the class and patch features are V̄ ∈ Rd and P̄ ∈ RM×d.
The class label cK , from the set {1, . . . , C}, is wrapped in the text template "a photo of a class
label". The input to the text encoder, after embedding and adding [SOS] and [EOS] tokens, is
Yin = {y[SOS], y1, . . . , ck, y[EOS]}, where ck and {yl}Ll=1 are the embeddings for the class label
and text template. The zero-shot text features for class label k are T̄k ∈ Rd, with T̄ = {T̄k}Kk=1.
The zero-shot logits are calculated as lgt = sim(T̄, V̄)/τ , where τ is the temperature and sim()

denotes the cosine similarity. The prediction for class label k is given by: exp(sim(T̄k,V̄)/τ)∑C
c=1 exp(sim(T̄c,V̄)/τ)

.

Prompt learning involves adding learnable prompts to either the text or image encoder (Zhou et al.,
2022; 2021; Roy & Etemad, 2023; Khattak et al., 2023). Let Gt = {g1t , g2t , . . . , gntt } and Gv =
{g1v , g2v , . . . , gnvv } represent the text and vision prompts, where nt and nv denote the number of text
and vision prompts, respectively. The inputs to the vision and text encoders with these trainable
prompts are Xp

in = {Gv, ecls, e1, . . . , eM} and Yp
in = {y[SOS], Gt, ck, y[EOS]}. In deep prompting,

additional prompts are introduced at each transformer layer, replacing the previous layer’s prompts.
The vision-prompted class and patch features, after passing through the vision encoder, are V ∈ Rd

and P ∈ RM×d, and the text-prompted features Tk ∈ Rd are generated by the text encoder. The
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training is supervised using the cross-entropy loss:

Lce = −log
exp(sim(Tk, V ))/τ∑C
c=1 exp(sim(Tc, V ))/τ

. (1)

Additionally, PromptSRC (Khattak et al., 2023) defines global-level losses on features and logits:

LSCL-image =

d∑
i=1

|V̄ − V |, LSCL-text =

d∑
i=1

|T̄ − T |. (2)

LSCL-logits = KL-Div(sim(T̄ , V̄ ), sim(T ,V )). (3)
The final loss is a combination of the above loss functions:

Lglobal = LCE + LSCL-text + LSCL-image + LSCL-logits. (4)

3.2 PATCHES FOR PROMPT TUNING

We incorporate patch information in multiple ways in both the text and vision branches of our
model. Our framework generates two views: a main view, called the anchor view Xan, and an
augmented view Xaug. Let V̄an ∈ Rd and P̄an ∈ RM×d represent the zero-shot class and patch
features for the anchor view, and let V̄aug ∈ Rd and P̄aug ∈ RM×d represent the class and patch
features for the augmented view. The prompted class and patch features for the anchor view are
Van ∈ Rd and Pan ∈ RM×d, respectively, while Vaug ∈ Rd and Paug ∈ RM×d correspond to the
augmented view. We further project these prompted patch features through a convolution projection
block to obtain final patch features: P̂an = ConvProj(Pan) and P̂aug = ConvProj(Paug). This
convolutional projection block consists of two convolutional layers with a kernel size of 3× 3.

Patch Consistency Loss: Consistency-guided methods for prompt tuning typically focus on global
feature consistency (Khattak et al., 2023; Roy & Etemad, 2023). In contrast, we propose a patch-level
consistency loss that directs the learning trajectory towards better generalization, guided by the patch
information. We start by introducing a simple loss to ensure consistency between patches from the
prompted and zero-shot outputs for the same view. For the anchor view, we define an intra-view
patch consistency loss:

Lintra-view =

M∑
i=1

(1− sim(P̄ i
an − P̂ i

an)), (5)

which keeps the patches aligned with the original CLIP model, helping prevent catastrophic forgetting.

During training, prompt-tuning models crop random image portions. Our goal is to preserve patch
relationships across crops for better regularization. CoPrompt (Roy & Etemad, 2023) enforces
global inter-view consistency but ignores patch-level details. FILIP (Yao et al., 2021) focuses on
image-text alignment but not patch consistency across crops. To address this, we introduce the
augmented view Xaug to ensure patch-level consistency with the anchor view Xan. From Xaug

patches, P̂i
aug(i ∈ {1, . . . ,M}), we identify the closest zero-shot patch in Xan. The closest patch is

determined by

crossview_feat(P̂ i
aug) = P̄ j

an, j = argmax
k∈{1,...,M}

sim(P̄ i
aug, P̄

k
an), (6)

where the closest zero-shot anchor patch P̂j
an(j ∈ {1, . . . ,M}) corresponds to the zero-shot aug-

mented patch P̂i
aug . Using zero-shot outputs to calculate similarity prevents the model from finding

an easier learning path, such as having all prompted patches match closely with a single target patch.

The final inter-view patch consistency loss is defined as:

Linter-view =

M∑
i=1

(1− sim(P̂ i
aug, crossview_feat(P̂ i

aug))), (7)

which promotes the consistency between the prompted patches of the augmented view P̂i
aug and

the closest zero-shot anchor patches P̂i
an. Our total patch consistency loss is the sum of both the

inter-view and intra-view consistency losses:
Lpatch-con = Lintra-view + Linter-view. (8)
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View-tailored text prompts: Regularizing text prompts with global vision semantics is crucial for
strong performance on novel tasks across domains (Khattak et al., 2023; Roy & Etemad, 2023).
We enhance this by incorporating rich patch-level details. Unique text prompts are generated for
both the anchor and augmented views. Using class tokens to generate prompts, as in Zhou et al.
(2022), creates overly similar prompts due to shared information in the tokens and fails to capture
patch-level details. To address this, we cluster patches as cues for patch-level semantic reasoning in
the prompts. Unlike the quantized bias in Bhardwaj et al. (2022), we derive prompts from patch-level
details for more flexible and expressive representations. Instead of a single bias vector for all prompt
vectors Gt = {g1t , g2t , . . . , gntt }, we generate individual bias vectors B = {b1, b2, . . . , bnt}. These
are derived by clustering the vision zero-shot patch features P̄ using the Voronoi algorithm (Voronoi,
1908) to create nt clusters, each serving as a bias vector for a prompt vector:

{b1, b2, . . . , bnt} = Voronoi_Clustering(P̄ ). (9)

These bias vectors are then added to the prompt vectors to generate the final prompt vectors Ĝ:

Ĝ = {ĝ1, ĝ2, . . . , ĝnt}; ĝi = gi + bi. (10)

This approach provides better prompt regularization at the input level, allowing the finer details
of the input image to guide the prompt learning process. Let Ban = {b1an, b2an, . . . , bntan} and
Baug = {b1aug, b2aug, . . . , bntaug} be the bias vectors generated from the anchor and augmented view
patches, respectively. These bias vectors are added to the prompt vectors to produce view-tailored
prompt vectors Ĝan and Ĝaug, corresponding to the anchor and augmented views. These prompts
are then concatenated with the class label, [EOS], and [SOS] tokens, and passed through the CLIP
text encoder. The output text features are Tan and Taug, corresponding to the view-tailored text
prompts for the anchor and augmented views. We further project these text features using a text
adapter (Gao et al., 2021), which consists of two linear layers, to obtain T̂an = TextAdapter(Tan) and
T̂aug = TextAdapter(Taug). This projection aligns the text features with the enhanced vision features
explained further. To regularize the output features, we develop a loss function that encourages
similarity between the view-tailored outputs:

Lview-tailor = |stop_grad(T̂an)− T̂aug| (11)

This promotes inter-view regularization in the text space, complementing the regularization introduced
in the vision space, which fosters better generalization. Our view-tailored loss, defined in Equation 11,
is an ℓ1-loss, where a stop-gradient operation is applied on T̂an to encourage the augmented view
text prompt to align more closely with the anchor text prompt.

Improved vision features and logits regularisation: After regularizing the text and vision branches
using finer details from patches, we propose leveraging this information to enhance the vision features.
The class embeddings from the vision encoder, typically used to generate class probabilities, focus
on a single dominant semantic object. However, patches contain local information that can improve
the overall feature representation. To achieve this, we propose averaging the patch projections to
obtain aggregated patch-level information, which is then added to the class-specific vision features to
generate the final vision features V̂ :

V̂ = V + α ⋆ Avg(P̂ ), (12)

where α is a scaling factor for the aggregated patch features. The final logits corresponding to the
prompted inputs are computed by taking the dot product of the vision and text output features. These
logits are further regularized using KL-Divergence between the logits of the anchor and augmented
views, which is defined as follows:

Linter-logits = KL-Div(stop_grad(softmax(sim(T̂an, V̂an))), softmax(sim(T̂aug, V̂aug))). (13)

This regularization reduces inter-view variance at the logit level, leading to more generalized features.
Similar to the view-tailored loss on text embeddings, we apply a stop-gradient operation to the anchor
logits. The final loss is the sum of all the introduced patch-level losses:

Lfinal = Lglobal + λp ⋆ Lpatch-con + λt ⋆ Lview-tailor + λl ⋆ Linter-logits, (14)

which includes a global loss applied to both the anchor and augmented views, with λp, λt, λl acting
as scaling factors for the patch, view-tailored text, and inter-view logit losses, respectively.
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Table 1: Comparison with SOTA methods on base-to-novel tasks. Best novel, base, HM accuracies are
underlined; bold indicates improvements over the method with our components. * denotes our reproduction with
official code and settings.

(a) Average

Base Novel HM

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
Co-CoOp 80.47 71.69 75.83
KgCoOp 80.73 73.60 77.00
MaPLe 82.28 75.14 78.55
CoPrompt* 83.66 76.34 79.84
PromptSRC 84.26 76.10 79.97
↪→ + Ours 85.07 77.41 81.05

DePT* 85.15 75.73 80.16
↪→ + Ours 85.65 77.29 81.25

(b) ImageNet

Base Novel HM

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
Co-CoOp 75.98 70.43 73.10
KgCoOp 75.83 69.96 72.78
MaPLe 76.66 70.54 73.47
CoPrompt 77.67 71.27 74.33
PromptSRC 77.60 70.73 74.01
↪→ + Ours 78.00 70.96 74.33

DePT 78.20 70.27 74.02
↪→ + Ours 78.26 70.90 74.39

(c) Caltech101

Base Novel HM

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
Co-CoOp 97.96 93.81 95.84
KgCoOp 97.72 94.39 96.03
MaPLe 97.74 94.36 96.02
CoPrompt 98.27 94.90 96.55
PromptSRC 98.10 94.03 96.02
↪→ + Ours 98.50 94.46 96.35

DePT 98.60 93.93 96.20
↪→ + Ours 98.63 94.30 96.41

(d) OxfordPets

Base Novel HM

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
Co-CoOp 95.20 97.69 96.43
KgCoOp 94.65 97.76 96.18
MaPLe 95.43 97.76 96.58
CoPrompt 95.03 96.86 95.93
PromptSRC 95.33 97.30 96.30
↪→ + Ours 95.70 97.80 96.73

DePT 95.46 97.16 96.30
↪→ + Ours 95.70 97.83 96.75

(e) StanfordCars

Base Novel HM

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
Co-CoOp 70.49 73.59 72.01
KgCoOp 71.76 75.04 73.36
MaPLe 72.94 74.00 73.47
CoPrompt 76.97 74.40 75.66
PromptSRC 78.27 74.97 76.58
↪→ + Ours 80.03 75.30 77.59

DePT 80.80 74.76 77.66
↪→ + Ours 81.53 75.23 78.25

(f) Flowers102

Base Novel HM

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
Co-CoOp 94.87 71.75 81.71
KgCoOp 95.00 74.73 83.65
MaPLe 95.92 72.46 82.56
CoPrompt 97.27 76.60 85.71
PromptSRC 98.07 76.50 85.95
↪→ + Ours 98.33 77.40 86.61

DePT 98.60 76.80 86.34
↪→ + Ours 98.63 77.40 86.73

(g) Food101

Base Novel HM

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
Co-CoOp 90.70 91.29 90.99
KgCoOp 90.50 91.70 91.09
MaPLe 90.71 92.05 91.38
CoPrompt 90.16 91.53 90.83
PromptSRC 90.67 91.53 91.10
↪→ + Ours 90.83 92.06 91.44

DePT 90.80 91.53 91.16
↪→ + Ours 90.86 91.93 91.39

(h) FGVCAircraft

Base Novel HM

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
Co-CoOp 33.41 23.71 27.74
KgCoOp 36.21 33.55 34.83
MaPLe 37.44 35.61 36.50
CoPrompt 40.20 39.33 39.76
PromptSRC 42.73 37.87 40.15
↪→ + Ours 44.46 38.60 41.10

DePT 45.70 36.73 40.73
↪→ + Ours 46.60 38.50 42.16

(i) SUN397

Base Novel HM

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
Co-CoOp 79.74 76.86 78.27
KgCoOp 80.29 76.53 78.36
MaPLe 80.82 78.70 79.75
CoPrompt 82.33 79.50 80.89
PromptSRC 82.67 78.47 80.52
↪→ + Ours 83.23 79.10 81.11

DePT 83.27 78.97 81.06
↪→ + Ours 83.40 79.10 81.19

(j) DTD

Base Novel HM

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
Co-CoOp 77.01 56.00 64.85
KgCoOp 77.55 54.99 64.35
MaPLe 80.36 59.18 68.16
CoPrompt 82.93 62.80 71.47
PromptSRC 83.37 62.97 71.75
↪→ + Ours 84.00 64.63 73.05

DePT 84.03 60.16 70.11
↪→ + Ours 85.06 64.33 73.25

(k) EuroSAT

Base Novel HM

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
Co-CoOp 87.49 60.04 71.21
KgCoOp 85.64 64.34 73.48
MaPLe 94.07 73.23 82.35
CoPrompt 93.20 73.96 82.40
PromptSRC 92.90 73.90 82.32
↪→ + Ours 94.46 81.20 87.32

DePT 93.33 75.43 83.41
↪→ + Ours 95.23 81.26 87.69

(l) UCF101

Base Novel HM

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
Co-CoOp 82.33 73.45 77.64
KgCoOp 82.89 76.67 79.65
MaPLe 83.00 78.66 80.77
CoPrompt 86.26 78.63 83.07
PromptSRC 87.10 78.80 82.74
↪→ + Ours 87.93 80.06 83.81

DePT 87.93 77.33 82.29
↪→ + Ours 88.33 79.36 83.60

4 EXPERIMENTS

The evaluation is done on several different tasks including base-to-novel generalization, cross-dataset
evaluation and domain generalisation, with CLIP-B/16 as the frozen backbone. The protocol followed
is similar to previous works like CoCoop (Zhou et al., 2022), PromptSRC (Khattak et al., 2023),
CoPrompt (Roy & Etemad, 2023). For base to novel generalisation, cross dataset evaluation, we
use 11 datasets namely ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010),
UCF101 (Soomro et al., 2012), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019). For
domain generalisation, we evaluate on the ImageNet (Deng et al., 2009), ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019), Ima-
geNetV2 (Recht et al., 2019) datasets. For training we use CLIP with ViT-B/16, we set the learning
rate to 0.0025 and train for a maximum of 20 epochs on base-to-novel generalisation, while max-
imum of 5 epochs on cross-dataset generalisation and domain generalisation. We set λp, λt, λl to
1.0, 0.1, 1.0 respectively as default but modify it for individual dataset when required. The global
loss scaling factors mostly follow PromptSRC. Further details are provided in supplementary. All the
ablations are conducted with our model based on PromptSRC.

4.1 BASE TO NOVEL GENERALIZATION

We evaluate our approach when combined with PromptSRC and DePT on the main task of base-to-
novel generalization. The comparison with previous SOTA methods, including PromptSRC (Khattak
et al., 2023), CoPrompt (Roy & Etemad, 2023), and DePT (Zhang et al., 2023), is shown in Table 1
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Table 2: Performance on cross-dataset evaluation. Best accuracies are underlined; bold indicates
improvements over the method with our components. * denotes our reproduction with official code

Source Target
ImNet Caltech Pets Cars Flowers Food Aircraft SUN397 DTD EuroSAT UCF Ave.

CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
Co-CoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
Bayesian Prompt 70.93 93.67 90.63 65.00 70.90 86.30 24.93 67.47 46.10 45.87 68.67 65.95
CoPrompt* 70.43 93.60 90.00 64.80 70.77 85.80 23.53 67.30 43.77 44.50 67.83 65.19
PromptSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
↪→ + Ours 72.00 94.03 90.40 66.03 71.70 86.66 24.46 67.50 47.33 46.83 69.60 66.45

DePT 71.60 93.80 90.13 66.00 70.93 86.27 24.30 67.23 46.60 45.83 69.10 66.02
↪→ + Ours 72.03 94.03 90.50 66.00 71.80 86.63 24.76 67.60 47.46 46.73 69.83 66.53

Figure 2: Performance Comparison for Base, Novel, and HM metrics across different methods.

and Figure 2. Our method consistently performs better across various datasets on novel, base, and har-
monic mean (HM) when combined with both PromptSRC and DePT. On average, when our method is
combined with PromptSRC, it outperforms all SOTA methods, including CoPrompt and PromptSRC,
in base, novel, and HM. While we trail slightly on base classes when combined with DePT, which
is mainly designed to improve base class performance, our approach impressively achieves better
results across all settings when paired with DePT. Notably, when paired with PromptSRC, our method
improves upon PromptSRC by 0.89%, 1.31%, and 1.08% on base, novel, and HM, respectively.
Compared to CoPrompt, we see improvements of 1.34%, 0.85%, and 1.08% on base, novel, and
HM. When compared with DePT, there is only a marginal decrease of 0.08% on base classes, but
an improvement of 1.68% and 0.89% on novel and HM, respectively. Additionally, with DePT, our
method surpasses all others on base and HM, while trailing our combination with PromptSRC by
only 0.12% on novel. Compared to DePT alone, we show a notable improvement of 0.5%, 1.56%,
and 1.09% on base, novel, and HM, respectively.

4.2 CROSS-DATASET EVALUATION

The evaluation on cross datasets follows PromptSRC (Khattak et al., 2023). We train on ImageNet
in a few-shot manner and evaluate on diverse datasets. In Table 2, the model is fine-tuned on the
source dataset (ImageNet) and evaluated on 10 target datasets in a zero-shot setting. Our method
combined with PromptSRC shows strong performance across most datasets, achieving the highest
average accuracy of 66.45%, outperforming DePT by 0.43% and PromptSRC by 0.64%.

When combined with DePT, our method further improves the average accuracy to 66.53%, surpassing
DePT alone by 0.51% and maintaining the highest performance across several datasets, including
Aircraft (24.76%), SUN397 (67.60%), and DTD (47.46%). Notably, the combination with DePT
also matches or exceeds the performance of PromptSRC in challenging datasets such as DTD and
UCF101, highlighting its strong generalization capability. Compared to MaPLe, which achieves
an average of 66.30%, our method consistently performs better, especially on datasets like Cars
(66.03%) and DTD (47.46%). Overall, our method, when combined with both PromptSRC and DePT,
demonstrates robust improvements, reflecting its superior generalization across diverse domains.
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4.3 DOMAIN GENERALIZATION

Table 3: Domain generalization performance (best in bold).

Source Target
ImNet ImNetV2 ImNetS ImNetA ImNetR Ave.

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
UPT 72.63 64.35 48.66 50.66 76.24 59.98
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
Co-CoOp 71.02 64.07 48.75 50.63 76.18 59.90
ProGrad 72.24 64.73 47.61 49.39 74.58 59.07
KgCoOp 71.20 64.10 48.97 50.69 76.70 60.11
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26
Bayesian Prompt 70.93 64.23 49.20 51.33 77.00 60.44
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
CoPrompt 70.80 64.25 49.43 50.50 77.51 60.42
Ours + PromptSRC 72.00 65.10 50.00 51.03 77.70 60.96
Ours + DePT 72.03 65.16 50.03 51.16 77.70 61.01

The results for domain generaliza-
tion are shown in Table 3. The Im-
ageNet dataset is used as the source
for fine-tuning, and the model is eval-
uated on four ImageNet variants. In
this evaluation, the proposed method
combined with PromptSRC demon-
strates strong performance compared
to other leading approaches. It
achieves an average performance that
is 0.31% higher than the base Prompt-
SRC, with a notable improvement of
0.75% on ImageNetV2 and a small
gap of 0.10% on ImageNetR. Simi-
larly, when combined with DePT, the
method shows further gains, achieving an average performance that surpasses the base DePT by
0.53%, with improvements of 0.78% on ImageNetV2 and 0.14% on ImageNetR. Compared to previ-
ous SOTA, our method outperforms by 0.36%, demonstrating better generalization across varying
ImageNet distributions.

Table 4: Different Components
of our framework

P. Loss T. Text V. Feat Base Novel HM

✗ ✗ ✗ 84.55 75.43 79.89
✓ ✗ ✗ 84.53 76.03 80.17
✗ ✓ ✗ 84.60 75.79 80.09
✗ ✗ ✓ 84.70 76.07 80.10
✓ ✓ ✓ 85.07 77.41 81.05

Table 5: Different Losses

λp λt λl Base Novel HM

✗ ✗ ✗ 83.40 76.90 79.98
✓ ✗ ✗ 84.51 76.27 80.25
✗ ✓ ✗ 84.67 76.04 80.20
✗ ✗ ✓ 84.67 76.24 80.20
✓ ✓ ✓ 85.07 77.41 81.05

Table 6: Patch Loss Comparison

Intra Inter Base Novel HM

✗ ✗ 84.49 76.02 80.06
✓ ✗ 84.53 75.71 80.03
✗ ✓ 84.31 75.89 80.01
✓ ✓ 85.07 77.41 81.05

4.4 ABLATIONS

Effect of different components introduced: We studied the effects of different components we
introduced, mainly patch loss, view-tailored text, and enhanced vision features—on performance,
as shown in Table 4. Each component improves performance, particularly on novel tasks. However,
combining enhanced vision features, patch loss, and view-tailored text improves base, novel, and HM
performance. We also evaluated the effect of different conditioning inputs to generate view-tailored
text prompts, as shown in Table 7, and found that initializing prompts using patch clusters works
best. CoCoop (Zhou et al., 2022), which uses only the class token, performs poorly compared to
both our method and attention-based conditioning. Cross-attention from text prompts to patches
performs slightly worse than our method but still better than CoCoop, highlighting the importance of
patch-level conditioning.

We also studied different clustering techniques in Table 8. KMeans performed comparably to our
Voronoi-based clustering on base classes but dropped significantly on novel classes, while EM was
inferior to both. Voronoi clustering generates more generalizable clusters, improving performance
across base and novel classes. In Table 9, we examined the effects of convolution projection and
the use of adapters. We found that a text adapter is required when using convolution projection on
patches, while using adapters on either text or vision alone improves performance. Our default setup,
which includes both text adapters and convolution projection, performs best.

We analyzed the effects of adding small crops (scale 0.05 to 0.4) and varying the number of large
crops (scale 0.05 to 1) in Table 10. Using two large crops without small crops provided the best
performance, while adding small crops or more large crops led to a slight decline. In Table 12,
simple augmentations for both anchor and augment views performed best on novel classes, while
complex augmentations slightly decreased overall performance. The combination of simple anchor
and complex augmentations remained competitive but slightly underperformed on both base and
novel classes.

Effect of different losses: We study the effects of different losses introduced in our framework, as
shown in Table 5. We find that each of the losses improves performance compared to cases where no
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losses are applied. Our default case, where all losses are applied, performs the best. This demonstrates
that regularization is necessary at both the feature level and the logit level to maintain the performance
of our framework. Additionally, we evaluate the individual effects of intra- and inter-view patch
losses in Table 6, while keeping the rest of the losses constant during the experiments. Applying
either intra- or inter-view patch loss alone results in a drop in performance, particularly on novel
classes. This indicates that utilizing both intra- and inter-view losses boosts base accuracy while
enhancing generalization to novel classes.

Table 7: Comparison of Input Con-
ditioning Techniques

Method Base Novel HM

CoCoop 84.30 75.00 79.45
Attention 84.32 76.44 80.24
Ours 85.07 77.41 81.05

Table 8: Comparison of Clustering
Techniques

Method Base Novel HM

KMeans 84.36 74.97 79.51
EM 84.28 74.37 79.22
Voronoi 85.07 77.41 81.05

Table 9: Comparison of Projection
& Adapter

Text Vision Base Novel HM

✗ ✗ 83.24 75.31 79.08
✓ ✗ 84.40 75.52 80.02
✗ Adapter 84.25 75.69 80.00
✗ ConvProj 84.36 76.07 80.09
✓ Adapter 84.21 75.18 79.61
✓ ConvProj 85.07 77.41 81.05

Table 10: Comparison of Crops

L S Base Novel HM

1 0 84.27 75.58 79.68
2 1 84.36 74.80 79.29
2 10 84.51 74.10 78.96
3 0 84.50 75.97 80.00
2 0 85.07 77.41 81.05

Table 11: Addition to Compet-
ing Methods

Method Base Novel HM

Cocoop 80.47 71.69 75.83
Cocoop + Our 81.47 72.43 76.68
CoPrompt 83.66 76.34 79.84
CoPrompt + Our 84.26 77.40 80.68

Table 12: Comparison of Aug-
mentation

Anchor Augment Base Novel HM

Simple Simple 85.07 77.41 81.06
Simple Complex 84.46 76.31 80.18
Complex Simple 84.38 76.14 80.05
Complex Complex 83.71 74.87 79.04

Applicability to different methods: We apply our framework to both CoCoop (Zhou et al., 2022)
and CoPrompt (Roy & Etemad, 2023), as shown in Table 11. Our method improves CoCoop by
1.00% on base, 0.74% on novel, and 0.85% on HM. Similarly, it improves CoPrompt by 0.60%
on base, 1.06% on novel, and 0.84% on HM. These improvements highlight the effectiveness of
incorporating patch-level information for enhancing performance.

4.5 RUNTIME & MEMORY CONSUMPTION

Table 13: Comparison of Total and Learnable
Parameters for Different Methods

Model Total P. Learnable P. G.Mem Train. Time

CLIP (ViT-B/16) 149.62M - 1.35G -
CoCoop 153.15M 3.53M 1.24G 13:07 Min
CoPrompt 154.62M 4.74M 1.84G 06:20 Min
PromptSRC 150.08M 0.46M 2.07G 06:06 Min
↪→ + Ours 154.51M 4.89M 2.42G 13:47 Min

DePT 150.36M 0.74M 2.07G 06:03 Min
↪→ + Ours 154.74M 5.12M 2.42G 13:47 Min

Table 13 compares the learnable parameters, GPU
memory consumption, and training time for various
methods trained on Food101 for 10 epochs. While
our method introduces a slight increase in learnable
parameters—4.89M for PromptSRC and 5.12M for
DePT, this increase remains minimal when compared
to the default CLIP model. The use of view/image-
tailored prompts, similar to CoCoop, and having mul-
tiple views results in a modest rise in GPU memory
usage (2.42G) and a training time of 13 min 47 sec.
However, unlike CoCoop and other baseline methods,
our approach achieves significantly superior performance across the board. The trade-off in computa-
tional resources is well-justified by the substantial performance improvements, demonstrating that
our method balances resource use with impressive gains in performance, setting a new benchmark.

5 CONCLUSION

We propose a novel prompting framework for vision-language models that incorporates patch-level
information across multiple components, improving both task-specific performance and generalization
to novel scenarios. By utilizing patch-level loss for intra- and inter-view consistency, generating
regularized view-specific text prompts, and maintaining inter-view consistency of logits, our method
addresses the overfitting challenges typical of traditional prompt-tuning approaches. Extensive
experiments on tasks such as base-to-novel generalization, domain adaptation, and cross-dataset
evaluation demonstrate superior performance, surpassing prior methods. Additionally, ablation
studies confirm the effectiveness of each component and explore alternative designs. We believe this
approach will significantly advance the tuning of foundation models across diverse applications.
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A ADDITIONAL IMPLEMENTATION DETAILS

For our main results we have combined our method with DePT (Zhang et al., 2023), PromptSRC (Khat-
tak et al., 2023). The DePT model we used is the one based on PromptSRC. The experiments are
conducted for different seeds and mean reported. We use a default learning rate of 0.0025 and
CLIP-B/16 as the backone. We set the scaling factors for LSCL-text,LSCL-image,LSCL-logits similar to
PromptSRC for both our combination with PromptSRC, DePT. DePT uses an additional classification
head on top of PromptSRC for improving base task performance. The combination of method
to DePT is very straightforward for PromptSRC. For DePT, we also apply the base classification
head where inputs to this head are features before convolution projection and text adapter. We use
mostly a single RTX-3090 GPU for our experiments except while performing ImageNet training for
base-to-novel generalisation, domain generalisation, and cross-dataset evaluation where we use 4
V100 GPUs. The Gaussian aggregation mean and variance for prompts is also similar to PromptSRC.
The training is done for 20 epochs for base-to-novel generalisation with variation for some datasets.

B ABLATION FOR LOSS SCALING FACTORS

Table 14 shows the effect that loss scaling factors λp, λt, λl have on our framework. Our method
works best when the loss scaling factors are set depending on dataset as highlighted in Table 14. Each
dataset has different sensitivity to different losses which results in having to set these factors for each
individual dataset.

Table 14: Different Losses

λp λt λl Base Novel HM

0.1 0 0 84.56 75.59 79.82
0 0.1 0 84.64 75.55 79.84
0 0 0.1 84.70 76.07 80.15

0.1 0.1 0.1 84.58 75.51 79.79
1 0 0 84.45 75.36 79.65
0 1 0 84.65 75.88 80.00
0 0 1 84.75 76.29 80.38
1 1 1 84.48 76.16 80.12
2 0 0 84.39 76.34 80.17
0 2 0 84.68 75.68 80.03
0 0 2 84.70 76.02 80.24
2 2 2 84.37 76.30 80.13
✓ ✓ ✓ 85.07 77.41 81.05

C ABLATION FOR PARAMETER COMPLEXITY:

We conduct experiments in Table by training two models based on PromptSRC, both having the
same parameter count of 4.89M, to ensure a fair comparison. The first model employs PromptSRC
without any additional modifications, while the second integrates our proposed components: intra-
and inter-view patch losses, view-tailored text with consistency loss, and cross-view prediction
consistency. As shown in Table 15, the model enhanced with our components achieves superior
performance across all metrics. Specifically, it improves Base accuracy from 84.55% to 85.07%,
Novel accuracy from 75.43% to 77.41%, and the harmonic mean (HM) from 79.89% to 81.05%,
demonstrating the effectiveness of our approach.
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Table 15: Performance comparison of PromptSRC-based models with and without our components,
keeping the parameter size fixed at 4.89M.

Components Base (%) Novel (%) HM (%)
No Components (PromptSRC) 84.55 75.43 79.89
Our Components 85.07 77.41 81.05

D ABLATION FOR VISION COMPONENTS

:

Table 16 summarizes the performance improvements achieved by incrementally applying our proposed
vision components. Starting with the baseline PromptSRC which has single anchor view, we observe
a steady increase in performance metrics as additional components are introduced. Specifically, the
introduction of the intra-view patch loss leads to a 0.35% improvement in the HM metric, while
incorporating the augmented view further increases performance by 0.03% on base. The most
significant enhancement is achieved with the inclusion of the inter-view patch loss, resulting in a
1.37% HM improvement over the baseline.

Table 16: Performance comparison with the incremental application of proposed components.

Method Base Novel HM
PromptSRC (anchor view) 84.27 75.58 79.68
↪→ + Intra-view patch loss 84.53 75.71 80.03
↪→ + Augmented view 84.49 76.02 80.06
↪→ + Inter-view patch loss 85.07 77.41 81.05

E ABLATION FOR TEXT COMPONENTS:

The results presented in Table 17 highlight the effectiveness of our text-level component design. Start-
ing from the baseline PromptSRC, introducing view-tailored text conditioned using CLS tokens Zhou
et al. (2022) shows a modest improvement in the harmonic mean (HM), reflecting the benefit of
incorporating view-specific information for generating text features. Replacing CLS tokens with
patches to condition view-tailored text further enhances performance, demonstrating the importance
of leveraging fine-grained patch information. Finally, the addition of the consistency loss results
in the highest performance across all metrics, emphasizing the critical role of enforcing alignment
across view-specific text prompts to improve generalization.

Table 17: Performance comparison with the incremental application of text-level components.

Method Base Novel HM
PromptSRC 84.27 75.58 79.68
PromptSRC + View-tailored text (CLS token) 84.40 76.00 80.15
PromptSRC + View-tailored text (patches) 84.80 76.90 80.80
PromptSRC + View-tailored text (patches) + Consistency loss 85.07 77.41 81.05

F ABLATION FOR PREDICTION COMPONENTS:

The results in Table 18 demonstrate the impact of our prediction-level component design. Starting
from the baseline PromptSRC, adding TextAdapter yields a modest improvement in the harmonic
mean (HM), highlighting the benefit of adaptive text-driven adjustments for better predictions.
Introducing ConvProj further enhances performance, showcasing the importance of projection layers
in refining predictions through improved vision features. Finally, the inclusion of the consistency
loss results in the highest performance across all metrics, emphasizing its critical role in aligning
predictions generated from augmented and anchor features.
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Table 18: Performance comparison with the incremental application of prediction-level components.

Method Base Novel HM
PromptSRC 84.27 75.58 79.68
+ TextAdapter 84.30 76.00 80.12
+ ConvProj 84.85 76.80 80.72
+ Cross-view Consistency loss 85.07 77.41 81.05
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