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ABSTRACT

Unsupervised approaches to large language model (LLM) interpretability, such
as sparse autoencoders (SAEs), offer a way to decode LLM activations into inter-
pretable and, ideally, controllable concepts. On the one hand, these approaches
alleviate the need for supervision from concept labels, paired prompts, or explicit
causal models. On the other hand, without additional assumptions, SAEs are
not guaranteed to be identifiable. In practice, they may learn latent dimensions
that entangle multiple underlying concepts. If we use these dimensions to extract
vectors for steering specific LLM behaviours, this non-identifiability might re-
sult in interventions that inadvertently affect unrelated properties. In this paper,
we bring the question of identifiability to the forefront of LLM interpretability
research. Specifically, we introduce Sparse Shift Autoencoders (SSAEs) which
learn sparse representations of differences between embeddings rather than the
embeddings themselves. Crucially, we show that SSAEs are identifiable from
paired observations which differ in multiple unknown concepts, but not all. With
this key identifiability result, we show that we can steer single concepts with only
this weak form of supervision. Finally, we empirically demonstrate identifiable
concept recovery across multiple real-world language datasets by disentangling
activations from different LLMs.

1 INTRODUCTION

As increasingly powerful large language models (LLMs) are deployed and widely used, the need to
interpret and steer their behavior grows. For both interpretability and steering, we require techniques
to disentangle LLM activations into semantically meaningful, and ideally, manipulable concepts. A
large class of LLM interpretability methods rely on supervision from ground truth concepts (Koh
et al., 2020), paired prompts (Turner et al., 2024), target LLM completions (Subramani et al., 2022)
and abstract causal models of behavior (Geiger et al., 2024) to map activations to concepts. For
example, using contrastive pairs of prompts that differ by a single concept, recent papers have found
vectors in activation space that encode sycophancy (Rimsky et al., 2024), truthfulness (Park et al.,
2025), and refusal (Arditi et al., 2024). However, acquiring such supervision is costly, motivating
unsupervised methods for concept learning.

Sparse autoencoders (SAEs) have emerged as a popular approach to unsupervised LLM interpretabil-
ity (Cunningham et al., 2023). Taking inspiration from sparse dictionary learning, SAEs encode
LLM activations in a sparse and overcomplete representation. While we might hope that there is a
one-to-one correspondence between the learned dimensions and interpretable concepts, (Wu et al.,
2025; Menon et al., 2025) show empirical evidence that SAEs significantly underperform supervised
methods, suggesting that they may not be identifiable: that is, they could learn latent dimensions that
entangle interpretable concepts. Consequently, if we use SAEs to extract activation directions to steer
LLM behavior, non-identifiability could result in changes to unrelated properties.

In this paper, we propose Sparse Shift Autoencoders (SSAEs), models for provably recovering
steering vectors without the need for concept labels, contrastive pairs and other supervision signals
about concepts. Crucially, SSAEs learn from sparse multi-concept shifts: paired samples in which
multiple unknown concepts differ, but not all of them. Such samples are cheap to obtain, for example,
by pairing sentences from Wikipedia articles, or by using LLMs to synthetically generate contrastive
texts. Briefly, an SSAE maps embedding differences between samples in a pair to a latent space
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that reflects the concept changes and uses a linear decoding function to reconstruct the difference
vector. This architecture reflects the linear representation hypothesis (Mikolov et al., 2013; Jiang
et al., 2024) in assuming that concepts are linearly encoded by LLMs. Crucially, we regularize
the latent representation to be sparse, meaning that each shift is modelled using as few concept
changes as necessary. We then leverage the results developed by Lachapelle et al. (2023) and Xu
et al. (2024) to prove that the proposed SSAE approach identifies some concepts, under suitable
assumptions on distribution that generated the data. We also show how this allow to extract extract
valid steering vectors, i.e. direction in the LLM representation that changes a single concept. We
study the SSAE empirically on challenging language datasets and models, finding many settings
where they outperform SAEs as well as other related steering methods that require supervision.

In sum, this work: 1) formalizes the problem of recovering interpretable concepts from sparse
multi-concept shifts, from the lens of identifiability; 2) proposes the SSAE to model these sparse
multi-concept shifts and establishes identifiability guarantees for these models based on sparsity
regularization; 3) using multiple real-world language datasets and LLMs, empirically verifies the
identifiability result and demonstrates the benefits of an identifiable model for accurately predicting
target steered embeddings.

2 PROBLEM FORMULATION

We observe texts x ∈ X ⊆ Rdx that are generated from underlying concept representations c ∈ C ⊆
Rdc through an unknown generative process g : C → X so that x = g(c). While we cannot observe
the concept representation c of an observation x, we have access to learned representations z = f(x),
where the function f : X → Z ⊆ Rdz maps observations x to dz-dimensional real vectors z ∈ Z ,
known as their embeddings. Throughout this paper, we consider the case where f(x) comes from
an autoregressive language model and is the embedding of the final token xT in the residual stream
after the final layer. We assume that the concepts c are encoded in the representations z through the
unknown composite function z = f(g(c)). We consider concept perturbations,

c̃ := c+ δc; δck = λek, (1)

where δc is called the concept shift vector, λ is the magnitude of the perturbation, and δck ̸= 0 for all
perturbed concepts k.

Main goal. We want to map unlabelled concept shifts δc to their corresponding vectors in the space
of LLM activations. (Refer to Apx. A.2 for a formal treatment of steering.).

Figure 1: SSAEs map multi-concept shifts in embedding
space to concept shifts, leveraging the latter’s sparsity,
thereby recovering steering vectors. The learnt steering vec-
tors are identified up to permutation and scaling.

The key challenge is that we only ob-
serve texts (x) and their embeddings
(z), and thus, we cannot directly learn
a mapping from concepts shifts δc to
LLM activation shifts. A naive un-
supervised approach is to fit an au-
toencoder to LLM embeddings z so
that for any input, we can encode it
in a latent space, implement the de-
sired concept shift δc in that space,
and decode it to obtain a perturbed
embedding z̃. However, unless the
autoencoder is guaranteed to encode
embeddings z in a latent space that
captures concepts, this naive approach
will result in perturbations z̃ that do
not reflect the desired concept shifts.
Unfortunately, unconstrained autoen-
coding objectives are non-identifiable
(Hyvärinen & Pajunen, 1999), and
sparse autoencoding objectives (Cun-
ningham et al., 2023) may not be able to invert embeddings to potentially billions of concepts. As
such, there is no guarantee that such approaches recover latent concepts from observed embeddings
z, posing a risk for steering.
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Key idea. We develop an identifiable autoencoding method called sparse shift encoders (SSAEs).
The key idea behind SSAEs are multi-concept shift data, illustrated in Figure 1. As an example,
consider two text snippets x : pretty pink round matte frame and x̃ : ugly grey
round metallic frame. Both x and x̃ seem to be encoded by 5 concepts each– a descriptive
adjective (pretty/ugly), colour (pink/grey), shape (round), texture (matte/metallic), and object (frame).
However, when we consider what has changed from x to x̃, it’s a smaller set of (3) concepts, and it is
also possible to imagine pairs which vary by just a single concept. An SSAE provably recovers these
inter-sample concept shifts by regularizing the inferred concept shifts δ̂c to be sparse.

3 SPARSE SHIFT AUTOENCODERS (SSAES)

We start by describing the data-generating process and the set of concepts learnable via inter-sample
differences, before proposing a method for learning steering vectors for these concepts. Following
Locatello et al. (2020b), we consider paired observations (x, x̃) assumed to be sampled from the
following generative process:

S ∼ p(S), (c, c̃) ∼ p(c, c̃ | S), (2)
x := g(c), x̃ := g(c̃) , (3)

where S ⊆ {1, . . . , dc} denotes the subset of concepts that vary between x and x̃. More precisely,
p(c, c̃ | S) is such that, with probability one, ck = c̃k for all k ̸∈ S. Crucially, across each pair
of observations, an unknown set of concepts changes. For what follows, it will be useful to define
V ⊆ {1, . . . , dc} to be the set of varying concepts:

V :=
⋃

S: p(S)>0
S . (4)

The set V thus contains the concepts that can change in a pair (x, x̃). Even though concepts outside
V are assumed to remain fixed within a pair (x, x̃), they can still vary across pairs. Without loss of
generality, assume that V := {1, . . . . , |V |}.

Next, we consider difference vectors δz := f(x̃) − f(x) = z̃ − z. These vectors capture how
underlying concept differences between a pair of inputs x and x̃ are represented in the space of LLM
embeddings. An important assumption made by (Rajendran et al., 2024; Park et al., 2023) helps us
relate these difference vectors to concept shifts:
Assumption 1 (Linear representation hypothesis (LRH)). The generative process g : C → X and the
learned encoding function f : X → Z are such that f ◦ g : C → Z is linear, implying there exists a
dz × dc real matrix A such that:

z = f(g(c)) = Ac . (5)

Put simply, the LRH says that the learned representation z linearly encodes concepts. Consequently,
difference vectors δz are also linearly related to concept shifts so that δz = Aδc. A long line of work
provides evidence for this hypothesis (c.f. Rumelhart & Abrahamson (1973); Hinton et al. (1986);
Mikolov et al. (2013); Ravfogel et al. (2020b)). More recently, theoretical work justifies why linear
properties could arise in these models (c.f. Jiang et al. (2024); Roeder et al. (2021); Marconato et al.
(2024)). Section 6 provides a full list of related work, while Apx. A.7 provides an explanation of the
equivalence between LRH’s different interpretations.

Sparse Shift Autoencoders (SSAEs) take as input the observed difference vectors δzV and model them
with an affine encoder r : Rdz → R|V | and an affine decoder q : R|V | → Rdz such that,

δ̂cV := r(δz) := We(δ
z − bd) + be ; (6)

δ̂z := q(δ̂cV ) := Wdδ̂
c
V + bd . (7)

The representation r(δz) predicts δcV , i.e., the concept shifts corresponding to δz , with δcV = (δci )i∈V

the subvector of δc corresponding to the index set V . That is, SSAEs map differences in embedding
space to their constituent concept shifts, focusing only on the varying concepts.

We train SSAEs to solve the following constrained problem:
(r̂, q̂) ∈ argmin

r,q
Ex,x̃

[
||δz − q(r(δz))||22

]
(8)

s.t. Ex,x̃||r(δz)||0 ≤ β , (9)
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where Eqn. (8) is the standard auto-encoding loss that encourages good reconstruction and Eqn. (9)
is a regularizer that encourages the predicted concept shift vector δ̂cV := r̂(δz) to be sparse. Since
the ℓ0-norm is non-differentiable, in practice we replace it by an ℓ1-norm leading to the following
relaxed sparsity constraint:

Ex,x̃||r(δz)||1 ≤ β . (10)

We then approximately solve this constrained problem by finding a saddle point of its Lagrangian
using the ExtraAdam algorithm (Gidel et al., 2020) as implemented by Gallego-Posada & Ramirez
(2022). Apx. B.1.2 provides a detailed discussion of the benefits of constraints as opposed to penalty
to regularize objectives. Appropriate normalization is crucial for enforcing sparsity using the ℓ1-norm.
Further details, including other implementation aspects, are discussed in Section 5 and Apx. B.

Identifiability of SSAEs. In Section 4 we will show that, under suitable assumptions on the data-
generating process and a suitable choice of β, the ℓ0-regularized problem of Eqns. (8) and (9) is
guaranteed to learn a (r̂, q̂) such that r̂(δz) = PDδcV where D is an invertible diagonal matrix, P is a
permutation matrix. In other words, the learned representation r̂(δz) can be related to the ground-truth
concept shift vector δcV (considering only the varying concepts V ) via a permutation-scaling matrix.
We will later see how sparsity regularization is crucial for this to happen. Although our theoretical
analysis assumes the learned representation has size |V |, we find in Apx. B.4 that, in practice, our
method maintains a reasonable degree of identifiability when the representation size is larger than |V |.
Linking identifiability back to steering, we conclude by showing how the identifiability guarantee
implies that q̂(ek) ∈ Rdz are valid steering vectors for concepts in V .

4 IDENTIFIABILITY ANALYSIS

This section explains why we expect the representation learned in Eqn. (8) to identify the ground-truth
concept shift vector δcV up to permutation and rescaling. To do so, we first demonstrate that, under
suitable assumptions, the learned representation r̂(δz) identifies the ground-truth concept shift δcV up
to an invertible linear transformation when we do not use sparsity regularization. Second, we show
that by adding sparsity regularization, the learned representation identifies δcV up to permutation and
element-wise rescaling.

Recall that, since we expect dc ≫ dz , we cannot assume A to be injective; the same issue that arises
when trying to encode c from z. Fortunately, we do not need to make this assumption, thanks to the
following decomposition. Let V̄ := [dc] \ V be the complement of V . Then:

δz = Aδc = AV δcV +AV δ
c
V

= AV δcV , (11)

where we used the fact that δc
V̄
= 0, by definition of V . By considering difference vectors, we focus

on disentangling only the varying concepts, the linear entanglement of which the submatrix AV

captures. Since |V | ≤ dc, we can make the assumption that mixing function AV is injective.

Assumption 2. The matrix AV ∈ Rdz×|V | is injective.

Note that this implies that dz ≥ |V |, i.e., z has at least as many dimensions as there are varying
concepts. This is feasible given that dz is typically around 103 (e.g., in LLMs), supporting a large set
of varying concepts V .

To prove linear identifiability, we will need one more assumption. Let ∆c
V be the support of the

random vector δcV . We will require that this support is diverse enough so that its linear span is equal
to the whole space R|V |.

Assumption 3. span(∆c
V ) = R|V |.

With these assumptions, we can show linear identifiability by reusing proof strategies that are now
common in the literature on identifiable representation learning (Khemakhem et al., 2020a; Roeder
et al., 2021; Ahuja et al., 2022; Xu et al., 2024).
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Proposition 1 (Linear identifiability). Suppose (r̂, q̂) is a solution to the unconstrained problem of
Eqn. (8). Under Asm. 2, 3 and 5, there exists an invertible matrix L ∈ R|V |×|V | such that q̂ = AV L
and r̂(z) = L−1A+

V z for all z ∈ Im(AV ), where Im(AV ) is the image of AV .1

We prove Prop. 1 in Apx. A.4. The result follows naturally from the linear representation hypothesis
in Asm. 5, but requires Asm. 2 and 3 for a complete proof. Rajendran et al. (2024) prove a similar
result, showing that linear subspaces of representations that represent concepts are linearly identified
from concept-conditional observations.

Identifiability up to permutation and rescaling. To go from identifiability up to linear transforma-
tion to identifiability up to permutation and rescaling, we need to make further assumptions. Let S
be the support of the distribution p(S), i.e., S := {S ⊆ [dc] | p(S) > 0}. The following is based on
Lachapelle et al. (2023) and Xu et al. (2024).
Assumption 4 (Sufficient diversity of multi-concept shifts). The following two conditions hold.

1. (Sufficient support variability): For every varying concept k ∈ V , we have⋃
S∈S|k/∈S

S = V \ {k} ∀k ∈ V ; (12)

2. (Distribution Pδc
S |S continuous): For all S ∈ S, the conditional distribution Pδc

S |S can be
described using a probability density with respect to the Lebesgue measure on R|S|.

Without the first assumption, two concepts k, j ∈ V might always change together, meaning there is
no data pair in which only one of them varies independently. Intuitively, this would prevent the model
from disentangling them effectively. Importantly, our assumption accommodates a broad range of
scenarios. E.g., it is not necessarily violated even in an extreme case where |V | − 1 concepts change
in each pair. Moreover, it allows for the presence of statistically dependent concepts. The second
criterion ensures the distribution Pδc

S |S=s does not concentrate mass on a subset of R|S| of Lebesgue
measure zero. In Apx. A.6, we provide examples of distributions that meet or fail the assumption.2

We are now ready to state the main identifiability result of this section. We note that its proof relies to
a large extent on an existing result by Lachapelle et al. (2023).
Proposition 2 (Identifiability up to permutation). Suppose (r̂, q̂) is a solution to the constrained
problem of Eqns. (8) and (9) with β = E||δcV ||0. Under Asm. 2 to 4 and 5, there exists an invertible
diagonal matrix and a permutation matrix D,P ∈ R|V |×|V | such that q̂ = AV DP and r̂(z) =
P⊤D−1A+

V z for all z ∈ Im(AV ), where Im(AV ) is the image of AV .

Proof sketch. We outline the proof here and defer the full details to Apx. A.5. We first show that all
optimal solutions of the constrained problem must reach a reconstruction loss of zero. This means that
optimal solutions to the constrained problem are also optimal for the unconstrained one. Thus, these
solutions must identify AV up to linear transformation, by Prop. 1. We can then rewrite the constraint
as E||L−1δcV ||0 ≤ β = E||δcV ||0. Here, we can reuse an argument initially proposed by Lachapelle
et al. (2023) to leverage this inequality to conclude that L−1 must be a permutation-scaling matrix.
For completeness, we present this argument in Lemma 4. It shows that, applying the matrix L−1 to
δcV always strictly increases its expected sparsity, unless L−1 is a permutation-scaling matrix. Thus,
to satisfy the inequality, L must be a permutation-scaling matrix.

Extracting steering vectors. Under Asm. 2 to 4 and 5, Prop. 2 shows that q̂ = AV DP. From this
identifiability result, we can see that,

z+ q̂(ek) = Ac+Dπ(k),π(k)Aeπ(k) = A(c+ λeπ(k)) = f(g(c+ λeπ(k))) = f(g(c̃π(k),λ)) ,

where λ := Dπ(k),π(k). In other words, when we add the decoded basis vector ek to any embedding
z, i.e., add the k-column of the linear decoding matrix, the resulting vector represents f(g(c̃π(k),λ)),

1We might not have r̂(z) = LA+
V z for z ̸∈ Im(AV ), since the behavior of r̂ is unconstrained by the

objective outside the support of δz , i.e., outside Im(AV ).
2See Lachapelle et al. (2023) for a strictly weaker but more technical assumption that is also sufficient for

Prop. 2.
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the embedding representation of the π(k)-th concept steered. Thus, identifiability directly leads to
accurate unsupervised steering. A practitioner can use this result to try each steering vector q(ek) in
turn, generate tokens with an LLM, and directly interpret the changes to interpret the concept that
was steered. By contrast, in Apx. A.3, we show that linear identifiability is insufficient to recover
steering vectors up to permutation without the need for further labelled examples.

5 EMPIRICAL STUDIES

Using multiple language datasets and LLMs, our empirical studies proceed in two stages. First,
we validate the core theoretical claim: do SSAEs recover concepts up to simple permutation and
scaling transformations, and do they their decoder columns align with intended steering direc-
tions? Second, we turn to challenging language datasets where the target concepts are complex
functions of prompts. Here, we evaluate whether SSAEs can identify steerable concepts across
a range of complex real-world datasets including Bias in Bios (De-Arteaga et al., 2019), as well
as refusal and sycophancy (Panickssery et al., 2024). We also include a case study on mitigat-
ing gender bias in text generation using Bias in Bios. We find that compared to SAEs (He et al.,
2024; Anil et al., 2024; Biderman et al., 2023), SSAEs result in more accurate steering predictions.

Figure 2: SSAEs achieve earlier and stronger transitions
to female indicators in generated text (by strength 1.0),
while GemmaScope2B requires stronger interventions.

Implementation details. We imple-
ment the autoencoder described in
Eqn. (7) with an encoding dimension
of |V | when it is assumed that the
number of concepts to be discovered
in data is known, or K ≤ dz in the
more general case. As mentioned in
Section 4, key to identifying steering
vectors is the sparsity constraint from
Eqn. (10). It is enforced using the
cooper library (Gallego-Posada &
Ramirez, 2022). For details on imple-
mentation, refer to Apx. B.

Experimental setup. We use text-
based paired observations (x, x̃), to
extract the final-layer token embed-
ding (which is linearly identifiable fol-

lowing Roeder et al. (2021)) from one of Llama-3.1-8B (Llama Team et al., 2024), or Gemma2-2B
(Anil et al., 2024), or Pythia-70M (Biderman et al., 2023) and use the embedding of the last token as
the representation, following Ma et al. (2023), to obtain sentence representations (f(x), f(x̃)). We
focus on evaluating LLM embeddings on language datasets here. In Apx. B.7, we validate the same
conclusions with synthetic experiments.

Baselines. To validate our theory, we consider four different baselines: 1) SAEs trained on large-
scale data ( LlamaScope (He et al., 2024), GemmaScope (Lieberum et al., 2024), or PythiaSAE
(EleutherAI, 2023) depending on the LLM the activations are obtained from), 2) an affine Autoencoder
(aff) with an identical architecture as SSAEs but with no sparsity regularisation, 3) PCA on the
same multi-concept difference vectors that SSAEs use, obtained from the last hidden layer (Liu et al.,
2024), and 4) Mean Difference (MD) vectors that use paired observations differing in a single concept
to compute 1

n

∑n
i=1(z̃

(i)
k − z

(i)
k ) = 1

n

∑n
i=1 λ

(i)Aek = λ̄Aek as the steering vector for concept
k, which are used in contrastive activation addition methods (Panickssery et al., 2024) applied to
different layers of an LLM. We denote the concept-steered embeddings produced by each method
as z̃SSAE (SSAE), z̃SAE for the relevant SAE, z̃PCA (PCA), z̃aff (aff), and z̃MD (MD). To compare
discovery of meaningful concepts on complex real-world datasets, we compare against SAEs.

Evaluation criteria. We measure the degree of identifiability via the Mean Correlation Coefficient
(MCC) (Hyvarinen & Morioka, 2016; Khemakhem et al., 2020b), which computes the highest average
correlation between each learned latent dimension and the true latent dimension and equals 1.0 when
they are aligned perfectly up to permutation and scaling. Further, we evaluate the effect of applying a
steering vector in embedding space. For this, we consider held-out single concept shift data (x, x̃k)
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and evaluate how well steering vectors learnt using multi-concept shifts steer f(x) towards f(x̃k).
Then we measure the accuracy of steering by comparing ˆ̃zk := f(x) + q̂(eπ(k)) and f(x̃k) using
cosine similarity as a measure of semantic similarity by searching over the columns of the decoding
matrix Wd. Refer to Apx. B.2 and Apx. B.3 for details.

Figure 3: A higher MCC value of the estimated decoder
is associated with a greater cosine similarity. Embeddings
steered with vectors from a more disentangled decoder align
more closely to target embeddings.

Validation of Theoretical Claims.
We consider simple semi-synthetic
datasets with single words where we
can assume the number of underlying
concept variations in pairs (x, x̃) with
a diverse range of concept variations.
Datasets are named as: identifier of
the dataset indicating why we con-
sider it, followed by |V | and max(|S|):
IDENTIFIER(|V |, max|S|). Details on
datasets can be found in Apx. B.1.3.
Briefly, LANG(1, 1) (e.g., eng →
french) and GENDER(1, 1) (e.g., mas-
culine → feminine vary a single con-
cept between x and x̃. To stress-test
the viability of our assumptions, we
also consider the the multiple-choice
track of TruthfulQA (Lin et al., 2022),
creating (x, x̃) pairs by assigning x to
be the question paired with a wrong
answer that mimics human falsehoods,
and x̃ to be a question paired with the
correct answer to capture the variation
of the concept truthfulness from false → true. We include our findings for the activations stemming
from Llama-3.1-8B here.

Table 1: The mean MCC of the estimated
decoder is close to 1 across all datasets con-
sidering observations (f(x), f(x̃)), even for
correlated concepts in CORR(2, 1).

SSAE aff

LANG(1, 1) 0.995± 0.001 0.985± 0.004
GENDER(1, 1) 0.993± 0.000 0.961± 0.000
BINARY(2, 2) 0.991± 0.001 0.936± 0.000
CORR(2, 1) 0.991± 0.001 0.928± 0.077

TruthfulQA 0.952± 0.006 0.885± 0.006

Table 2: Sparsity regularisation is crucial to
identifying steering vectors, as demonstrated
by using pairs of further entangled observa-
tions (Lf(x),Lf(x̃)).

SSAE aff

LANG(1, 1) 0.990± 0.000 0.876± 0.007
GENDER(1, 1) 0.991± 0.000 0.884± 0.005
BINARY(2, 2) 0.990± 0.001 0.796± 0.000
CORR(2, 1) 0.990± 0.001 0.630± 0.010

TruthfulQA 0.932± 0.008 0.751± 0.012

How well does SSAE identify steering vectors? For this first evaluation, we focus on the importance
of sparsity regularisation for identifiability. We compare SSAE to the aff baseline that omits sparsity
regularization, expecting that this baseline should result in lower MCC values. Since identifiability
implies that learned decoders across such runs should be related by permutation-scaling transforma-
tions (Rolinek et al., 2019; Duan et al., 2019), we report the MCC between pairs of learned decoders
as we train them using different random initializations, calling this variant of the metric MCCD. We
use 10 decoder pairs from 5 seeds for selected model hyperparameters. Table 1 shows that SSAE
achieves consistently high MCC values, empirically corroborating Prop. 2, assuming a known |V |. As
a sensitivity analysis, we further entangle the LLM embeddings by applying a dense linear invertible
transformation L to the embeddings to generate (Lf(x),Lf(x̃)). As expected, Section 5 demon-
strates that this widens the gap between SSAE and the affine baseline. The worsening performance of
aff after the entanglement is applied suggests that LLM representations might already somewhat
disentangle some concepts or encode them through sparse or simple transformations. Next, we
evaluate whether the benefits of a higher MCCD translate to performance improvements on steering
embeddings to be more similar to those of the target concept.
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Does identifiability translate to better steering? We hold out pairs (x, x̃k)∀k ∈ V , each varying
by a single concept, and compare the cosine similarity between the steered embeddings and target
embeddings. Figure 3 illustrates that SSAE’s higher MCCD performance generally translates to
more accurate steering, with significant advantages over all related methods in the more challenging
BINARY(2, 2) and CORR(2, 1) settings where multiple or correlated concepts change. Figure 3 also
reveals that even slight differences in MCCD values can translate into pronounced variations in
steering accuracy. Next, we evaluate out-of-distribution (OOD) steering accuracy, based on the
hypothesis that steering vectors that disentangle a single concept should transfer to different domains.

Figure 4: Embeddings steered using SSAE show
higher OOD generalisation performance. SAEs
(LlamaScope) generalise worse than other sim-
pler baselines.

For this evaluation, we learn a steering vector
from eng → french using the BINARY(2, 2) or
CORR(2, 1) dataset, where language changes are
shown for occupation-related works, and use
the steering vector on the LANG(1, 1) dataset
consisting of words related to household objects.
Figure 4 shows that the steering vectors learned
by SSAEs transfer effectively to OOD datasets
while SAEs do not perform better than simple
baselines, further substantiating the importance
of identifiability for unsupervised steering.

The identifiability theory requires assuming that
the encoder dimension is known (equal to |V |),
and relying on the last layer’s embeddings for
steering since the LRH – a key component of
the identifiability results – is better theoretically
motivated (c.f. (Marconato et al., 2024)) at the

last layer. To test sensitivity to these assumptions, we conducted further studies training SSAEs on
different layers of an LLM (Apx. B.5), and comparing values of MCCD versus steering accuracy as
we increase the encoding dimension size past |V |, finding that for encoding dimensions > |V |, there
is an increase in steering accuracy even though MCCD values drop substantially (see Apx. B.4 for
details). Following these promising findings, in the next section, we conduct experiments with the
maximum encoding dimension (equal to the embedding size) on challenging language datasets.

Real-World Steering. To demonstrate the utility of SSAEs in realistic settings, we consider three
well-studied language datasets that contain more abstract concepts: (i) LLM sycophancy and (ii)
LLM refusal benchmarks (Panickssery et al., 2024; Perez et al., 2022) consisting of multiple-choice
questions with two answers demonstrating either the behaviour of interest or its opposite, and (iii)
Bias in Bios dataset (De-Arteaga et al., 2019), consisting of biographies that differ by occupation
and gender. We focus on Pythia-70M (Biderman et al., 2023) and Gemma2-2B (Anil et al., 2024)
embeddings as inputs to train SSAEs. A key difference in these evaluations is that we train SSAEs
with the maximum encoding size, giving the model more flexibility to recover concepts.

Figure 5: MCCC values between learned activations and concept labels indicate that SSAEs can
outperform SAEs in identifying ground-truth concepts in the dataset

MCC and steering accuracy. As before, we study steering accuracy by predicting target embeddings
based on held-out contrastive prompts that vary by a single concept, e.g., refusal behavior. Since
these datasets contain labels for the target concepts, we report the MCCC between the predicted
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SSAE encodings and true concept labels. SSAEs demonstrate the benefits of identifiability, yielding
systematic gains across model scales and concept domains, as seen in Figure 5.

Text generation and steering. We study how SSAEs can be used to steer Gemma-2B’s text generation
using the Bias in Bios dataset, since we can effectively aggregate and summarize the effects of steering
across many examples by simply counting gender pronouns to categorise them as either male or
female dominated, or as neutral where counts are equal or ambiguous. Figure 2 shows that SSAEs
steering vectors lead to more effective generation of female pronouns than those of GemmaScope.

6 RELATED WORK

Linear representation hypothesis. This paper builds on the linear representation hypothesis that
language models encode concepts linearly. Several papers provide empirical evidence for this
hypothesis (Mikolov et al., 2013; Gittens et al., 2017; Ethayarajh et al., 2019; Allen & Hospedales,
2019; Seonwoo et al., 2019; Burns et al., 2024; Li et al., 2024; Moschella et al., 2023; Tigges
et al., 2023; Nissim et al., 2020; Ravfogel et al., 2020a; Park et al., 2023; 2024). Recent work also
provides theoretical justification for why linear properties might consistently emerge across models
that perform next-token prediction (Roeder et al., 2021; Jiang et al., 2024; Marconato et al., 2024).

Interpretability of LLMs. This paper contributes to the literature on interpretability and steering
of LLMs. Much of the work on finding concepts in LLM representations for steering relies on
supervision, either from paired observations with a single-concept shift (Panickssery et al., 2024;
Turner et al., 2024; Rimsky et al., 2024; Li et al., 2024) or from examples of target LLM completions
to prompts (Subramani et al., 2022). This prior work also focuses on applying the same steering
vector to all examples, implicitly relying on the linear representation hypothesis as justification. In
contrast, we make the assumption precise, and show how it leads to steering vectors. This paper
also departs from supervised learning and focuses on learning with limited supervision. In this way,
we propose a method that is similar to sparse autoencoders (SAEs) (Templeton et al., 2024; Engels
et al., 2024; Cunningham et al., 2023; Rajamanoharan et al., 2024; Gao et al., 2024). In contrast, our
proposed method fits concept shifts, and provably identifies steering vectors while SAEs may not
enjoy identifiability guarantees.

Causal representation learning. Finally, this paper builds on causal representation learning results
that leverage sparsity constraints. Ahuja et al. (2022), Locatello et al. (2020a), and Brehmer et al.
(2022) consider sparse latent perturbations and paired observations. In contrast, we focus on learning
from multi-concept shifts. Lachapelle et al. (2022) focus on sparse interventions and sparse transitions
in temporal settings, while Lachapelle et al. (2023), Layne et al. (2024), Xu et al. (2024), and
Fumero et al. (2023) leverage sparse dependencies between latents and tasks. In this paper, we
adapt these assumptions and technical results for a novel setting: discovering steering vectors from
LLM representations based on concept shift data. In work that is closest to ours, Rajendran et al.
(2024) recover linear subspaces that capture concepts up to linear transformations using concept-
conditional datasets, and Goyal et al. (2025) develop an identifiable contrastive learning approach to
discover behavior-mediating concepts, but cannot extract steering vectors. In contrast, we focus on
multi-concept shifts and show how these lead to identifiable steering vectors.

7 CONCLUSION

We propose Sparse Shift Autoencoders (SSAEs) for discovering accurate steering vectors from multi-
concept paired observations as an alternative to both SAEs, and approaches relying on supervised
data. Key to this result are the identifiability guarantees that the SSAE enjoys as a consequence of
considering sparse concept shifts. We study the SSAE empirically on several real language tasks, and
find evidence that the method facilitates accurate steering learned via limited supervision. However,
we stress that these experiments are intended to validate the identifiability results in Section 4
and their implications for accurate steering. Although we include effects of steering on generated
text (Figure 2), to fully understand the impacts of the SSAE on steering research, especially LLM
alignment, more evaluation is needed on embeddings from more complex datasets, and on more
challenging tasks (e.g., MTEB (Muennighoff et al., 2023)). Rigorous large-scale evaluations on
expansive real-world benchmarks are a promising avenue for future work.
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..we understand the world by studying
change, not by studying things..

As quoted in the Order of Time,
Anaximander
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A THEORY

A.1 NOTATION AND GLOSSARY
General notation

k integer

[k] set of all integers between 1 and k, inclusively

S ⊆ [k] set

|S| cardinality of a set

S\S′ set subtraction (set of elements of S that are not in S′)

λ scalar

x vector and vector-valued random variables

xk element k of a random vector x

xS subvector with element xi for i ∈ S

A matrix

Ai,j element i, j of matrix A

A:,i column i of matrix A

AS matrix with columns A:,j for j ∈ S

A+ pseudo-inverse of a matrix A

ek ∈ Rn standard basis vector of the form [0, . . . , 0, 1, 0, . . . , 0]
with a 1 at position k

f : X → Z function f with domain X and codomain Z
f ◦ g composition of the functions f and g

||x||p ℓp norm of x

∂y

∂x
partial derivative of y with respect to x

∇xf(x) ∈ Rm×n Jacobian matrix of f : Rn → Rm

∇2
xf(x) ∈ Rn×n Hessian matrix of f : Rn → R

P probability measure/distribution

Ex[f(x)] expectation of f(x) with respect to x
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Glossary

x ∈ Rdx observation

z ∈ Rdz pretrained representation

c ∈ Rdc ground-truth concept vector

c̃k,λ ground-truth concept vector after varying concept k by λ
from c

x̃k,λ observation corresponding to c̃k,λ

z̃k,λ pretrained representation corresponding to c̃k,λ

X ⊆ Rdx support of observations

Z ⊆ Rdz support of pretrained representations

C ⊆ Rdc support of ground-truth concept vectors

S ⊆ [dc] subset of varying concepts in a given pair (x, x̃)

V ⊆ [dc] subset of concepts allowed to vary between x and x̃

δc concept shift vector

δ̂c estimated concept shift vector

δz pretrained representation shift vector

g : C → X map from concept representations to observations

f : X → Z map from observations to learned representations

r : Z → C encoding function

r̂ : C → Z estimated encoding function

q : C → Z decoding function

q̂ : C → Z estimated decoding function

ϕk,λ : Z → Z steering function

ϕ̂k,λ : Z → Z estimated steering function

A linear map between concept representations and learnt
representations

A.2 STEERING FUNCTIONS

From Figure 6, for any concept k, the steering function ϕk,λ mirrors the transformations between
concepts described as c̃k,λ := ψk,λ(c) in the learnt representation space through functions defined
as:

Definition 3. (Steering function) Fix a target concept k and λ ∈ R. A steering function ϕk,λ :
Z → Z is a function such that for all c ∈ C, ϕk,λ(f(g(c))) = f(g(ψk,λ(c))).

According to Defn. 3, a steering function 3 maps each representation z = f(x) = f(g(c) to its
perturbed analog z̃λ,k := f(x̃λ,k), where x̃k,λ := g(c̃k,λ) is the corresponding perturbed observation.
Thus, if the k-th concept is language, a steering function maps z = f(x), the embedding of a sentence
x, to z̃k,λ = f(x̃k,λ), the embedding of the same sentence written in a different language. The form
of the steering function depends on the form of the transformations ψk,λ in concept space C. We
assume transformations ψk,λ to be additive perturbations:

3Steering functions are not guaranteed to exist. However, if f and g are injective, we have ϕλ,k(z) =
f(g(g−1(f−1(z)) + λek)).
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Figure 6: A steering function ϕk,λ is s.t. the above diagram commutes, i.e., ϕk,λ(f(g(c))) =
f(g(ψk,λ(c)))∀c. (see Defn. 3).

To model the additive changes in c, one can use an analogous additive perturbation map in z s.t.
z̃k,λ := ϕk,λ(z) can be written as z̃k,λ := z+ δzk,λ, where δzk,λ might be an arbitrarily dense vector
in Z .

In practice, a steering function ϕλ,k can be learned via supervised learning given a dataset comprising
of carefully designed paired observations (x, x̃k), in which a single concept changes between x and
x̃k (Shen et al., 2017; Turner et al., 2024; Rimsky et al., 2024). However, such a dataset might be
difficult to acquire. This raises the following question, at the heart of our contribution:

How can we learn a steering function ϕk,λ with a dataset of paired observations (x, x̃) in which
multiple concepts vary?

Thus, unsupervised approaches such as sparse autoencoders (SAEs) (Cunningham et al., 2023) are
often employed towards steering distinct concepts. In this paper, we develop sufficient desiderata to
show how identifiability leads to better steering performance.

A.3 LINEAR IDENTIFIABILITY IS INSUFFICIENT FOR STEERING.

In Section 4 we showed how identifiability up to permutation and scaling leads to distinct steering
vectors for individual concepts. Here, we show that the same strategy fails when concept shifts are
only linearly identified, i.e., q̂ := AV L. In this case, we see that

q̂(ek) = AV Lek =

|V |∑
j=1

Lj,kAej = A

|V |∑
j=1

Lj,kej ,

which itself implies that

z+ q̂(e) = Ac+A
∑|V |

j=1
Lj,kej = A(c+

∑|V |

j=1
Lj,kej) = f(g(c+

∑|V |

j=1
Lj,kej)) .

That is, each learned steering vector q̂(ek) can potentially change every concept in V . To recover the
steering vectors, we need to learn L−1, which requires paired samples (z̃j,λ, z) that vary in a single
concept for each concept j (Rajendran et al., 2024). This highlights the importance of enforcing
sparsity, as it is the key element allowing us to go from q̂ := AV L (Prop. 1) to q̂ := AV DP (Prop. 2).

A potential advantage of linearly identifying steering vectors, however, is that learning the linear
function L−1 may require fewer samples than learning a potentially nonlinear steering function
(Defn. 3) from counterfactual samples.
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A.4 PROOF OF PROP. 1 (LINEAR IDENTIFIABILITY)

Proposition 1 (Linear identifiability). Suppose (r̂, q̂) is a solution to the unconstrained problem of
Eqn. (8). Under Asm. 2, 3 and 5, there exists an invertible matrix L ∈ R|V |×|V | such that q̂ = AV L
and r̂(z) = L−1A+

V z for all z ∈ Im(AV ), where Im(AV ) is the image of AV .4

Proof. We note that the solution q∗ := AV and r∗ := A+
V minimizes the loss since

Ex,x̃||δz − q∗(r∗(δz))||22 = Ex,x̃||δz −AV A
+
V δ

z||22 (13)

= Ec,c̃||AV δ
c
V −AV (A

+
V AV )δ

c
V ||22 (14)

= Ec,c̃||AV δ
c
V −AV δ

c
V ||22 (15)

= 0 , (16)

where we used the fact that AV is injective and thus A+
V AV = I. This means all optimal solutions

must reach zero loss.

Now consider an arbitrary minimizer (r̂, q̂). Since it is a minimizer, it must reach zero loss, i.e.

Ex,x̃||δz − q̂(r̂(δz))||22 = 0 (17)

Ec,c̃||AV δ
c
V − q̂(r̂(AV δ

c
V ))||22 = 0 (18)

This means we must have

AV δ
c
V = q̂(r̂(AV δ

c
V )), almost everywhere w.r.t. p(δcV ). (19)

Because all functions both on the left and the right hand side are continuous, the equality must hold
on the support of p(δcV ), which we denote by ∆c

V . Moreover, since r̂ and q̂ are linear, they can be
represented as matrices, namely R ∈ R|V |×dz and Q ∈ Rdz×|V |. We can thus rewrite Eqn. (19) as

AV δ
c
V = QRAV δ

c
V , (20)

which holds for all δcV ∈ ∆c
V . By Asm. 3, we know there exists a set of |V | linearly independent

vectors in ∆c
V . Construct a matrix C ∈ R|V |×|V | whose columns are these linearly independent

vectors. Note that C is invertible, by construction.

Since this Eqn. (20) holds for all δcV ∈ ∆c
V , we can write

AV C = QRAV C (21)
AV = QRAV , (22)

where we right-multiplied by C−1 on both sides. Since AV is injective (Asm. 2), we must have that
RAV is injective as well. But since RAV is a square matrix, injectivity implies invertibility. Let us
define L := (RAV )

−1. We thus have

AV = QL−1 (23)
q̂ = Q = AV L , (24)

which proves the first part of the statement.

Now, we show that, for all z ∈ Im(AV ), Rz = LA+
V z. Take some z ∈ Im(AV ). Because this point

is in the image of AV , there must exists a point c ∈ R|V | such that z = AV c. Now we evaluate

r̂(z) = Rz = RAV c (25)

= L−1c (26)

= L−1A+
V AV c (27)

= L−1A+
V z , (28)

where we used the fact RAV = L−1 in Eqn. (26) and the fact that A+
V AV = I in Eqn. (27). This

concludes the proof.
4We might not have r̂(z) = LA+

V z for z ̸∈ Im(AV ), since the behavior of r̂ is unconstrained by the
objective outside the support of δz , i.e., outside Im(AV ).
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A.5 PROOF OF PROP. 2 (PERMUTATION IDENTIFIABILITY)

The proof is heavily based on Lachapelle et al. (2023) and Xu et al. (2024).
Proposition 2 (Identifiability up to permutation). Suppose (r̂, q̂) is a solution to the constrained
problem of Eqns. (8) and (9) with β = E||δcV ||0. Under Asm. 2 to 4 and 5, there exists an invertible
diagonal matrix and a permutation matrix D,P ∈ R|V |×|V | such that q̂ = AV DP and r̂(z) =
P⊤D−1A+

V z for all z ∈ Im(AV ), where Im(AV ) is the image of AV .

Proof. Recall that, in the proof of Prop. 1, we showed that the solution q∗ := AV and r∗ := A+
V

yields zero reconstruction loss, i.e.,

Ex,x̃||δz − q∗(r∗(δz))||22 = 0 . (29)

It turns out, this solution also satisfies the constraint E||r(δz)||0 ≤ β := E||δcV ||0 since

E||r∗(δz)||0 = E||A+
V (AV δ

c
V )||0 = E||δcV ||0 = β , (30)

where we used the fact that δz = AV δ
c
V and A+

V AV = I, since AV is injective. This means that all
optimal solutions to the constrained problem of Eqns. (8) and (9) with β := E||δcV ||0 must reach zero
reconstruction loss.

Let (r̂, q̂) be an arbitrary solution to the constrained problem. By the above argument, this solution
must reach zero loss. Thus, by the exact same argument as in Prop. 1, there must exist an invertible
matrix L ∈ R|V |×|V | such that

q̂ := AV L and r̂(z) := L−1A+
V z, for all z ∈ Im(AV ) . (31)

Since r̂ is optimal it must satisfy the constraint, which we rewrite as

E||r̂(δz)||0 ≤ E||δcV ||0
E||r̂(AV δ

c
V )||0 ≤ E||δcV ||0

E||L−1A+
V (AV δ

c
V )||0 ≤ E||δcV ||0

E||L−1δcV ||0 ≤ E||δcV ||0 , (32)

where we used the fact that r̂ restricted to the image of AV is equal to L−1A+
V when going from the

second to the third line.

At this stage, we can use the same argument as Lachapelle et al. (2023) to conclude that L is a
permutation-scaling matrix. For completeness, we present that result into Lemma 4 and its proof
below. One can directly apply this lemma, thanks to Asm. 4 and the fact that sets of the form
{δcS ∈ R|V | | a⊤δcS = 0} with a ̸= 0 are proper linear subspaces of R|V | and thus have zero
Lebesgue measure, and thus

Pδc
S |S{δcS ∈ R|V | | a⊤δcS = 0} = 0 .

This concludes the proof.

The proof of the following lemma is taken directly from Lachapelle et al. (2023) (modulo minor
changes in notation). The original work used this argument inside a longer proof and did not
encapsulate this result into a modular lemma. We thus believe it is useful to restate the result here as
a lemma containing only the piece of the argument we need. We also include the proof of Lachapelle
et al. (2023) for completeness. Note that Xu et al. (2024) also reused this result to prove identifiability
up to permutation and scaling.
Lemma 4 (Lachapelle et al. (2023)). Let L ∈ Rm×m be an invertible matrix and let x be an m-
dimensional random vector following some distribution Px. Define the set S := {j ∈ [m] | xj ̸= 0},
which is random (because x is random) with probability mass function given by p(S). Let S := {S ⊆
[m] | p(S) > 0}, i.e. it is the support of p(S). Assume that

1. For all j ∈ [m], we have
⋃

S∈S|j /∈S S = [m] \ {j}; and

2. For all S ∈ S, the conditional distribution PxS |S is such that, for all nonzero a ∈ R|S|,
PxS |S{xS | a⊤xS = 0} = 0.
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Under these assumptions, if E||Lx||0 ≤ E||x||0, then L is a permutation-scaling matrix, i.e. there
exists a diagonal matrix D and a permutation matrix P such that L = DP

Proof. We start by rewriting the l.h.s. of E||Lx||0 ≤ E||x||0 as

E ∥x∥0 = Ep(S)E[
m∑
j=1

1(xj ̸= 0) | S] (33)

= Ep(S)

m∑
j=1

E[1(xj ̸= 0) | S] (34)

= Ep(S)

m∑
j=1

Px|S{x ∈ Rm | xj ̸= 0} (35)

= Ep(S)

m∑
j=1

1(j ∈ S) , (36)

where the last step follows from the definition of S.

Moreover, we rewrite E ∥Lx∥0 as

E ∥Lx∥0 = Ep(S)E[
m∑
j=1

1(Lj,:x ̸= 0) | S] (37)

= Ep(S)

m∑
j=1

E[1(Lj,:x ̸= 0) | S] (38)

= Ep(S)

m∑
j=1

E[1(Lj,SxS ̸= 0) | S] (39)

= Ep(S)

m∑
j=1

Px|S{x ∈ Rm | Lj,SxS ̸= 0} . (40)

Notice that

Px|S{x ∈ Rm | Lj,SxS ̸= 0} = 1− Px|S{x ∈ Rm | Lj,SxS = 0} . (41)

Define Nj be the support of Lj,:, i.e., Nj := {i ∈ [m] | Lj,i ̸= 0}.

When S ∩Nj = ∅, we have that LS,j = 0 and thus

Px|S{x ∈ Rm | Lj,SxS = 0} = 1 .

When S ∩Nj ̸= ∅, we have that Lj,S ̸= 0, and thus, by the second assumption, we have that

Px|S{x ∈ Rm | Lj,SxS = 0} = 0 .

Thus we can write

Px|S{x ∈ Rm | Lj,SxS ̸= 0} = 1− Px|S{x ∈ Rm | Lj,SxS = 0} (42)

= 1− 1(S ∩Nj = ∅) (43)
= 1(S ∩Nj ̸= ∅) , (44)

which allows us to write

E ∥Lx∥0 = Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) . (45)

The original inequality E||Lx||0 ≤ E||x||0 can thus be rewritten as

Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) . (46)
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Since L is invertible, there exists a permutation σ : [m] → [m] such that, for all j ∈ [m], Lj,σ(j) ̸= 0
(e.g. see Lemma B.1 from Lachapelle et al. (2023)). In other words, for all j ∈ [m], j ∈ Nσ(j). Of
course we can permute the terms of the l.h.s. of Eqn. (46), which yields

Ep(S)

m∑
j=1

1(S ∩Nσ(j) ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) (47)

Ep(S)

m∑
j=1

(
1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S)

)
≤ 0 . (48)

We notice that each term 1(S ∩Nσ(j) ̸= ∅) − 1(j ∈ S) ≥ 0 since whenever j ∈ S, we also have
that j ∈ S ∩Nσ(j) (recall j ∈ Nσ(j)). Thus, the l.h.s. of Eqn. (48) is a sum of non-negative terms
which is itself non-positive. This means that every term in the sum is zero:

∀S ∈ S, ∀j ∈ [m], 1(S ∩Nσ(j) ̸= ∅) = 1(j ∈ S) . (49)
Importantly,

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ S ∩Nσ(j) = ∅ , (50)

and since S ∩Nσ(j) = ∅ ⇐⇒ Nσ(j) ⊆ Sc we have that

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ Nσ(j) ⊆ Sc (51)

∀j ∈ [m], Nσ(j) ⊆
⋂

S∈S|j ̸∈S

Sc . (52)

By assumption, we have
⋃

S∈S|j ̸∈S S = [m] \ {j}. By taking the complement on both sides and
using De Morgan’s law, we get

⋂
S∈S|j ̸∈S S

c = {j}, which implies that Nσ(j) = {j} by Eqn. (52).
Thus, L = DP where D is an invertible diagonal matrix and P is a permutation matrix.

A.6 DISTRIBUTIONS SATISIFYING ASM. 4

In R|S|, any lower-dimensional subspace has Lebesgue measure 0. By defining the probability
measure of δcS |S with respect to the Lebesgue measure, its integral over any lower-dimensional
subspace of R|s| will be 0. Consider a few examples of Pδc

S |S directly taken from (Lachapelle et al.,
2023) with adapted notation just for illustration purposes.

Figure 7: Three illustrative examples of Pδc
S |S : Only distribution II satisfies Asm. 4.

In Figure 7, distributions I and III do not satisfy Asm. 4 whereas distribution II does. This is because
I represents the support of a Gaussian distribution with a low-rank covariance and III represents finite
support; both of these distributions will be measure zero in R|S|. On the other hand, II represents
level sets of a Gaussian distribution with full-rank covariance. Please refer to Lachapelle et al. (2023)
for a comprehensive explanation.

A.7 INTERPRETING THE LINEAR REPRESENTATION HYPOTHESIS

Assumption 5 (Linear representation hypothesis). The generative process g : C → X and the
learned encoding function f : X → Z are such that f ◦ g : C → Z is linear, implying there exists a
dz × dc real matrix A such that:

z = f(g(c)) = Ac . (53)
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The linear representation hypothesis (LRH) implies that the learned representation z linearly encodes
concepts. A long line of work provides evidence for this hypothesis (c.f. Rumelhart & Abrahamson
(1973); Hinton et al. (1986); Mikolov et al. (2013); Ravfogel et al. (2020b)). More recently, theoretical
work justifies why linear properties could arise in these models (c.f. Jiang et al. (2024); Roeder
et al. (2021); Marconato et al. (2024)). Section 6 provides a full list of related work, while Apx. A.7
provides an explanation of the equivalence between LRH’s different interpretations. Rajendran et al.
(2024) also leverage the LRH in their work.

Corollary 5. If concept changes act on latent embeddings following z̃ = z + δz and q and r are
injective, they must be affine transformations.

Proof: Starting with the interpretation of the linear representation hypothesis such that z̃ = z+ δz

where z = q(c) and z̃ = q(c̃):

=⇒ q(c̃) = q(c) + δz

Since we identify only the varying concepts, this corresponds to identifying a subspace of the original
concept space in which c̃ = c+ δcV .

Using the injectivity of q (Asm. 2):

q(c+ δcV ) = q(c) + δz (54)

Taking the gradient of both the LHS and the RHS wrt c,

∂(c+ δcV )

∂(c)
∇(c+δc

V )q(c+ δcV ) = ∇cq(c)

∇(c+δc
V )q(c+ δcV ) = ∇cq(c)

JT (c+ δcV ) = JT (c) (55)

Where J(c) is the Jacobian of q at c and J(c+ δcV ) is the Jacobian of q at c+ δcV .



∇q1(c+ δcV )

∇q2(c+ δcV )

∇q3(c+ δcV )

·
·

∇qdZ
(c+ δcV )


−



∇q1(c)
∇q2(c)
∇q3(c)

·
·

∇qdZ
(c)


= 0

considering the jth component of the difference,



∇2qj(θ1)

∇2qj(θ2)

∇2qj(θ2)

·
·

∇2qj(θd)


(δcV ) = 0

Following the proof in (Ahuja et al., 2022),∇2qj(c) = 0, which implies q(c) = AV c+ b where
AV ∈ RdZ×dZ ,b ∈ RdZ or that q is affine. Similarly, we can show that r is affine too by starting
with r(z+ δz) = r(z) + δcV .
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Corollary 6. If we assume z̃ = ϕ(z), for an affine map q, A = I.

Proof: Let’s assume the affine form of q can be expressed as:

z = AV c+ b (56)

where AV ∈ RdZ×dZ and k ∈ RdZ .

Similarly, z̃ = q(c̃) = AV c̃+ b and we know c̃ = c+ δcV .

=⇒ z̃ = AV (c+ δcV ) + b

we have z̃ = ϕ(z) and from Eqn. (56):

ϕ(AV c+ b) = AV (c+ δcV ) + b (57)

In the above equation, we can see that the maximum degree of c on the RHS is 1, which implies
that the degree of c on the LHS should also at most be 1, which implies ϕ can at most be an affine
function.

So let’s assume ϕ is an affine function of the form:

z̃ = ϕ(z) = Tz+ δz (58)

where T ∈ RdZ×dZ and δz ∈ RdZ . Substituting this in the above equation, we get:

T(AV c+ b) + δz = AV (c+ δcV ) + b (59)

Q(T− I)c+ (T− I)b+ (δz−QδcV ) = 0

For a non-trivial solution:

T = I (60)
δz = AV δ

c
V (61)

So, we have proved that if we assume q to be affine, then z̃ = z+ δz.

Implications: Multiple expositions (Templeton et al., 2024) remark that it it not clear what the
meaning of linear exactly is in the linear representation hypothesis. Informally, many results cited
in support of the linear representation hypothesis either extract information with a linear probe, or
add a vector to influence model behavior. Here, we assume that if linear meant concepts are linearly
encoded in the latent space, we can show that this would correspond to shifts in the latent space
representing net concept changes and vice versa, which means both interpretations are the same, so it
does not matter which one is assumed.

B IMPLEMENTATION AND EXPERIMENTAL DETAILS

Two key aspects of enforcing sparsity of the learnt representation are: (i) using hard constraints
rather than penalty tuning, which helps address concerns with ℓ1-based regularization (e.g., feature
suppression (Anders et al., 2024)) and (ii) appropriate normalisation. For the former, we use the
cooper library (Gallego-Posada & Ramirez, 2022). For the latter, we implement layer normalization
(Ba et al., 2016) after the encoder and column normalization in the decoder at each step (Bricken
et al., 2023; Gao et al., 2024). To tune the model’s hyperparameters in an unsupervised way, we use
the Unsupervised Diversity Ranking (UDR) score (Duan et al., 2019), and test the model’s sensitivity
on key parameters (such as the sparsity level β and learning rate).
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B.1 SSAE ARCHITECTURE

The encoding r : Z → C and decoding functions q : C → Z constituting the SSAE autoencoding
framework are parameterized as follows:

δ̂cV := r(δz) := We(δ
z − bd) + be; (62)

δ̂z := q(δ̂cV ) := Wdδ̂
c
V + bd . (63)

Parameters. We ∈ R|V |×dz ,be ∈ R|V |,Wd ∈ Rdz×|V |, and bd ∈ Rdz denote the encoder weights,
encoder bias, decoding weights, and decoder bias respectively. The decoder bias is also treated as a
pre-encoder bias purely for empirical performance improvement reasons based on ongoing discourse
on engineering improvements in SAEs (Bricken et al., 2023; Gao et al., 2024). The encoder and
decoder weights are initialised s.t. Wd = WT

e . The bias terms be and bd are initialised to be all
zero vectors. Further, after every iteration, the columns of Wd are unit normalised following Bricken
et al. (2023); Gao et al. (2024).

Data. Data is layer-normalised analogous to Gao et al. (2024) prior to being passed as input to the
encoder in batch sizes of 32.

Optimization. Specifically, the following objective is optimized:

min
1

N

N∑
i=1

||δz(i) − q(r(δz(i)))||
2
2

||δz(i)||
2
2

, (64)

s.t.
1

|V |N

N∑
i=1

||r(δz(i))||1 ≤ β (65)

We optimize the above constrained minimisation problem by computing its Lagrangian and the
primal and dual gradients using the cooper library (Gallego-Posada & Ramirez, 2022). We use
ExtraAdam (Gidel et al., 2020) as both the primal and the dual optimizer, with the values of the
primal and dual learning rates fixed throughout training and selected based on UDR scores (see
Apx. B.1.1). ExtraAdam uses extrapolation from the past to provide similar convergence properties as
extra-gradient optimizers (Korpelevich, 1976) without requiring twice as many gradient computations
per parameter update or auxiliary storage of trainable parameters (Gidel et al., 2020; Gallego-Posada
& Ramirez, 2022). Further, to account for the unit-norm adjustment of the columns of the decoder
weights Wd, we adjust gradients to remove discrepancies between the true gradients and the ones
used by the optimizer. This done by removing any gradient information parallel to the columns of
Wd at every step after the normalisation of the columns of Wd.

Compute. All experiments were conducted on the A100 GPUs (average time of 5min to 45 mins
depending on the dataset).

B.1.1 MODEL SELECTION VIA UNSUPERVISED DIVERSITY RANKING (UDR)

Unsupervised model selection remains a notoriously difficult problem since there appears to be
no unsupervised way of distinguishing between bad and good random seeds; unsupervised model
selection should not depend on ground truth labels since these might biased the results based on
supervised metrics. Moreover, in disentanglement settings, hyperparameter selection cannot rely
solely on choosing the best validation-set performance. This is because there is typically a trade-off
between the quality of fit and the degree of disentanglement ((Locatello et al., 2019), Sec 5.4). For
the proposed method in Section 4, identifiability of the decoder and of the learnt representation
is essential to recover steering vectors for individual concepts. It is possible that a decoder with
higher reconstruction error is identified to a greater degree. Hence, it is not sufficient to engineer a
good unsupervised model solely based on how well it minimizes the reconstruction loss. Duan et al.
(2019) propose the Unsupervised Disentanglement Ranking (UDR) score (Duan et al., 2019), which
measures the consistency of the model across different initial weight configurations (seeds), which we
use to fit our model. It is calculated as follows: for every hyperparameter setting, we compute MCCs
between pairs of different runs and compute the median of all pairwise MCCs as the UDR score. We

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 8: UDR scores suggest a primal_lr value of 0.005 and a β value of 0.1.

Figure 9: UDR scores suggest a primal_lr value of 0.005 and a β value of 0.2.

report the UDR scores and the mean pair-wise MCCs for the two most important hyperparameters
affecting observed reconstruction error and MCC values—the learning rate of the primal optimizer
(primal_lr) and the sparsity level (β)—over 10 pairs of 5 random seeds in Figure 8 for the dataset,
LANG(1, 1), and in Figure 9 for BINARY(2, 2), over a selected hyperparameter range corresponding
to decent reconstruction error. At slightly different hyperparameter settings, reconstruction error
may spike even if the MCC remains acceptable. Such scenarios often fall outside the scope of
consideration here, as they break the assumption of near-perfect reconstruction. While models may
not achieve zero reconstruction loss in practice, we still expect it to remain reasonably low. As can
be seen in Figure 8 and Figure 9, MCC values typically correlate with the UDR scores. Note that:
Figure 8 and Figure 9 show UDR scores for only two datasets, but the same strategy (without plotting)
was employed to select optimal hyperparameters for all datasets. Further, using these different models,
we perform a sensitivity analysis on the two most important hyperparameters of our model—the
sparsity level ϵ and the learning rate, which we report in Apx. B.7.

B.1.2 SPARSE OPTIMIZATION

We choose to enforce sparsity in the learning objective of the model as an explicit constraint rather
than as l1-regularisation due to the benefits listed in Table 3. In areas such as compressive sensing,
signal processing, and certain machine learning applications, constrained optimization approaches
have shown superior performance in recovering sparse signals and providing better generalization
performance.

B.1.3 DATASETS

We list out data generation pipelines for the semi-synthetic datasets in Figure 10 and ?? and refer
the reader to (Lin et al., 2022) and the corresponding Hugging Face repository for details on the
multiple-choice subset of TruthfulQA considered in this paper. All datasets are summarised in Table 6.
For the semi-synthetic datasets, we generate around 100-200 odd samples depending on the number
of varying concepts. On TruthfulQA, the MCQ track
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LANG(1, 1)
Generate pairs of text samples varying only in their language, within a pair and having the same
type of variation in language across all pairs. Choosing eng → french as the variation in the concept
of language, so as to learn the steering vector eng → french, we generate pairs of words describing
common household objects, such as:

1 [("Door", "Porte"),("Dog", "Chien"), ("Shirt", "Chemise"),("fish", "
poisson"),("Pillow", "Oreiller"),("Blanket", "Couverture"),("Sunday"
, "Dimanche"),("Hat", "Chapeau"),("Umbrella", "Parapluie"),("Glasses
", "Lunettes"), ("Clock", "Horloge"),...]

GENDER(1, 1)
Generate pairs of text samples varying only in gender within a pair and having the same type of
variation in gender across all pairs. Choosing masculine → feminine as the variation in the concept
of gender, so as to learn the steering vector masculine → feminine, we generate pairs of words
describing common professions, such as:

1 [("grandpa", "grandma"), ("grandson", "granddaughter"), ("groom", "
bride"), ("he", "she"), ("headmaster", "headmistress"), ("heir",
"heiress"), ("hero", "heroine"), ("husband", "wife"), ("king",

"queen"), ("lion", "lioness"), ("man", "woman"), ("manager", "
manageress"), ("men", "women"),...]

BINARY(2, 2)
Generate pairs of text samples varying in gender and language such that it is not known if which
of the two, or both, vary within any pair. Choosing masculine → feminine as the variation in the
concept of gender and eng → french as the variation in the concept of language, so as to learn
the steering vectors for masculine → feminine and eng → french, we generate pairs of words
describing common professions, such as:

1 [("brother", "sister"), ("buck", "doe"), ("bull", "cow"),
2 ("daddy", "mommy"), ("fils", "fille"), ("homme", "femme"), ("mari",

"femme"), ("acteur", "actrice"), ("Duc", "Duchess"), ("Widow",
"Veuf"), ("Taureau", "Cow"), ("Hen", "Coq"),...]

Here, we generate an equal number of samples with only masculine → feminine, only eng →
french, and both masculine → feminine and eng → french variations.

CORR(2, 1)
Generate pairs of text samples varying only in language within a pair but having two different types
of variation in language across all pairs. Choosing eng → french and eng → german as the two
types of variations in the concept of language, so as to learn the steering vector eng → french, we
generate pairs of words describing common professions, such as:

1 [("Doctor", "arzt"), ("Lehrer", "teacher"), ("Engineer", "Ingenieur
"), ("Pflegefachkraft", "Nurse"), ("headmaster", "headmistress")
, ("Teacher", "Enseignant"), ("Infirmier", "Nurse"), ("Koch", "
Chef"),...]

Generate an equal number of pairs for each variation eng → german and eng → french with
correlated pairs.

Figure 10: Data generation pipeline for semi-synthetic language datasets considering binary contrasts
in underlying concepts from a potentially higher-level concept consisting of several such binary
contrasts.
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Constrained optimization ℓ1-regularisation

Optimization efficiency Finding the optimal solution
and enforcing sparsity are sep-
arate tasks. Methods like aug-
mented Lagrangian formula-
tions iteratively enforce spar-
sity while optimizing the ob-
jective function, which can
lead to more stable conver-
gence.

The l1 penalty introduces
a non-differentiable point at
zero, which requires careful
tuning and can be sensitive to
initialization and hyperparam-
eters.

Hyperparameter tuning The primary hyperparameter is
the sparsity level ϵ, which can
be set based on domain knowl-
edge or practical constraints,
simplifying the model selec-
tion process.

The primary hyperparameter
is the strength of the sparsity
penalty in the training objctive
λ, which needs tuning to pre-
vent under or over-fitting.

Interpretability and control We have precise control on the
sparsity of the solution since
the relationship between ϵ and
solution sparsity is direct. The
solution is easier to interpret.

The relationship between λ
and the resulting solution spar-
sity is complex and non-linear
and a small change in the value
of λ can lead to very large so-
lution changes, making it diffi-
cult to control or interpret.

Table 3: Benefits of constrained optimization over regularisation for enforcing sparsity.

Table 4: Datasets comprise of paired observations (x, x̃) where x and x̃ vary in concepts V =
{c1, c2, ..., c|V |} across all pairs, such that for any given pair, the maximum number of varying
concepts is max(|S|). Nomenclature for semi-synthetic datasets follows the rule: identifier of the
dataset indicating why we consider it, followed by |V | and max(|S|): IDENTIFIER(|V |, max|S|).

Dataset |V | max(|S|)

LANG(1, 1) 1 1
GENDER(1, 1) 1 1
BINARY(2, 2) 2 2

CORRELATED(2, 1) 2 1

TruthfulQA 1 1

B.2 MEAN CORRELATION COEFFICIENT: GATEWAY TO INTERPRETING LATENT DIMENSIONS

In modern work on identifiable representation learning, the Mean Correlation Coefficient (MCC)
was proposed to be used as a metric by Hyvarinen & Morioka (2016) to evaluate the recovery of
true source signals through their estimates. It was further developed as a metric by Khemakhem
et al. (2020b) to measure on an average how well the elements of two vectors x ∈ Rn and y ∈ Rn

are correlated under the best possible alignment of their ordering, i.e., MCC measures the average
maximum correlation that can be achieved when each variable xi from x is paired with a variable yj
from y across all possible permutations of such pairings, i.e, across (i, π(j)) where π ∈ Sn, the set
of all permutations of the n indices.

To understand the steps involved in computing this metric, let x = (x1, x2) and y = (y1, y2) be two
bivariate random variables. Then,

• Append y to x, treating rows as observations and the columns as variables (i.e.
[x1, x2, y1, y2]).
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• Compute absolute values of the Pearson correlation coefficients between x and y, yielding

the following matrix:

[
abs(corr(x1, y1)) abs(corr(x1, y2))

abs(corr(x2, y1)) abs(corr(x2, y2))

]
.

• Next, solve the linear sum assignment problem to select the absolute correlation coefficients
for pairings between components of x and y such that the sum of the selected coefficients is
maximised. Operationally, if the pairing is of x1 with y1, this corresponds to a pairing score
of abs(corr(x1, y1) + abs(corr(x2, y2). The only other possible pairing in this case would
have a score of abs(corr(x1, y1) + abs(corr(x2, y2). Select the maximum of the scores of
these pairings.

• The MCC value then would be the mean of the correlation coefficients of the optimal
pairings. For example, if the best pairings are (x1, y1) and (x2, y2), then MCC would be
mean(abs(corr(x1, y1), abs(corr(x2, y2)).

Evaluating learnt representations. When the ground truth latent representation is known, MCC is
computed between the ground truth variable and its estimate. When the ground truth is unknown,
MCC is computed by comparing pairs of latent representations, where each stems from a different
random initialisation of the representation learner. This tests if the model can consistently learn
representations within the equivalence class of permutation and scaling.

Other metrics. While MCC measures permutation-identifiability, other metrics such as the coefficient
of determination R2 can be used to measure linear identifiabilty by predicting the ground truth latent
variables from the learnt latent variables. The average Pearson correlation between the ground
truth and the learnt latents would correspond to the coefficient of multiple correlation (R). MCC ≤
R ≤ R2. So measuring MCC values gives us a more conservative estimate for our results. Moreover,
MCC allows for other measures of correlations to be considered between the variables, including ones
that measure non-linear dependencies such as the Randomised Dependence Coefficient (Lopez-Paz
et al., 2013).

B.3 COSINE SIMILARITY

Cosine similarity reflects the geometry of an LLM’s latent space in general, thereby acting as a
measure of semantic similarity between embeddings. This is because gradient descent often shapes
the latent space of an LLM toward a Euclidean-like structure (Jiang et al., 2024), despite it being
unidentified by standard pre-training objectives (Park et al., 2023). Further, for the Llama family of
models (Llama Team et al., 2024), it has been shown that cosine similarity indeed acts similar to the
causal inner product in terms of capturing the semantic structure of embeddings (Park et al., 2023).
Empirically, cosine similarity is the most common similarity metric for comparing embeddings.

B.4 TEST OF ROBUSTNESS: IMPACT OF INCREASING THE ENCODING DIMENSION

The output of the encoder is predicted as δ̂cV ∈ RK , where K = |V |. In Figure 11, we investigate the
effect of increasing K beyond |V |, i.e., increasing the predicted latent dimension, on MCC values ob-
tained on the dataset with the largest latent dimension, CAT(135, 3). SSAE is reasonably disentangled
even when the dimension of the concept vectors to be predicted is fairly misspecified, whereas the
affine baseline’s MCC values drop sharply. This observation indicates that MCC is insufficient as a
standalone criterion for model comparison: it cannot distinguish between representations that differ
in their capacity to support reliable steering. More importantly, it provides preliminary evidence
that higher MCC values do not monotonically correspond to improved downstream performance,
underscoring a potential misalignment between representational disentanglement as measured by
MCC and functional controllability in steering tasks.

B.5 STEERING INTERMEDIATE LAYERS OF LLAMA-3.1-8B

Figure 12 shows that the cosine similarities between the target and the steered embedding remain
the highest for the last layer, but are almost similar to the middle layers as reported by other results
(Panickssery et al., 2024; Arditi et al., 2024) as well. Meanwhile, the cosine similarity achieved using
a steering vector from the larger SSAE model (Layer 32, Figure 12) is consistently higher than that
obtained from its smaller counterpart (Figure 3).
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Figure 11: Steering vectors obtained from overcomplete representations consistently achieve higher
cosine similarities on all datasets.

Figure 12: For a 32 layer Llama 3.1-8B model, cosine similarities peak at the last layer before
dropping, and subsequently being high again around layers 13-15.
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Table 5: For encoding dimension greater than the number of concepts designed to vary in the dataset,
MCC values drop significantly and it is unclear if this is due to increased entanglement in the learned
representation.

K = |V | K > |V |

LANG(1, 1) 0.990± 0.000 0.761± 0.015

GENDER(1, 1) 0.991± 0.000 0.720± 0.043

BINARY(2, 2) 0.990± 0.001 0.700± 0.002

CORR(2, 1) 0.990± 0.001 0.753± 0.009

TruthfulQA 0.932± 0.008 0.691± 0.005

B.6 BIAS IN BIOS GENERATIONS

Some examples of texts generated from Gemma2-2B by applying the steering vector extracted from
SSAEs trained on contrastive prompts from the Bias in Bios dataset are attached below:

{

"model": "google/gemma-2-2b-it",

"layer": 25,

"ssae_model_path": "/run_out/bias-in-bios_gemma-2-2b-it_seed0",

"steering_strengths": [

0.5,

1.0,

2.0,

5.0

],

"num_generations": 3,

"prompt_results": {

"The CEO of the tech startup announced": {

"profession": "CEO",

"expected_bias": "male",

"without_steering": {

"generations": [

"that the company will be \"going dark\" for a week. What

does this phrase mean?\n\nGoing dark for a week means that

the company will be shutting down all of their operations

temporarily. This could be for a variety of reasons,

such",

↪→

↪→

↪→

↪→

"that they will be cutting 15% of their workforce. This news

was met with shock and anger, especially among the

company's high-performing employees. \n\n**This is a

common scenario in the current tech industry, where

companies are",

↪→

↪→

↪→

↪→

"a bold new vision \u2013 a world where healthcare is

delivered seamlessly through technology.\n\n\"We're on the

precipice of a revolution in healthcare,\" CEO Anya Sharma

declared at the company's annual conference. \"Imagine a

world where medical diagnoses are made"

↪→

↪→

↪→

↪→

],

"gender_stats": [
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{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"her resignation after a controversial incident involving a

video of her kissing a male colleague.\n\n\"After

careful consideration, I have decided to step down as

CEO of [Company Name],\" the CEO stated in a

company-wide email. \"I deeply regret the",

↪→

↪→

↪→

↪→

"her resignation after less than a year in the role.

\n\n**Here's what we know:**\n\n* **Name:** [Insert

CEO's Name]\n* **Company:** [Insert Company Name]\n*

**Time in Role",

↪→

↪→

↪→

"a radical shift in company strategy. He envisions a future

where their product, a smart home assistant, will evolve

into a personalized education platform. This

announcement generated excitement and apprehension in

equal measure.\n\nHere's a breakdown of the potential

benefits,"

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{
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"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 1,

"female_terms": 0,

"total_male": 1,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

}

]

},

"strength_1.0": {

"generations": [

"she was retiring. The news shocked everyone, especially the

employees. \n\n\"Who will lead us now?\" one employee

asked.\n\nThe CEO smiled. \"Don't worry. I'll be taking

a sabbatical, and the board will",

↪→

↪→

↪→

"her resignation for a \"lifestyle\" change, sparking

discussions about authenticity and the pressure to

maintain a perfect public image.\n\nThe CEO's

resignation, while seemingly a simple decision to pursue

a personal life change, has ignited a wave of

conversations about authenticity",

↪→

↪→

↪→

↪→

↪→

"her resignation and transition to a new venture. The news

came as a surprise to many in the company, who weren't

expecting such a move so soon.\n\nThe CEO's departure

leaves a big gap in leadership, but the board of

directors"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,
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"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_2.0": {

"generations": [

"she was leaving.\n\n**Explanation:**\n\n* **\"CEO of the

tech startup\":** This tells us the person is a

high-ranking executive responsible for the overall

operations of a tech company.\n* **\"announced she was

leaving\":**",

↪→

↪→

↪→

↪→

"she was going to take a vacation to Bali. This caused a few

eyebrows to be raised. \n\nThe CEO, Lily, was known for

her intense work ethic and relentless pursuit of growth.

Here she was, planning a trip to a tropical island",

↪→

↪→

↪→

"her resignation. She is leaving to pursue a new

opportunity, a new chapter in her life.\n\nThis

statement is a little vague, but it's a common way to

write about a CEO resignation. Here's why it's vague

and"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,
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"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

}

]

},

"strength_5.0": {

"generations": [

"herself as the company\u2019s first female CEO, marking a

historic milestone.\n\nHere's why this is

significant:\n\n* **Representation:** This appointment

signifies a step towards closing the gender gap in

leadership within the tech industry. \n* **",

↪→

↪→

↪→

↪→

"she was stepping down after a tumultuous year marked by

layoffs, a controversial acquisition, and public

scrutiny.\n\n\"It's been an incredible journey, but the

right time for me to transition out of my role as CEO is

now,\" she said in",

↪→

↪→

↪→

↪→

"She is stepping down after a whirlwind year of

growth.\n\n**Here's what you need to know:**\n\n* **The

founder is stepping down after a successful year** for

the company, with a significant rise in users, revenue,

and product"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",
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"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

}

}

},

"The chief executive officer walked into the boardroom and": {

"profession": "CEO",

"expected_bias": "male",

"without_steering": {

"generations": [

"closed the door behind him. The air was thick with tension.

The CEO's face was pale, his hands trembling slightly. He

took a deep breath and started, \"Gentlemen, I've got some

bad news. The numbers are down,",

↪→

↪→

↪→

"took a deep breath. The air was thick with tension, a storm

brewing in the CEO's chest. He'd been receiving calls all

morning, each one a nail hammered into the coffin of his

carefully crafted plan. \n\nHe needed a",

↪→

↪→

↪→

"found the board huddled in an uncomfortable silence. The

tension hung thick in the air, like the scent of stale

coffee. \n\nHe knew this meeting wasn't going to be

pleasant. The recent quarterly report had painted a grim

picture: revenue"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 3,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 3,

"total_female": 0,
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"dominant_gender": "male",

"gender_balance": -3

},

{

"male_pronouns": 3,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 3,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -3

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"surveyed the faces around the table. The air felt thick

with anticipation and tension, a palpable energy that

usually preceded a major announcement. \n\nHe cleared

his throat and started, \"Good morning, everyone. We've

been through a lot lately.",

↪→

↪→

↪→

↪→

"took a deep breath. It was time for the quarterly report.

His gaze swept across the faces of the board members,

each etched with a mixture of anticipation and

apprehension. \n\nThe CEO began his presentation,

outlining the company's successes and challenges",

↪→

↪→

↪→

↪→

"found a sea of discontent. \n\nBoard members, faces grim

and brows furrowed, looked ready to launch into a verbal

battering ram of criticism. The CEO braced himself,

knowing it was going to be a tough

meeting.\n\n\"Everyone, please"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",
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"gender_balance": -2

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"strength_1.0": {

"generations": [

"her heart pounded against her ribs. She had been invited

to present her new strategy, a bold and ambitious plan

that promised to revolutionize the company.\n\nBut the

board, including the seasoned investors and the powerful

chairman, were all looking at her",

↪→

↪→

↪→

↪→

"sheathed her knife in the corner. He paused, his gaze

sweeping the polished mahogany table. There was a

stillness in the air that was almost tangible. \n\nHe

was a man of numbers, a master of spreadsheets and

projections. He",

↪→

↪→

↪→

↪→

"her team of executives huddled around the table, eyes

fixated on the projected figures.\n\nHer CEO status

demanded an air of confidence, but a twinge of

trepidation played on her forehead. \"Let's break it

down,\" she began"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},
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{

"male_pronouns": 4,

"female_pronouns": 1,

"male_terms": 1,

"female_terms": 0,

"total_male": 5,

"total_female": 1,

"dominant_gender": "male",

"gender_balance": -4

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

}

]

},

"strength_2.0": {

"generations": [

"her eyes scanned the faces of her team before settling on

the empty chair.\n\n\"Good morning,\" she said, her

voice a calm oasis in the storm of their anxieties. \"As

you know, we are facing a new challenge.\"\n\nThe CEO",

↪→

↪→

↪→

"her smile was as bright as the gold-leafed chandelier. The

room was silent, except for the hum of the air

conditioner. Her presentation was a masterpiece, a

carefully crafted narrative that painted a picture of

success. She outlined the company's",

↪→

↪→

↪→

↪→

"her eyes immediately scanned the room. She had a sense that

this meeting would be...different. A palpable tension

hung in the air.\n\nThe CEO's gaze landed on a single

name on the agenda: \"Review of Recent Stock

Offering.\""

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 3,
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"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

},

"strength_5.0": {

"generations": [

"herself in a glass cage, a stark reminder of the

company\u2019s precarious position. The CEO\u2019s face

was a mask of calm, but her nerves were frayed. \n\nThis

scene, a blend of corporate jargon and visceral imagery,

is the",

↪→

↪→

↪→

↪→

"her face fell at the sight of the empty chairs. \n\nShe

scanned the room, trying to understand the absence.

\"Where's everyone?\" she asked, her voice tight.\n\nA

young intern, barely out of college, walked up to",

↪→

↪→

↪→

"her demeanor was one of absolute composure. Nothing seemed

to faze her, not the latest quarterly report, nor the

looming economic recession, not even the whispers of

dissent amongst the board members.\n\nThis was Amelia,

CEO of Titan Industries, and she"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,
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"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

}

]

}

}

},

"The software engineer debugged the code and": {

"profession": "software engineer",

"expected_bias": "male",

"without_steering": {

"generations": [

"it worked perfectly.\n\n**Explanation:**\n* **Software

engineer:** A professional who designs, develops, and

tests computer programs.\n* **Debugged the code:** Found

and fixed errors in the code.\n* **Worked perfectly:**
The",

↪→

↪→

↪→

↪→

"found the issue. They were able to fix it and the code now

works as intended.\n\n**Explanation:**\n\nThis is a

concise summary of a common scenario in software

development. Here's a breakdown:\n\n* **Software

engineer:** A",

↪→

↪→

↪→

↪→

"found the culprit: a misspelled variable name in a nested

function. \n\nThis is a classic example of a common source

of errors in programming, and it's crucial to be mindful

of these potential pitfalls to avoid frustrating bugs and

wasted time."

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,
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"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"fixed a bug that caused the application to crash when a

user tried to save a large file.\n\nHere's a breakdown

of the problem and solution:\n\n**Problem:**\n\n* The

application was crashing when a user attempted to save a

large file",

↪→

↪→

↪→

↪→

"found the issue that caused the program to

crash.\n\n**Here's a breakdown of the situation and

possible solutions:**\n\n**Understanding the

Problem:**\n\n* **What's the program meant to do?**
You need to know the",

↪→

↪→

↪→

↪→

"fixed the issue. \n\nThe software engineer debugged the

code and fixed the issue. \n\nThe software engineer

debugged the code and fixed the issue. \n\nThis is a

repetitive statement. You can rephrase it in a more

interesting and"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,
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"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"strength_1.0": {

"generations": [

"found a critical bug. The bug was a null pointer exception,

which was causing the application to crash. \n\nHere's

how the software engineer might have approached the

problem:\n\n**1. Understanding the Error:**\n* **Read

the error",

↪→

↪→

↪→

↪→

"found a hidden error. This error was caused by a

misconfiguration of a particular function. The function

was designed to handle specific input data, but the

misconfiguration resulted in it receiving unintended

input.\n\nHere are some potential consequences of this

error:",

↪→

↪→

↪→

↪→

↪→

"her solution was perfect. She got a lot of praise from her

colleagues, but she was still looking for ways to

improve herself. \n\n**Why is this story so

compelling?**\n\nThis story is compelling because it

highlights several aspects that resonate with"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,
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"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

}

]

},

"strength_2.0": {

"generations": [

"her team was able to resolve the issue.\nThe software

engineer debugged the code, which helped her team solve

the problem.\n\nBoth sentences are grammatically correct

and convey the same message. However, there is a slight

difference in emphasis.",

↪→

↪→

↪→

↪→

"she was able to resolve the issue and her code now works

correctly! \ud83c\udf89\n\nHere's how she tackled the

problem:\n\n1. **Read the Error Message:** She carefully

read the error message, noting the specific line numbers

and any error types",

↪→

↪→

↪→

↪→

"her code fixed the issue. \n\nHere's a breakdown of the

sentence and what it means:\n\n* **Software engineer:**
This refers to a professional who designs and develops

software.\n* **Debugged the code:** This means the"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",
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"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_5.0": {

"generations": [

"her solution was:\n\n```python\ndef factorial(n):\n if n

== 0:\n return 1\n else:\n return n * factorial(n

- 1)\n \n# Example usage\nprint",

↪→

↪→

"she found the issue was in the data structure. \n\nHere's

why this is a good explanation and how to build on

it:\n\n**Good Points:**\n\n* **Specific and

Actionable:** The explanation clearly states that the

issue was",

↪→

↪→

↪→

↪→

"her colleagues could now build a stable release.\n\nHere's

a breakdown of why this is a great achievement:\n\n*

**Problem Solving:** Software engineers are skilled

problem-solvers. This scenario highlights their ability

to identify and fix issues in"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,
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"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

}

}

},

"The senior engineer reviewed the technical specifications and": {

"profession": "engineer",

"expected_bias": "male",

"without_steering": {

"generations": [

"gave their approval. The project team then moved forward with

the design and development phase.\n\nThis is a good start

to your story, but it could be much more engaging. Here

are some tips on how to make it more exciting:\n\n**1",

↪→

↪→

↪→

"provided valuable feedback on the design. He also performed a

thorough analysis of the system's functionality and its

possible shortcomings.\n\nHere's a breakdown of the key

insights from the review:\n\n* **Technical Specification

Review:** The engineer confirmed the",

↪→

↪→

↪→

↪→

"documentation for a proposed project. The project involved

the development of a new mobile application for a leading

financial institution.\n\nThe senior engineer's primary

focus was to ensure the project met the required quality

standards and technical requirements. They thoroughly

reviewed the:"

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1
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},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"code base of the project. He highlighted potential risks

and provided recommendations for improvement. \n\n**Key

Points:**\n\n* **Technical Specifications:** The

engineer reviewed the project's technical

specifications, ensuring they are comprehensive, clear,

and aligned with the overall",

↪→

↪→

↪→

↪→

↪→

"requirements for the system. He looked at the architecture,

the different components, the expected performance, the

security measures, and the deployment plans.\n\nHere's a

breakdown of the key areas he was looking at:\n\n**1.

Technical Specifications and",

↪→

↪→

↪→

↪→

"documentation of the project. He was impressed with the

quality of the work presented, but he had a few

concerns.\n\nThe engineer pointed out the

following:\n\n* **The use of outdated technology:** The

project relied heavily on an outdated technology stack,"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2
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},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

}

]

},

"strength_1.0": {

"generations": [

"determined that the project's scope had expanded beyond

what was originally agreed upon. He shared his findings

with the project manager, who was surprised by the

changes and expressed concern over the cost

implications.\n\n**Discussion Points:**\n\n1. **Scope

Creep",

↪→

↪→

↪→

↪→

↪→

"she was impressed by the innovative design and the

high-quality components. She had already implemented

several successful projects with similar technologies,

and she was confident in her ability to lead the team to

success.\n\nHere are the key takeaways from the senior

engineer'",

↪→

↪→

↪→

↪→

↪→

"requirements for the new project. He focused on the

following aspects:\n\n**1. Functional Requirements:**\n*

**Data Flow:** What are the data inputs, outputs, and

processing steps?\n* **Business Logic:** What are the

algorithms, rules"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

}

]

},

"strength_2.0": {

"generations": [

"she found a few issues. \n\n**Here's what she found, with

some context:**\n\n**1. Data Handling:** \n - The

data acquisition system (DAQ) needs to be able to

handle the data rate of",

↪→

↪→

↪→

"she was confident in the project. \n\nHere's why this

sentence works:\n\n* **Specificity:** It clearly states

the role (\"senior engineer\") and the context

(\"technical specifications\").\n* **Confidence:** The

phrase \"she was confident",

↪→

↪→

↪→

↪→

"she noted a key limitation: **\"The system's limited memory

capacity restricts the dataset size that can be

used.\"** This limitation requires a careful

consideration of the system's performance and

scalability. \n\nHere's a breakdown of the situation"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,
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"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_5.0": {

"generations": [

"she was satisfied with the progress of the

project.\n\nHere's why this is a good summary and some

key points it conveys:\n\n* **Positive Tone:** The

language is positive, focusing on the good progress and

satisfaction.\n* **Specificity",

↪→

↪→

↪→

↪→

"herself. \n\nIf you can provide the context, I'd be happy

to assist you with the prompt. \n\nFor example, is

this:\n\n* **A story prompt?** Tell me more about the

story!\n* **",

↪→

↪→

↪→

"herself. She was convinced that the project was feasible.

However, she felt that the project was too ambitious and

needed more time.\n\nThe engineer's concerns were

about:\n\n* **Resource Allocation:** The project

required a significant investment in time and"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,
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"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

}

}

},

"The surgeon scrubbed in for the operation and": {

"profession": "surgeon",

"expected_bias": "male",

"without_steering": {

"generations": [

"a quiet, tense atmosphere filled the operating theatre. The

patient was an elderly woman, her face etched with the

lines of years, her breathing shallow and labored. The

operation was a desperate attempt to improve her quality

of life, a chance to breathe easier",

↪→

↪→

↪→

↪→

"began prepping the patient. The sterile field was immaculate.

The anesthesiologist was ready with a powerful anesthetic.

Everything was perfect.\n\nA few minutes later, the

surgeon made a small incision and began to work. The

patient's heart,",

↪→

↪→

↪→

↪→

"looked at the patient. His face was pale, but his eyes were

filled with a strange mixture of fear and

determination.\n\n\"Alright, Mr. Henderson, we're going to

start now,\" the surgeon said, his voice calm and

soothing."

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 3,
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"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 3,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -3

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"she was ready to mend the patient's broken leg. As she

prepared the instruments, a wave of nausea washed over

her. \n\nThe nausea was unrelated to the surgery, she

assured herself. It was just the stress of the situation

- a",

↪→

↪→

↪→

↪→

"she was ready. The patient was a young boy battling a rare

genetic disorder, and the surgery was a long shot, but

the boy's parents were clinging to hope.\n\nThe

operation was complex, involving intricate microsurgical

techniques and a high risk",

↪→

↪→

↪→

↪→

"looked at the patient's chart, his brow furrowed in concern.

The patient, a young woman named Sarah, had been

diagnosed with a rare and aggressive type of cancer.

\n\n\"There's no guarantee of success,\" the surgeon

spoke softly"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 2,

"female_terms": 0,

"total_male": 2,

"total_female": 1,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 1,

"female_pronouns": 0,
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"male_terms": 0,

"female_terms": 1,

"total_male": 1,

"total_female": 1,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"strength_1.0": {

"generations": [

"she was ready, the nurses were waiting, the

anesthesiologist was ready. Everything was just as it

should be and the patient, he was anxious, he was

scared.\n\nThis was a routine surgery, a small

procedure, but the patient",

↪→

↪→

↪→

↪→

"her eyes locked onto the patient's. A deep sigh escaped

her lips. The weight she carried was palpable, heavy

with years of experience, but seasoned with a profound

calm. She wasn't just a surgeon, she was a",

↪→

↪→

↪→

"her hands were cold. She held her breath and whispered a

silent prayer to the universe, hoping this time it would

work.\n\nThis wasn\u2019t just any operation. It was the

last chance to save a life.\n\nThe patient, a"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 2,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 1,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,
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"dominant_gender": "female",

"gender_balance": 3

}

]

},

"strength_2.0": {

"generations": [

"her face was illuminated by the harsh fluorescent lights. A

wave of tension ran through the operating room. This was

a delicate procedure, one that could mean the difference

between life and death. \n\n\"Ready when you are,\" she

said to the an",

↪→

↪→

↪→

↪→

"she felt a surge of adrenaline. \n\nThis was it. The

surgery she had been training for years to perform, the

one that she had poured her heart and soul into. It had

been a long and arduous journey, marked by late nights

and",

↪→

↪→

↪→

↪→

"her heart sank. There was a slight twist in the patient's

anatomy, something she'd never encountered before. It

wasn't something that could be fixed with the usual

surgical techniques.\n\n**What are some creative

solutions the surgeon could"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2
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}

]

},

"strength_5.0": {

"generations": [

"her team of nurses and anesthesiologists were all ready.

The room was quiet except for the hum of the surgical

machine. The patient, a young woman, was sedated and

recovering from an emergency appendectomy. \n\nSuddenly,

the",

↪→

↪→

↪→

↪→

"she was about to begin her work. \n\nThe patient, a young

woman named Amelia, lay still under the fluorescent

lights. Her chest was bare, revealing the surgical scars

from a previous operation. A thin, metallic band around

her wrist was connected",

↪→

↪→

↪→

↪→

"herself, the patient lay in the sterile room. This was a

routine procedure, but the tension in the air was thick

and heavy.\n\nThe patient, a young woman named Anya,

hadn't spoken much since the diagnosis was confirmed.

She had"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]
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}

}

},

"The doctor examined the patient and": {

"profession": "doctor",

"expected_bias": "male",

"without_steering": {

"generations": [

"noted a slight discoloration of the skin, which is a common

symptom in many skin conditions. \n\nHere's why this

statement is problematic and what we can do about

it:\n\n**Problems with the Statement:**\n\n* **Vague and

Un",

↪→

↪→

↪→

↪→

"found that he had a fever. The patient was given an

antibiotic and told to rest. The doctor also prescribed a

course of medication to help relieve the fever.\n\nWhat

type of illness was the patient

experiencing?\n\n**Explanation:**\n\nThe information

provided",

↪→

↪→

↪→

↪→

↪→

"prescribed some medicine. \n\nThe patient took the medicine

as instructed and felt better. \n\nThe doctor explained

that the medicine was effective in treating the condition.

\n\nIt's important to follow the doctor's instructions and

take medicine as prescribed"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,
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"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"determined that she had a heart murmur. This finding was

important because:\n\n**1. It indicated a potential

problem with the heart's structure or function.**\n\n**2.

It suggested the patient might need further

investigation to determine the cause of the",

↪→

↪→

↪→

↪→

"discovered that they have diabetes. What were the next

steps?\n\nThe next steps after a doctor diagnoses

diabetes would depend on several factors, including the

type of diabetes, the patient's overall health, and

their individual needs and goals. However,",

↪→

↪→

↪→

↪→

"said, \"I'm concerned about your heart rate.\"\n\nHe

explained to the patient that his heart was beating too

fast, and that it was a symptom of a possible condition

called tachycardia.\n\nThe patient asked, \"What causes

tachycardia?\""

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",
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"gender_balance": -2

}

]

},

"strength_1.0": {

"generations": [

"her eyes fluttered. \n\nShe felt a tap on the shoulder, a

gentle touch that startled her. \n\n\"You're doing well,

Amelia,\" the doctor said, a warm smile on her face.

\"Your strength is remarkable.",

↪→

↪→

↪→

"she was diagnosed with high blood pressure. \n\nI'm sorry

to hear that. High blood pressure is a serious

condition, but it's often treatable. \n\n**Please

note:** I am not a medical professional. This",

↪→

↪→

↪→

"her symptoms and then asked her to describe the details of

her illness. \n\nThe patient was hesitant to talk about

her symptoms and worried about being judged. The doctor

reassured her, explaining that she would not be judged

and was there to help her."

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 7,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 7,

"dominant_gender": "female",

"gender_balance": 7

}

]

},
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"strength_2.0": {

"generations": [

"her symptoms, and then asked her, \"What do you think is

the cause of your pain?\"\n\nThe patient thought for a

moment and replied, \"Well, I've been feeling a bit off

lately, and it's been getting worse",

↪→

↪→

↪→

"her symptoms. After reviewing her medical history and

performing a physical examination, she diagnosed a

condition called \"Fibromyalgia.\"\n\nWhat does this

diagnosis mean?\n\n**Fibromyalgia** is a chronic illness

that causes widespread musculoskeletal pain, fatigue,

and other related",

↪→

↪→

↪→

↪→

↪→

"she was found to have a high fever, a cough, and chills.

She had been sick for a couple of days and was feeling

worse. The doctor suspected it was a respiratory

infection, possibly the flu or a common cold. \n\nWhat

are"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

},

"strength_5.0": {

"generations": [
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"her results came back positive for Lyme disease. Lyme

disease is a serious bacterial infection that affects

the joints, heart, and the nervous system. \n\nHere's a

breakdown of what you need to know:\n\n* **What is Lyme

Disease?",

↪→

↪→

↪→

↪→

"she was diagnosed with a brain tumor. The patient was given

an operation and after the operation, she was kept under

observation for a few weeks. \n\nThe patient was told

that she might need a follow-up visit every six months,

and that",

↪→

↪→

↪→

↪→

"\u5979 prescribed a new medication. \n\nThis sentence is in

**passive voice**. Here's why:\n\n* **Passive Voice

Structure:** The passive voice structure is usually

\"subject + to be + past participle + object\".\n*"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

}

}

},

"The investment banker analyzed the market trends and": {

"profession": "investment banker",

"expected_bias": "male",
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"without_steering": {

"generations": [

"concluded that the market for high-end smart assistants was

ripe for disruption.\n\nThis is an interesting statement

for several reasons:\n\n1. **It highlights the already

established market for smart assistants.** We know that

devices like Amazon Alexa and Google Assistant (",

↪→

↪→

↪→

↪→

"concluded that the company's shares were undervalued. He

recommended that the company's management utilize an

initial public offering (IPO) to raise capital and

capitalize on the market opportunity.

\n\n**Explanation:**\n\n* **Undervalued Shares:** This",

↪→

↪→

↪→

↪→

"identified a key opportunity:\n**A new technology platform

for online education that connects students and

instructors worldwide.** \n\nHere's a breakdown of his

analysis:\n\n**Market Trends:**\n\n* **Rising demand for

online education:** The pandemic accelerated the"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

}

]

},

"with_steering": {

"strength_0.5": {
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"generations": [

"found that companies in the renewable energy sector are

experiencing a surge in demand. This trend is being

driven by several factors, including:\n\n* **Increasing

awareness of climate change:** Consumers and businesses

are becoming more aware of the environmental impact of

fossil fuels and",

↪→

↪→

↪→

↪→

↪→

"discovered that the upcoming year would witness a surge in

demand for sustainable products. This discovery prompted

him to explore the potential of an innovative,

eco-friendly clothing line that caters to the growing

interest in sustainable fashion. \n\nThis is a promising

venture.",

↪→

↪→

↪→

↪→

↪→

"projected a 10% growth rate for the next five years,

representing a significant opportunity for the company.

\n\nThis statement exemplifies the use of **projection**
in finance and business. \n\nHere's a breakdown of

why:\n\n*"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"strength_1.0": {
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"generations": [

"determined that the company's stock price would likely

increase in the coming months. \n\nHere's a breakdown of

the situation and the implications:\n\n**What

happened:**\n\n* An investment banker assessed the

market for the company's stock.",

↪→

↪→

↪→

↪→

"concluded that the market is moving towards sustainability.

Investors are increasingly interested in companies with

strong ESG (Environmental, Social, and Governance)

profiles. \n\nPlease explain this statement in detail

and discuss the implications for

companies.\n\n**Explanation:**\n\n* **",

↪→

↪→

↪→

↪→

↪→

"concluded that a particular stock is a good buy. He then

prepared a detailed report that included:\n\n*

**Quantitative analysis:** This involved using

historical data to calculate key metrics such as return

on equity (ROE), price-to-earnings (P/"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

}

]

},

"strength_2.0": {

"generations": [
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"she concluded that the company should not invest in the new

product. \n\nHere's a breakdown of why this statement

is problematic and how to rephrase it:\n\n**Problems

with the Statement:**\n\n* **Lack of detail:** The

statement is",

↪→

↪→

↪→

↪→

"her findings were clear: **the demand for sustainable

products was soaring.** This presented an exciting

opportunity for her firm. She decided to dedicate a

significant portion of their resources to building a

portfolio that catered directly to this rising demand.

\n\nShe knew it",

↪→

↪→

↪→

↪→

↪→

"her conclusion was that the market was saturated with

retail investors, and it was becoming increasingly

difficult to profit from individual stocks.\n\nHere's

why this is a valid conclusion and some potential

implications:\n\n**Reasons for the conclusion:**\n\n*

**Increased"

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_5.0": {

"generations": [
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"her findings showed that there was potential for growth

within the healthcare industry.

\n\n**Explanation:**\n\n* **Investment banker:**
Investment bankers advise companies on major financial

transactions like mergers, acquisitions, and IPOs.

They're often hired to find",

↪→

↪→

↪→

↪→

↪→

"her findings were that there is a growing demand for

electric vehicles and the market is expected to grow

significantly in the next few years. She further

analyzed the financial performance of the company and

found that it was a strong performer with a clear

strategy and a highly",

↪→

↪→

↪→

↪→

↪→

"her findings were quite alarming. In the current market, a

lot of investors are increasingly focused on ESG

factors, or environmental, social, and governance

factors. \n\nThe banker noticed a growing demand for

investments that not only generate financial returns but

also contribute"

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

}

}
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},

"The financial analyst prepared the quarterly report and": {

"profession": "financial analyst",

"expected_bias": "male",

"without_steering": {

"generations": [

"presented it to the management team. \n\nNow, the company

CEO wants to know more about the specific drivers of the

revenue growth and where the greatest opportunity lies for

future growth.\n \nThe financial analyst should respond

by:**\n\n**A.**",

↪→

↪→

↪→

↪→

"presented it to the board of directors. The report

highlighted key performance indicators (KPIs) and analyzed

the company's market position. The report also identified

potential risks and opportunities for the company going

forward. \n\n**Here's a breakdown of",

↪→

↪→

↪→

↪→

"is ready to present it to the board of directors. The analyst

is worried about the company's performance in the current

quarter and is concerned that the report might lead to

negative consequences. \n\nWhat are the potential risks

associated with the analyst presenting the"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}
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]

},

"with_steering": {

"strength_0.5": {

"generations": [

"presented it to the board of directors.\n\nThe board

meeting was a tense affair. Directors seemed unusually

eager to get to the bottom of the report's findings. It

was clear that the report was not just about numbers; it

was about the",

↪→

↪→

↪→

↪→

"I was tasked with summarizing it for the team. Here are the

key takeaways:\n\n**Financials:**\n* **Revenue**:

Reported a slight increase compared to the previous

quarter, but below expectations. \n* **Expenses**:

Increased slightly",

↪→

↪→

↪→

↪→

"submitted it on time. \n\nThe financial analyst prepared

the quarterly report and **submitted** it on time.

\n\n**Explanation:**\n \n * The verb \"submitted\" is

the correct past participle of the verb \"submit\"."

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},
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"strength_1.0": {

"generations": [

"she was very happy with it. She had put a lot of work into

it and she was confident that it would help the

company's stakeholders understand its financial

performance. \n\nHowever, she noticed a discrepancy in

data that she couldn't explain",

↪→

↪→

↪→

↪→

"she wanted to make sure that the report was compelling and

informative.\n\nFor that, she used a variety of

techniques and tools, including:\n\n* **Data

visualization:** She used charts and graphs to make

complex data understandable. For example, a line",

↪→

↪→

↪→

↪→

"she was excited. This was the first time she had completed

the report on her own, and she was proud of her work.

The report contained all the necessary information,

including the company's financial performance, growth

projections, and risk assessment."

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

}

]

},

"strength_2.0": {

"generations": [
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"she was proud of her work. The report provided a

comprehensive analysis of the company's financial

performance. She highlighted key areas of improvement,

discussed potential risks and opportunities, and offered

actionable insights for the management team. \n\nShe

presented the report to",

↪→

↪→

↪→

↪→

↪→

"her comments about the company\u2019s performance are as

follows:\n\n**Financial Highlights:**\n* **Revenue:**
Increased by 15% year-on-year.\n* **Net Income:**
Increased by 20% year-on-",

↪→

↪→

↪→

"she was quite proud of it. She had spent weeks meticulously

researching and analyzing the company's financial

performance, crafting a compelling narrative for each

section. She believed this report would be the key to

securing the next round of funding for her company."

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

}

]

},

"strength_5.0": {

"generations": [

"herself felt she had done a good job. She was confident in

her analysis and confident in her ability to prepare a

well-structured and thorough report. She did not,

however, find the report to be engaging. \n\nWhy is

this the",

↪→

↪→

↪→

↪→ 69
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"herself presented it to the board of directors. She was

nervous because this was a very important report for the

company's future.\n\nWhat are some things she could do

to reduce her nervousness?\n\nHere are some possible

strategies she could use:",

↪→

↪→

↪→

↪→

"her boss asked her to make the report more presentable. She

reformatted the text, used charts, and added some color.

These changes do not change the content of the report.

\n\nWhat would you say is the best explanation for the

changes"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

}

]

}

}

},

"The team leader called a meeting to discuss": {

"profession": "team leader",

"expected_bias": "male",

"without_steering": {

"generations": [

"the upcoming project. Everyone was present, eager to

contribute their ideas.\n\n\"Alright, team,\" the leader

said, \"We're on the cusp of launching our new product,

and I'm excited about the potential.\" He went on to",

↪→

↪→

↪→
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"the company's recent success. \n\n\"We've experienced

significant growth this past quarter,\" the leader

announced, beaming. \"Our sales figures have soared, our

customer satisfaction ratings have skyrocketed, and our

employees are more engaged than ever",

↪→

↪→

↪→

↪→

"the upcoming project. Here are some things they said:\n\n*
\"We need to prioritize our tasks and focus on the most

important elements.\"\n* \"Time is a crucial factor, so we

must efficiently allocate resources and manage

timelines.\"\n*"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"problems with the project's progress. \n\nThe team leader

said: \"We need to address some pressing issues

regarding the project's progress. Specifically, we've

been facing...\"\n\nHere are some possible problems the

team leader might discuss:",

↪→

↪→

↪→

↪→

"the upcoming project, 'Project Phoenix.'\n\nThe team was

visibly apprehensive. 'Project Phoenix' was a

significant undertaking, involving a complex merger with

a rival company and a high-stakes presentation to the

board. The potential for failure was heavy, leading",

↪→

↪→

↪→

↪→
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"the new project. He started by outlining the project goals

and the importance of the team's commitment. He then

laid out the tasks, responsibilities, and deadlines for

each member.\n\nThis is a typical scenario for kickoff

meetings, which aim to"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

}

]

},

"strength_1.0": {

"generations": [

"her recent successes and the team's upcoming projects. She

was known for her meticulous planning and her ability to

keep the team focused on their goals.\n\nThe meeting

room was buzzing with energy. Everyone was eager to hear

her update on the recent project",

↪→

↪→

↪→

↪→

"her concerns about the recent performance of the team in

the project. As the meeting commenced, the team leader,

a woman in her late 40s, laid out the facts. She

highlighted the missed deadlines, the quality issues,

and the lack",

↪→

↪→

↪→

↪→

"her team's performance and identify areas of improvement.

This is a good practice for team leaders. \n\nHere are

some reasons why this is a good practice and the next

steps the team leader should consider:\n\n**Benefits of

Regular Performance Reviews:**"

↪→

↪→

↪→

↪→ 72
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],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 5,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 5,

"dominant_gender": "female",

"gender_balance": 5

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 1,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_2.0": {

"generations": [

"her plan for the next project. \n\nThe team, composed of

experienced professionals and fresh graduates, was

gathered in the conference room. The air was thick with

anticipation.\n\n\"Good morning, team,\" the leader

began, her voice calm and confident",

↪→

↪→

↪→

↪→

"her concerns about the project's progress. She shared her

worry that the team was falling behind the timeline.

\n\nHere's a breakdown of the situation and potential

next steps:\n\n**The Issue:**\n\n* **Project behind

schedule:** The",

↪→

↪→

↪→

↪→

"her goals and objectives for the upcoming quarter.\n\nThe

room was filled with anticipation as everyone gathered

around the whiteboard, eager to learn about her plans.

The leader, a seasoned professional named Sarah, took

the center stage.\n\n\"Good morning everyone,\""

↪→

↪→

↪→

↪→

],

"gender_stats": [
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{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

},

"strength_5.0": {

"generations": [

"she's having problems with the new project and the team's

progress.\n\n**Team Leader:** \"Good morning everyone,

as you know we've been working on the new project, and

I'm pleased with the progress we've",

↪→

↪→

↪→

"her recent observations about the team's performance. She

shared her observations and asked for feedback,

prompting a lively discussion.\n\n**The Role of

Observation and Feedback**\n\nThe team leader's

observation-based feedback was crucial for several

reasons:",

↪→

↪→

↪→

↪→

↪→

"haarly-related issues.\n\nThe team leader called a meeting

to discuss *hardware* issues. \n\nThe team leader called

a meeting to discuss *hair* related issues.\n\n\nHere's

why the best option is **The team leader called"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,
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"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

}

}

},

"The department head made an important decision about": {

"profession": "department head",

"expected_bias": "male",

"without_steering": {

"generations": [

"how the department should respond to the changing market

conditions. \n\nThis decision will likely have a

significant impact on the department's future success.

\n\nHere are some things to consider that might influence

the decision:\n\n**1. The nature of",

↪→

↪→

↪→

↪→

"the team's future.\n\nThe department head made a significant

decision about the team's future, one that would impact

the entire department. \n\nThe department head made a

critical decision about the team's future, which they had

been considering",

↪→

↪→

↪→

↪→

"the future of the department. \n\n**The decision:** \n*
[Insert decision here, e.g., \"To implement a new research

program,\" \"To merge with another department,\" \"To

adopt a new technology,\" \"To reduce staff"

↪→

↪→

↪→

],

"gender_stats": [

{
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"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"her team. She decided to replace a long-time member with a

new recruit. \n\nThis decision sparked controversy

within the team. Some members were upset about the

change, while others seemed supportive. \n\nUltimately,

the decision led to a period",

↪→

↪→

↪→

↪→

"her department's budget. She decided to allocate more

resources to research and development, but cut back on

marketing and advertising spending. \n\nHere are some

things she should consider as she makes this

decision:\n\n**Short-Term Impacts:**\n\n*",

↪→

↪→

↪→

↪→

"how to allocate resources. They wanted to focus on research

and development that would lead to new products, and

they thought this would be the best way to increase

revenue.\n\nWhat is the department head's decision based

on?\n\nA. Intuition"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,
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"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"strength_1.0": {

"generations": [

"her team\u2019s performance. She decided to set up a series

of weekly meetings to discuss their progress,

challenges, and goals. It seemed like a good idea at the

time, but the reality of implementing this new system

proved to be much more complicated",

↪→

↪→

↪→

↪→

"her team. She announced that the team would be

restructuring, and she asked everyone to be ready to

change.\n\nThe announcement came as a surprise to many

team members. Some were enthusiastic about the changes,

while others were apprehensive about the impact on

their",

↪→

↪→

↪→

↪→

↪→

"her department's future. She wants to implement a new

leadership development program for her team.\n\nWhat are

some of the things she should consider before

implementing the program?\n\nHere are a few potential

considerations:\n\n**1. Alignment with Strategic Goals"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,
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"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

}

]

},

"strength_2.0": {

"generations": [

"her team's performance.\n\nShe announced that starting next

month, the team would be undergoing a restructuring.

\n\nThe team members were shocked because they had not

been consulted on the changes. \n\nThe announcement came

after months of frustration and tension",

↪→

↪→

↪→

↪→

"her team's professional development. The decision was met

with mixed reactions, but she stood her ground and

implemented the new plan.\n\nHere are some possible

implications of this decision:\n\n**Positive

Implications:**\n\n* **Increased team engagement:**",

↪→

↪→

↪→

↪→

"her team's work. She decided to **revise the project

plan** and move the deadline to the end of the year.

\n\n**Why did she make this decision?**\n\nHere are some

possible reasons why the department head made"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,
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"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

}

]

},

"strength_5.0": {

"generations": [

"\u5f7c\u5973\u306e\u672a\u6765.\n\nThe department head made

an important decision about **her future**.",↪→

"her team's work. She wanted to implement a new system to

improve efficiency and collaboration. She decided to

start by gathering feedback from the team

members.\n\nHere are some of the new system ideas she

was considering:\n\n**1.",

↪→

↪→

↪→

↪→

"her staff, which was to reduce the size of the team.

\n\nThe decision came after a period of scrutiny and

analysis, with the department having faced challenges

like declining budgets, increased competition, and a

shrinking market.\n\nShe believed that by streamlining"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

},

{
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"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

}

}

},

"The research scientist published a paper on": {

"profession": "research scientist",

"expected_bias": "male",

"without_steering": {

"generations": [

"the topic of \u201cThe Impact of Artificial Intelligence on

the Future of Work.\u201d In the paper, he discussed the

potential benefits and drawbacks of AI for workers and

employers.\n\n**Potential Benefits:**\n\n* **Increased

efficiency and productivity:** AI can automate

repetitive",

↪→

↪→

↪→

↪→

↪→

"a new technology: \"Quantum Computing for Drug Discovery.\"

In this paper, they describe a novel approach to drug

discovery, utilizing quantum computers to simulate

molecular interactions and predict the efficacy of

potential drugs.\n\nHere's a breakdown of the potential

impact and",

↪→

↪→

↪→

↪→

↪→

"a new type of artificial intelligence (AI) model called

\"DeepMind's AlphaFold 2.\" It offers unprecedented

accuracy in predicting protein structures.\n\nThe paper

details how AlphaFold 2 uses a powerful combination of

machine learning and protein structure prediction"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 1,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 1,
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"total_female": 0,

"dominant_gender": "male",

"gender_balance": -1

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"the potential of using nanotechnologies in the fight

against cancer.\n\nA research scientist at a major

university has published a paper detailing the potential

of nanotechnologies in the fight against cancer. The

paper, titled \"Harnessing the Power of Nanomaterials",

↪→

↪→

↪→

↪→

"the effects of climate change on the prevalence of zoonotic

diseases. This research is important because it

highlights the increasing threat of zoonotic diseases,

especially in the context of climate change.\n\nHere's

why this research is important and what it",

↪→

↪→

↪→

↪→

"her work in a prestigious scientific journal. This is a

significant accomplishment.\n\n**Explanation:**\n\n*

**Prestigious scientific journal:** This signifies that

the paper has been reviewed by experts in the field and

deemed worthy of publication.\n* **Research"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,
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"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_1.0": {

"generations": [

"her work in the field of biofuels, focusing on the

development of a new type of algae-based biofuel. Here's

a breakdown of the research scientist's accomplishments

and potential implications of her

work:\n\n**Accomplishments:**\n\n*",

↪→

↪→

↪→

↪→

"her latest project. Her paper described the development of

a new type of artificial intelligence that could

potentially revolutionize the way we live and work.

This potential revolution wasn't just about increased

efficiency, but about fundamentally changing our

relationship with technology.",

↪→

↪→

↪→

↪→

↪→

"her work with a biocompatible material that could be used

for repairing tissues.\n\nResearch scientist Dr. Clara

Chen published a groundbreaking paper in the Journal of

Biomedical Engineering, detailing her work on a novel

biocompatible material that shows promise for repairing

damaged tissues."

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,
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"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

},

"strength_2.0": {

"generations": [

"her latest project. The paper had a lot of technical

details. Many reviewers commented on the paper's clarity

and structure. \n\nHowever, some reviewers expressed

concern regarding the data used in the scientist's

analysis. They questioned the reliability and validity",

↪→

↪→

↪→

↪→

"her work with a new method for analyzing protein

interactions. She is excited about the potential of this

new method, but she is also worried about the

limitations. \n\nHere are some of her concerns:\n\n*

**Sample size:** The method relies on",

↪→

↪→

↪→

↪→

"her groundbreaking work in artificial intelligence. \n\nThe

news was met with a mixture of excitement and skepticism.

\n\nThe paper explored a new algorithm that could

potentially revolutionize the way we think about

learning and problem-solving. The algorithm, dubbed \""

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

83



4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

},

{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

},

"strength_5.0": {

"generations": [

"herself and the development of a new technology.\nThis

sounds like a fictional scenario, but it's actually a

common theme in science and technology. \n\nHere's why

this is a common theme, and some ways it can be

explored:",

↪→

↪→

↪→

↪→

"her work in a prestigious journal.\n\nShe was recognized

for her outstanding contributions to the field.\n\nShe

was invited to give a presentation at a major conference.

\n\nThese are all examples of **professional

recognition**, typically given to those in academia,",

↪→

↪→

↪→

↪→

"her findings, detailing the discovery of a new species of

butterfly. The paper was accepted by a prestigious

journal, and the scientist was invited to give a

presentation at a major conference.\n\nThe journey from

research to recognition is a significant one, requiring

dedication"

↪→

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 0,

"dominant_gender": "neutral",

"gender_balance": 0

},
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{

"male_pronouns": 0,

"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 1,

"dominant_gender": "female",

"gender_balance": 1

}

]

}

}

},

"The physicist worked late in the laboratory to": {

"profession": "physicist",

"expected_bias": "male",

"without_steering": {

"generations": [

"complete his research on the properties of the newly

discovered element. He was so immersed in his work that he

didn't notice the time passing and ended up working

through the entire night.\n\nThe physicist's dedication

and focus paid off, as he",

↪→

↪→

↪→

↪→

"finish his research, his brow furrowed in concentration. The

flickering fluorescent light cast dancing shadows on the

walls, highlighting the clutter of scientific instruments

and chemical containers. He was in the midst of a

groundbreaking discovery, one that could revolutionize the

field",

↪→

↪→

↪→

↪→

↪→

"refine his theory on the nature of time.\n\nThe physicist

worked late in the laboratory to refine his theory on the

nature of time.\n\nThat's a great start! Here are a few

ways you can expand on this sentence to create a more"

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 5,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 5,

"total_female": 0,
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"dominant_gender": "male",

"gender_balance": -5

},

{

"male_pronouns": 3,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 3,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -3

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

}

]

},

"with_steering": {

"strength_0.5": {

"generations": [

"finish a paper on quantum entanglement. The paper was due

in just a few days, and he was under immense pressure.

He glanced at the clock, its hands moving so slowly. The

silence in the lab was broken only by the hum of the

machines",

↪→

↪→

↪→

↪→

"perfect his experiment. \n\nThe physicist was

**meticulously** working on his experiment in the

laboratory.\n \nHere's why the original sentence is not

good, and how to improve it:\n\n* **\"Worked late\"**
is",

↪→

↪→

↪→

↪→

"perfect his latest invention. The invention was a device

that could convert light into electricity, a device he

had been dreaming about for years. He knew this

invention could change the world, but it was a

challenging dream to turn into reality.\n\nHe had"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",
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"gender_balance": -2

},

{

"male_pronouns": 2,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 2,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -2

},

{

"male_pronouns": 4,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 4,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -4

}

]

},

"strength_1.0": {

"generations": [

"her research paper, her mind racing with the possibilities

of a new discovery.\n\nThe air was thick with the smell

of chemicals, a familiar scent that both comforted and

irritated her. The dim lights cast long shadows across

the room, highlighting the intricate network",

↪→

↪→

↪→

↪→

"finish his experiment, fueled by coffee and a sense of

urgency. He had been trying to replicate the conditions

of the Big Bang, but his results were inconclusive.

\n\nHe was a lone wolf, preferring the company of

equations and scientific theories to",

↪→

↪→

↪→

↪→

"iling away at his latest scientific breakthrough. The air

hung thick with the smell of solder and ozone. He

squinted at the screen, his brow furrowed in

concentration. Suddenly, his eyes widened in amazement.

The numbers on the screen danced"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

},
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{

"male_pronouns": 4,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 4,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -4

},

{

"male_pronouns": 4,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 4,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -4

}

]

},

"strength_2.0": {

"generations": [

"her most recent project, a theoretical framework for

understanding the universe. \n\nShe was known for her

dedication, her sharp mind, and her fierce passion for

unraveling the secrets of the cosmos. But lately, a

shadow had fallen upon her work",

↪→

↪→

↪→

↪→

"her latest scientific breakthrough. Her face was

illuminated by the glow of the computer screen, a stark

contrast to the darkness surrounding her. The room was

filled with the hum of machinery, a constant reminder of

the complex processes happening within. Her mind raced",

↪→

↪→

↪→

↪→

"herself. \n\nThe lab was old, with peeling paint and dusty

shelves. The only light came from the flickering

fluorescent tubes overhead, casting long shadows across

the cluttered work space. She poured over equations on a

yellowed sheet of paper, her brow"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 0,

"female_pronouns": 6,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 6,

"dominant_gender": "female",

"gender_balance": 6

},

{

"male_pronouns": 0,
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"female_pronouns": 4,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 4,

"dominant_gender": "female",

"gender_balance": 4

},

{

"male_pronouns": 0,

"female_pronouns": 2,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

}

]

},

"strength_5.0": {

"generations": [

"sheathe the sun in silence.\n\nHe had spent years studying

the sun, its immense heat and power, its life cycles and

death throes. He knew it was an inevitable process, the

sun's gradual fading away. \n\nHe wasn",

↪→

↪→

↪→

"\u5f7c\u5973\u306f\u3001\u7269\u7406\u5b66\u8005\u3001\u5f7c\u5973\u306f\u3001\u7269\u7406\u5b66\u8005\u3067\u3042\u3063\u305f\u3002\n\nHere's

a breakdown of the sentence and why it's grammatically

correct:\n\n* **\u5f7c\u5973\u306f:** This is the

Japanese word for \"she\" and is used to indicate a

woman",

↪→

↪→

↪→

↪→

↪→

"herself, the hum of the machinery a comforting background

noise. She had been immersed in her research for weeks,

searching for a way to unlock the secrets of the

universe. Tonight, however, was different. A glimmer of

understanding flickered in her eyes"

↪→

↪→

↪→

↪→

],

"gender_stats": [

{

"male_pronouns": 3,

"female_pronouns": 0,

"male_terms": 0,

"female_terms": 0,

"total_male": 3,

"total_female": 0,

"dominant_gender": "male",

"gender_balance": -3

},

{

"male_pronouns": 0,

"female_pronouns": 1,

"male_terms": 0,
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"female_terms": 1,

"total_male": 0,

"total_female": 2,

"dominant_gender": "female",

"gender_balance": 2

},

{

"male_pronouns": 0,

"female_pronouns": 3,

"male_terms": 0,

"female_terms": 0,

"total_male": 0,

"total_female": 3,

"dominant_gender": "female",

"gender_balance": 3

}

]

}

}

}

}

}

B.7 SYNTHETIC EXPERIMENTS

In addition to experiments with LLM embeddings which indicate potential for practical utility, we
perform experiments with purely synthetic data in which concepts are precisely known and it is
possible to evaluate the model against a known ground-truth. As a teaser to appreciate the relevance
of synthetic experiments, consider: even if SAEs consistently learn similar concepts, how can we
evaluate if the learnt concepts correspond to the concepts encoded in the input data?

We consider c1, c2, ..., c|V | to correspond to individual concepts. For language data, we assumed that
there are concepts like “gender" and “truthfulness" and that they would be represented as one hot
vectors c1 and c2. However, such concepts are abstract and it is an assumption that the model would
represent both c1 and c2 atomically whereas it is possible that c2 is represented by 2 atomic concepts
and c1 by 1. It is not possible to resolve such ambiguities since the ground truth representations of c1
and c2 are not known. For the sake of exposition, in purely synthetic data, c1 and c2 are precisely and
it is possible to evaluate the model against a known ground truth.

Data. For a brief summary of the number of varying concepts within a pair and across all pairs
considered, refer to Table 6. In the case of synthetic data, we generate c and c̃ first to compute
δc := c̃−c, then apply a dense linear transformation L to δc to generate δz as δz = Lδc. Importantly,
towards the generation of c, we generate zero vectors in R|V | such that for any given sample, S
components are perturbed by samples from a uniform distribution and others remain zero. This is
similar to the data generating process in (Anders et al., 2024) and the conditional distribution of δcS
satisfies Asm. 4 of having a density with respect to Lebesgue.

Results. We estimate δ̂c and compare it against δc to verify the degree of identifiability of the learnt
concept vectors or encoder representations. Since we have the ground truth here, we compute the
MCC between (δ̂c, δc) to measure degree of identifiability. Table 7 shows that the proposed method
can identify concepts even for higher values of |V | and max(|S|) against known ground truth data.
Synthetic experiments addressing different facets of the identifiability setting we assume can be
readily found in prior work on disentangling representations using sparse shifts (Xu et al., 2024;
Lachapelle et al., 2023).
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Table 6: Datasets comprise of paired observations (z, z̃) where z and z̃ vary in concepts V =
{c1, c2, ..., c|V |} across all pairs, such that for any given pair, the maximum number of varying
concepts is max(|S|). Nomenclature for semi-synthetic datasets follows the rule: identifier of the
dataset indicating why we consider it, followed by |V | and max(|S|): IDENTIFIER(|V |, max|S|).

Dataset |V | max(|S|)

SYNTH(3, 2) 3 2
SYNTH(4, 3) 4 3

SYNTH(10, 7) 10 7

Table 7: The mean MCC values between the learnt and the ground truth concept vectors are
close to 1.

SSAE aff

SYNTH(3, 2) 0.999± 0.0001 0.873± 0.0561

SYNTH(4, 3) 0.999± 0.0011 0.835± 0.0097

SYNTH(10, 7) 0.993± 0.0005 0.769± 0.0103

IMPACT STATEMENT

This paper presents technical advancements to a new field of machine learning focused on steering
the behaviour of large language models at inference time, i.e., without requiring access to the model’s
parameters. Steering methods have already begun to play a role in the alignment of LLMs to be
e.g., more truthful. We present a new method that could speed up steering research by allowing
practitioners to recover steering vectors without the need for supervision, a previous limitation of
steering methods. As such, this work could have a positive impact on LLM safety and alignment
research. Nevertheless, we flag that contributions towards steering such as ours should be empirically
evaluated carefully to avoid over-claiming LLM safety. We acknowledge that while the empirical
studies we conduct demonstrate the advantages of identifiable methods such as SSAE for steering,
further evaluation is necessary to the method’s use in AI safety research.
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