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Abstract

The ability of agents to learn optimal policies is hindered in multi-agent environ-
ments where all agents receive a global reward signal sparsely or only at the end of
an episode. The delayed nature of these rewards, especially in long-horizon tasks,
makes it challenging for agents to evaluate their actions at intermediate time steps.
In this paper, we propose Agent-Temporal Reward Redistribution (ATRR), a novel
approach to tackle the agent-temporal credit assignment problem by redistributing
sparse environment rewards both temporally and at the agent level. ATRR first
decomposes the sparse global rewards into rewards for each time step and then
calculates agent-specific rewards by determining each agent’s relative contribution
to these decomposed temporal rewards. We theoretically prove that there exists a
redistribution method equivalent to potential-based reward shaping, ensuring that
the optimal policy remains unchanged. Empirically, we demonstrate that ATRR
stabilizes and expedites the learning process. We also show that ATRR, when
used alongside single-agent reinforcement learning algorithms, performs as well as
or better than their multi-agent counterparts.

1 Introduction

In cooperative multi-agent reinforcement learning (MARL) multiple autonomous agents learn to
interact and collaborate to execute tasks in a shared environment by maximizing a global reward
Busoniu et al. (2008). MARL has show considerable potential in solving Dec-POMDPs (Oliehoek &
Amato, 2016; Amato, 2024; Zhang et al., 2021) where each agent has access to only local information
(partial observation) and need to select actions based on their local action-observation (or sometimes
only observation) histories such that they maximize the global (team) reward. Examples of video
games where MARL has been applied to such scenarios include StarCraft-II (Vinyals et al., 2019),
defence of the ancients (Berner et al., 2019, DOTA), Google football (Kurach et al., 2020), and
capture the flag (Jaderberg et al., 2019, CTF). These applications illustrate the potential of MARL
to develop sophisticated strategies and behaviors through coordinated teamwork and collaboration.

Despite these successes, cooperative multi-agent systems face the significant challenge of credit
assignment, which is crucial for learning effective policies. In the context of multi-agent systems
credit assignment has two main aspects: temporal credit assignment and agent credit assignment.
Temporal credit assignment involves decomposing sparse, delayed rewards into intermediate time
steps within a multi-agent trajectory. Agent credit assignment focuses on discerning the contribution
of each agent to these decomposed temporal rewards. Addressing both aspects is crucial for effective
learning in cooperative multi-agent systems.

Significant progress has been made to address the credit assignment problem such as (Sunehag et al.,
2017; Rashid et al., 2020; Son et al., 2019; Foerster et al., 2018; Freed et al., 2021, VDN, QMIX,
QTRAN, COMA, PRD). However, these methods primarily address agent credit assignment and may
not be well-suited for environments with sparse or delayed rewards. Moreover, the representations
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required for effective credit assignment might not be the same as those needed for learning Q-values
or critics. Recent advances have been made to address the issue of temporal credit assignment
leverage learning pseudo reward functions (Arjona-Medina et al., 2019; Ren et al., 2021; Liu et al.,
2019; Gangwani et al., 2020) in single agent settings and (Xiao et al., 2022; She et al., 2022) in multi-
agent settings. These methods attempt to learn a Markovian proxy reward function that replaces
the environment’s sparse rewards with the learned dense rewards. Motivated by this progress, we
aim to address the combined challenge of agent and temporal credit assignment in multi-agent tasks
with sparse or delayed rewards via Agent-Temporal Reward Redistribution (ATRR).

In this paper, we aim to address the problem of agent-temporal credit assignment by learning a
reward redistribution function that decomposes sparse environment rewards to each time step of
the multi-agent trajectory and then further redistribute the temporally decomposed rewards to
each agent according to their contribution. We theoretically prove that there exists a class of such
reward redistribution functions that can be formulated as potential-based reward shaping (Ng, 1999)
under which the optimal policies are preserved in the original reward function of the environment.
ATRR extends AREL’s (Xiao et al., 2022) reward model that uses a temporal attention module
to analyze the influence of state-action tuples on along trajectories followed by agent attention
module to identify the relevance of other agents for every agent. This alternation between the
two attention modules allows the reward function to identify agent-specific state-action tuples that
have key relevance to the sparse environment rewards received by the multi-agent system. Thus,
ATRR learns agent-specific temporal rewards, and enables employing single agent reinforcement
learning (RL) algorithms like (Tan, 1997; Foerster et al., 2018; Schulman et al., 2017; De Witt et al.,
2020, IQL, IAC, IPPO) to solve multi-agent tasks. As a result, we partition the problem of credit
assignment from learning Q-functions and critics and leverage the simplicity and scalability of single
agent RL algorithms in complex environments.

In summary, our contribution is three folds:-

• We segregate the problem of credit assignment from learning value functions by learning
a reward redistribution function that can temporally decompose the sparse environment
rewards and assess the contribution of each agent at every time-step.

• We theoretically prove that there exists a family of reward redistribution functions that
undertake the potential based reward shaping formulation that preserves the optimal policy
in the original reward setting of the environment.

• We empirically validate our approach on 5m_vs_6m battle scenario of SMACLite (Michalski
et al., 2023) comparing against various baselines.

2 Related Works

In this section, we will describe several techniques proposed in the past to address the temporal and
agent credit assignment problem in single and multi agent systems. Potential based reward shaping is
one such method that provided theoretical guarantees of sample-efficient learning of optimal policies
in single-agent (Ng, 1999) and multi-agent (Xiaosong Lu, 2011; Devlin & Kudenko, 2011; Devlin
et al., 2011) settings.

2.1 Temporal Credit Assignment

Temporal credit assignment deals with the problem of decomposing the sparse or episodic environ-
ment rewards into a dense reward function by attributing credit to each time step in the episode.
RUDDER (Arjona-Medina et al., 2019) and its variants (Patil et al., 2020) uses contribution analysis
to break down episodic rewards to per time-step reward by computing the difference between pre-
dicted returns at successive time-steps. A similar line of work proposed in (Zhang et al., 2023) also
do return-equivalent contribution analysis. (Liu et al., 2019) leverages auto-regressive architectures

2



Under review for the Reinforcement Learning Conference (RLC)

used in natural language processing like Transformers (Vaswani et al., 2017) for attributing credit to
every state-action tuple in the trajectory. Both (Efroni et al., 2021; Ren et al., 2021) learn a proxy
reward function via a trajectory smoothening based reinforcement learning algorithm by utilizing
least squared error. (Harutyunyan et al., 2019) offers a new family of algorithms that uses new infor-
mation to assign credit in hindsight. (Han et al., 2022) re-desinged the value function to predict the
returns for both historical and current steps by approximating these decompositions. (Zhu et al.)
introduced a bi-level optimization framework to learn a reward redistribution to learn effective poli-
cies. These methods have been developed to learn effective single-agent policies and might not be
well suited to MARL settings due to an exponential growth in the joint observation-action space.

In the multi-agent setting, there have been recent works that do temporal credit assignment. IRCR
(Gangwani et al., 2020) developed a count-based method to learn a proxy reward function for
learning policies for both single and multi-agent settings. AREL introduced in (Xiao et al., 2022)
uses attention networks to do return redistribution where as (She et al., 2022) also employs attention
encoder network followed by a decode to do agent as well as temporal credit assignment in multi-
agent delayed reward settings.

2.2 Agent Credit Assignment

Most of the prior works deal with agent credit assignment in multi-agent systems. (Devlin et al., 2014;
Foerster et al., 2018) employ difference rewards methodology to assess the contribution of each agent
towards the global reward. Value decomposition networks (Sunehag et al., 2017) decomposed the
joint value function of the multi-agent system into agent-specific value functions assuming that they
are additive. Subsequent work proposed in (Rashid et al., 2020) introduced monotonicity constraints
on the joint Q function to learn individual Q values for each agent. (Son et al., 2019) generalized the
approach to decompose joint Q functions to individual Q agent-specific Q functions. (Wang et al.,
2020) leverages Shapely values while modeling the joint Q function to do agent credit assignment.
(Zhou et al., 2020) propose an entropy regularized actor-critic method to efficiently explore to do
multi-agent credit assignment. (Freed et al., 2021) use Transformer attention mechanisms in the
critic of an actor-critic method to realize relevant agent subgroups for effective multi-agent credit
assignment. The above techniques did not address the problem of temporal credit assignment and
hence are inadequate to learn optimal policies in episodic or extremely delayed reward settings.

3 Background

Here we describe our problem formulation as a decentralized partially observable Markov decision
process (Dec-POMDP) (Oliehoek & Amato, 2016; Amato, 2024). Subsequently, we describe the
episodic multi-agent reinforcement learning setting. Finally, we mathematically show that faulty
credit assignment manifests itself in high policy-gradient variance in policy-gradient reinforcement
learning algorithms.

3.1 Decentralized Partially Observable Markov Decision Processes

A Dec-POMDP is represented by a tuple M = (S, A, P, T , O, N , Rζ , ρ0, γ) where s ∈ S is the
environment state space, a ∈ A & A := A1 ×A1...AN is the joint action space and P : S ×A → S is
the state transition function. Rζ(rt|st, at) is the reward function and subsequently, individual agent
rewards are sampled according to r1,t, r2,t...rN,t ∼ Rζ(|st, at). ρ is the initial state distribution
and γ ∈ [0, 1) is the discount factor The joint policy of the multi-agent system is denoted by π
which is a set of policies, one for each agent, each of which is denoted πi. Each agent i ∈ {1...N}
receives an observation oi ∈ Oi from the observation function T (s, i) : S × N → O. Because
the state is not directly observed, it is typically beneficial for each agent to remember a history
of its observations. H is the set of agent observation (in some cases observation-action) histories
up to the current time step t where hi = {ai,1, oi,1, ..., ai,t, oi,t} denote agent i’s history. At each
time step every agent selects an action ai ∈ Ai according to it’s policy πi : hi × Ai → [0, 1].
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τ = {o0,1, a0,1, ...o0,N , a0,N .......o|τ |,1, a|τ |,1...o|τ |,N , a|τ |,N } is the multi-agent trajectory where |τ | is
the horizon length of the trajectory and Repisodic(τ) =

∑|τ |
t=0

∑N
i=1 ri,t(o≤t, a≤ t) is the episodic

reward. It is important to make note that the reward that an arbitrary agent i receives at an
arbitrary time step t is conditioned only on the past and current observations and actions or rather
on the agent histories, Repisodic(τ) =

∑|τ |
t=1

∑N
i=1 ri,t(hi,t, h¬i,t). In other words, the reward function

must be strictly a causal function since actions of the future cannot influence the rewards of the
past. The goal of the agents is to determine their individual optimal policies that achieve maximum
global return Es0∼ρ0,s∼P,ai∼πi..(

∑|τ |
t=1

∑N
i=1 γtri,t(hi,t, , h¬i,t) = Es0∼ρ0,s∼P,ai∼πi..(γ|τ |Repisodic(τ)).

Let rglobal,t(hi,t, h¬i,t) =
∑N

i=1 ri,t(hi,t, h¬i,t) which is the temporal reward for time step t of the
trajectory.

3.2 Episodic Multi-agent Reinforcement Learning

In most multi-agent systems, every agent receives a reward rglobal,t after executing joint action at in
state st. However, in episodic MARL setups the agents only receive a feedback from the environment
at end of the trajectory called the episodic reward or trajectory return. Thus, the goal of such
environments is to maximize trajectory return, which is Eτ (Repisodic(τ)). Such delayed reward
settings introduce large bias and variance (Ng, 1999) during the learning process and exacerbate its
sample efficiency.

4 Method

4.1 Definition of reward redistribution function

In this paper, we address the challenge of agent and temporal credit assignment in fully cooperative
multi-agent systems with episodic global rewards. We want to achieve this by learning a reward
redistribution function that preserves the optimal policy of the original reward function of the
environment. We define the reward redistribution function conditioned on the multi-agent trajectory
τ that decomposes the episodic trajectory reward, aka trajectory return, to each agent based on their
contribution to the team’s outcome at every time step. Mathematically, we define it as:-

Repisodic(τ)(=
N∑

i=1

|τ |∑
t=1

ri,t(hi,t, h¬i,t)

This definition has been adopted by prior works (Xiao et al., 2022; Ren et al., 2021; Efroni et al.,
2021) too. The individual rewards functions are strictly causal in nature and can be only conditioned
on the current and past observation-actions or histories of the agents.

4.2 Assembling the reward function

We redistribute the trajectory returns temporally to assign credit to each time step in the multi-agent
trajectory. Later the temporally redistributed rewards are further decomposed across agents based
on their contribution such that Eq 4.1 holds true. Since credit assignment is attributing relative
credit to 1) each time step in the multi-agent trajectory followed by 2) each agent at every time step,
we can derive the relationship between trajectory return, Repisodic(τ) and the redistributed reward
received by agent i at time step t, ri,t.

rglobal,t is the decomposed temporal reward received by the multi-agent system and ri,t is the de-
composed agent reward received by redistributing rglobal,t to every agent at time step t. Thus we
can define the relation between them as:

N∑
i=1

ri,t = rglobal,t
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Similarly, based on the definition of the reward redistribution function Eq 4.1

|τ |∑
t=1

rglobal,t = Renv

Let’s define a function Wω that redistributes the rewards across the temporal axis of the multi-agent
trajectory. This function Wω is parameterized by ω which is a strictly causal function as discussed
in Subsection 4.1. Thus, we can express the multi-agent temporal reward at an arbitrary time step
t as

rglobal,t = Wω,t × Repisodic(τ)

Similarly, let’s define a function Wω′ that redistributes the temporal rewards at an arbitrary time
step t across agents. This function Wω′ is parameterized by ω′ which is also a strictly causal function,
refer Subsection 4.1. Hence, now we can express the reward that agent i receives as

ri,t = Wω′,t,i × rglobal,t

Finally, deriving the relationship between ri,t and Repisodic(τ) for an arbitrary time-step t

ri,t = Wω′,t,i × Wω,t × Repisodic(τ)

Here, Wω is parameterized by ω(hi,t, h¬i,t) and does temporal credit assignment for the joint multi-
agent system and Wω′ which is parameterized by ω′(hi,t, h¬i,t) attributes temporally assigned credit
to each individual agent.

Based on the definition of reward redistribution function

N∑
i=1

|τ |∑
t=1

ri,t = Repisodic(τ)

(
N∑

i=1

|τ |∑
t=1

Wω′,t,i × Wω,t) × Repisodic(τ) = Repisodic(τ)

N∑
i=1

|τ |∑
t=1

Wω′,t,i × Wω,t = 1

|τ |∑
t=1

(
N∑

i=1
Wω′,t,i) × Wω,t = 1

The solution for the above equation is
∑N

i=1 Wω′,t,i = 1 and
∑|τ |

t=1 Wω,t = 1.

We now construct the new reward, Rω,ω′ to be a function of the original reward R and the credit
ri,t that an arbitrary agent i receives at time step t based on it’s relevance towards the multi-agent
system’s final outcome. This relevance is derived by the reward redistribution function, Wω and
Wω′ .

Rω,ω′(s, a, s′) = Rζ(s, a, s′) + ri,t

Rω,ω′(s, a, s′) = Rζ(s, a, s′) + Wω′,t,i × Wω,t × Repisodic(τ)
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4.3 Optimal Policy Preservation

While the aim is to densify the reward function, we also want to ensure that the optimal policy
learned in the new reward function is also optimal in the environment’s original reward function.
Fortunately, we can show that this is the case:

Proposition 1. Let’s consider two MDPs MEnv = (S, A, P, T , O, N , Rζ , ρ0, γ) and MRRF =
(S, A, P, T , O, N , Rω,ω′ , ρ0, γ) as defined in subsection 3.1. The only distinction between MEnv and
MRRF are the reward functions. If π∗

θ is the optimal policy in MRRF then π∗
θ is also optimal in

MEnv.

Proof. We know that π∗
theta is optimal in MRRF . For π∗

theta to be optimal in MEnv, we need to
show that Rω,ω′ = Rζ + F(s, a, s′) where F(s, a, s′) is a potential based shaping function which is
a necessary and sufficient condition for optimal policy preservation (Ng, 1999; Devlin & Kudenko,
2011; Xiaosong Lu, 2011; Devlin et al., 2011). Potential based shaping functions assume the existence
of a real valued function ϕ : S → R for all s → S, a → A and s′ → S: F(s, a, s′) = γϕ(s′) − ϕ(s).

It is therefore sufficient to show that the equation 4.2 takes the form Rω,ω′(s, a, s′) = Rζ(s, a, s′) +
γϕ(s′) − ϕ(s). Comparing this format to equation 4.2, assuming γ = 1 we arrive at ϕ(s′) −
ϕ(s) = Wω′,t,i(hi,t, h¬i,t) × Wω,t(hi,t, h¬i,t) × Repisodic(τ). This relation holds for ϕ(s) =
Repisodic(τ)(

∑|τ |
t=0 Wω′,t,i(hi,t, h¬i,t) × Wω,t(hi,t, h¬i,t))

This result ensures that if the policy πθ when trained using the reward function Rω,ω′ in MRRF

converges to an optimal policy π∗
θ then π∗

θ will also be optimal for the original reward function Rζ

in MEnv.

4.4 Discussion on Wω and Wω′

In the above subsection we show that
∑N

i=1 Wω′,t,i = 1 and
∑|τ |

t=1 Wω,t = 1. Wω and Wω′ attribute
weights to the temporal axis of the multi-agent system and to each agent after temporal credit
assignment respectively. These weights represent the distribution of credit across time steps and
agents, respectively. It is crucial that these weights are meaningful because if they are not, it can
lead to imperfect credit assignment. Imperfect credit assignment occurs when the credit attributed
to each agent or each time step does not accurately reflect their true contribution to the final
outcome. This mis-attribution can significantly hamper the learning process, leading to sub-optimal
policies. For instance, if the weights fail to appropriately highlight the pivotal actions of certain
agents at critical time steps, those agents may not receive the necessary feedback to improve their
behaviors. Consequently, the overall performance of the multi-agent system may suffer, and the
agents may converge to a less effective or even ineffective policy. Therefore, ensuring that these
weights are meaningful and accurately capture the contribution of each agent at each time step is
vital for effective learning of optimal policy in multi-agent reinforcement learning systems. Hence,
the reward redistribution function (Wω(hi,t, h¬i,t) and Wω′(hi,t, h¬i,t)) should learn to capture rich
representations of the agents’ contributions and the temporal dynamics of their actions. This ensures
that the weights assigned to each agent and time step are both accurate and meaningful, facilitating
effective credit assignment and ultimately leading to the learning of optimal policies.

4.5 Agent temporal reward redistribution (ATRR) architectural details

We merely extend the architecture proposed by Xiao et al. (2022) to not only do decomposition of
the episodic reward (trajectory return) temporally but go a step further to decompose them at the
agent level. As a result, we encourage the model to predict ri,t and thus, learn implicit temporal
and agent weights that adhere to the equation ri,t = Wω′,t,i × Wω,t × Repisodic(τ).

6



Under review for the Reinforcement Learning Conference (RLC)

5 Experimental Setup

We demonstrate the effectiveness of our approach ATRR with single-agent and multi-agent rein-
forcement learning algorithms against some competitive baselines in the 5m_vs_6m battle scenario
of the SMACLite (Michalski et al., 2023) environment.

5.1 Baselines

In order to validate the effectiveness of our reward redistribution mechanism we compare its perfor-
mance with many other forms of reward functions. We train all the baseline reward functions with
IPPO(De Witt et al., 2020; Schulman et al., 2017) and MAPPO (Yu et al., 2022) and report them
in Fig 1

Episodic rewards: This is the episodic reward setting where each agent receives a global reward
signal at the end of the trajectory.

Dense temporal rewards: In this setting, each agent receives the original global dense reward
signal described in subsection 5.2.

Dense AREL temporal rewards: This setting employs AREL reward redistribution that tem-
porally assigns rewards to the multi-agent trajectory as described in (Xiao et al., 2022).

Dense IRCR temporal rewards: In this setting, each agent receives a global reward at every
time step following this equation rglobal,t = Repisodic(τ)/|τ | (Gangwani et al., 2020). This baseline
also exemplifies a unique form of reward redistribution in our case where the state and action tuple
of each agent is of equal importance and hence each of them receive the same global reward.

Dense ATRR agent rewards (ours): This is the reward setting proposed in the subsection 4.5.

5.2 Environment

StarCraft Multi-Agent Challenge Lite (SMAClite): The StarCraft Multi-Agent Challenge
(SMAC) (Michalski et al., 2023) is an RL environment based on the StarCraft II real-time strategy
game, in which a team of agents fights against an opposing team controlled by the game engine’s
centralized hard-coded AI. We specifically consider the the lightweight and open-source SMACLite
version (Michalski et al., 2023). We consider a battle scenario, 5m_vs_6m, where 5 agent-controlled
marines battle 6 enemy marines. In this battle situation, the dense reward received by a particular
agent while attacking an enemy unit is the difference in the health and shield points removed from
that enemy unit in that particular timestep. If a particular agent kills an enemy unit, it receives a
reward of 10. Upon defeating the entire enemy team, a reward of (200 / number of agents) is given
to each surviving agent. The returns are then normalized such that the maximum possible group
return is 20. However, we acummulate the dense reward for each multi-agent trajectory and provide
it as a feedback only at the end of the episode.

6 Results and Discussion

As presented in Figure 1, our method ATRR-agent outperform other reward function baselines
except for the environment’s original dense reward setting as described in subsection 5.2. This
particular baseline is an oracle since it has been manually designed to achieve the objective of this
specific environment. While training ATRR, we used the same hyperparameters as proposed in (Xiao
et al., 2022) with a slight modification to the training procedure. Since AREL (Xiao et al., 2022)
was trained with off-policy reinforcement learning algorithms like QMIX (Rashid et al., 2020), they
seemed to not require a warm-up period to train the reward function alone. Since in our experiments
we train single and multi-agent on-policy policy gradient algorithms, we empirically discovered that
a warm-up period (2000 episodes) performed better.
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Figure 1: Average agent episodic rewards with standard deviation for task 5m_vs_6m.

7 Conclusion and future work

This paper studied the multi-agent agent-temporal credit assignment problem in MARL tasks with
episodic rewards. We proposed a agent-temporal reward redistribution (ATRR) function that theo-
retically guarantees the preservation of the optimal policy under the original reward function. Our
experimental results demonstrate that ATRR outperforms all baselines, showing faster convergence
speed.

In future work, we want to explore the agent-temporal reward redistribution by utilizing the attention
weights generated by the temporal and agent attention blocks during a forward pass since they
naturally fit well in the proposed framework. We want to also demonstrate the effectiveness of our
approach against more competitive state-of-the-art baselines and across a variety of other MARL
environments of varying difficulty. An interesting line of investigation would be to see the transfer-
learning capabilities of such models 1) with more agents than it was trained with 2) across different
environments with similar objectives.
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