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ABSTRACT

Activation sparsity can enable practical inference speedups in large language mod-
els (LLMs) by reducing the compute and memory-movement required for matrix
multiplications during the forward pass. However, existing methods face limi-
tations that inhibit widespread adoption. Some approaches are tailored towards
older models with ReLU-based sparsity, while others require extensive continued
pre-training on up to hundreds of billions of tokens. This paper describes TEAL
(Training-Free Activation Sparsity in LLMs), a simple training-free method that
applies magnitude-based activation sparsity to hidden states throughout the entire
model. TEAL achieves 40-50% model-wide sparsity with minimal performance
degradation across Llama-2, Llama-3, and Mistral families, with sizes varying
from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock
decoding speed-ups of up to 1.53× and 1.8× at 40% and 50% model-wide sparsity.
TEAL is compatible with weight quantization, enabling further efficiency gains.

1 INTRODUCTION

Large language models (LLMs) demonstrate that scaling in both parameter count and training data
leads to capabilities that are useful for addressing a variety of downstream tasks (Brown et al., 2020).
However, the large number of parameters in modern LLMs can lead to substantial challenges during
inference. In typical small-batch deployment settings, autoregressive inference is memory-bound,
i.e., bottlenecked by the speed at which the parameters can be moved from off-chip to on-chip
memory. This is in contrast to LLM training and prefill inference, which is generally compute-
bound, i.e., bottlenecked by the speed at which computation can performed. A core strategy for
overcoming this memory wall (Gholami et al., 2024) is through weight quantization (Frantar et al.,
2022; Shao et al., 2023; Yuan et al., 2023; Lin et al., 2024; Dettmers et al., 2023c; Tseng et al., 2024;
Egiazarian et al., 2024; Liu et al., 2024) and sparsification (Wang et al., 2019; Frantar & Alistarh,
2023; Xia et al., 2023; Ma et al., 2023), which can lead to practical speed-ups when coupled with
specialized kernels that move the weights from off-chip to on-chip memory in quantized/sparse
formats (Kim et al., 2023; Dettmers et al., 2023b; Frantar et al., 2024; Wang et al., 2024b; Xia et al.,
2024; Guo et al., 2024).

The above methods directly compress a model’s weights and apply the same (quantized/sparse)
matrix to all inputs. Activation sparsity (Chen et al., 2023; Raihan & Aamodt, 2020; Kurtz et al.,
2020) is an alternative method which enforces input-dependent structure on the weight matrices by
leveraging (or inducing) sparsity in the hidden states. Since the weight channels corresponding to
zero-valued activations are not used in computation, speed-up can be realized by selectively omitting
these weights during memory transfer, which is possible due to the hardware-friendly channel-wise
sparsity pattern. In older LLMs, activation sparsity is largely made possible by the high natural
sparsity (around 95%) in the intermediate states of the MLP blocks in ReLU-based Transformer
models (Li et al., 2023). Based on this, Liu et al. (2023) propose DejaVu, which learns a small
auxiliary model that predicts the contextual activation sparsity patterns of future layers, and realize
a 2× wall-clock speed-up on OPT-175B (Zhang et al., 2022). Because the hidden state is extremely
sparse, the less expressive auxiliary model can afford to overestimate non-zero activations while
maintaining accuracy and efficiency (e.g., 20% predicted vs. 5% actual non-zero entries).

However, modern LLMs have largely moved away from ReLU-based feedforward layers due to
their worse performance compared to variants like SwiGLU (Shazeer, 2020). In these models the
activations are no longer naturally sparse, making it difficult to apply methods like DejaVu. And
while recent works have found that replacing SiLU with ReLU in the MLP blocks and performing
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continued pre-training can “recover” models that exhibit high activation sparsity (thus making older
methods applicable) (Mirzadeh et al., 2023; Song et al., 2024a;b), such methods require training on
up to hundreds of billions of tokens.

Figure 1: Overview of TEAL. During decod-
ing, TEAL thresholds low-magnitude activation
entries to zero, which obviates the need to move
the associated weight channels onto the registers,
thus enabling wall-clock speed-ups.

This work describes TEAL (Training-Free
Activation Sparsity in LLMs), a simple,
training-free approach that applies activation
sparsity based on magnitude pruning. TEAL
is based on the observation that distributional
shapes in LLaMA-architecture LLMs are zero-
mean unimodal. By pruning low-magnitude,
non-salient activations, we achieve 40-50%
model-wide (input-dependent) sparsity, in con-
trast to prior work which only achieves spar-
sity in portions of the model (Lee et al., 2024b).
We realize wall-clock speed-ups of up to 1.53×
and 1.8× at 40% and 50% sparsity respectively
through specialized kernels, and further demon-
strate compatibility with weight quantization.

2 RELATED WORK

Conditional computation (Bengio, 2013; Ben-
gio et al., 2016) alleviates the burden of train-
ing and serving by selectively activating parts of a model. Shazeer et al. (2017) propose Mixture-of-
Experts (MoE) in language models, applying conditional computation to the feed forward networks.
Mixture-of-Experts models decouple parameter count with computational footprint (Fedus et al.,
2022), and demonstrate superior scaling laws compared to dense baselines (Clark et al., 2022).

Activation sparsity occurs when a significant portion of a model’s hidden states contain zero-valued
entries, and can be seen as an instance of conditional computaton. Activation sparsity is known
to naturally emerge in the intermediate states of ReLU-based MLPs (Li et al., 2023). Liu et al.
(2023) leverage activation sparsity to accelerate LLM inference by avoiding the transfer of weight
channels associated with zero-valued entries to GPU registers. Song et al. (2023) and Alizadeh
et al. (2024) extend activation sparsity to CPU offloading, reducing weight transfer from CPU to
GPU memory. However, newer architectures typically make use of non-ReLU-based MLPs (e.g.,
SwiGLU, Shazeer, 2020), making these off-the-shelf methods difficult to use in practice.

Recent work has thus focused on reintroducing activation sparsity in newer architectures. Mirzadeh
et al. (2023) replace SiLU or GeLU activation functions with ReLU, followed by continued pretrain-
ing on hundreds of billions of tokens. Zhang et al. (2024b) experiment with different activations and
find Squared ReLU (So et al., 2022) to be the most effective replacement. Song et al. (2024b)
and Song et al. (2024a) introduce techniques such as activation regularization to push sparsity even
higher in adapted models. Wang et al. (2024a) combine magnitude pruning with Squared ReLU and
quantized activations, and establish scaling laws for sparsely activated LLMs during pretraining.

Lee et al. (2024a) propose CATS, and realize training-free activation sparsity on SwiGLU based
LLMs by applying magnitude pruning on the output of Wgate, with the intuition that in the training-
free setting, ReLU-based methods suboptimally zero out nontrivial negative values but keep positive
values with lower magnitude intact. They achieve up to 50% sparsity in Wup and Wdown for Mistral
and Llama-2-7B. However, other matrices including Wgate and Wq,k,v,o are computed densely, result-
ing in lower model-wide sparsity (roughly 25%), whereas we target every matrix in the model. We
refer the reader to Appendix A.3 for formal definitions of the weight matrices and their interactions
within each Transformer block.

3 BACKGROUND: ACTIVATION SPARSITY IN NEURAL NETWORKS

The activation sparsity of a hidden state x is defined as the proportion of zero-valued entries, which
can interact with the model in two ways. The first is input sparsity: when computing y = xW⊤

for x ∈ Rm,W ∈ Rn×m, the columns W:,i corresponding to zero-valued entries xi are unused.
The second is output sparsity: when computing y = s⊙ (xW⊤) for the aforementioned parameters
and mask s ∈ Rn, the rows Wi,: corresponding to zero-valued entries si are unused. CATS makes
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use of output sparsity on GLU variants, treating s = sparsify(σ(xW⊤
gate)) as the mask and applying

output sparsity on xW⊤
up, with the intuition that σ(·) serves as a gating mechanism. Interestingly,

we find in Section 5.4.1 that input sparsity is still preferable in the training-free case for SwiGLU.

In LLMs, the computation xW⊤ is memory-bound in the decoding phase due to the high memory
footprint of weights, and thus reducing the transfer of unnecessary entries (i.e., rows/columns cor-
responding to zero-valued activations) can enable speed-ups. However, GPUs are designed to fetch
multiple consecutive memory entries in a single access to maximize memory bandwidth. When
memory accesses are non-contiguous, as they are when unnecessary entries are scattered, this leads
to inefficient use of memory bandwidth. To ensure memory coalescing and contiguous memory
access, it is crucial to store weights associated with input sparsity in a column-major format, and
weights associated with output sparsity in a row-major format.

4 TEAL: TRAINING-FREE ACTIVATION SPARSITY IN LLMS

4.1 MOTIVATING STUDY: DISTRIBUTIONAL PROPERTIES OF ACTIVATIONS IN LLMS

Figure 2: Activation distributions of Llama-3-8B’s four hidden states at Blocks 8, 16, and 24. The
activations preceding the Attention and MLP blocks typically exhibit Gaussian-like shapes, while
intermediate states within these blocks exhibit Laplacian-like shapes. The best-fit Gaussian/Laplace
distributions are overlayed in blue.

We perform a preliminary study of the distributional properties of activations of LLMs. We collect
activations of Llama-3-8B (Dubey et al., 2024) sampled from C4 (Raffel et al., 2023) at the four
hidden states in a Transformer block,1 and visualize them in Figure 2. As indicated by prior work,
some of the activations are heavy-tailed and contain outliers (Dettmers et al., 2022; Xiao et al., 2022;
Wei et al., 2022; Nrusimha et al., 2024). The hidden states are moreover zero-mean unimodal, and
qualitatively fall into two distinctly shaped distributions. The hidden states before the Attention
and the MLP layers tend to be Gaussian-like, while the hidden states in the intermediate of such
layers tend to be Laplacian-like. The concentration of the activations around zero motivates our
magnitude-based activation pruning approach.

Remark. We do not attempt to explain why these distributions are shaped the way they are, nor do
we give the theoretical underpinnings of why activation sparsity works. However, we make a few
general observations. LLM weights are typically Gaussian (Dettmers et al., 2023a), and multiplying
an independent isotropic Gaussian vector with an independent Gaussian matrix follows a multi-
variate generalized Laplace distribution Mattei (2017) (the weights and activations are clearly not
independent in practice). Attention is a data-dependent linear operator (Poli et al., 2023) which may
have similar properties. Distributions may be zero-mean due to layer normalization (Ba et al., 2016).
We further derive the expected error induced by pruning low-magnitude activations in Appendix A.1,
under a more restrictive assumption that weights and activations are independent Gaussians.

1Throughout, we use “block” to refer to an entire Transformer block consisting of the seven matrices and
“layer” to refer to an individual layer (corresponding to a single matrix) within the Transformer block.
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4.2 TEAL
The above analysis motivates our simple approach for activation sparsity based on magnitude prun-
ing. While small-magnitude activations could still have a large effect on the output if the norms
of corresponding channels of the weight matrix are large, we find that magnitude-based pruning is
empirically effective. We first define a sparsification function for an activation vector as follows:
Definition 1. For a random vector x̃ = (x̃1, . . . , x̃n) and sparsity level p ∈ [0, 1], define the
threshold tp as

1

n

n∑
i=1

P(|x̃i| ≤ tp) = p.

The sparsification function stp : Rn → Rn is defined as:

stp(x) = (stp(x1), . . . , stp(xn))

where x is a realization of x̃, and for each component:

stp(xi) =

{
0 if |xi| ≤ tp
xi otherwise

In practice we estimate tp using an empirical distribution constructed offline using activations from
generic text. The sparsity level p is characterized entirely by threshold tpi

, which is useful in both
implementation and kernel design (Section 4.4).

Let W be the set of matrices in the MLP and Attention blocks of a model, and further let N = |W|.
We define a model-level sparsification configuration as p = (p1, ..., pN ), where each pi ∈ [0, 1]
represents the sparsity level for the corresponding matrix Wi. For each matrix Wi ∈ W , we define
its layer-level sparsified forward pass as:

Ŷ = stpi (x)W
⊤
i

for input x and magnitude-based sparsification function stpi (·) as defined in Definition 1. We apply
this sparsified forward pass to all N matrices to obtain the model-level sparsified forward pass. For
each Transformer block, this sparsifies all four of its hidden states: before Wup, gate, before Wdown,
before WQ,K,V, and before WO.

4.3 BLOCK-WISE GREEDY OPTIMIZATION Algorithm 1 Block-wise Greedy Optimization
Input: Block B, base step size α,

input X ∈ RB×seq×d, n matrices
# Find size (memory footprint) of matrices
fi ← size(Wi) for i = 1, . . . , n

F ←
∑n

i=1
fi # Find size of block

# Init block and all layer sparsities to zero
p← 0n, P ← 0

Ygt ← B(X) # Forward pass through block B to find
ground truth output
while P < 1 do

for i = 1 to n do
δi ← α · (F/fi)

# Error if we further sparsify this layer
pi += δi
Ŷi ← L(X, p′

i)

Ei ← ∥Ygt − Ŷi∥2
pi −= δi

end for
# Increment layer with lowest error
j ← argmini Ei

pj += δj
P ←

∑n
i=1(pi · fi)/F

Record p, P
end while

How should we find the optimal p? We initially
tried a gradient-based approach to learning the
thresholds based on the straight through estima-
tor (Bengio et al., 2013), but encountered opti-
mization issues. We instead used a simple greedy
approach illustrated in Algorithm 1, which was
found to be effective.

For each Transformer block, we seek to min-
imize the block-wise ℓ2 activation error sub-
ject to a block-level sparsity constraint. Each
Transformer block consists of seven matrices:
Wq,Wk,Wv,Wo,Wgate,Wup,Wdown. Algo-
rithm 1 initializes the sparsity levels of all layers to
zero, and attempts to increment the sparsity level
of each layer by an amount inversely proportional
to its memory footprint. The layer with the lowest
ℓ2 activation error is incremented, and the block-
level sparsity plus associated layer-level sparsities
are recorded. We assign the same block-level spar-
sity level across all Transformer blocks; therefore, all blocks have the same target sparsity level, but
the individual layer-level sparsities could be different across different blocks.

Cost. We describe the cost of our method. The time complexity is O(Mn2

α ) forward passes, where
M is the number of samples, n is the number of matrices, and α is the average step size. In practice,
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we use length 2048 samples and M,n, α = 10, 7, 0.05. The resulting cost over all blocks is therefore
10 · 72 · 1

0.05 = 9800 forward passes, which is less than one GPU-hour on an A100 for Llama-3-8B.
It consumes minimal device memory due to its being block-wise and requiring no backpropagation.

4.4 HARDWARE AWARE ACCELERATION

We develop a specialized sparse GEMV kernel to achieve practical speed-ups, building on the Triton-
based (Tillet et al., 2019) kernel introduced by DejaVu (Liu et al., 2023). This kernel takes in an
input x, boolean sparsity mask s and matrix W, and returns (x ⊙ s)W⊤. Wall-clock speed-up is
realized in three ways: (1) W is stored in column major format for optimal memory coalescing; (2)
Columns W:,i are selectively loaded based on the truth value of si; (3) SplitK work decomposition
is used, enabling finer-grained parallelism across thread blocks, combining partial results through
atomic adds.

Our kernel makes the following improvements on top of the original kernel: (1) We fuse the mask
creation process, as s = x[|x| > tp] is entirely characterized by x and tp in TEAL; (2) We ac-
cumulate along the outer SplitK dimension in FP16 (keeping the inner in-register accumulation in
FP32), as writing to global memory in FP32 results in significant traffic; (3) We specify an eviction
policy in NVIDIA PTX, prioritizing cache retention for activations which are reused across multiple
thread blocks, and deprioritizing weights which are block-specific. This guarantees that activations
are persistent in L2 cache.

Figure 3: Latency vs. sparsity for matrix-vector multiplication (1x4096 × 4096x14336), comparing
TEAL to Deja Vu. ’Theoretical Optimal’ shows the latency reduction for torch.matmul assuming
perfect linear scaling with sparsity.

Figure 3 shows a small speed-up on A6000, and a larger speed-up on A100 over the DejaVu kernel.
Note that torch.matmul is not the strongest baseline in small batch settings (Hong et al., 2024),
which is why our kernel is faster at 0% sparsity for A100. We use a stronger baseline for end-to-
end evaluations (Section 5.2). The larger speed-up on A100 can be attributed to its higher memory
bandwidth, which amplifies the impact of reducing other overhead factors. These overhead improve-
ments become increasingly important as memory bandwidth across device tiers improves over time,
particularly for quantized models and in latency-sensitive or resource-constrained applications.

5 RESULTS

Models and Datasets. We evaluate TEAL on the Mistral (Jiang et al., 2023), Llama-2 (Touvron
et al., 2023), and Llama-3 (Dubey et al., 2024) families. We measure the performance of sparsified
models on language modeling using the WikiText (Merity et al., 2016) validation set, and on an
aggregate of six downstream tasks using the EleutherAI LM Harness (Gao et al., 2023), including
5-shot MMLU, 25-shot ARC challenge, 10-shot HellaSwag, 5-shot GSM8K, zero-shot PiQA, and
zero-shot Winogrande (Hendrycks et al., 2021; Clark et al., 2018; Zellers et al., 2019; Cobbe et al.,
2021; Bisk et al., 2019; Sakaguchi et al., 2019). For language modeling, we evaluate all models on
the same 128 random samples, using a 2048-token context and 512-token evaluation window.

Baselines. We use the block-wise greedily optimized sparsities from Section 4.3 for TEAL, and
primarily compare to CATS (Lee et al., 2024a) in its training-free configuration with no finetuning.
We report model-level sparsities for all methods.

CATS applies sparsity to MLP parameters, and does not apply sparsity to attention parameters. In
particular, CATS sparsifies the output of Wgate, replacing SiLU(xWgate) with stp(SiLU(xWgate))
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for sparsification function stp associated with the distribution of SiLU(xWgate). Overall, CATS
sparsifies the intermediate state of the MLP by first performing dense computation on Wgate, en-
forcing output sparsity on Wup, and then enforcing input sparsity on Wdown. This is in contrast with
TEAL, which enforces input sparsity on all matrices.
Table 1: Perplexity results. Results between Llama-3 and Llama-2/Mistral are not directly compa-
rable due to differing vocabulary sizes.

LLaMA-3 LLaMA-2 Mistral

Method / Model 8B 70B 7B 13B 70B 7B

Baseline (0%) 5.87 2.93 5.07 4.50 3.12 4.92

CATS 25% 6.78 3.64 5.52 4.99 3.42 5.87
TEAL 25% 5.94 3.02 5.09 4.51 3.13 5.01

CATS 40% 7.6 · 104 96.97 43.8 53.9 171 2.8 · 104

TEAL 40% 6.21 3.52 5.22 4.60 3.25 5.13

TEAL 50% 6.67 4.30 5.43 4.76 3.50 5.31
TEAL 65% 9.06 6.29 6.62 5.50 4.28 6.23

These methods are decoding solutions primarily, but some of the prefill needs to be sparsified for
meaningful evaluation on log-likelihood based tasks (such as language modeling and MMLU). For
such tasks we sparsify the second half of prefill along the sequence length dimension. See Section
5.4.3 for a more detailed analysis – most degradation in prefill is associated with the initial tokens,
which is likely related to the attention sink phenomenon (Xiao et al., 2024), and we thus need to
take care not to sparsify them. We do not sparsify prefill on generation tasks (such as GSM8K).

5.1 ACCURACY

Main Results. TEAL is performant, as shown in Tables 1 and 2, showcasing near zero degradation
at 25%, and minimal degradation at 40% sparsity. At 50% sparsity, Llama-3 variants show slightly
more degradation compared to older Llama-2 and Mistral variants which are still fairly performant.
This falls in line with prior work showing that quantization techniques are less effective on newer
models trained on more tokens (Huang et al., 2024). Most models degrade significantly at 65%
sparsity, with the exception of Llama-2-70B which is still reasonably performant. In terms of down-
stream task results, both of the 70B models are more sparsifiable than their smaller counterparts.

Table 2: Downstream task evaluation results. Reported results are averaged over six tasks. See
Appendix A.2 for fine-grained results. We omit CATS 40% as it is degenerate.

LLaMA-3 LLaMA-2 Mistral

Method / Model 8B 70B 7B 13B 70B 7B

Baseline (0%) 68.07 80.41 56.50 62.01 72.65 66.96

CATS 25% 64.15 79.25 54.60 60.48 71.93 64.25
TEAL 25% 67.73 80.22 56.42 62.21 72.67 66.63

TEAL 40% 66.21 79.29 55.45 61.27 72.57 65.46
TEAL 50% 63.42 78.26 54.26 60.41 72.02 64.16
TEAL 65% 52.59 73.07 48.16 55.71 69.30 58.93

ReLUfication is degenerate in the training-free setting. TEAL outperforms CATS at both 25% and
40% sparsity, which is mainly due to two factors. First and most importantly, TEAL sparsifies every
matrix in the model, not just Wup and Wdown, allowing us to moderate sparsity levels across the
model. When applied to Llama-2-7B, CATS sparsifies the intermediate state of MLPs to 56.2% at
25% overall sparsity, and to 89.7% at 40% overall sparsity. TEAL avoids such extreme sparsity in
any single component. Second, our design choice to use input sparsity instead of output sparsity for
Wup yields lower error, which we analyze in Section 5.4.1.

5.2 END-TO-END DECODING SPEED-UP

We benchmark TEAL’s end-to-end single-batch decoding latency by integrating it with GPT-Fast
(PyTorch, 2024). We enable CUDA graphs and torch.compile. Tests use Llama-2 (7B, 13B) and
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Table 3: Single-batch end-to-end inference speed results, measured in tokens per second. We ex-
clude Mistral-7B and Llama-2-70B as they are architecturally similar to Llama-3-8B and 70B. We
utilize tensor parallelism for Llama-3-70B: TP2 for A100, and TP4 for A6000.

LLaMA-3 LLaMA-2

GPU Sparsity 8B 70B 7B 13B

A6000 Baseline 45.32 (1.00×) 15.93 (1.00×) 50.54 (1.00×) 26.43 (1.00×)

0% 44.49 (0.98×) 15.57 (0.98×) 50.06 (0.99×) 26.25 (0.99×)
25% 55.38 (1.22×) 18.93 (1.19×) 64.54 (1.28×) 33.67 (1.27×)
40% 64.15 (1.42×) 20.86 (1.31×) 77.30 (1.53×) 40.20 (1.52×)
50% 73.94 (1.63×) 23.77 (1.49×) 89.91 (1.78×) 47.60 (1.80×)

A100 Baseline 100.79 (1.00×) 21.85 (1.00×) 110.15 (1.00×) 61.01 (1.00×)

0% 92.13 (0.91×) 20.32 (0.93×) 100.97 (0.92×) 56.33 (0.92×)
25% 112.11 (1.11×) 25.18 (1.15×) 126.14 (1.15×) 70.66 (1.16×)
40% 126.24 (1.25×) 28.78 (1.32×) 143.85 (1.31×) 81.90 (1.34×)
50% 134.29 (1.33×) 29.99 (1.37×) 154.02 (1.40×) 88.38 (1.45×)

Llama-3 (8B, 70B) models at 0%, 25%, 40%, and 50% uniform sparsities. We use GPT-Fast’s stan-
dard inference benchmarking setup, which passes in roughly 5 input tokens and generates at most
200 output tokens. Our GPU power limit settings are 500W and 300W for A100 and A6000 re-
spectively. As shown in Table 3, TEAL achieves significant speed-ups of up to 1.53× and 1.8× at
40% and 50% sparsity respectively. TEAL is slower than the baseline at 0% sparsity on A100 due
to torch.compile strengthening the torch.matmul baseline. This suggests further room for opti-
mization of our kernel. We find lower speedups for Llama-3-8B compared to Llama-2-7B partially
due to its larger LM Head, which we do not currently sparsify.

5.3 COMPATIBILITY WITH QUANTIZATION

We demonstrate compatibility with quantization, which is another promising direction for efficient
LLM inference. We consider 8-bit channel-wise RTN, 4-bit AWQ (Lin et al., 2024), and 2/3-bit
QuIP# (Tseng et al., 2024), and plot the perplexity of Llama-2-7B on WikiText in Figure 4. The point
of sharp perplexity degradation is similar across bitwidths, suggesting that errors from activation
sparsity and weight quantization compound somewhat independently. Combining activation sparsity
with weight quantization unlocks new regimes with respect to memory transferred to GPU registers,
allowing for higher inference speed-up. This requires developing specialized sparse + quantized
kernels, which we leave to future work.

Figure 4: Perplexity vs. sparsity for Llama-2-7B quantized to various bitwidths on WikiText. Left:
Performance over sparsity levels. Right: Performance normalized by bitwidth.

5.4 ANALYSIS

5.4.1 SHOULD WUP HAVE INPUT OR OUTPUT SPARSITY?

TEAL naturally differs from CATS in its treatment of Wup. TEAL uses input sparsity, whereas
CATS uses output sparsity with output mask s = stp(SiLU(xW⊤

gate)), with the intuition that SiLU
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serves as a gating mechanism. We must choose one treatment over the other due to differing memory
format constraints (see Section 3).

Figure 5: Layer-level activation error for Wup at
Block 16 of Llama-3-8B: TEAL utilizing input
sparsity, and CATS utilizing output sparsity.

Figure 6: Perplexity of Llama-3-8B on Wiki-
Text under uniform and block-wise greedy spar-
sity configurations.

We analyze the activation error in the intermediate state of MLPs, assuming Wgate is computed
densely, as it is in CATS. The error associated with TEAL is ||(x−stp(x))W

⊤
up⊙SiLU(xW⊤

gate)||2,
and the error associated with CATS is ||xW⊤

up ⊙ [SiLU(xW⊤
gate) − s′tp(SiLU(xW⊤

gate))]||2, where
stp(·) and s′tp(·) are sparsification functions associated with x and SiLU(xW⊤

gate) respectively. We
additionally normalize errors by the norm of the unsparsified product. Figure 5 shows that input
sparsity outperforms across all levels. This is because output mask s has no information regarding
the saliency of outputs with respect to Wup, which is relevant since SiLU does not threshold exactly
to zero. As a result, larger values of xWup may be unnecessarily pruned.

5.4.2 BLOCK-WISE GREEDY SPARSITIES

We observe in Figure 6 that the block-level greedy method in Section 4.3 outperforms the uniform
configuration across all sparsity levels. The resultant sparsities can be used to analyze the workings
of modern LLMs. We make two interesting observations about Llama-3-70B, which tend to hold
for the other models we analyze.

Figure 7: Greedy sparsities for Llama-3-70B at 50% model-level sparsity. Left: Attention parame-
ters. Right: MLP parameters.

Attention: We plot sparsities of Wq,Wk,Wv,Wo at 50% model-level sparsity. Wq,Wk exhibit
high sparsifiability in Block 0, followed by a sharp decline. Wo’s sparsifiability varies dynamically:
it starts at 50-60%, peaks at 80-90% mid-model, then returns to 50-60% in the final blocks. The
blocks where Wo exhibits high sparsifiability seem to align with those of the Attention modules
pruned in FinerCut (Zhang et al., 2024a), suggesting that the sparsifiability of Wo may have some
correlation to saliency in Attention modules.

MLP: We plot sparsities of Wup,Wgate,Wdown at 50% model-level sparsity. Across all blocks,
Wdown is more sparsifiable than Wgate, which is more sparsifiable than Wup. Intuitively, Wdown is
sparsifiable as it corresponds to a Laplacian shaped distribution, which is more densely concentrated
around zero than a Gaussian shaped distribution. Wgate may be more sparsifiable than Wup due to
SiLU decreasing the saliency of negative outputs.
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5.4.3 PREFILL SPARSIFICATION

We vary the proportion of prefill sparsified (along the sequence length dimension) in Figure 9. Spar-
sifying the second half of prefill is nearly identical to sparsifying 99% of prefill (all tokens besides
the initial tokens). However, more severe degradation occurs when sparsifying the initial tokens.
This is due to attention sinks (Xiao et al., 2024), a phenomenon in LLMs where initial tokens are
allocated an outsized amount of attention due to the softmax operation. Degradation to keys and
values of initial “attention sink” tokens results in more substantial model degradation due to their
greater importance (Hooper et al., 2024).

TEAL is a decoding solution so this is typically not an issue, but care must be taken when sparsifying
prefill for evaluation on log-likelihood based tasks.

Figure 8: Layer-level activation error for Wdown
at Block 16 of Llama-2-7B, at varying batch
sizes.

Figure 9: Perplexity of Llama-3-8B on Wiki-
Text, varying the proportion of prefill sparsified,
using greedy sparsity configurations.

5.4.4 BATCHED SPARSIFICATION

We focus on the single-batch case, but it may be valuable to study activation sparsity in batched
settings. The key challenge is that different inputs may prefer different sparsity patterns. We need
to find a subset of weight columns associated with activations that are relatively low-magnitude for
the entire batch.

We propose to sparsify based on the average magnitude of activations across the batch dimension,
a natural extension from the single batch case. The resultant sparsification criterion is batch depen-
dent, but is still entirely characterized by a threshold.

As a preliminary analysis, we find the layer-level activation error for Wdown at Block 16 of Llama-
2-7B, ablated across batch sizes, in Figure 8. At low batch sizes above 1, Wdown still exhibits
substantial sparsity. For example, in the single batch setting, Wdown is assigned roughly 60% spar-
sity at 50% model-wide sparsity. To have the same error at batch size 4, Wdown is assigned roughly
38% sparsity. As batch size tends to infinity, TEAL can be interpreted as a structured channel-wise
pruning algorithm (Zhao et al., 2023), with a simple pruning metric based on activation magnitude.

6 APPLICATIONS AND LIMITATIONS

Applications. The most immediate application of TEAL is accelerating inference in resource con-
strained edge settings. These settings are typically single-batch, which is where TEAL realizes the
most salient speed-up. Furthermore, TEAL is compatible with quantization (Section 5.3), which is
another essential axis of efficiency in this setting.

Limitations. TEAL exhibits substantial sparsity in the low-batch setting (Section 5.4.4) but does
not scale as well to higher batch sizes, which is a limitation of most activation sparsity work2. A way

2We note that Wang et al. (2024a) propose to enforce structured n:m sparsity on activations to address
batched inference, but this is applicable only if inference is compute bound instead of memory bound, and is
outside the scope of our work. A regime where inference is compute bound is with 1.58-bit models (Ma et al.,
2024) in high-batch settings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to alleviate this is to push sparsities higher through continued pretraining. While TEAL focuses on
the training-free case, we provide many learnings that can aid future work in sparse aware adaptation.

A setting where batched inference is less difficult is in the low-batch setting of Mixture of Experts
(Shazeer et al., 2017) based models, as the baseline itself does not scale well due to having to activate
more experts and lowering the arithmetic intensity.

7 CONCLUSION

We propose TEAL, a simple method that applies magnitude-based activation sparsity to modern
LLMs without training, achieving 40-50% model-wide sparsity with minimal degradation. We ad-
ditionally optimize per-layer sparsity levels, improve existing sparse kernels, and demonstrate com-
patibility with quantization. We achieve wall-clock speed-ups in single-batch decoding, which is
crucial in resource-constrained edge settings. We hope TEAL has impact in real-world applications
and enhances our understanding of activation sparsity in LLMs.
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A APPENDIX

A.1 DERIVATION OF SPARSIFICATION ERROR

We derive the error of magnitude-based activation sparsity for the case where W and X are inde-
pendent Gaussian in Theorem A.1. Our error metric is EX[∥Y−Ŷ∥2]

EX[∥Y∥2] , where X is the input, Ŷ is
the predicted output and Y is the ground truth output. We plot this error in Figure 10, along with
empirical errors on Wup,down in Block 16 of Llama-3-8B, and the theoretical error obtained from
random sparsification.

Definition A.1. For a random vector X = (X1, . . . , Xn) and sparsity level p ∈ [0, 1], define the
threshold tp as

1

n

n∑
i=1

P(|Xi| ≤ tp) = p.
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Figure 10: Errors at Block 16 of Llama-3-8B: Gaussian-based theoretical errors from random and
magnitude based sparsification, empirical errors from Wup and Wdown.

The sparsification function stp : Rn → Rn is defined as:

stp(X) = (stp(X1), . . . , stp(Xn))

where for each component:

stp(Xi) =

{
0 if |Xi| ≤ tp
Xi otherwise

Lemma A.1 (Variance of Scalar Sparsified Error). For independent random normal variables X ∼
N(0, σ2

X),W ∼ N(0, σ2
W ) and sparsification function stp(·), the variance of (X − stp(X))W is

given by:

Var((X − stp(X))W ) = σ2
Xσ2

W

[
p− 2tp

σX
φ(

tp
σX

)
]

where φ(t) = 1√
2π

e−
1
2 t

2

is the probability density function of the standard normal distribution.

Proof. For |x| ≤ tp, X − stp(X) follows a truncated normal distribution with lower bound and
upper bound given by −tp and tp respectively. We thus have:

Var((X − stp(X))W ) = pVar(X − stp(X)
∣∣ |X| ≤ tp)Var(W )

= σ2
Xp

[
1− tφ(t)− (−t)φ(−t)

Φ(t)− Φ(−t)
−
(
φ(t)− φ(−t)

Φ(t)− Φ(−t)

)2
]
σ2
W

= σ2
Xσ2

W p

[
1− 2tφ(t)

2Φ(t)− 1

]
= σ2

Xσ2
W

[
p− 2tp

σX
φ
( tp
σX

)]

where t =
tp
σX

, and Φ(t) = 1
2 (1 + erf(x/

√
2)) is the cumulative density function of the standard

normal distribution.

Lemma A.2 (Expected ℓ2 Norm of Sparsified Matrix-Vector Error). Let X ∈ Rm be a vector where
each Xi ∼ N(0, σ2

X), and W ∈ Rn×m be a matrix where each Wji ∼ N(0, σ2
W ), with all entries

independent. For a sparsification function stp(·), let Ŷ = (X− stp(X))W⊤. Then:

1) The variance of the j-th entry of Ŷ is:

Var(Ŷj) = nσ2
Xσ2

W

[
p− 2tp

σX
φ

(
tp
σX

)]
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2) The expectation of the ℓ2 norm of Ŷ is:

E[∥Ŷ∥2] = σXσW

√
mn

[
p− 2tp

σX
φ

(
tp
σX

)]

where tp is the threshold value satisfying F|X|(tp) = p, and φ(t) = 1√
2π

e−
1
2 t

2

is the probability
density function of the standard normal distribution.

Proof. For the variance of Ŷj : The j-th entry of Ŷ is the sum of n independent products (Xi −
stp(Xi))Wji. Each product has variance σ2

Xσ2
W [p − 2tp

σXpφ(
tp
σX

)]. Since variances of independent
terms add, we multiply this by n to get the result.

For the expectation of ∥Ŷ∥2: We first show Cov(Yj , Yk) = 0 for j ̸= k:

E[Ŷj Ŷk] = E

[
n∑

i=1

(Xi − stp(Xi))
2WjiWki

]
= 0

E[WjiWki] = 0 for j ̸= k due to independence and zero mean. Ŷj and Ŷk are uncorrelated for
j ̸= k and are thus independent. Therefore:

E[∥Ŷ∥2] = E

 m∑
j=1

Ŷ 2
j

 =

m∑
j=1

E[Ŷ 2
j ] =

m∑
j=1

Var(Ŷj)

Substituting the variance from part 1, summing over m components, and taking the square-root
completes the proof.

Theorem A.1 (Distributional Relative Error). Let X ∈ Rm and W ∈ Rn×m with elements inde-
pendently drawn from N(0, σ2

X) and N(0, σ2
W ) respectively. For a sparsification function stp(·),

define Ŷ = stp(X)W⊤ and Y = XWT . The distributional relative error is given by:

EX[∥Y − Ŷ∥2]
EX[∥Y∥2]

=

√
p− 2tp

σX
φ

(
tp
σX

)

where φ(t) = 1√
2π

e−
1
2 t

2

is the standard normal probabilty density function.

Proof. From the previous theorem, we have EX[∥Y − Ŷ∥2] = σXσW

√
mn

[
p− 2tp

σX
φ(

tp
σX

)
]
.

For the unsparsified case, we have EX[∥Y∥2] = σXσW
√
mn. Dividing these expectations yields

the result.

A.2 FULL DOWNSTREAM TASK RESULTS

We provide the full downstream task results for all evaluated models. For Llama-3-8B in Table 4,
we also provide results obtained from the uniform sparsity configuration, showing that the greedy
sparsity configuration outperforms across the board. For CATS, we additionally provide the sparsity
of the hidden state in the intermediate of the MLP blocks.
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Table 4: Full downstream task results for Llama-3-8B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 65.08 57.68 82.20 49.81 80.79 72.85 68.07

Uniform

25 64.48 57.34 81.63 48.52 79.92 73.88 67.63
40 62.35 54.86 79.98 43.59 79.11 72.22 65.35
50 59.07 53.50 77.60 36.47 79.22 70.17 62.67
65 43.48 42.58 65.81 16.22 75.84 65.43 51.56

Greedy

25 64.61 57.17 81.77 48.90 80.47 73.48 67.73
40 62.69 57.08 80.42 43.82 80.47 72.77 66.21
50 59.68 53.84 78.44 38.06 78.94 71.59 63.42
65 44.54 43.86 68.85 17.51 77.15 66.06 52.99

CATS 25 (46.45) 61.18 54.61 80.20 39.88 79.76 69.30 64.15

Table 5: Full downstream task results for Llama-3-70B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 78.70 69.71 87.94 81.12 84.55 80.43 80.41

Greedy

25 78.44 69.37 87.83 80.36 84.55 80.74 80.22
40 77.92 68.52 87.35 78.77 83.79 79.40 79.29
50 76.48 67.75 86.73 78.17 83.08 77.35 78.26
65 71.39 63.31 83.71 64.44 80.74 74.82 73.07

CATS 25 (45.54) 77.67 67.92 87.75 78.01 84.27 79.87 79.25

Table 6: Full downstream task results for Llama-2-7B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 45.78 52.47 78.96 13.95 78.94 68.90 56.50

Greedy

25 45.34 52.56 78.66 14.25 78.78 68.90 56.42
40 42.81 53.16 78.28 12.66 78.40 67.40 55.45
50 40.52 52.47 76.54 10.84 77.86 67.32 54.26
65 31.63 42.83 69.64 4.62 76.55 63.69 48.16

CATS 25 (56.2) 42.05 52.39 78.20 10.24 77.64 67.09 54.60

Table 7: Full downstream task results for Llama-2-13B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 54.76 59.39 82.18 23.05 71.98 80.69 62.01

Greedy

25 54.96 59.47 82.31 23.58 72.14 80.79 62.21
40 54.15 58.02 82.11 22.44 70.72 80.20 61.27
50 52.13 57.85 81.38 19.71 71.11 80.25 60.41
65 44.37 53.24 76.95 12.81 68.59 78.29 55.71

CATS 25 (56.02) 52.31 57.76 82.73 20.32 70.24 79.49 60.48

Table 8: Full downstream task results for Llama-2-70B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 68.71 67.49 87.02 52.38 82.70 77.58 72.65

Greedy

25 68.80 67.24 86.93 52.38 82.70 77.98 72.67
40 67.75 66.81 86.88 53.90 82.48 77.58 72.57
50 66.79 66.72 86.38 52.69 82.59 76.95 72.02
65 62.75 63.74 84.96 45.41 81.72 77.19 69.30

CATS 25 (45.54) 67.45 66.81 86.96 50.95 82.92 76.48 71.93

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Full downstream task results for Mistral 7B.

Method Sparsity MMLU ARC HellaSwag GSM8K PiQA WinoGrande Average
Baseline 0 62.46 61.43 83.47 38.21 82.10 74.11 66.96

Greedy

25 62.02 61.52 83.35 37.53 81.77 73.56 66.63
40 61.00 60.84 82.65 33.89 81.28 73.09 65.46
50 59.02 59.90 81.38 31.62 81.28 71.74 64.16
65 51.92 54.01 76.79 21.01 80.41 69.46 58.93

CATS 25 (46.45) 60.10 59.81 82.08 29.72 80.41 73.40 64.25

A.3 TRANSFORMER ARCHITECTURE DETAILS

A Transformer block consists of an attention layer followed by a multilayer perceptron (MLP). Each
block contains seven weight matrices that process the input x ∈ Rd in sequence:

Attention: In Grouped Query Attention (GQA) (Ainslie et al., 2023), the matrices Wq ∈ Rd×d

and Wk,Wv ∈ Rdh×d project the input into query, key, and value representations, which are fed
into the attention operation. After the attention operation, Wo ∈ Rd×dh projects the output back to
the model dimension.

MLP: The SwiGLU variant uses three matrices: Wgate,Wup ∈ Rdm×d which project to a higher
dimension, and Wdown ∈ Rd×dm which projects back to the model dimension. The computation
flow is:

MLP(x) = (SiLU(xW⊤
gate)⊙ xW⊤

up)W
⊤
down

where SiLU(x) = x⊙ σ(x), σ is the sigmoid function, and ⊙ denotes element-wise multiplication.

A.4 COMPARISON TO 2:4 WEIGHT SPARSITY

We compare TEAL to MaskLLM (Fang et al., 2024), a state-of-the-art approach to semi-structured
2:4 weight sparsity that learns weight masks through differentiable relaxation. The authors have not
released checkpoints as of the time of writing, so we trained our own masks on Llama-3-8B using
2B tokens from C4. We use the greedily optimized sparsities described in Section 4.3 for TEAL,
and evaluate both methods on WikiText:

Model Perplexity

Llama-3-8B (baseline) 5.870
Llama-3-8B + TEAL (50%) 6.673
Llama-3-8B + MaskLLM (2:4) 8.532
Llama-3-8B + TEAL + MaskLLM 9.590

We observe that TEAL outperforms MaskLLM, while being training-free. In contrast, MaskLLM
is computationally expensive—training on Llama-3-8B requires 2B tokens and approximately 8B
frozen parameters plus 12B learnable parameters, which took us roughly 800 H100 hours. The
combination of both methods works well, suggesting they are complementary rather than mutually
exclusive.

We additionally compare single-batch decoding speed-up on Llama-2-7B using a single A6000 GPU
(using MaskLLM’s reported numbers from their Table 6):

Model Speed-up

Llama-2-7B + TEAL (50%) 1.78×
Llama-2-7B + MaskLLM (2:4) 1.4×

This comparison may not be fully representative as 2:4 weight sparsity is more performant in high-
batch settings and can additionally accelerate the prefill phase.
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A.5 COMPATIBILITY WITH FINE-TUNING

Table 10: Perplexity results with and without fine-tuning on Llama-3-8B.

Sparsity Level PPL (No Fine-tuning) PPL (With Fine-tuning)

0% (baseline) 5.870 —
50% 6.673 6.622
60% 7.827 7.515
70% 13.39 9.927
90% 4.141 · 105 4.589 · 103

While TEAL is primarily designed as a training-free method, it can be further enhanced with fine-
tuning. We fine-tune Llama-3-8B using LoRA (Hu et al., 2021) with a rank of 32 (approximately 1%
of parameters are trainable) and a learning rate of 0.0002. The model is fine-tuned on 30M tokens
from C4. We evaluate on WikiText and use the greedily optimized sparsities described in Section
4.3.

We observe in Table 10 that fine-tuning provides marginal improvements at lower sparsity levels
(50-60%). The benefits are more pronounced at higher sparsity levels (70-90%), where fine-tuning
helps to recover some of the performance lost due to aggressive sparsification.

A.6 CALIBRATION SET SENSITIVITY

We evaluate the sensitivity of TEAL with respect to calibration set. We measure the perplexity of
Llama-3-8B on WikiText at 50% model-wide sparsity using our block-wise greedy optimized spar-
sity levels. We consider two distinct datasets for calibration: C4 (Raffel et al., 2023) and FineWeb
(Penedo et al., 2024). These datasets are used both for determining thresholds and for the greedy
optimization process described in Section 4.3.

Table 11: Perplexity of Llama-3-8B on WikiText using different calibration datasets. Results show
minimal variation across calibration sets.

Dataset Perplexity

Baseline (0% sparsity) 5.870
C4 (50% sparsity) 6.673
FineWeb (50% sparsity) 6.681

In Table 11 we observe little variation between different calibration sets. Each hidden state only has
one degree of freedom (one threshold per hidden state), meaning it’s difficult to overfit to a given
calibration set.
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