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Abstract

Large Language Models (LLMs) have shown
impressive performance across numerous tasks
but often produce hallucinated or inaccurate
responses, reducing their reliability. Retrieval-
Augmented Generation (RAG) mitigates this
issue by incorporating external knowledge into
the generation process, yet the effectiveness
of the retrieval depends heavily on the search
queries and query rewriting techniques are typ-
ically adopted to improve the retrieval qual-
ity. However, current rewriting methods rely
on indirect feedback or costly direct feedback
with annotated labels, limiting their practicality
and effectiveness. We introduce DynQR, an
annotation-free query rewriting framework that
uses uncertainty from the reader LLM to pro-
vide direct feedback, effectively bridging the
gap between the input queries and the needed
knowledge in retrieval. DynQR follows a three-
stage approach to train a rewriter that reduces
uncertainty in the reader’s responses. Addition-
ally, DynQR employs an active rewriting mech-
anism and post-verification process to mini-
mize unnecessary rewriting and avoid potential
noise. Our experiments on five datasets across
three QA tasks show that DynQR consistently
outperforms existing baselines.

1 Introduction

Large Language Models (LLMs) (Taylor et al.,
2022; Chowdhery et al., 2022; Zhao et al., 2023)
have recently demonstrated exceptional perfor-
mance across a wide range of downstream tasks
(Xiaet al., 2024; Yamauchi et al., 2023; Imani et al.,
2023; Lewkowycz et al., 2022). Despite these ad-
vancements, LLMs frequently produce responses
containing hallucinated facts or inaccurate infor-
mation (Ji et al., 2023; Shuster et al., 2021; Zhang
et al., 2023), which undermines their overall re-
liability. To address this issue, researchers have
leveraged Retrieval-Augmented Generation (RAG)
to integrate external knowledge into the generation
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Figure 1: Illustration of Query Rewriting for RAG.

process (Ram et al., 2023; Shi et al., 2023; Rashkin
etal., 2021; Gao et al., 2022; Bohnet et al., 2022;
Menick et al., 2022). In a typical RAG system, a
user’s query is used to retrieve relevant documents
from external sources, which are then combined
with the model’s internal knowledge to generate
more accurate and informative responses. However,
the effectiveness of this approach hinges on the
quality of the retrieved documents, which in turn
depends on the formulation of the initial user query.
A major challenge in RAG systems arises from the
ambiguity and vagueness of user queries. Users
often submit incomplete or overly broad queries,
expecting the system to infer their intent. This de-
fect in query formulation can lead to suboptimal
generation responses, as the system may fail to
retrieve the most relevant information.

To mitigate this issue, query rewriting has
emerged as a promising technique to improve the
retrieval process by refining the original query. Ex-



isting studies (Ye et al., 2023; Wang et al., 2023;
Shen et al., 2023) have leveraged the strong rea-
soning capabilities of LLMs to expand or rewrite
queries effectively. To further reduce the inference
cost associated with these rewriters, researchers
have employed feedback training (Zheng et al.,
2023; Wang et al., 2024; Rafailov et al., 2024; Yuan
et al., 2023) to enhance smaller query rewriting
models, utilizing both supervised and unsupervised
methods. For supervised approaches, RRR (Ma
et al., 2023) uses the feedback regarding whether
the rewritten query leads the reader LLM to gen-
erate the correct answer as a reward signal to train
the rewriter. Similarly, RETPO (Yoon et al., 2024)
uses the signal of whether the documents retrieved
by the rewritten query contain the correct answer
as the reward to guide the training of the rewriter.
To reduce the dependency on labeled data, the un-
supervised method RaFe (Mao et al., 2024) pro-
poses utilizing the relevance between documents
retrieved by the rewritten query and the original
query as a reward for training the rewriter model.

Despite their superior performance, these meth-
ods suffer from several limitations. Supervised
approaches rely on manually labeled data, which
is costly and time-consuming to obtain at scale.
Unsupervised methods, while more scalable, often
rely on indirect feedback, such as the relevance
of retrieved documents, which may not align well
with the actual needs of the reader LLM. For in-
stance, while RaFe might generate queries that
retrieve documents more relevant to the original
query, these documents do not necessarily provide
the information the reader LLM truly requires. As
a result, such indirect feedback can sometimes be
misleading and lead to suboptimal results. More-
over, most existing approaches apply query rewrit-
ing universally, assuming that all queries require
rewriting. However, we argue that not every query
benefits from rewriting, as it may introduce addi-
tional inference costs. Therefore, selectively rewrit-
ing only those queries that would substantially ben-
efit from it could strike a better balance between
performance and computational efficiency.

Recent studies have highlighted a strong correla-
tion between the uncertainty of large language mod-
els and their correctness across various tasks (Ka-
davath et al., 2022; Jiang et al., 2021; Hua et al.,
2023; Plaut et al., 2024; Fadeeva et al., 2023; Weller
et al., 2023). As an unsupervised metric, uncer-
tainty is derived directly from the model itself,
reflecting its own assessment of the given input.

Motivated by this insight, we propose DynQR, an
unsupervised query rewriting method that lever-
ages direct feedback from the reader LLM with-
out requiring hand-crafted labels. Specifically, our
approach consists of three stages: Supervised Dis-
tillation, Uncertainty-Aware Sampling, and Prefer-
ence Alignment. In Supervised Distillation, we
construct a query rewriting dataset to train the
rewriter model, thereby equipping it with a basic
query rewriting capability. In Uncertainty-Aware
Sampling, we utilize the trained rewriter model to
generate new queries and record the uncertainty of
the reader LLM based on the documents retrieved
by these queries. In Preference Alignment, we
train the rewriter to favor generating queries that
result in the reader LLM producing answers with
lower uncertainty. The resulting rewriter model
can effectively generate queries that retrieve high-
quality documents, enabling the reader LLM to
produce more accurate answers with lower uncer-
tainty. During inference, we introduce an active
rewriting mechanism that selectively triggers query
rewriting only when the LLM exhibits high un-
certainty in its initial response. Additionally, we
implement a post-verification step that compares
the uncertainties of the answers generated from the
original and rewritten queries, ensuring that the fi-
nal response is based on the query that results in
lower uncertainty.

To summarize, our contributions can be summa-
rized as follows:

* We propose an unsupervised query rewriting
method, DynQR, which directly leverages
uncertainty-based feedback from the reader
LLM, eliminating the need for labeled data
from downstream tasks.

* DynQR introduces an active rewriting mecha-
nism to minimize query costs and incorporates
a post-verification mechanism to avoid poten-
tial noise from unnecessary query rewriting.

* We conduct extensive experiments on five
datasets across three knowledge-intensive
tasks, verifying the effectiveness of DynQR.

2 Methodology

2.1 Preliminary

In Retrieval Augmented Generation (RAG), given
an original query ¢, a retriever is first used
to retrieve a set of similar documents D =
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Figure 2: The illustration of DynQR. 1) Supervised Distillation: The rewriter learns basic rewriting skills. 2)
Uncertainty-Aware Sampling: The rewriter generates multiple rewrites for each query, which are used to retrieve
relevant documents. The uncertainty of the reader LLM’s answers is recorded. 3) Preference Alignment: The
rewriter is trained to generate queries that lead the reader LLM to produce answers with lower uncertainty. During
inference, query rewriting is triggered only when the LLM exhibits high uncertainty in its initial response. The final
answer is selected based on the query that results in lower uncertainty.

{do,d1,...,dn}. A reader LLM then answers
the query based on these retrieved documents.
The goal of query rewriting is to develop a bet-
ter rewriter model My, which rewrites the original
query ¢ into a refined query r:

r = My(q), (1
where r represents the rewritten query, which will
be used to retrieve relevant documents for aug-
mented generation.

2.2 DynQR Framework

As illustrated in Figure 2, DynQR consists of three
stages: Supervised Distillation, Uncertainty-Aware
Sampling, and Preference Alignment. In the Su-
pervised Distillation stage, the rewriter is trained
to develop basic query rewriting capabilities. Dur-
ing Uncertainty-Aware Sampling, the rewriter gen-
erates multiple rewrites for each query, and the
reader LLLM uses the retrieved documents to gen-
erate answers, with the uncertainty of each answer
recorded. Finally, in the Preference Alignment

stage, preference pairs are constructed by labeling
rewrites that result in lower uncertainty as posi-
tive samples, and those with higher uncertainty as
negative samples.

Supervised Distillation In the first stage, a large
language model is used as a data labeler to rewrite
queries in the training set, constructing a dataset for
rewriter training. The rewriter model is then trained
on this dataset to acquire the basic capability to
generate effective rewrites for given queries.

Uncertainty-Aware Sampling Given a query, its
rewrites R = {r1,re,...r,}, the corresponding
document set will be retrieved using each rewrite:

2

These retrieved documents D; are then combined
with the original query to generate an answer us-
ing the reader LLM. We employ an uncertainty
estimator U (-) to evaluate the uncertainty of each
generated response:

D; = Retrieve(r;)

Si = U(Q7D17LLM)a (3)



where s; represents the uncertainty of the genera-
tion using documents retrieved from rewrite ;. The
uncertainty score provides a quantitative measure
of the model’s confidence in its generated answer,
reflecting how well the retrieved information aligns
with the query’s intent. Consequently, it serves
as a direct indicator of the quality of the rewritten
queries—where lower uncertainty generally indi-
cates more relevant retrieval and a more effective
rewriting process.

Preference Alignment For a given query and
its set of rewrites R = {r1,ro,...,7,}, we enu-
merate all possible combinations (r;,r;), where
the uncertainty score of r; is lower than that of
rj. We then select the three combinations with
the largest uncertainty differences between r; and
rj. These pairs are used to construct preference
triplets (g, 7;,7;), which are utilized to train the
rewriter model using Direct Preference Optimiza-
tion (Rafailov et al., 2024).

Active Rewriting Existing query rewriting ap-
proaches often assume that rewriting should be ap-
plied universally to all queries. However, we argue
this may not always be necessary. In many cases,
the documents retrieved by the original query al-
ready contain sufficient information for the reader
LLM to generate an accurate response. Addition-
ally, applying query rewriting to every query intro-
duces unnecessary inference costs for the RAG sys-
tem. To address this, we propose an active rewriting
mechanism. In our approach, the reader LLM first
attempts to generate an answer using documents
retrieved by the original query. If the uncertainty
of the generated answer falls below a predefined
threshold 6, indicating high confidence, the answer
is directly used as the final response. If the uncer-
tainty exceeds the threshold—indicating a higher
potential for hallucination—the query rewriter is
activated to refine the original query. The reader
LLM then generates a revised answer using docu-
ments retrieved from this rewritten query.

Post Verification To ensure that query rewriting
enhances the final response without introducing
additional noise, we implement a post-verification
process. Specifically, we compare the uncertainties
of the answers generated using documents retrieved
from both the original and rewritten queries. The
answer with the lower uncertainty score is selected
as the final output, ensuring that the response with
higher confidence is used, while avoiding potential

noise introduced by unsuccessful rewritings.

3 Experiment Setup

3.1 Datasets and Metrics

Datasets We conduct experiments on five
datasets across three knowledge-intensive
tasks: (1) Open-domain QA, including NQ

dataset (Kwiatkowski et al., 2019), Trivi-
aQA dataset (Joshi et al., 2017) and PopQA
dataset (Mallen et al., 2022); (2) Multi-hop QA,
including 2WikiMultiHopQA dataset (Ho et al.,
2020). (3) Ambiguous QA, including ASQA
dataset (Stelmakh et al., 2022).

Metrics We evaluate performance using two key
metrics: Exact Match (EM) and F1 Score. A pre-
dicted answer is considered correct under the EM
metric if its normalized form exactly matches any
of the normalized versions of the reference answers
in the answer list. The F1 score, on the other
hand, measures the word-level overlap between
the normalized predicted answer and the reference
answers in the provided answer list.

3.2 Baselines

We compare with the following baselines:

* Direct: Directly answer the question without
retrieving any external documents.

* OriQR: Use the original query to retrieve doc-
uments and then answer the question.

* LLMQR: Use GPT-3.5-Turbo to rewrite the
query, then retrieve relevant documents.

e RRR (Ma et al., 2023): Utilize the down-
stream task answers as supervision signals.

* RETPO (Yoon et al., 2024): Utilize the re-
trieval results as supervision signals.

* RaFe (Mao et al., 2024): Utilize the relevance
results as supervision signals.

To ensure a fair comparison, we replace our reward
signals with those from the baseline and evaluate
their performance as discussed in Appendix B.

Following Mao et al. (2024), we compare our
method’s performance with the baselines in the
following two settings:

e SUBSTITUTE: Use the documents retrieved
by the rewritten query to answer the question.



Methods NQ TriviaQA ASQA 2WikiMQA PopQA Avg.
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Direct 30.90 3845 5990 6591 36.31 4590 2570 29.57 2550 2775 35.66 41.51
OriQR 40.20 49.04 62.00 67.31 47.71 56.60 24.00 27.53 27.10 2888 4020 45.87
SUBSTITUTE
LLMQR 40.50 4894 6242 6837 4883 5696 2583 29.51 28.10 29.44 41.14 46.64
RetPO 41.00 49.58 61.90 68.23 48.60 56.74 2530 28.77 29.20 30.87 4120 46.84
RRR 40.70 49.57 62.50 68.50 48.94 56.74 2550 2874 2890 30.66 4131 46.84
RaFe 40.30 48.32 61.90 68.08 47.82 56.07 2570 29.36 2920 31.04 4098 46.57
DynQR 42.10 4994 63.30 68.67 50.50 58.86 26.20 29.77 29.60 31.23 42.34 47.69
EXPAND

LLMQR 4044 4932 6196 6777 4771 5629 2442 2798 2890 30.72 40.69 46.42
RetPO 41.30 49.72 6220 67.93 48.60 56.88 2390 27.60 2940 31.14 41.08 46.65
RRR 40.70 49.29 6240 68.22 47.82 5649 2450 27.80 29.10 30.52 4090 46.46
RaFe 30.90 4840 61.80 67.86 49.05 57.35 2480 2841 2930 30.82 40.97 46.57
DynQR 41.80 50.19 62.70 68.23 50.50 58.77 25.10 28.74 29.60 31.67 4194 47.52

Table 1: Performance comparison on five QA datasets under both the Substitute and Expand settings.

* EXPAND: Use documents from both the origi-
nal and rewritten query, applying a circulating
mechanism to iteratively gather documents
until the desired number is reached.

3.3 Implementation Details

In our experiment, the rewriter model is initial-
ized with the Llama-2-7B!. We employ Llama-2-
7B, Meta-Llama-3-8B2, and Llama-2-13B? as the
reader LLMs. We use GPT-4-Turbo as the data
labeler in the supervised distillation stage. We use
Wikipedia dump from Jan. 27, 2020 as our retrieval
corpus and use DPR (Karpukhin et al., 2020) as
our dense retriever. For each query, we retrieve the
top-5 most similar documents from the corpus. For
more details, please refer to Appendix B.

4 Experimental Results

4.1 Main Results

In this section, we present the results of experi-
ments conducted on five QA datasets under both
the Substitute and Expand settings, using Meta-
Llama-3-8B as the reader. Based on the results in
Table 1, several key observations can be made:
First, our method achieves the best performance
across all datasets in both the Substitute and Ex-
pand settings. This is primarily because our query
rewriter effectively caters to the reader’s informa-
tion needs by retrieving documents that signifi-

1
https://huggingface.co/meta-1lama/Llama-2-7b-hf
https://huggingface.co/meta-1lama/Meta-Llama-3-8B
3
https://huggingface.co/meta-1lama/Llama-2-13b-hf

cantly reduce the reader’s uncertainty. Furthermore,
the post-verification and active rewriting mecha-
nisms help minimize noise from potentially subop-
timal rewrites, thus improving the robustness of the
query rewriting process.

Second, between the two settings, our method
shows more substantial improvement in the Sub-
stitute setting. This is mainly because, in the Sub-
stitute setting, all retrieved documents originate
from the rewritten query, whereas in the Expand
setting, documents come from both the original and
rewritten queries. As a result, when the method is
particularly effective, the Substitute setting yields
greater improvements, further confirming the effec-
tiveness of our approach.

Third, among the baselines, RETPO performs
relatively well due to its effective use of ques-
tion answers as supervision. Although RRR also
leverages question answers, its labels are highly
sparse due to the rigorous requirements of the Exact
Match metric. This sparsity minimizes the distinc-
tion between nearly correct answers and incorrect
ones, resulting in weaker performance. In contrast,
our method utilizes uncertainty metrics to evaluate
the quality of rewritten queries, capturing subtle
differences between query qualities and enriching
the supervisory signals.

4.2 Ablation Study

In this section, we assess the impact of each com-
ponent of our model by gradually removing them
one at a time. Specifically, we conduct experiments


https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B
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Methods EM F1

DynQR 50.50 58.77
-w/o Post Verification 50.28 58.50
-w/o Active Rewriting 49.39 57.38
-w/o Preference Alignment 48.38 56.94

Table 2: Ablation Study. We experiment by gradually
removing all components on the ASQA dataset.

NQ ASQA 2WikiMQA
0 EM Freq EM Freq EM Freq
1.0 41.60 1.00 49.83 1.00 26.80 1.00
1.1 4180 098 4994 099 2690 0.99
1.2 4190 0.87 49.83 0.88 26.70 0.88
1.3 4180 0.75 49.72 0.72 2640 0.68
1.4 41.60 0.63 4950 0.58 2620 0.54

Table 3: Performance under varying rewriting thresh-
olds. “Freq” is the average rewrites per query.

on the NQ dataset under both rewriting settings.

As shown in Table 2, removing any compo-
nent results in performance degradation, confirm-
ing the significance of each part. Notably, remov-
ing Preference Alignment causes the largest drop
in performance. This is because preference align-
ment guides the rewriter to generate queries that
better meet the reader’s information needs by re-
trieving documents that significantly reduce the
reader’s uncertainty. Without preference align-
ment, the rewriter generates semantically simi-
lar queries without targeted optimization, leading
to inferior results. Additionally, both the Post-
Verification and Active Rewriting mechanisms con-
tribute to improved robustness by mitigating subop-
timal rewrites that could introduce noise, thereby
enhancing overall performance.

4.3 Hyper-parameter Study

In DynQR, we use a predefined hyperparameter to
determine whether to activate the query rewriter. In
this section, we analyze the impact of the thresh-
old value p on model performance. Specifically,
we tune the threshold on the NQ, ASQA, and
2WikiMQA datasets, with the corresponding re-
sults presented in Table 3.

The results indicate that as the threshold de-
creases, the frequency of query rewriting increases,
leading to higher inference costs. However, per-
formance does not consistently improve with in-
creased rewriting frequency; instead, it initially

Methods TriviaQA ASQA PopQA
EM F1 EM F1 EM F1
LLAMA-2-7B
Direct 52.16 60.03 3274 42.69 20.04 22.26
OriQR 56.30 63.97 44.67 54.69 29.20 30.50
LLMQR 57.76 6527 4525 5428 29.70 30.84
RetPO 5830 66.06 46.70 55.59 31.00 32.28
RRR 57.80 6522 46.70 54.75 27.90 29.21
RaFe 57.80 6579 47.71 56.47 31.50 32.78
DynQR 58.60 66.19 48.38 5791 31.60 32.84
LLAMA-2-13B
Direct 60.10 66.70 3799 4826 18.80 22.31
OriQR 6140 6891 49.50 58.78 29.00 30.06
LLMQR 61.92 69.21 4894 5852 28.00 29.13
RetPO 62.30 70.01 5095 59.71 3190 33.35
RRR 62.50 69.62 52.18 60.49 29.30 30.65
RaFe 62.50 69.95 50.39 58.90 30.20 31.65
DynQR 6290 70.60 53.07 61.53 32.60 34.05

Table 4: Result comparison using readers of different
parameter sizes under the Substitute setting.

improves and then declines. This behavior can be
attributed to the fact that, with a low threshold,
the model tends to rewrite queries that are already
effective in retrieving the necessary information, re-
sulting in redundant rewritings. Conversely, when
the threshold is set too high, queries that would
benefit from rewriting remain unchanged, leading
to suboptimal performance.

4.4 Analysis

Generalization Ability In this section, we eval-
uate the generalization ability of our methods by
conducting experiments using readers of varying
parameter sizes. Specifically, we use Llama-2-7B
and Llama-2-13B as the reader LLMs.

As shown in Table 4, switching from Llama-
2-7B to Llama-2-13B generally results in perfor-
mance improvements across all methods, attributed
to the enhanced reasoning ability of the larger
reader model. Importantly, our method consistently
achieves the best performance across all datasets,
regardless of the reader LLMs used, demonstrat-
ing its strong generalization capability. Notably,
achieving performance gains with more advanced
readers is typically challenging due to their al-
ready strong baseline performance. However, our
method maintains comparable improvements even
with Llama-2-13B. We attribute this to the fact that
as the parameter size of the readers increases, the
uncertainty metrics provide a more accurate reflec-
tion of the answer quality, as also noted by Chen
et al. (2024). As a result, the preference alignment
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labels become more precise, leading to a more ef-
fective query rewriter.

Uncertainty Reliability In DynQR, we utilize
the uncertainty of answers to represent the quality
of the queries, under the assumption that answers
with low uncertainty indicate that the retrieved doc-
uments likely contain the information needed to
answer the question. In this section, we verify this
assumption by examining how the uncertainty of
answers changes when the quality of the retrieved
documents is improved. Specifically, we randomly
replace one document in the retrieved documents
with a ground truth document that contains the cor-
rect answer, and then prompt the reader LLM to
answer the question. We compare the uncertainty
of the answers before and after the inclusion of the
ground truth document and record the percentage
of cases where the uncertainty decreases.

As shown in Figure 3, after adding the ground
truth document, the uncertainty of the answers de-
creases in most cases. This indicates that improv-
ing the quality of the retrieved documents can in-
deed lead to a reduction in the reader’s uncertainty.
This finding verifies that by comparing the uncer-
tainties of two answers, we can accurately assess
the quality of the documents, and by extension,
the quality of the queries used to retrieve them.
Moreover, we observe that the decrease in uncer-
tainty is more pronounced with Meta-Llama-3-8B.
This is likely because stronger LL.Ms can better
reflect the quality of the documents through their
uncertainty measures, a phenomenon also observed
in Chen et al. (2024). Therefore, we believe that
the uncertainty-based labeling method can achieve
even better performance with LLMs that possess
stronger reasoning abilities.

Uncertainty Categories In this section, we
explore various metrics for estimating LLM
uncertainty.  Perplexity estimates uncertainty

Metrics TriviaQA ASQA PopQA

EM F1 EM F1 EM F1
Perplexity ~ 58.40 66.01 46.70 5472 28.90 30.32
LN-Entropy 57.70 6541 4592 54.55 28.40 29.78
Probability ~ 57.70 65.15 4547 5390 2650 27.47
Energy 57.60 6531 4559 5456 2570 2731

Table 5: Performance with different uncertainty metrics.

based on the log probabilities of generated to-
kens (Fomicheva et al., 2020). Length Normalized
Entropy (LN-Entropy) is a normalized version of
entropy (Malinin and Gales, 2020). Probability-
based estimation assesses uncertainty by focusing
on the tokens with the lowest probabilities (Jiang
et al., 2023). Finally, the energy-based method eval-
uates uncertainty in the logit space, aiming to detect
out-of-distribution samples (Liu et al., 2020).

We conducted experiments on subsets of the
TriviaQA, ASQA, and PopQA datasets, using
Llama-2-7B as the reader. As shown in Table 5,
the perplexity-based method consistently outper-
forms all other metrics across the datasets, while
the energy-based method performs the worst, align-
ing with findings in Yao et al. (2024). Additionally,
the perplexity-based method exhibits a more stable
value range, typically between [1, 2], which simpli-
fies the tuning of the activation threshold. Based
on these observations, we selected perplexity as the
uncertainty measure for our experiments.

4.5 Case Study

In this section, we analyze the effectiveness of
our method using cases from the NQ and ASQA
datasets, as shown in Table 6. After rewriting,
queries generally exhibit improved formatting,
specificity, and grammar, which enhances the ac-
curacy of retrieved answers. In Case 1 (Better For-
mat), the original query “Who plays elsa’s aunt
in once upon a time?” is rewritten to improve
capitalization and formatting, resulting in the cor-
rect answer, Elizabeth Mitchell. In Case 2 (En-
hanced Specificity), “Who has won the most f1
grand prix?” is rewritten to clarify that it refers to
a "driver,” which helps accurately identify Michael
Schumacher as the answer. In Case 3 (Corrected
Grammar), “When is season 14 of grey’s anatomy
coming back?” is rewritten with proper grammar
and formality, leading to the correct premiere date
of September 28, 2017. These cases illustrate that
our method significantly enhances query quality,
improving document retrieval and answer accuracy
through better formatting, clarity, and specificity.



Case 1: Better Format

Original Query: Who plays elsa’s aunt in once upon a time?

Rewrite Query: In the show "Once Upon a Time," what is the identity of Elsa’s aunt?

Retrieved Documents:

Document 1: Rumplestiltskin told her that her parents were afraid of Elsa. She does not tell this to Elsa, but is shocked to see
that Elsa is learning to control her power—due to a new woman by the name of Ingrid (Elizabeth Mitchell), who claims she is...
Document 2: As she searches for her sister Anna (Elizabeth Lail) with the aid of the main characters, they encounter the Snow
Queen (Elizabeth Mitchell). Meanwhile, Regina seeks the Author of Henry$§ Once Upon a Time book so that she can finally...
Answer: Elizabeth Mitchell [CORRECT]

Case 2: Enhanced Specificity

Original Query: Who has won the most f1 grand prix?

Rewrite Query: Which driver has the greatest number of Formula 1 victories?

Retrieved Documents:

Document 1: Formula One drivers have won the World Drivers’s Championship, with Michael Schumacher holding the record
for most championships with seven, as well as holding the race wins record. Juan Manuel Fangio and Lewis Hamilton have...
Document 2: There have been 52 Formula One drivers from Germany including three world champions, one of whom is
currently racing in the sport. Michael Schumacher holds many records in F1 including the most world championship titles...
Answer: Michael Schumacher [CORRECT]

Case 3: Corrected Grammar

Original Query: When is season 14 of grey’s anatomy coming back?

Rewrite Query: When does Grey’s Anatomy return for its fourteenth season?

Retrieved Documents:

Document 1: The fourteenth season of the American television medical drama Grey$ Anatomy was ordered on February 10,
2017, by American Broadcasting Company (ABC), and premiered on September 28, 2017 with a special two-hour premiere...
Document 2: U.S. viewers in millions refers to the number of Americans in millions who watched the episodes live. The
fourteenth season of the American television medical drama Grey$ Anatomy was premiered on September 28, 2017 with...
Answer: September 28, 2017 [CORRECT]

Table 6: Case studies of rewritten queries. Blue text indicates the stem, pink text indicates the effective hint,

[CORRECT] indicates the judgment of whether the answer is correct.

5 Related Work
5.1 Query Rewriting

Query rewriting is commonly used in retrieval
tasks (Wu et al., 2021; Qian and Dou, 2022;
Anand et al., 2023) and significantly enhances
LLM capabilities in Retrieval Augmented Gener-
ation (RAG)(Ram et al., 2023; Jiang et al., 2023;
Yao et al., 2024; Jeong et al., 2024). Many stud-
ies leverage LLMs for query rewriting to improve
retrieval(Ye et al., 2023; Wang et al., 2023; Shen
et al., 2023). For example, RRR (Ma et al., 2023)
and RETPO (Yoon et al., 2024), which use down-
stream performance signals, and RaFe (Mao et al.,
2024), which uses document relevance to minimize
labeling. However, these methods either rely on
human-crafted labels or use indirect, potentially
suboptimal feedback. In this paper, we propose
using uncertainty as direct feedback, which elimi-
nates the need for handcrafted labels and offers a
more effective approach.

5.2 Feedback Learning

Feedback learning has recently been instrumen-
tal in aligning LLM outputs with human prefer-
ences. Various optimization methods have been de-
veloped to enhance LLM capabilities (Zheng et al.,

2023; Wang et al., 2024; Rafailov et al., 2024; Yuan
et al., 2023), and new feedback signals have been
constructed from different perspectives (Lee et al.,
2023; Shinn et al., 2024; Pang et al., 2023; Liu
et al., 2023; Xu et al., 2023). Feedback learning
has also been employed in query rewriting, as seen
in RRR (Ma et al., 2023), RETPO (Yoon et al.,
2024), and RaFe (Mao et al., 2024). These ap-
proaches either depend on hand-crafted labels or
rely on indirect signals, limiting their effectiveness.
Our method addresses these limitations by using
LLM uncertainty as direct feedback, thus eliminat-
ing the need for handcrafted labels and improving
the effectiveness of feedback-based optimization.

6 Conclusion

In this work, we propose DynQR, an unsupervised
query rewriting method that leverages uncertainty-
based feedback from the reader LLLM, eliminating
the need for labeled data from downstream tasks.
DynQR employs an active rewriting mechanism
and a post-verification process to minimize unnec-
essary rewrites and reduce noise. We conduct ex-
tensive experiments on five datasets across three
knowledge-intensive tasks, and the results demon-
strate the effectiveness of DynQR.



Limitations

In this paper, we utilize reader LLM’s uncer-
tainty as a supervision signal for training the query
rewriter. We acknowledge two limitations:

(1) The effectiveness of uncertainty feedback
relies on a strong correlation between uncertainty
and response quality, which may require the reader
LLM to have significant reasoning abilities (e.g.,
parameter sizes larger than 7B);

(2) Our method incurs a small additional compu-
tational cost for uncertainty calculations.

Ethics Statement

This work complies with the ACL Ethics Policy.
All datasets and LLMs used are publicly available.
Our research focuses on an annotation-free method
for training query rewriters, and we do not antici-
pate any negative ethical impacts.
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A Dataset Statistics

The dataset statistics used in this paper are shown in Table 7.

Settings NQ TriviaQA PopQA 2WikiMQA ASQA
(Kwiatkowski et al., 2019)  (Joshi et al., 2017) (Mallen et al., 2022) (Ho et al., 2020) (Stelmakh et al., 2022)

Dataset statistics

Task Open-domain QA Open-domain QA Open-domain QA Multi-hop QA Ambiguous QA

Train Data 60,000 60,000 0 0 0

Test Data 1,000 1,000 1,000 1,000 895
Evaluation settings

Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia
Retriever DPR DPR DPR DPR DPR

Table 7: Statistics and experimental settings of different tasks/datasets.

B Implementation Details

Reward Signals To ensure a fair comparison, we replace only the training reward in our method with
that proposed by each baseline and compare the results. The reward computation methods for the baselines
are as follows:

* RRR (Ma et al., 2023): The reward signal is based on whether the retrieved documents lead to a
correct answer when processed by the reader.

e RETPO (Yoon et al., 2024): The reward comes from whether the retrieved documents contain a
correct answer.

* RaFe (Mao et al., 2024): The reward signal is derived from whether the rewritten query leads to
documents that are more relevant to the original query.

Training Process We conducted full parameter fine-tuning during both stages using 8 NVIDIA A100
80GB GPUs.

* Supervised Distillation Stage: We randomly sampled 30,000 queries from the NQ dataset and
30,000 queries from the TriviaQA dataset for supervised fine-tuning. The model (LLama-2-7B) was
fully fine-tuned for 1 epoch with a learning rate of le-6 and a batch size of 100.

* Preference Alignment Stage: In this stage, we sample another 30,000 queries from the NQ dataset
and another 30,000 queries from the TriviaQA dataset. Then we conduct query rewriting for these
queries and construct the preference labeling based on the uncertainty of different rewrites for each
reader LLM. The rewriter model was further fine-tuned for 2 epochs with a learning rate of le-5 and
a batch size of 20 using Direct Preference Optimization (Rafailov et al., 2024).

Active Rewriting Threshold In our experiments, we sample 100 queries from the test dataset as the
validation set, and the remaining queries are used as the test set. We then tuned the active rewriting
threshold based on its performance on the validation set and selected the one that performed the best.
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C Prompts

The prompts used in our experiments are listed as follows.

Prompt: Answering with Retrieval

Instruction: Refer to the documents and answer the question with only one entity without giving any explanation. Here is an
example:

Question: who did lebron james play for before the cleveland cavalier?

The answer is: Miami Heat

Now refer to the documents below and answer the question with only one entity without giving any explanation:
Documents: {background}

Question: {query}
The answer is

-

Prompt: Answering without Retrieval

Instruction: Answer the question as short as possible without giving any explanation.
Question: who did lebron james play for before the cleveland cavalier?
The answer is: Miami Heat.

Question: {query}
The answer is:

Prompt: Query Rewriting

Instruction: output the rewrite of input query.
Query:{query}
Output:
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