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Abstract

This paper introduces the notion of upper-linearizable/quadratizable functions, a
class that extends concavity and DR-submodularity in various settings, including
monotone and non-monotone cases over different types of convex sets. A general
meta-algorithm is devised to convert algorithms for linear/quadratic maximiza-
tion into ones that optimize upper-linearizable/quadratizable functions, offering a
unified approach to tackling concave and DR-submodular optimization problems.
The paper extends these results to multiple feedback settings, facilitating conver-
sions between semi-bandit/first-order feedback and bandit/zeroth-order feedback,
as well as between first/zeroth-order feedback and semi-bandit/bandit feedback.
Leveraging this framework, new algorithms are derived using existing results as
base algorithms for convex optimization, improving upon state-of-the-art results
in various cases. Dynamic and adaptive regret guarantees are obtained for DR-
submodular maximization, marking the first algorithms to achieve such guaran-
tees in these settings. Notably, the paper achieves these advancements with fewer
assumptions compared to existing state-of-the-art results, underscoring its broad
applicability and theoretical contributions to non-convex optimization.

1 Introduction
Overview: The prominence of optimizing continuous adversarial γ-weakly up-concave functions
(with DR-submodular and concave functions as special cases) has surged in recent years, marking a
crucial subset within the realm of non-convex optimization challenges, particularly in the forefront
of machine learning and statistics. This problem has numerous real-world applications, such as
revenue maximization, mean-field inference, recommendation systems [4, 20, 30, 12, 24, 18, 26].
This problem is modeled as a repeated game between an optimizer and an adversary. In each round,
the optimizer selects an action, and the adversary chooses a γ-weakly up-concave reward function.
Depending on the scenario, the optimizer can then query this reward function either at any arbitrary
point within the domain (called full information feedback) or specifically at the chosen action (called
semi-bandit/bandit feedback), where the feedback can be noisy/deterministic. The performance
metric of the algorithm is measured with multiple regret notions - static adversarial regret, dynamic
regret, and adaptive regret. The algorithms for the problem are separated into the ones that use
a projection operator to project the point to the closest point in the domain, and the projection-
free methods that replace the projection with an alternative such as Linear Optimization Oracles
(LOO) or Separation Oracles (SO). This interactive framework introduces a range of significant
challenges, influenced by the characteristics of the up-concave function (monotone/non-monotone),
the constraints imposed, the nature of the queries, projection-free/projection-based algorithms, and
the different regret definitions.

∗Work done while at Purdue University
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Table 1: Online up-concave maximization
F Set Feedback Reference Appx. # of queries logT (α-regret)

M
on

ot
on

e

0
∈
K

∇F
Full Information stoch.

[46] ‡ (*) 1− e−γ 1 1/2
[35] 1− e−1 T θ(θ ∈ [0, 1/2]) 2/3− θ/3

Corollary 7-c 1− e−γ 1 1/2

Semi-bandit stoch. [35] 1− e−1 - 3/4
Corollary 7-c 1− e−γ - 2/3

F

Full Information
det. Corollary 7-c 1− e−1 2 1/2

stoch. [35] 1− e−1 T θ(θ ∈ [0, 1/4]) 4/5− θ/5
Corollary 7-c 1− e−γ 1 3/4

Bandit
det. [39] ‡‡ 1− e−1 - 3/4

[48] ‡(*) 1− e−γ - 4/5

stoch. [35] 1− e−1 - 5/6
Corollary 7-c 1− e−γ - 4/5

ge
ne

ra
l

∇F
Full Information stoch. [35] 1/2 T θ(θ ∈ [0, 1/2]) 2/3− θ/3

Semi-bandit stoch.
[8]‡(*) γ2/(1 + γ2) - 1/2

[35] 1/2 - 3/4
Corollary 7-b γ2/(1 + cγ2) - 1/2

F
Full Information det. Corollary 7-b γ2/(1 + cγ2) 2 1/2

stoch. [35] 1/2 T θ(θ ∈ [0, 1/4]) 4/5− θ/5

Bandit stoch. [35] 1/2 - 5/6
Corollary 7-b γ2/(1 + cγ2) - 3/4

N
on

-M
on

ot
on

e

ge
ne

ra
l

∇F
Full Information stoch.

[35] (1− h)/4 T θ(θ ∈ [0, 1/2]) 2/3− θ/3
[48] ‡(*) (1− h)/4 1 1/2

Corollary 7-d (1− h)/4 1 1/2

Semi-bandit stoch. [35] (1− h)/4 - 3/4
Corollary 7-d (1− h)/4 - 2/3

F

Full Information
det. Corollary 7-d (1− h)/4 2 1/2

stoch. [35] (1− h)/4 T θ(θ ∈ [0, 1/4]) 4/5− θ/5
Corollary 7-d (1− h)/4 1 3/4

Bandit
det. [48] ‡(*) (1− h)/4 - 4/5

stoch. [35] (1− h)/4 - 5/6
Corollary 7-d (1− h)/4 - 4/5

This table compares different static regret results for the online up-concave maximization. The logarithmic
terms in regret are ignored. Here h := minz∈K ∥z∥∞. Our algorithm is projection-free and use a separation
oracle. The rows marked with ‡ use gradient ascent, requiring potentially computationally expensive projec-
tions. The rows marked with (∗) denote results that could be considered special case of our framework. In
particular, we obtain those results if we use Online Gradient Ascent instead of SO-OGA as the base algorithm in
Corollary 7. Note that the result of [39], marked by ‡‡, uses a convex optimization subroutine in each iteration,
which could potentially be more expensive than projection and therefore not considered a projection-free result.
It is also the only existing result, in all the tables, that outperforms ours. We note that stochastic results
can be used in deterministic, and bandit/semi-bandit in full information and thus cases where our result is not
added, our result improves state-of-the-art projection free result because of the result in less information setup.
All results assume that functions are Lipschitz. Except for our results on monotone functions over general con-
vex sets, all results also assume differentiability. All previous results assume that functions are DR-submodular,
while we only require up-concavity. Results of [35] and [39] also assume functions are smooth, i.e., their gra-
dients are Lipschitz.

In this paper, we present a comprehensive approach to solving adversarial up-concave optimiza-
tion problems, encompassing different feedback types (including bandit, semi-bandit and full-
information feedback), characteristics of the up-concave function and constraint region, projection-
free/projection-based algorithms, and regret definitions. While the problem has been studied in
many special cases, the main contribution of this work is a framework that is based on a novel
notion of the function class being upper-linearizable (or upper-quadratizable). We design a meta-
algorithm that converts certain algorithms designed for online linear maximization to algorithms
capable of handling upper-linearizable function classes. This allows us to reduce the problem of
up-concave maximization in three different settings to online linear maximization and obtain corre-
sponding regret bounds. In particular, our results include monotone γ-weakly up-concave functions
over general convex set, monotone γ-weakly up-concave functions over convex sets containing the
origin and non-monotone up-concave functions. While the above result is for first order feedback,
we then derive multiple results that increase the applicability of the above results. We extend the ap-
plicability of FOTZO and STB algorithm introduced in [34] to our setting which allows us to convert
algorithms for first-order/semi-bandit feedback into algorithms for zeroth-order/bandit feedback.
We also design a meta-algorithm that allows us to convert algorithms that require full-information
feedback into algorithms that only require semi-bandit/bandit feedback.

We demonstrate the usefulness of results through two applications as described in the following. In
the first application, we use the SO-OGD Algorithm in [17] as the base algorithm for online linear op-
timization, which is a projection-free algorithm. Using this, we first obtain the adaptive regret (and
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therefore also static regret) guarantees for the three setups of DR-submodular (or more generally, up-
concave) optimization with semi-bandit feedback/first order feedback in the respective cases. Then,
the meta-algorithms for conversion of first-order/semi-bandit to zeroth-order/bandit are used to get
result with zeroth-order/bandit feedback. In the cases where the algorithms are full-information and
not (semi-)bandit, we use another meta-algorithm to obtain algorithms in (semi-)bandit feedback
setting. In the next application, we use the “Improved Ader” algorithm of [43] which is a projection
based algorithm providing dynamic regret guarantees for the convex optimization. Afterwards, the
same approach as above are used to obtain the results in the three scenarios of up-concave optimiza-
tion with first-order feedback.

Technical Novelty: The main technical novelties in this work are as follows.

1. We proposes a novel notion of linearizable/quadratizable functions and extend the meta-
algorithm framework of [34] from convex functions to linearizable/quadratizable functions.
This allows us to relates a large class of algorithms and regret guarantees for optimization of
linear/quadratic functions to that for linearizable/quadratizable functions.

2. We show that the class of quadratizable function optimization is general, and includes not only
concave, but up-concave optimization in several cases. For some of the cases, this proof uses
a generalization of the idea of boosting ([46, 48]) which was proposed for DR-submodular
maximization, as mentioned in Corollaries 2 and 3.

3. We design a new meta-algorithm, namely SFTT, that captures the idea of random permutations
(sometimes referred to as blocking) as used in several papers such as [45, 47, 35]. While
previous works used this idea in specific settings, our meta-algorithm is applicable in general
settings.

4. We note the generality of the above results in this paper. Our results are general in the following
three aspects:
a) In this work, we improve results for projection-free static regret guarantees for DR-
submodular optimization in all considered cases and obtain the first results for dynamic and
adaptive regret. Moreover, these guarantees follow from existing algorithms for the linear
optimization, using only the statement of the regret bounds and simple properties of the algo-
rithms.
b) We consider 3 classes of DR-submodular functions in this work. However, to extend these
results to another function class, all one needs to do is to (i) prove that the function class is
quadratizable; and (ii) provide an unbiased estimator of g (as described in Equation 1).
c) We consider 2 different feedback types in offline setting (first/zero order) and 4 types of
feedback in the online setting (first/zero order and full-information/trivial query). Convert-
ing results between different cases is obtained through meta-algorithms and guarantees for
the meta-algorithms which only relies on high level properties of the base algorithms (See
Theorems 5, 7, 6 and 8)

Key contributions: The key contributions in this work are summarized as follows.

1. We formulate the notion of upper-quadratizable/upper-linearizeble functions, which is a class
that generalizes the notion of strong-concavity/concavity and also DR-submodularity in sev-
eral settings. In particular, we demonstrate the the following function classes are upper-
quadratizable: (i) monotone γ-weakly µ-strongly DR-submodular functions with curvature
c over general convex sets, (ii) monotone γ-weakly DR-submodular functions over convex
sets containing the origin, and (iii) non-monotone DR-submodular optimization over general
convex sets.

2. We provide a general meta-algorithm that converts algorithms for linear/quadratic maximiza-
tion to algorithms that maximize upper-quadratizable functions. This results is a unified ap-
proach to maximize both concave functions and DR-submodular functions in several settings.

3. While the above provides results for semi-bandit feedback (for monotone DR-submodular op-
timization over general convex sets) and first-order feedback (for monotone DR-submodular
optimization over convex sets containing the origin, and non-monotone DR-submodular op-
timization over general convex sets), the results could be extended to more general feedback
settings. Four meta algorithms are provided that relate semi-bandit/first-order feedback to ban-
dit/zeroth order feedback; that relate; first order to deterministic zeroth order; and that relate
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first/zeroth order feedback to semi-bandit/bandit feedback. Together they allow us to obtain
results in 5 feedback settings (first/zeroth order full-information and semi-bandit/bandit; and
deterministic zeroth order). We also discuss a meta-algorithm to convert online results to of-
fline guarantees.

4. The above framework is applied using different algorithms as the base algorithms for linear
optimization. SO-OGD [17] is a projection-free algorithm using separation oracles that provides
adaptive regret guarantees for online convex optimization. We use our framework to cover the
18 cases in Table 1. We improve the regret guarantees for the previous SOTA projection-free
algorithms in all the cases. If we also allow comparisons with the algorithms that are not
projection-free, we still improve the SOTA results in 12 cases and match the SOTA in 5 cases.

5. Using our framework, we convert online results using SO-OGD to offline results to obtain 6
projection free algorithms described in Table 2. We improve the regret guarantees for the
previous SOTA projection-free algorithms in all the cases, except for deterministic first order
feedback where existing results are already SOTA. If we also allow comparisons with the
algorithms that are not projection-free, we still improve the SOTA results in 6 cases and match
the SOTA in the remaining 3 cases.

6. We use our framework to convert the adaptive regret guarantees of SO-OGD to obtain projection-
free algorithms with adaptive regret bounds that cover all cases in Table 3. Our results are first
algorithms with adaptive regret guarantee for online DR-submodular maximization.

7. “Improved Ader” [43] is an algorithm providing dynamic regret guarantees for online convex
optimization. We use our framework to obtain 6 algorithms which provide the dynamic regret
guarantees as shown in Table 3. Our results are first algorithms with dynamic regret guarantee
for online DR-submodular maximization.

8. For monotone γ-weakly functions with bounded curvature over general convex sets, we im-
prove the approximation ratio (See Lemma 1).

9. As mentioned in the descriptions of the tables, in all cases considered, whenever there is an-
other existing result, we obtain our results using fewer assumptions than the existing SOTA.

2 Problem Setup and Definitions

For a set D ⊆ Rd, we define its affine hull aff(D) to be the set of αx+(1−α)y for all x,y in K and
α ∈ R. The relative interior of D is defined as relint(D) := {x ∈ D | ∃r > 0,Br(x) ∩ aff(D) ⊆
D}. For any u ∈ KT , we define the path length PT (u) :=

∑T−1
i=1 ∥ui − ui+1∥. Given µ ≥ 0 and

0 < γ ≤ 1, we say a differentiable function f : K → R is µ-strongly γ-weakly up-concave if it is
µ-strongly γ-weakly concave along positive directions. Specifically if, for all x ≤ y in K, we have

γ

(
⟨∇f(y),y − x⟩+ µ

2
∥y − x∥2

)
≤ f(y)− f(x) ≤ 1

γ

(
⟨∇f(x),y − x⟩ − µ

2
∥y − x∥2

)
.

We say ∇̃f : K → Rd is a µ-strongly γ-weakly up-super-gradient of f if for all x ≤ y in K, the
above holds with ∇̃ instead of ∇. We say f is µ-strongly γ-weakly up-concave if it is continuous
and it has a µ-strongly γ-weakly up-super-gradient. When it is clear from the context, we simply
refer to ∇̃f as an up-super-gradient for f . When γ = 1 and the above inequality holds for all
x,y ∈ K, we say f is µ-strongly concave. A differentiable function f : K → R is called γ-weakly
continuous DR-submodular if for all x ≤ y, we have ∇f(x) ≥ γ∇f(y). It follows that any γ-
weakly continuous DR-submodular functions is γ-weakly up-concave. We refer to Appendix B for
more details.

Given a continuous monotone function f : K → R, its curvature is defined as the smallest number
c ∈ [0, 1] such that f(y + z) − f(y) ≥ (1 − c)(f(x + z) − f(x)), for all x,y ∈ K and z ≥ 0
such that x + z,y + z ∈ K. We define the curvature of a function class F as the supremum of the
curvature of functions in F.

Online optimization problems can be formalized as a repeated game between an agent and an ad-
versary. The game lasts for T rounds on a convex domain K where T and K are known to both
players. In t-th round, the agent chooses an action xt from an action set K ⊆ Rd, then the adversary
chooses a loss function ft ∈ F and a query oracle for the function ft. Then, for 1 ≤ i ≤ kt,
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Table 2: Offline up-concave maximization

F Set Feedback Reference Appx. Complexity

M
on

ot
on

e

0
∈
K

∇F stoch.

[31] 1− e−γ O(1/ϵ3)
[19] 1− e−γ O(1/ϵ2)

[46] ‡ 1− e−γ O(1/ϵ2)
Corollary 7-c 1− e−γ O(1/ϵ2)

F
det. [36] 1− e−γ O(1/ϵ3)

Corollary 7-c 1− e−γ O(1/ϵ2)

stoch. [36] 1− e−γ O(1/ϵ5)
Corollary 7-c 1− e−γ O(1/ϵ4)

ge
ne

ra
l

∇F stoch.
[20]‡ γ2/(1 + γ2) O(1/ϵ2)

[36] γ2/(1 + γ2) Õ(1/ϵ3)
Corollary 7-b γ2/(1 + cγ2) O(1/ϵ2)

F
det. [37] γ2/(1 + γ2) Õ(1/ϵ3)

Corollary 7-b γ2/(1 + cγ2) O(1/ϵ2)

stoch. [37] γ2/(1 + γ2) Õ(1/ϵ5)
Corollary 7-b γ2/(1 + cγ2) O(1/ϵ4)

N
on

-M
on

ot
on

e

ge
ne

ra
l

∇F stoch.
[36] γ(1−γh)

γ′−1

(
1
2
− 1

2γ
′

)
O(1/ϵ3)

[48] ‡ (1− h)/4 O(1/ϵ2)
Corollary 7-d (1− h)/4 O(1/ϵ2)

F
det. [36] γ(1−γh)

γ′−1

(
1
2
− 1

2γ
′

)
O(1/ϵ3)

Corollary 7-d (1− h)/4 O(1/ϵ2)

stoch. [36] γ(1−γh)
γ′−1

(
1
2
− 1

2γ
′

)
O(1/ϵ5)

Corollary 7-d (1− h)/4 O(1/ϵ4)

This table compares the different results for the number of oracle calls (complexity) within the constraint
set for up-concave maximization. We refer to [36] for a more comprehensive table that includes results for
deterministic first order feedback. Here h := minz∈K ∥z∥∞ and γ′ := γ + 1/γ.
‡ [20], [46] and [48] use gradient ascent, requiring potentially computationally expensive projections.
All previous results assume that functions are differentiable, DR-submodular, Lipschitz and smooth (i.e., their
gradients are Lipschitz). Result of [19] also requires the function Hessians to be Lipschitz. It also requires the
density of the stochastic oracle to be known and the log of density to be 4 times differentiable with bounded
4th derivatives. We only require the functions to be up-concave, differentiable and Lipschitz, except for results
on monotone functions over general convex sets where we do not need differentiability.

the agent chooses a points yt,i and receives the output of the query oracle. The precise definition
of agent (ΩA,Aaction,Aquery) is given in Appendix B, with the query oracle being any of stochas-
tic/deterministic first/zeroth order or semi-bandit/bandit.

An adversary Adv is a set of realized adversaries B = (B1, · · · ,BT ), where each Bt maps
(x1, · · · ,xt) ∈ KT to (ft,Qt) where ft ∈ F and Qt is a query oracle for ft. Adversaries
can be oblivious (Bt are constant and independent of (x1, · · · ,xt)), weakly adaptive (Bt are
independent of xt), or fully adaptive (no restrictions). We use Advf

i(F) to denote the set of
all possible realized adversaries with deterministic i-th order oracles. If the oracle is instead
stochastic and bounded by B, we use Advf

i(F, B) to denote such an adversary. Finally, we
use Advo

i (F) and Advo
i (F, B) to denote all oblivious realized adversaries with i-th order de-

terministic and stochastic oracles, respectively. In order to handle different notions of regret
with the same approach, for an agent A, adversary Adv, compact set U ⊆ KT , approxima-
tion coefficient 0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , we define regret as RA

α,Adv(U)[a, b] :=

supB∈Adv E
[
αmaxu=(u1,··· ,uT )∈U

∑b
t=a ft(ut)−

∑b
t=a ft(xt)

]
, where the expectation in the

definition of the regret is over the randomness of the algorithm and the query oracle. We use
the notation RA

α,B(U)[a, b] := RA
α,Adv(U)[a, b] when Adv = {B} is a singleton. We may

drop α when it is equal to 1. When α < 1, we often assume that the functions are non-
negative. Static adversarial regret or simply adversarial regret corresponds to a = 1, b = T
and U = KT

⋆ := {(x, · · · ,x) | x ∈ K}. When a = 1, b = T and U contains only a sin-
gle element then it is referred to as the dynamic regret [51, 43]. Adaptive regret is defined as
max1≤a≤b≤T RA

α,Adv(KT
⋆ )[a, b] [23]. We drop a, b and U when the statement is independent of

their value or their value is clear from the context.

3 Formulation of Upper-Quadratizable Functions and Regret Relation to
that of Quadratic Functions

Let K ⊆ Rd be a convex set, F be a function class over K. We say the function class F is upper-
quadratizable if there are maps g : F × K → Rd and h : K → K and constants µ ≥ 0, 0 < α ≤ 1
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Table 3: Non-stationary up-concave maximization

F Set Feedback Reference Appx. regret type α-regret

M
on

ot
on

e 0
∈
K

∇F Full Information stoch. Corollary 8-c 1− e−γ dynamic T 1/2(1 + PT )
1/2

Corollary 7-c 1− e−γ adaptive T 1/2

Semi-bandit stoch. Corollary 7-c 1− e−γ adaptive T 2/3

F
Full Information

det. Corollary 8-c 1− e−γ dynamic T 1/2(1 + PT )
1/2

Corollary 7-c 1− e−γ adaptive T 1/2

stoch. Corollary 8-c 1− e−γ dynamic T 3/4(1 + PT )
1/2

Corollary 7-c 1− e−γ adaptive T 3/4

Bandit stoch. Corollary 7-c 1− e−γ adaptive T 4/5

ge
ne

ra
l

∇F Semi-bandit stoch. Corollary 8-b γ2/(1 + cγ2) dynamic T 1/2(1 + PT )
1/2

Corollary 7-b γ2/(1 + cγ2) adaptive T 1/2

F
Full Information det. Corollary 8-c γ2/(1 + cγ2) dynamic T 1/2(1 + PT )

1/2

Corollary 7-c γ2/(1 + cγ2) adaptive T 1/2

Bandit stoch. Corollary 8-b γ2/(1 + cγ2) dynamic T 3/4(1 + PT )
1/2

Corollary 7-b γ2/(1 + cγ2) adaptive T 3/4

N
on

-M
on

ot
on

e

ge
ne

ra
l

∇F Full Information stoch. Corollary 8-d (1− h)/4 dynamic T 1/2(1 + PT )
1/2

Corollary 7-d (1− h)/4 adaptive T 1/2

Semi-bandit stoch. Corollary 7-d (1− h)/4 adaptive T 2/3

F
Full Information

det. Corollary 8-d (1− h)/4 dynamic T 1/2(1 + PT )
1/2

Corollary 7-d (1− h)/4 adaptive T 1/2

stoch. Corollary 8-d (1− h)/4 dynamic T 3/4(1 + PT )
1/2

Corollary 7-d (1− h)/4 adaptive T 3/4

Bandit stoch. Corollary 7-d (1− h)/4 adaptive T 4/5

This table includes different results for non-stationary up-concave maximization, while no prior results
exist in this setup to the best of our knowledge. The results for adaptive regret are projection-free and use a
separation oracle while results for dynamic regret use convex projection. Note that full-information algorithms
with deterministic feedback require 2 queries per function while the ones with stochastic feedback only require
one, at the cost of higher regret.

and β > 0 such that 2

αf(y)− f(h(x)) ≤ β

(
⟨g(f,x),y − x⟩ − µ

2
∥y − x∥2

)
, (1)

As a special case, when µ = 0, we say F is upper-linearizable. We use the notation Fµ,g to
denote the class of functions q(y) := ⟨g(f,x),y − x⟩ − µ

2 ∥y − x∥2 : K → R, for all f ∈ F and
x ∈ K. Similarly, for any B1 > 0, we use the notation Qµ[B1] to denote the class of functions
q(y) := ⟨o,y − x⟩ − µ

2 ∥y − x∥2 : K → R, for all x ∈ K and o ∈ BB1
(0). A similar notion

of lower-quadratizable/linearizable may be similarly defined for minimization problems such as
convex minimization. 3

Algorithm 1: Online Maximization
By Quadratization - OMBQ(A,G, h)
Input : horizon T , semi-bandit

algorithm A, query algorithm G
for g, the map h : K → K

for t = 1, 2, . . . , T do
Play h(xt) where xt is the action

chosen by A
The adversary selects ft and a first

order query oracle for ft
Run G with access to xt and the

query oracle for ft to calculate ot

Return ot as the output of the query
oracle to A

end

We say an algorithm G is a first order query algorithm for
g if, given a point x ∈ K and a first order query oracle
for f , it returns (a possibly unbiased estimate of) g(f,x).
We say G is bounded by B1 if the output of G is always
within the ball Bd

B1
(0) and we call it trivial if it simply

returns the output of the query oracle at x.

Recall that an online agent A is composed of action
function Aaction and query function Aquery. Informally,
given an online algorithm A with semi-bandit feedback,
we may think of A′ := OMBQ(A,G, h) as the online al-
gorithm with (A′)action ≈ h(Aaction) and (A′)query ≈ G.
As a special case, when h = Id and G is trivial, we have
A′ = A.

2Note that, without any loss in generality, we may replace (β, µ, g) with (1, βµ, βg) and therefore assume
β = 1. However, we keep β as a separate variable as it makes some expressions in future sections simpler.

3Specifically, we say F is lower-quadratizable if αf(y)−f(h(x)) ≥ β
(
⟨g(f,x),y − x⟩+ µ

2
∥y − x∥2

)
.

Note that this is equivalent to −F being upper-quadratizable with the same α,β, and µ, but with −g(−f,x).
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Theorem 1. Let A be algorithm for online optimization with semi-bandit feedback. Also let F be a
function class over K that is quadratizable with µ ≥ 0 and maps g : F×K → Rd and h : K → K,
let G be a query algorithm for g and let A′ = OMBQ(A,G, h). Then the following are true.

1.If G returns the exact value of g, then we have RA′

α,Advf
1(F)

≤ βRA
1,Advf

1(Fµ,g)
.

2.On the other hand, if G returns an unbiased estimate of g and the output of G is bounded by B1,
then we have RA′

α,Advo
1(F,B1)

≤ βRA
1,Advf

1(Qµ[B1])
.

As a special case, when f is concave, we may choose α = β = 1, h = Id, and g(f,x) to be a
super-gradient of f at x. In this case, Theorem 1 reduces to the concave version of Theorems 2
and 5 in [34].

4 Up-concave function optimization is upper-quadratizable function
optimization

In this section, we study three classes of up-concave functions and show that they are upper-
quadratizable. We further use this property to obtain meta-algorithms that convert algorithms for
quadratic optimization into algorithms for up-concave maximization.

4.1 Monotone up-concave optimization over general convex sets

For differentiable DR-submodular functions, the following lemma is proven for the case γ = 1 in
Lemma 2 in [13] and for the case µ = 0 in [20] (See Inequality 7.5 in the arXiv version). We show
the result for general µ-strongly γ-weakly up-concave function with curvature bounded by c, See
Appendix D for proof.
Lemma 1. Let f : [0, 1]d → R be a non-negative monotone µ-strongly γ-weakly up-concave
function with curvature bounded by c. Then, for all x,y ∈ [0, 1]d, we have

γ2

1 + cγ2
f(y)− f(x) ≤ γ

1 + cγ2

(
⟨∇̃f(x),y − x⟩ − µ

2
∥y − x∥2

)
,

where ∇̃f is an up-super-gradient for f .

Further, we show that any semi-bandit feedback online linear optimization algorithm for fully adap-
tive adversary is also an online up-concave optimization algorithm.
Theorem 2. Let K ⊆ [0, 1]d be a convex set, let µ ≥ 0, γ ∈ (0, 1], c ∈ [0, 1] and let A be algorithm
for online optimization with semi-bandit feedback. Also let F be an M1-Lipschitz function class over
K where every f ∈ F is may be extended to a monotone µ-strongly γ-weakly up-concave function
curvature bounded by c defined over [0, 1]d. Then, for any B1 ≥ M1, we have

RA
γ2

1+cγ2 ,Advf
1(F)

≤ γ

1 + cγ2
RA

1,Advf
1(Qµ[M1])

, RA
γ2

1+cγ2 ,Advo
1(F,B1)

≤ γ

1 + cγ2
RA

1,Advf
1(Qµ[B1])

Algorithm 2: Boosted Query oracle for
Monotone up-concave functions over con-
vex sets containing the origin – BQM0

Input : First order query oracle, point x
Sample z ∈ [0, 1] according to Equation (2)
Return the output of the query oracle at z ∗ x

These results follows immediately from Theorem 1
and Lemma 1. Note that it is important to as-
sume that every function in F may be extended to
a non-negative up-concave function over [0, 1]d for
Lemma 1 to be applied.
Corollary 1. The results of [20], [8] and [13] on
monotone continuous DR-submodular maximiza-
tion over general convex sets may be thought of as
special cases of Theorem 2 when A is the online gradient ascent algorithm.

4.2 Monotone up-concave optimization over convex sets containing the origin

The following lemma is proven for differentiable DR-submodular functions in Theorem 2 and
Proposition 1 of [46]. The proof works for general up-concave functions as well. We include a
proof in Appendix E for completeness.
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Lemma 2. Let f : [0, 1]d → R be a non-negative monotone γ-weakly up-concave differentiable
function and let F : [0, 1]d → R be the function defined by

F (x) :=

∫ 1

0

γeγ(z−1)

(1− e−γ)z
(f(z ∗ x)− f(0))dz.

Then F is differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =

∫ z

0

γeγ(u−1)

1− e−γ
du, (2)

then we have E
[
∇f(Z ∗ x)

]
= ∇F (x). Moreover, we have (1 − e−γ)f(y) − f(x) ≤

1−e−γ

γ ⟨∇F (x),y − x⟩.

Theorem 3. Let K ⊆ [0, 1]d be a convex set containing the origin, let γ ∈ (0, 1] and let A be
algorithm for online optimization with semi-bandit feedback. Also let F be a function class over
K where every f ∈ F is the restriction of a monotone γ-weakly up-concave function defined over
[0, 1]d to the set K. Assume F is differentiable and M1-Lipschitz for some M1 > 0. Then, for any
B1 ≥ M1, we have

RA′

1−e−γ ,Advo
1(F,B1)

≤ 1− e−γ

γ
RA

1,Advf
1(Qµ[B1])

where A′ = OMBQ(A, BQM0, Id).

This result now follows immediately from Theorem 1 and Lemma 2.
Corollary 2. The result of [46] in the online setting (when there is no delay) may be seen as an
application of Theorem 3 when A is chosen to be online gradient ascent.

4.3 Non-monotone up-concave optimization over general convex sets

The following lemma is proven for differentiable DR-submodular functions in Corollary 2, Theo-
rem 4 and Proposition 2 of [48]. The arguments works for general up-concave functions as well. We
include a proof in Appendix F for completeness.
Lemma 3. Let f : [0, 1]d → R be a non-negative continuous up-concave differen-
tiable function and let x ∈ K. Define F : [0, 1]d → R as the function F (x) :=∫ 1

0
2

3z(1− z
2 )

3

(
f
(
z
2 ∗ (x− x) + x

)
− f(x)

)
dz. Then F is differentiable and, if the random vari-

able Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =

∫ z

0

1

3(1− u
2 )

3
du, (3)

then we have E
[
∇f

(
Z
2 ∗ (x− x) + x

)]
= ∇F (x). Moreover, we have

1− ∥x∥∞
4

f(y)− f

(
x+ x

2

)
≤ 3

8
⟨∇F (x),y − x⟩.

Theorem 4. Let K ⊆ [0, 1]d be a convex set, u ∈ K, h := ∥u∥∞ and A be algorithm for online
optimization with semi-bandit feedback. Also let F be a function class over K where every f ∈ F is
the restriction of an up-concave function defined over [0, 1]d to the set K. Assume F is differentiable
and M1-Lipschitz for some M1 > 0. Then, for any B1 ≥ M1 and A′ = OMBQ(A, BQN,x 7→ xt+x

2 ),
we have RA′

1−h
4 ,Advo

1(F,B1)
≤ 3

8R
A
1,Advf

1(Q0[B1])
. Algorithm 3: Boosted Query oracle

for Non-monotone up-concave func-
tions over general convex sets – BQN

Input : First order query oracle, point x
Sample z ∈ [0, 1] according to Equation 3
Return the output of the query oracle at

z
2
∗ (x− x) + x

These results now follows immediately from Theo-
rem 1 and Lemma 3.
Corollary 3. The result of [48] in the online setting
without delay may be seen as an application of Theo-
rem 4 when A is chosen to be online gradient ascent.
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5 Meta algorithms for other feedback cases

In this section, we study several meta-algorithms that allow us to convert between different feedback
types and also convert results from the online setting to the offline setting.

First order/semi-bandit to zeroth order/bandit feedback: In this section we discuss meta-
algorithms that convert algorithms designed for first order feedback into algorithms that can handle
zeroth order feedback. These algorithms and results are generalization of similar results in [34] to
the case where α < 1.

We choose a point c ∈ relint(K) and a real number r > 0 such that aff(K)∩Br(c) ⊆ K. Then, for
any shrinking parameter 0 ≤ δ < r, we define K̂δ := (1 − δ

r )K + δ
rc. For a function f : K → R

defined on a convex set K ⊆ Rd, its δ-smoothed version f̂δ : K̂δ → R is given as

f̂δ(x) := Ez∼aff(K)∩Bδ(x)[f(z)] = Ev∼L0∩B1(0)[f(x+ δv)],

where L0 = aff(K)−x, for any x ∈ K, is the linear space that is a translation of the affine hull of K
and v is sampled uniformly at random from the k = dim(L0)-dimensional ball L0 ∩ B1(0). Thus,
the function value f̂δ(x) is obtained by “averaging” f over a sliced ball of radius δ around x. For
a function class F over K, we use F̂δ to denote {f̂δ | f ∈ F}. We will drop the subscript δ when
there is no ambiguity (See Appendix G for the description of the algorithms and the proof.).
Theorem 5. Let F be an M1-Lipschitz function class over a convex set K and choose c and r as
described above and let δ < r. Let U ⊆ KT be a compact set and let Û = (1− δ

r )U + δ
rc. Assume

A is an algorithm for online optimization with first order feedback. Then, if A′ = FOTZO(A) where
FOTZO is described by Algorithm 5 and 0 < α ≤ 1, we have

RA′

α,Advo
0(F,B0)

(U) ≤ RA
α,Advo

1(F̂, kδ B0)
(Û) +

(
3 +

2D

r

)
δM1T.

On the other hand, if we assume that A is semi-bandit, then the same regret bounds hold with
A′ = STB(A), where STB is described by Algorithm 6.
Theorem 6. Under the assumptions of Theorem 5, if A′ = FOTZO-2P(A) where FOTZO-2P is de-
scribed by Algorithm 7 and 0 < α ≤ 1, we have

RA′

α,Advo
0(F)(U) ≤ RA

α,Advo
1(F̂,kM1)

(Û) +
(
3 +

2D

r

)
δM1T.

Full information to trivial query: In this section, we discuss a meta-algorithm that converts algo-
rithms that require full-information feedback into algorithms that have a trivial query oracle. In par-
ticular, it converts algorithms that require first-order full-information feedback into semi-bandit al-
gorithms and algorithms that require zeroth-order full-information feedback into bandit algorithms.

Here we assume that Aquery does not depend on the observations in the current round. If the number
of queries kt is not constant for each time-step, we simply assume that A queries extra points and
then discards them, so that we obtain an algorithm that queries exactly K points at each time-step,
where K does not depend on t. We say a function class F is closed under convex combination if for
any f1, · · · , fk ∈ F and any δ1, · · · , δk ≥ 0 with

∑
i δi = 1, we have

∑
i δifi ∈ F.

Theorem 7. Let A be an online optimization algorithm with full-information feedback and with K
queries at each time-step where Aquery does not depend on the observations in the current round
and A′ = SFTT(A). Then, for any M1-Lipschitz function class F that is closed under convex
combination and any B1 ≥ M1, 0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , let a′ = ⌊(a − 1)/L⌋ + 1,
b′ = ⌈b/L⌉, D = diam(K) and let {T} and {T/L} denote the horizon of the adversary. Then, we
have

RA′

α,Advo
1(F,B1){T}(K

T
⋆ )[a, b] ≤ M1DK(b′ − a′ + 1) + LRA

α,Advo
1(F,B1){T/L}(K

T/L
⋆ )[a′, b′],

This result (proof in Appendix H) is based on the idea of random permutations used in [45, 47, 35].

Online to Offline: An offline optimization problem can be though of as an instance of online op-
timization where the adversary picks the same function and query oracle at each round. Moreover,
instead of regret, the performance of the algorithm is measured by sample complexity, i.e., the mini-
mum number of queries required so that the expected error from the α-approximation of the optimal
value is less than ϵ.
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Algorithm 4: Stochastic Full-information To
Trivial query - SFTT(A)

Input : base algorithm A, horizon T , block size
L > K.

for q = 1, 2, . . . , T/L do
Let x̂q be the action chosen by Aaction

Let (ŷi
q)

K
i=1 be the queries selected by Aquery

Let (tq,1, . . . , tq,L) be a random permutation
of {(q − 1)L+ 1, . . . , qL}

for t = (q − 1)L+ 1, . . . , qL do
if t = tq,i for some 1 ≤ i ≤ K then

Play the action xt = ŷi
q

Return the observation to the query
oracle as the response to the i-th
query

else
Play the action xt = x̂q

end
end

end

Conversions of online algorithms to offline are
referred to online-to-batch techniques and are
well-known in the literature (See [38]). A sim-
ple approach is to simply run the online algo-
rithm and if the actions chosen by the algo-
rithm are x1, · · · ,xT , return xt for 1 ≤ t ≤ T
with probability 1/T . We use OTB to denote the
meta-algorithm that uses this approach to con-
vert online algorithms to offline algorithms. The
following theorem is a corollary which we in-
clude for completion (See Appendix I for the
proof.).
Theorem 8. Let A be an online algorithm that
queries no more than K = T θ times per time-
step that obtains an α-regret bound of O(T η)
over an oblivious adversary Adv. Then the
sample complexity of OTB(A) over {(f,Qf ) |
((f,Qf ), · · · , (f,Qf )) ∈ Adv} is O(ϵ−

1+θ
1−η ).

6 Applications

Figure 6 captures the applications that are mentioned in Tables 1, 2 and 3. The exact statements are
stated in Corollaries 7 and 8 in the Appendix. To obtain a result from the graph, let A be one of
SO-OGA or IA and select a directed path that has the following properties: (i) The path starts at one
of the three nodes on the left. (ii) The path must be at least of length 1 and the edges must be the
same color. (iii) If A is IA, the path should not contain SFTT or OTB.

Figure 1: Summary of applicationsFor example, if A = SO-OGA and the path
starts at the middle node on the left, then
passes through OMBQ, FOTZO, SFTT, we
get SFTT(FOTZO(OMBQ(SO-OGA, BQM0, Id))),
which is a projection-free algorithm (using
separation oracles) with bandit feedback for
monotone up-concave functions over convex sets that contain the origin. As mentioned in Table 3
and Corollary 7-(c), the adaptive regret of this algorithm is of order O(T 4/5). Note that the text
written in the three nodes on the left correspond to the inputs of the meta-algorithm OMBQ. Also
note that the color red corresponds to the setting where G is a trivial query algorithm which means
that the output of OMBQ is semi-bandit.

7 Conclusions

In this work, we have presented a comprehensive framework for addressing optimization problems
involving upper-quadratizable functions, encompassing both concave and DR-submodular functions
across various settings and feedback types. Our contributions include the formulation of upper-
quadratizable functions as a generalized class, the development of meta-algorithms for algorithmic
conversions, and the derivation of new algorithms with improved static/ dynamic/ adaptive regret
guarantees. Exploring more subset of classes of upper-quadratizable functions where such a frame-
work could be applied is an important future direction.
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A Related works

DR-submodular maximization Two of the main methods for continuous DR-submodular maxi-
mization are Frank-Wolfe type methods and Boosting based methods. This division is based on how
the approximation coefficient appears in the proof.

In Frank-Wolfe type algorithms, the approximation coefficient appears by specific choices of the
Frank-Wolfe update rules. (See Lemma 8 in [35]) The specific choices of the update rules for
different settings have been proposed in [3, 2, 32, 37, 10]. The momentum technique of [31] has been
used to convert algorithms designed for deterministic feedback to stochastic feedback setting. [19]
proposed a Frank-Wolfe variant with access to a stochastic gradient oracle with known distribution.
Frank-Wolfe type algorithms been adapted to the online setting using Meta-Frank-Wolfe [8, 9] or
using Blackwell approachablity [33]. Later [45] used a Meta-Frank-Wolfe with random permutation
technique to obtain full-information results that only require a single query per function and also
bandit results. This was extended to another settings by [47] and generalized to many different
settings with improved regret bounds by [35].

Another approach, referred to as boosting, is to construct an alternative function such that maxi-
mization of this function results in approximate maximization of the original function. Given this
definition, we may consider the result of [20, 8, 13] as the first boosting based results. However,
in these cases (i.e., the case of monotone DR-submodular functions over general convex sets), the
alternative function is identical to the original function. The term boosting in this context was first
used in [46] for monotone functions over convex sets containing the origin, based on ideas presented
in [14, 30]. This idea was used later in [39, 27] in bandit and projection-free full-information set-
tings. Finally, in [48] a boosting based method was introduced for non-monotone functions over
general convex sets.

Up-concave maximization Not all continuous DR-submodular functions are concave and not
all concave functions are continuous DR-submodular. [30] considers functions that are the sum
of a concave and a continuous DR-submodular function. It is well-known that continuous DR-
submodular functions are concave along positive directions [5, 3]. Based on this idea, [41] defined
an up-concave function as a function that is concave along positive directions. Up-concave max-
imization has been considered in the offline setting before, e.g. [25], but not in online setting. In
this work, we focus on up-concave maximization which is a generalization of DR-submodular max-
imization.

Projection-free optimization In the past decade, numerous projection-free online convex opti-
mization algorithms have emerged to tackle the computational limitations of their projection-based
counterparts [21, 7, 42, 9, 22, 16, 29, 17]. In the context of DR-submodular maximization, the
Frank-Wolfe type methods discussed above are projection-free.

Non-stationary regret Dynamic regret was first analyzed in [51] for first order determinis-
tic feedback. Later [43] obtained the lower bound and optimal algorithm in this setting. This
was later expanded to bandit setting in [49]. Adaptive regret was first analyzed in [23] and
the first optimal algorithm for projection-free adaptive regret was proposed in [17]. We refer to
[23, 1, 11, 44, 43, 50, 49, 28, 40, 17] and references therein for more details.

Optimization by quadratization The framework discussed here for analyzing online algorithms
is based on the convex optimization framework introduced in [34]. We extend the framework to
allows us to work with α-regret.Moreover, [34] also demonstrates that algorithms that are designed
for quadratic/linear optimization with fully adaptive adversary obtain a similar regret in the con-
vex setting. In this paper we introduce the notion of quadratizable functions generalizes this idea
beyond convex functions to all quadratizable functions. (see Theorem 1) This allows us to inte-
grate the boosting method with our framework to obtain various meta-algorithms for continuous
DR-submodular maximization.

B Problem Setup in Detail

In this section, we further expand on the description in Section 2.
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A function class is a set of real-valued functions. Given a set D, a function class over D is a
subset of all real-valued functions on D. A set K ⊆ Rd is called a convex set if for all x,y ∈ K
and α ∈ [0, 1], we have αx + (1 − α)y ∈ K. For any u ∈ KT , we define the path length
PT (u) :=

∑T−1
i=1 ∥ui − ui+1∥.

A real-valued differentiable function f is called concave if f(y) − f(x) ≤ f ′(x)(y − x), for all
x, y ∈ Dom(f). More generally, given µ ≥ 0 and 0 < γ ≤ 1, we say a real-valued differentiable
function is µ-strongly γ-weakly concave if

f(y)− f(x) ≤ 1

γ

(
f(x)′(y − x)− µ

2
|y − x|2

)
for all x, y ∈ Dom(f).

We say a differentiable function f : K → R is µ-strongly γ-weakly up-concave if it is µ-strongly
γ-weakly concave along positive directions. Specifically if, for all x ≤ y in K, we have

γ

(
⟨∇f(y),y − x⟩+ µ

2
∥y − x∥2

)
≤ f(y)− f(x) ≤ 1

γ

(
⟨∇f(x),y − x⟩ − µ

2
∥y − x∥2

)
.

This notion could be generalized in the following manner. We say ∇̃f : K → Rd is a µ-strongly
γ-weakly up-super-gradient of f if for all x ≤ y in K, we have

γ

(
⟨∇̃f(y),y − x⟩+ µ

2
∥y − x∥2

)
≤ f(y)− f(x) ≤ 1

γ

(
⟨∇̃f(x),y − x⟩ − µ

2
∥y − x∥2

)
.

Then we say f is µ-strongly γ-weakly up-concave if it is continuous and it has a µ-strongly γ-weakly
up-super-gradient. When it is clear from the context, we simply refer to ∇̃f as an up-super-gradient
for f . When γ = 1 and the above inequality holds for all x,y ∈ K, we say f is µ-strongly concave.

A differentiable function f : K → R is called continuous DR-submodular if for all x ≤ y, we
have ∇f(x) ≥ ∇f(y). More generally, we say f is γ-weakly continuous DR-submodular if for
all x ≤ y, we have ∇f(x) ≥ γ∇f(y). It follows that any γ-weakly continuous DR-submodular
functions is γ-weakly up-concave.

Given a continuous monotone function f : K → R, its curvature is defined as the smallest number
c ∈ [0, 1] such that

f(y + z)− f(y) ≥ (1− c)(f(x+ z)− f(x)),

for all x,y ∈ K and z ≥ 0 such that x+ z,y+ z ∈ K. 4 We define the curvature of a function class
F as the supremum of the curvature of functions in F.

Online optimization problems can be formalized as a repeated game between an agent and an adver-
sary. The game lasts for T rounds on a convex domain K where T and K are known to both players.
In t-th round, the agent chooses an action xt from an action set K ⊆ Rd, then the adversary chooses
a loss function ft ∈ F and a query oracle for the function ft. Then, for 1 ≤ i ≤ kt, the agent
chooses a points yt,i and receives the output of the query oracle. Here kt denotes the total number
of queries made by the agent at time-step t, which may or may not be known in advance.

To be more precise, an agent consists of a tuple (ΩA,Aaction,Aquery), where ΩA is a probability
space that captures all the randomness of A. We assume that, before the first action, the agent
samples ω ∈ Ω. The next element in the tuple, Aaction = (Aaction

1 , · · · ,Aaction
T ) is a sequence of

functions such that At that maps the history ΩA × Kt−1 ×
∏t−1

s=1(K × O)ks to xt ∈ K where we
use O to denote range of the query oracle. The last element in the tuple, Aquery, is the query policy.
For each 1 ≤ t ≤ T and 1 ≤ i ≤ kt, Aquery

t,i : ΩA × Kt ×
∏t−1

s=1(K × O)ks × (K × O)i−1 is a
function that, given previous actions and observations, either selects a point yi

t ∈ K, i.e., query, or
signals that the query policy at this time-step is terminated. We may drop ω as one of the inputs
of the above functions when there is no ambiguity. We say the agent query function is trivial if

4In the literature, the curvature is often defined for differentiable functions. When f is differentiable, we
have

c = 1− inf
x,y∈K,1≤i≤d

[∇f(y)]i
[∇f(x)]i

.
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kt = 1 and yt,1 = xt for all 1 ≤ t ≤ T . In this case, we simplify the notation and use the notation
A = Aaction = (A1, · · · ,AT ) to denote the agent action functions and assume that the domain of
At is ΩA × (K ×O)t−1.

A query oracle is a function that provides the observation to the agent. Formally, a query oracle for a
function f is a map Q defined on K such that for each x ∈ K, the Q(x) is a random variable taking
value in the observation space O. The query oracle is called a stochastic value oracle or stochastic
zeroth order oracle if O = R and f(x) = E[Q(x)]. Similarly, it is called a stochastic up-super-
gradient oracle or stochastic first order oracle if O = Rd and E[Q(x)] is a up-super-gradient of f
at x. In all cases, if the random variable takes a single value with probability one, we refer to it as
a deterministic oracle. Note that, given a function, there is at most a single deterministic gradient
oracle, but there may be many deterministic up-super-gradient oracles. We will use ∇ to denote the
deterministic gradient oracle. We say an oracle is bounded by B if its output is always within the
Euclidean ball of radius B centered at the origin. We say the agent takes semi-bandit feedback if
the oracle is first-order and the agent query function is trivial. Similarly, it takes bandit feedback
if the oracle is zeroth-order and the agent query function is trivial. 5 If the agent query function is
non-trivial, then we say the agent requires full-information feedback.

An adversary Adv is a set such that each element B ∈ Adv, referred to as a realized adversary,
is a sequence (B1, · · · ,BT ) of functions where each Bt maps a tuple (x1, · · · ,xt) ∈ Kt to a tuple
(ft,Qt) where ft ∈ F and Qt is a query oracle for ft. We say an adversary Adv is oblivious if
for any realization B = (B1, · · · ,BT ), all functions Bt are constant, i.e., they are independent of
(x1, · · · ,xt). In this case, a realized adversary may be simply represented by a sequence of func-
tions (f1, · · · , fT ) ∈ FT and a sequence of query oracles (Q1, · · · ,QT ) for these functions. We say
an adversary is a weakly adaptive adversary if each function Bt described above does not depend on
xt and therefore may be represented as a map defined on Kt−1. In this work we also consider adver-
saries that are fully adaptive, i.e., adversaries with no restriction. Clearly any oblivious adversary is
a weakly adaptive adversary and any weakly adaptive adversary is a fully adaptive adversary. Given
a function class F and i ∈ {0, 1}, we use Advf

i(F) to denote the set of all possible realized adver-
saries with deterministic i-th order oracles. If the oracle is instead stochastic and bounded by B, we
use Advf

i(F, B) to denote such an adversary. Finally, we use Advo
i (F) and Advo

i (F, B) to denote
all oblivious realized adversaries with i-th order deterministic and stochastic oracles, respectively.

In order to handle different notions of regret with the same approach, for an agent A, adversary Adv,
compact set U ⊆ KT , approximation coefficient 0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , we define regret as

RA
α,Adv(U)[a, b] := sup

B∈Adv
E

α max
u=(u1,··· ,uT )∈U

b∑
t=a

ft(ut)−
b∑

t=a

ft(xt)

 ,

where the expectation in the definition of the regret is over the randomness of the algorithm and
the query oracle. We use the notation RA

α,B(U)[a, b] := RA
α,Adv(U)[a, b] when Adv = {B} is a

singleton. We may drop α when it is equal to 1. When α < 1, we often assume that the functions
are non-negative.

Static adversarial regret or simply adversarial regret corresponds to a = 1, b = T and U = KT
⋆ :=

{(x, · · · ,x) | x ∈ K}. When a = 1, b = T and U contains only a single element then it is referred
to as the dynamic regret [51, 43]. Adaptive regret, is defined as max1≤a≤b≤T RA

α,Adv(KT
⋆ )[a, b]

[23]. We drop a, b and U when the statement is independent of their value or their value is clear
from the context.

C Proof of Theorem 1

The proof is similar to the proof of Theorems 2 and 5 in [34].

Proof.

Deterministic oracle:
5This is a slight generalization of the common use of the term bandit feedback. Usually, bandit feedback

refers to the case where the oracle is a deterministic zeroth-order oracle and the agent query function is trivial.
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We first consider the case where G is a deterministic query oracle for g. Let ot = g(ft,xt) denote
the output of G at time-step t. For any realization B = (B1, · · · ,BT ) ∈ Advf

1(F), we define
B′
t(x1, · · · ,xt) to be the tuple (qt,∇) where

B′
t(x1, · · · ,xt) := qt := y 7→ ⟨ot,y − xt⟩ −

µ

2
∥y − xt∥2,

and B′ = (B′
1, · · · ,B′

T ). Note that each B′
t is a deterministic function of x1, · · · ,xt and therefore

B′ ∈ Advf
1(Fµ,g). Since the algorithm uses semi-bandit feedback, the sequence of random vectors

(x1, · · · ,xT ) chosen by A is identical between the game with B and B′. Therefore, according to
definition of quadratizable functions, for any y ∈ K, we have

β
(
qt(y)− qt(xt)

)
= β

(
⟨ot,y − xt⟩ −

µ

2
∥y − xt∥2

)
≥ αft(y)− ft(h(xt)),

Therefore, we have

max
u∈U

α

b∑
t=a

ft(ut)−
b∑

t=a

ft(h(xt))

 ≤ βmax
u∈U

 b∑
t=a

qt(ut)−
b∑

t=a

qt(xt)

 , (4)

Hence

RA′

α,Advf
1(F) = sup

B∈Advf
1(F)

RA′

α,B

= sup
B∈Advf

1(F)

E

max
u∈U

α

b∑
t=a

ft(ut)−
b∑

t=a

ft(h(xt))




≤ sup
B∈Advf

1(F)

E

βmax
u∈U

 b∑
t=a

qt(ut)−
b∑

t=a

qt(xt)




≤ β sup
B′∈Advf

1(Fµ,g)

RA
1,B′ = βRA

1,Advf
1(Fµ,g)

.

Stochastic oracle:

Next we consider the case where G is a stochastic query oracle for g.

Let ΩQ = ΩQ
1 × · · · × ΩQ

T capture all sources of randomness in the query oracles of Advo
1(F, B1),

i.e., for any choice of θ ∈ ΩQ, the query oracle is deterministic. Hence for any θ ∈ ΩQ and
realized adversary B ∈ Advo

1(F, B1), we may consider Bθ as an object similar to an adversary
with a deterministic oracle. However, note that Bθ does not satisfy the unbiasedness condition of
the oracle, i.e., the returned value of the oracle is not necessarily the gradient of the function at
that point. Recall that Bt maps a tuple (x1, · · · ,xt) to a tuple of ft and a stochastic query oracle
for ft. We will use EΩQ to denote the expectation with respect to the randomness of query oracle
and EΩQ

t
[·] := EΩQ [·|ft,xt] to denote the expectation conditioned the action of the agent and the

adversary. Similarly, let EΩA denote the expectation with respect to the randomness of the agent.
Let ot be the random variable denoting the output of G at time-step t and let

ōt := E[ot | ft,xt] = EΩQ
t
[ot] = g(ft,xt).

Similar to the deterministic case, for any realization B = (f1, · · · , fT ) ∈ Advo(F) and any θ ∈ ΩQ,
we define B′

θ,t(x1, · · · ,xt) to be the pair (qt,∇) where

qt := y 7→ ⟨ot,y − xt⟩ −
µ

2
∥y − xt∥2.

We also define B′
θ := (B′

θ,1, · · · ,B′
θ,T ). Note that a specific choice of θ is necessary to make sure

that the function returned by B′
θ,t is a deterministic function of x1, · · · ,xt and not a random variable

and therefore B′
θ belongs to Advf

1(Qµ[B1]).
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Since the algorithm uses (semi-)bandit feedback, given a specific value of θ, the sequence of random
vectors (x1, · · · ,xT ) chosen by A is identical between the game with Bθ and B′

θ. Therefore, for
any ut ∈ K, we have

αft(ut)− ft(h(xt)) ≤ β

(
⟨ōt,ut − xt⟩ −

µ

2
∥ut − xt∥2

)
= β

(
⟨E
[
ot | ft,xt

]
,ut − xt⟩ −

µ

2
∥ut − xt∥2

)
= β

(
E
[
⟨ot,ut − xt⟩ −

µ

2
∥ut − xt∥2 | ft,xt

])
= β

(
E
[
qt(ut)− qt(xt) | ft,xt

])
,

where the first inequality follows from the fact that ft is up-quadratizable and ōt = g(ft,xt).
Therefore we have

E

α b∑
t=a

ft(ut)−
b∑

t=a

ft(h(xt))

 ≤ βE

 b∑
t=a

E
[
qt(ut)− qt(xt)|ft,xt

]
= βE

 b∑
t=a

qt(ut)− qt(xt)

 .

Since B is oblivious, the sequence (f1, · · · , fT ) is not affected by the randomness of query oracles
or the agent. Therefore we have

RA
α,B = E

αmax
u∈U

b∑
t=a

ft(ut)−
b∑

t=a

ft(h(xt))


= max

u∈U
E

α b∑
t=a

ft(ut)−
b∑

t=a

ft(h(xt))


≤ βmax

u∈U
E

 b∑
t=a

qt(ut)−
b∑

t=a

qt(xt)


≤ βE

max
u∈U

 b∑
t=a

qt(ut)−
b∑

t=a

qt(xt)


 = βE

[
RA

1,B′
θ

]
,

where the second inequality follows from Jensen’s inequality. Hence we have

RA
α,Advo

1(F,B1)
= sup

B∈Advo
1(F,B1)

RA
α,B ≤ sup

B∈Advo
1(F,B1),θ∈ΩQ

βRA
1,B′

θ

≤ sup
B′∈Advf

1(Qµ[B1])

βRA
1,B′ = βRA

1,Advf
1(Qµ[B1])

D Proof of Lemma 1

Proof. We have x ∨ y + x ∧ y = x+ y. Therefore, following the definition of curvature, we have

f(x ∨ y)− f(y) ≥ (1− c)(f(x)− f(x ∧ y)).
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Since f is non-negative, this implies that

(f(x ∨ y)− f(x)) +
1

γ2
(f(x ∧ y)− f(x))

= (f(y)− f(x)) + (f(x ∨ y)− f(y)) +
1

γ2
(f(x ∧ y)− f(x))

≥ (f(y)− f(x)) + (1− c− 1

γ2
)(f(x)− f(x ∧ y))

= f(y)− (c+
1

γ2
)f(x) + (−1 + c+

1

γ2
)f(x ∧ y)

≥ f(y)− (c+
1

γ2
)f(x).

(5)

On the other hand, according to the definition, we have

f(x ∨ y)− f(x) ≤ 1

γ

(
⟨∇̃f(x),x ∨ y − x⟩ − µ

2
∥x ∨ y − x∥2

)
,

f(x)− f(x ∧ y) ≥ γ

(
⟨∇̃f(x),x− x ∧ y⟩+ µ

2
∥x− x ∧ y∥2

)
.

Therefore, using Inequality 5 and the fact that f(x ∧ y) ≥ 0, we see that

f(y)− 1 + cγ2

γ2
f(x) ≤ (f(x ∨ y)− f(x)) +

1

γ2
(f(x ∧ y)− f(x))

≤ 1

γ

(
⟨∇̃f(x),x ∨ y − x⟩ − µ

2
∥x ∨ y − x∥2 + ⟨∇̃f(x),x ∧ y − x⟩

−µ

2
∥x− x ∧ y∥2

)
=

1

γ

(
⟨∇̃f(x),x ∨ y + x ∧ y − 2x⟩ − µ

2
∥x ∨ y − x∥2 − µ

2
∥x− x ∧ y∥2

)
=

1

γ

(
⟨∇̃f(x),y − x⟩ − µ

2
∥x− y∥2

)
,

where we used x ∨ y + x ∧ y = x+ y and

∥x ∨ y − x∥2 + ∥x− x ∧ y∥2 =
∑

[y]i≥[x]i

(yi − xi)
2 +

∑
[y]i<[x]i

(xi − yi)
2

=
∑
i

(xi − yi)
2 = ∥x− y∥2

in the last equality. The claim now follows from multiply both sides by γ2

1+cγ2 .

E Proof of Lemma 2

Proof. Clearly we have F (0) = 0. For any x ̸= 0, the integrand in the definition of F is a
continuous non-negative function of z that is bounded by

γeγ(z−1)

(1− e−γ)z
(f(z ∗ x)− f(0)) ≤ γeγ(z−1)

(1− e−γ)z
M1∥z ∗ x∥ ≤ γ

1− e−γ
M1∥x∥.

Therefore F is well-defined on [0, 1]d. Moreover, we have 6∫ 1

0

γeγ(z−1)

(1− e−γ)
∇f(z ∗ x)dz = ∇

∫ 1

0

γeγ(z−1)

(1− e−γ)z
(f(z ∗ x)− f(0))dz = ∇F (x).

6Note that we do not require the gradient ∇f to be defined everywhere for this equality to hold. It is
sufficient for ∇f to exist at Lebesgue almost every point on every line segment. This is satisfied when the
1-dimensional Hausdorff measure of the set {x ∈ [0, 1]d | ∇f is undefined} is zero.
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It follows that F is differentiable everywhere and E
[
∇f(Z ∗ x)

]
= ∇F (x). To prove the last

claim, first we note that

1− e−γ

γ
⟨∇F (x),x⟩ =

〈∫ 1

0

eγ(z−1)∇f(z ∗ x)dz,x

〉

=

∫ 1

0

eγ(z−1)⟨∇f(z ∗ x),x⟩dz

=

∫ 1

0

eγ(z−1)df(z ∗ x)

= eγ(z−1)f(z ∗ x)|z=1
z=0 −

∫ 1

0

f(z ∗ x)de
γ(z−1)

dz
dz

= f(x)− f(0)−
∫ 1

0

γeγ(z−1)f(z ∗ x)dz.

On the other hand, using monotonicity and up-concavity of f , we have

1− e−γ

γ
⟨∇F (x),y⟩ =

∫ 1

0

eγ(z−1)⟨∇f(z ∗ x),y⟩dz

≥
∫ 1

0

eγ(z−1)⟨∇f(z ∗ x),y ∨ (z ∗ x)− z ∗ x⟩dz

≥
∫ 1

0

γeγ(z−1)
(
f(y ∨ (z ∗ x))− f(z ∗ x)

)
dz

≥
∫ 1

0

γeγ(z−1)
(
f(y)− f(z ∗ x)

)
dz

= (1− e−γ)f(y)−

(∫ 1

0

γeγ(z−1)f(z ∗ x)dz

)
,

where we used
∫ 1

0
eγ(z−1)γdz = 1− e−γ in the last equality. Therefore

1− e−γ

γ
⟨∇F (x),y − x⟩ ≥ (1− e−γ)f(y)− f(x) + f(0) ≥ (1− e−γ)f(y)− f(x).

F Proof of Lemma 3

We start by extending a useful lemma from the literature. Versions of the following lemma for DR-
submodular functions appeared in [2, 6, 32] and it was later extended to γ-weakly DR-submodular
functions in [36]. Here we further extend it to γ-weakly up-concave functions. The proof is similar,
but we include it for completeness.
Lemma 4. For any two vectors x,y ∈ [0, 1]d and any continuously differentiable non-negative
γ-weakly up-concave function f we have

f(x ∨ y) ≥ (1− γ∥x∥∞)f(y).

Proof of Lemma 4. If∥x∥∞ = 0, then x is the zero vector, and the lemma is trivially true. On the
other hand, if x ∨ y = y, the lemma follows from non-negativity of f . Thus, we may assume that
z := x ∨ y − y > 0 and∥x∥∞ > 0. We have

f(x ∨ y)− f(y) =

∫ 1

0

df(y + r · z)
dr

∣∣∣∣
r=t

dt =

∫ 1

0

⟨z,∇f(y + t · z)⟩dt

= ∥x∥∞ ·
∫ 1/∥x∥∞

0

⟨z,∇f(y + ∥x∥∞ · t′ · z)⟩dt′

≥ ∥x∥∞ ·
∫ 1/∥x∥∞

0

⟨z, γ∇f(y + t′ · z)⟩dt′, (6)

21



where (6) holds by changing the integration variable to t′ = t/∥x∥∞, and the inequality follows
from γ-weakly up-concavity of f , in particular because f is γ-weakly concave along the line seg-
ment [y,y + t′.z] ⊆ [0, 1]d. To see that the last inclusion holds, note that, for every 1 ≤ i ≤ d, if
xi ≤ yi, then yi + t′ · zi = yi ≤ 1, and if xi ≥ yi, then

yi + t′ · zi ≤ yi +
zi

∥x∥∞
= yi +

xi − yi
∥x∥∞

≤ xi

∥x∥∞
≤ 1.

Next we see that∫ 1/∥x∥∞

0

⟨z, γ∇f(y + t′ · z)⟩dt′ = γ

∫ 1/∥x∥∞

0

⟨z,∇f(y + t′ · z)⟩dt′

= γ

∫ 1/∥x∥∞

0

df(y + r · z)
dr

∣∣∣∣
r=t′

dt′

= γf

(
y +

z

∥x∥∞

)
− γf(y) ≥ −γf(y),

where the inequality follows from non-negativity of f . The lemma now follows by plugging this
inequality into Inequality (6) and rearranging the terms.

Proof of Lemma 3. Clearly we have F (x) = 0. For any x ̸= x, the integrand in the definition of F
is a continuous function of z that is bounded by∣∣∣∣∣∣ 2

3z(1− z
2 )

3

(
f

(
z

2
∗ (x− x) + x

)
− f(x)

)∣∣∣∣∣∣ ≤ 2

3z(1− z
2 )

3
M1∥

z

2
∗ (x− x)∥ ≤ 8

3
M1∥x− x∥.

Therefore F is well-defined on [0, 1]d. Moreover, we have 7

∫ 1

0

1

3(1− z
2 )

3
∇f

(
z

2
∗ (x− x) + x

)
dz = ∇

∫ 1

0

2

3z(1− z
2 )

3

(
f

(
z

2
∗ (x− x) + x

)
− f(x)

)
dz

= ∇F (x)

It follows that F is differentiable everywhere and E
[
∇f

(
Z
2 ∗ (x− x) + x

)]
= ∇F (x).

To prove the last claim, let xz := z
2 ∗ (x− x) + x and ω(z) = 1

8(1− z
2 )

3 . We have

3

8
⟨∇F (x),y⟩ =

∫ 1

0

ω(z)⟨∇f(xz),y⟩dz

=

∫ 1

0

ω(z)
(
⟨∇f(xz),y − xz ∧ y⟩+ ⟨∇f(xz),xz ∧ y − xz⟩+ ⟨∇f(xz),xz⟩

)
dz

=

∫ 1

0

ω(z)
(
⟨∇f(xz),xz ∨ y − xz⟩+ ⟨∇f(xz),xz ∧ y − xz⟩+ ⟨∇f(xz),xz⟩

)
dz

≥
∫ 1

0

ω(z)
(
(f(xz ∨ y)− f(xz)) + (f(xz ∧ y)− f(xz)) + ⟨∇f(xz),xz⟩

)
dz

≥
∫ 1

0

ω(z)
(
f(xz ∨ y)− 2f(xz) + ⟨∇f(xz),xz⟩

)
dz.

7Similar to Lemma 2, we do not require the gradient∇f to be defined everywhere for this equality to hold.
It is sufficient for∇f to exist at Lebesgue almost every point on every line segment. This is satisfied when the
1-dimensional Hausdorff measure of the set {x ∈ [0, 1]d | ∇f is undefined} is zero.
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Using Lemma 4, we have

f(xz ∨ y) ≥ (1− ∥xz∥∞)f(y)

≥

1−

((
1− z

2

)
∥x∥∞ +

z

2
∥x∥∞

) f(y)

≥

1−

((
1− z

2

)
∥x∥∞ +

z

2

) f(y)

=

(
1− z

2

)(
1− ∥x∥∞

)
f(y).

Therefore

3

8
⟨∇F (x),y⟩ ≥

∫ 1

0

ω(z)

((
1− z

2

)(
1− ∥x∥∞

)
f(y)− 2f(xz) + ⟨∇f(xz),xz⟩

)
dz. (7)

Next we bound ⟨∇F (x),x⟩. We have

3

8
⟨∇F (x),x⟩ =

∫ 1

0

ω(z)⟨∇f(x),x− xz⟩dz +
∫ 1

0

ω(z)⟨∇f(x),xz⟩dz

For the first term, we have∫ 1

0

ω(z)⟨∇f(x),x− xz⟩dz =

∫ 1

0

ω(z)

〈
∇f(x),

(
1− z

2

)
(x− x)

〉
dz

=

∫ 1

0

(2− z)ω(z)

〈
∇f(x),

x− x

2

〉
dz

=

∫ 1

0

(2− z)ω(z)df(xz)

= (2− z)ω(z)f(xz)|1z=0 −
∫ 1

0

((2− z)ω′(z)− ω(z))f(xz)dz

= f(x1)−
1

4
f(x)−

∫ 1

0

1

4(1− z
2 )

3
f(xz)dz,

which implies that

3

8
⟨∇F (x),x⟩ = f(x1)−

1

4
f(x)−

∫ 1

0

1

4(1− z
2 )

3
f(xz)dz +

∫ 1

0

ω(z)⟨∇f(x),xz⟩dz

≤ f(x1)−
∫ 1

0

2ω(z)f(xz)dz +

∫ 1

0

ω(z)⟨∇f(x),xz⟩dz (8)

Combining Equations 7 and 8, we have

3

8
⟨∇F (x),y − x⟩ ≥

∫ 1

0

ω(z)

((
1− z

2

)(
1− ∥x∥∞

)
f(y)− 2f(xz) + ⟨∇f(xz),xz⟩

)
dz

− f(x1) +

∫ 1

0

2ω(z)f(xz)dz −
∫ 1

0

ω(z)⟨∇f(x),xz⟩dz

=
1− ∥x∥∞

4
f(y)

∫ 1

0

4

(
1− z

2

)
ω(z)dz − f(x1)

=
1− ∥x∥∞

4
f(y)− f

(
x+ x

2

)
.
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G Proof of Theorem 5

The algorithms are special cases of Algorithms 2 and 3 in [34] where the shrinking parameter and
the smoothing parameter are equal. We include a description of the algorithms for completion.

Algorithm 5: First order to zeroth order - FOTZO(A)

Input : Shrunk domain K̂δ , Linear space L0, smoothing parameter δ ≤ r, horizon T , algorithm A
Pass K̂δ as the domain to A
k ← dim(L0)
for t = 1, 2, . . . , T do

xt ← the action chosen by A
Play xt

Let ft be the function chosen by the adversary
for i starting from 1, while Aquery is not terminated for this time-step do

Sample vt,i ∈ S1 ∩ L0 uniformly
Let yt,i be the query chosen by Aquery

Query the oracle at the point yt,i + δvt,i to get ot,i
Pass k

δ
otvt as the oracle output to A

end
end

Algorithm 6: Semi-bandit to bandit - STB(A)

Input : Shrunk domain K̂δ , Linear space L0, smoothing parameter δ ≤ r, horizon T , algorithm A
Pass K̂δ as the domain to A
k ← dim(L0)
for t = 1, 2, . . . , T do

Sample vt ∈ S1 ∩ L0 uniformly
xt ← the action chosen by A
Play xt + δvt

Let ft be the function chosen by the adversary
Let ot be the output of the value oracle
Pass k

δ
otvt as the oracle output to A

end

Algorithm 7: First order to zeroth order with Two Point gradient estimator - FOTZO-2P(A)

Input : Shrunk domain K̂δ , Linear space L0, smoothing parameter δ ≤ r, horizon T , algorithm A
Pass K̂δ as the domain to A
k ← dim(L0)
for t = 1, 2, . . . , T do

xt ← the action chosen by A
Play xt

Let ft be the function chosen by the adversary
for i starting from 1, while Aquery is not terminated for this time-step do

Sample vt,i ∈ S1 ∩ L0 uniformly
Let yt,i be the query chosen by Aquery

Query the deterministic oracle at the points yt,i + δvt,i and yt,i + δvt,i

Pass k
2δ

(
ft(yt,i + δvt,i)− ft(yt,i − δvt,i)

)
vt as the oracle output to A

end
end

The proof of Theorems 5 and 6 are similar to the proof of Theorems 6, 7 and 8 in [34]. The only
difference being that we prove the result for α-regret instead of regret. We include a proof for
completion.

Proof of Theorem 5.

Regret bound for STB:
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Note that any realized adversary B ∈ Advo
0(F, B0) may be represented as a sequence of func-

tions (f1, · · · , fT ) and a corresponding sequence of query oracles (Q1, · · · ,QT ). For such real-
ized adversary B, we define B̂ to be the realized adversary corresponding to (f̂1, · · · , f̂T ) with the
stochastic gradient oracles

Q̂t(x) :=
k

δ
Qt(x+ δv)v, (9)

where v is a random vector, taking its values uniformly from S1 ∩ L0 = S1 ∩ (aff(K) − z), for
any z ∈ K and k = dim(L0). Since Qt is a stochastic value oracle for ft, according to Remark 4
in [37], Q̂t(x) is an unbiased estimator of ∇f̂t(x). 8 Hence we have B̂ ∈ Advo

1(F̂,
k
δB0). Using

Equation 9 and the definition of the Algorithm 6, we see that the responses of the queries are the
same between the game (A, B̂) and (A′,B). It follows that the sequence of actions (x1, · · · ,xT ) in
(A, B̂) corresponds to the sequence of actions (x1 + δv1, · · · ,xT + δvT ) in (A′,B).

Let u ∈ argmaxu∈U
∑b

t=a ft(ut) and û ∈ argmaxu∈Û
∑b

t=a f̂t(ut). We have

RA′

α,B −RA
α,B̂ = E

α b∑
t=a

ft(ut)−
b∑

t=a

ft(xt + δvt)

− E

α b∑
t=a

f̂t(ût)−
b∑

t=a

f̂t(xt)


= E


 b∑

t=a

f̂t(xt)−
b∑

t=a

ft(xt + δvt)

+ α

 b∑
t=a

ft(ut)−
b∑

t=a

f̂t(ût)


 . (10)

According to Lemma 3 in [37], we have |f̂t(xt)− ft(xt)| ≤ δM1. By using Lipschitz property for
the pair (xt,xt + δvt), we see that

|ft(xt + δvt)− f̂t(xt)| ≤ |ft(xt + δvt)− ft(xt)|+ |ft(xt)− f̂t(xt)| ≤ 2δM1. (11)

On the other hand, we have

b∑
t=a

f̂t(ût) = max
û∈Û

b∑
t=a

f̂t(ût)

≥ −δM1T +max
û∈Û

b∑
t=a

ft(ût) (Lemma 3 in [37])

= −δM1T +max
u∈U

b∑
t=a

ft

((
1− δ

r

)
ut +

δ

r
c

)
(Definition of Û)

= −δM1T +max
u∈K

b∑
t=a

ft

(
ut +

δ

r
(c− x)

)

≥ −δM1T +max
u∈U

b∑
t=a

(
ft(ut)−

2δM1D

r

)
(Lipschitz)

= −
(
1 +

2D

r

)
δM1T +

b∑
t=a

ft(ut)

Therefore, using Equation 10, we see that

RA′

B −RA
B̂ ≤ 2δM1T + α

(
1 +

2D

r

)
δM1T ≤

(
3 +

2D

r

)
δM1T.

8When using a spherical estimator, it was shown in [15] that f̂ is differentiable even when f is not. When
using a sliced spherical estimator as we do here, differentiability of f̂ is not proved in [37]. However, their
proof is based on the proof for the spherical case and therefore the results carry forward to show that f̂ is
differentiable.
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Therefore, we have

RA′

Advo
0(F,B0)

= sup
B∈Advo

0(F,B0)

RA′

B

≤ sup
B∈Advo

0(F,B0)

RA
B̂ +

(
3 +

2D

r

)
δM1T

≤ sup
B∈Advo

0(F,B0)

RA
B̂ +

(
3 +

2D

r

)
δM1T

≤ RA
Advo

1(F̂, kδ B0)
+

(
3 +

2D

r

)
δM1T.

Regret bound for FOTZO:

The proof of the bounds for this case is similar to the previous case. As before, we see that the
responses of the queries are the same between the game (A, B̂) and (A′,B). It follows from the
description of Algorithm 5 that the sequence of actions (x1, · · · ,xT ) in (A, B̂) corresponds to the
same sequence of actions in (A′,B).

Let u ∈ argmaxu∈U
∑b

t=a ft(ut) and û ∈ argmaxu∈Û
∑b

t=a f̂t(ut). We have

RA′

B −RA
B̂ = E

α b∑
t=a

ft(ut)−
b∑

t=a

ft(xt)

− E

α b∑
t=a

f̂t(ût)−
b∑

t=a

f̂t(xt)


= E


 b∑

t=a

f̂t(xt)−
b∑

t=a

ft(xt)

+ α

 b∑
t=a

ft(ut)−
b∑

t=a

f̂t(ût)


 . (12)

To obtain the same bound as before, instead of Inequality 11, we have

|ft(xt)− f̂t(xt)| ≤ δM1 < 2δM1.

The rest of the proof follows verbatim.

Proof of Theorem 6. Note that any realized adversary B ∈ Advo
0(F) may be represented as a se-

quence of functions (f1, · · · , fT ). For such realized adversary B, we define B̂ to be the realized
adversary corresponding to (f̂1, · · · , f̂T ) with the stochastic gradient oracles

Q̂t(x) :=
k

2δ

(
ft(x+ δv)− ft(x− δv)

)
v, (13)

where v is a random vector, taking its values uniformly from S1 ∩ L0 = S1 ∩ (aff(K)− z), for any
z ∈ K and k = dim(L0). Since Qt is a stochastic value oracle for ft, according to Lemma 5 in [37],
Q̂t(x) is an unbiased estimator of ∇f̂t(x). Moreover, we have

∥ k

2δ

(
ft(x+ δv)− ft(x− δv)

)
v∥ ≤ k

2δ
M1∥(x+ δv)− (x− δv)∥ ≤ kM1.

Hence we have B̂ ∈ Advo
1(F̂, kM1). Using Equation 13 and the definition of the Algorithm 5, we

see that the responses of the queries are the same between the game (A, B̂) and (A′,B). It follows
that the sequence of actions (x1, · · · ,xT ) in (A, B̂) corresponds to the same sequence of actions in
(A′,B).

Let u ∈ argmaxu∈U
∑b

t=a ft(ut) and û ∈ argmaxu∈Û
∑b

t=a f̂t(ut). We have

RA′

B −RA
B̂ = E

α b∑
t=a

ft(ut)−
b∑

t=a

ft(xt)

− E

α b∑
t=a

f̂t(ût)−
b∑

t=a

f̂t(xt)


= E


 b∑

t=a

f̂t(xt)−
b∑

t=a

ft(xt)

+ α

 b∑
t=a

ft(ut)−
b∑

t=a

f̂t(ût)


 . (14)
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According to Lemma 3 in [37], we have |f̂t(xt)− ft(xt)| ≤ δM1. On the other hand, we have

b∑
t=a

f̂t(ût) = max
û∈Û

b∑
t=a

f̂t(ût)

≥ −δM1T +max
û∈Û

b∑
t=a

ft(ût) (Lemma 3 in [37])

= −δM1T +max
u∈U

b∑
t=a

ft

((
1− δ

r

)
ut +

δ

r
c

)
(Definition of Û)

= −δM1T +max
u∈K

b∑
t=a

ft

(
ut +

δ

r
(c− x)

)

≥ −δM1T +max
u∈U

b∑
t=a

(
ft(ut)−

2δM1D

r

)
(Lipschitz)

= −
(
1 +

2D

r

)
δM1T +

b∑
t=a

ft(ut)

Therefore, using Equation 14, we see that

RA′

B −RA
B̂ ≤ δM1T + α

(
1 +

2D

r

)
δM1T ≤

(
2 +

2D

r

)
δM1T.

Therefore, we have

RA′

Advo
0(F) = sup

B∈Advo
0(F)

RA′

B

≤ sup
B∈Advo

0(F)

RA
B̂ +

(
2 +

2D

r

)
δM1T

≤ sup
B∈Advo

0(F)

RA
B̂ +

(
2 +

2D

r

)
δM1T

≤ RA
Advo

1(F̂,kM1)
+

(
2 +

2D

r

)
δM1T.

Corollary 4. Under the assumptions of Theorem 5, if we have RA
α,Advo

1(F,B1)
= O(B1T

η) and

δ = T (η−1)/2, then we have

RA′

α,Advo
0(F,B0)

= O(B0T
(1+η)/2).

Corollary 5. Under the assumptions of Theorem 6, if we have δ = T−1, then RA′

α,Advo
0(F) has the

same order of regret as that of RA
α,Advo

1(F,B1)
with B1 replaced with kM1.

H Proof of Theorem 7

Proof. Given a realized adversary B ∈ Advo
i (F, B){T}, we may define B̂ = Advo

i (F, B){T/L}
to be the realized adversary constructed by averaging each T/L block of length L. Specifically, if
the functions chosen by B are f1, · · · , fT , the functions chosen by B̂ are f̂q := 1

L

∑qL
t=(q−1)L+1 ft

for 1 ≤ q ≤ T/L. Note that, for any x ∈ K and (q − 1)L < t ≤ qL, we have E[ft(x)] = f̂q(x)

and if each ft is differentiable at x, then E[∇ft(x)] = ∇f̂q(x). If the query oracles selected by B
are Q1, · · · ,QT , then for any 1 ≤ q ≤ T/L we define the query oracle Q̂q as the algorithm that
first selects an integer (q − 1)L+ 1 ≤ t ≤ qL with uniform probability and then returns the output
of Qt. It follows that Q̂q is a query oracle for f̂q . It is clear from the description of Algorithm 4
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that, when the adversary is B, the output returned to the base algorithm corresponds to B̂. We have
1 ≤ (a′ − 1)L+ 1 ≤ a ≤ b ≤ b′L ≤ T . Hence

RA′

α,B(KT
⋆ )[a, b] = E

α max
u0∈K

b∑
t=a

ft(u0)−
b∑

t=a

ft(xt)


= E

L
α max

u0∈K

1

L

b∑
t=a

ft(u0)−
1

L

b∑
t=a

ft(xt)




≤ E

L
α max

u0∈K

1

L

b′L∑
t=(a′−1)L+1

ft(u0)−
1

L

b′L∑
t=(a′−1)L+1

ft(xt)




= E

 b′∑
q=a′

qL∑
t=(q−1)L+1

(
ft(x̂q)− ft(xt)

)
+ L

α max
u0∈K

b′∑
q=a′

f̂q(u0)−
b′∑

q=a′

f̂q(x̂q)




≤
b′∑

q=a′

KM1D + LE

α max
u0∈K

b′∑
q=a′

f̂q(u0)−
b′∑

q=a′

f̂q(x̂q)


≤ (b′ − a′ + 1)KM1D + LRA

α,B̂(K
T/L
⋆ )[a′, b′]

Therefore

RA′

α,Advo
i(F,B){T}(K

T
⋆ )[a, b] = sup

B∈Advo
i(F,B){T}

RA′

α,B(KT
⋆ )[a, b]

≤ M1DK(b′ − a′ + 1) + L sup
B̂∈Advo

1(F,B){T/L}
RA

α,B̂(K
T/L
⋆ )[a′, b′]

= M1DK(b′ − a′ + 1) + LRA
α,Advo

i(F,B){T/L}(K
T/L
⋆ )[a′, b′].

Remark 1. Note that in the above proof, we did not need to assume that the query oracles are
bounded. Specifically, what we require is that the set of query oracles to be closed under convex
combinations. This holds when all query oracles are bounded by B, but it also holds under many
other assumptions, e.g., if we assume all query oracles variances are bounded by some σ2 > 0.

Corollary 6. Under the assumptions of Theorem 7, if we have RA′

α,Advo
i(F,B)(K

T
⋆ )[a, b] = O(BT η),

K = O(T θ) and L = T
1+θ−η
2−η , then we have

RA′

α,Advo
i(F,B)(K

T
⋆ )[a, b] = O

(
BT

(1+θ)(1−η)+η
2−η

)
.

As a special case, when K = O(1), then we have

RA′

α,Advo
i(F,B)(K

T
⋆ )[a, b] = O

(
BT

1
2−η

)
.

Proof. We have

RA′

α,Advo
i(F,B){T}(K

T
⋆ )[a, b] ≤ M1DK(b′ − a′ + 1) + LRA

α,Advo
i(F,B){T/L}(K

T/L
⋆ )[a′, b′]

≤ M1DK(T/L) + LRA
α,Advo

i(F,B){T/L}(K
T/L
⋆ )[a′, b′]

= O(KT/L) +O(LB(T/L)η)

= O

(
BT

(1+θ)(1−η)+η
2−η

)
.
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I Proof of Theorem 8

Proof. Since A requires T θ queries per time-step, it requires a total of T 1+θ queries. The expected
error is bounded by the regret divided by time. Hence we have ϵ = O(T η−1) after T 1+θ queries.
Therefore, the total number of queries to keep the error bounded by ϵ is O(ϵ−

1+θ
1−η ).

J Projection-free adptive regret

The SO-OGD algorithm in [17] is a deterministic algorithm with semi-bandit feedback, designed for
online convex optimization with a deterministic gradient oracle. Here we assume that the separation
oracle is deterministic.

Here we use the notation c, r and K̂δ described in Section 5.

Algorithm 8: Online Gradient Ascent via a Separation Oracle - SO-OGA
Input : horizon T , constraint set K, step size η

1 x1 ← c ∈ K̂δ

2 for t = 1, 2, . . . , T do
3 Play xt and observe ot = ∇ft(xt)
4 x′

t+1 = xt + ηot

5 Set xt+1 = SO-IPK(x′
t+1), the output of Algorithm 9 with initial point x′

t+1

6 end

Note that here we use a maximization version of the algorithm, which we denote by SO-OGA. Here
PK denotes projection into the convex set K. The original version, which is designed for minimiza-
tion, uses the update rule x′

t+1 = xt − ηot in Algorithm 8 instead.

Algorithm 9: Infeasible Projection via a Separation Oracle - SO-IPK(y0)

Input : Constraint set K, shrinking parameter δ < r, initial point y0

1 y1 ← Paff(K)(y0)

2 y2 ← c+ y1−c
max{1,∥y1∥/D} /* y1 is projection of y0 over BD(c) ∩ aff(K) */

3 for i = 1, 2, . . . do
4 Call SOK with input yi

5 if yi /∈ K then
6 Set gi to be the hyperplane returned by SOK /* ∀x ∈ K, ⟨yi − x,gi⟩ > 0 */

7 g′
i ← Paff(K)−c(gi)

8 Update yi+1 ← yi − δ
g′
i

∥g′
i∥

9 else
10 Return y← yi

11 end
12 end

Lemma 5. Algorithm 9 stops after at most (dist(y0, K̂δ)
2 − dist(y, K̂δ)

2)/δ2 + 1 iterations and
returns y ∈ K such that ∀z ∈ K̂δ , we have ∥y − z∥ ≤ ∥y0 − z∥.

Proof. We first note that this algorithm is invariant under translations. Hence it is sufficient to prove
the result when c = 0.

Let SO′
K denote the following separation oracle. If y ∈ K or y /∈ aff(K), then SO′

K returns the
same output as SOK. Otherwise, it returns Paff(K)(g) where g ∈ Rd is the output of SOK. To prove
that this is indeed a separation oracle, we only need to consider the case where y ∈ aff(K) \ K. We
know that g is a vector such that

∀x ∈ K, ⟨y − x,g⟩ > 0.

Since Paff(K) is an orthogonal projection, we have

⟨y − x,Paff(K)(g)⟩ = ⟨Paff(K)(y − x),g⟩ = ⟨y − x,g⟩ > 0.

for all x ∈ K, which implies that SO′
K is a separation oracle.
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Now we see that Algorithm 9 is an instance of Algorithm 6 in [17] applied to the initial point y1 using
the separation oracle SO′

K. Hence we may use Lemma 13 in [17] directly to see that Algorithm 9
stops after at most (dist(y1, K̂δ)

2 − dist(y, K̂δ)
2)/δ2 + 1 iterations and returns y ∈ K such that

∀z ∈ K̂δ , we have ∥y − z∥ ≤ ∥y1 − z∥ Since y1 is the projection of y over aff(K), we see that
Algorithm 9 stops after at most

dist(y1, K̂δ)
2 − dist(y, K̂δ)

2

δ2
+ 1 =

dist(y0, K̂δ)
2 − dist(y, K̂δ)

2

δ2
− ∥y0 − y1∥2

δ2
+ 1

≤ dist(y0, K̂δ)
2 − dist(y, K̂δ)

2

δ2
+ 1

steps and

∀z ∈ K̂δ ⊆ aff(K), ∥y − z∥ ≤ ∥y1 − z∥ ≤ ∥y0 − z∥.

In the following, we use the notation

ARA
α,Adv := max

1≤a≤b≤T
RA

α,Adv(KT
∗ )[a, b],

to denote the adaptive regret.

Theorem 9. Let L be a class of linear functions over K such that ∥l∥ ≤ M1 for all l ∈ L and let
D = diam(K). Fix v > 0 such that δ = vT−1/2 ∈ (0, 1) and set η = vr

2M1
T−1/2. Then we have

ARSO-OGA
1,Advf

1(L)
= O(M1T

1/2).

Proof. Since the algorithm is deterministic, according to Theorem 1 in [34], it is sufficient to prove
this regret bound against the oblivious adversary Advo

1(L).

Note that this algorithm is invariant under translations. Hence it is sufficient to prove the result when
c = 0. If aff(K) = Rd, then we have Br(0) ⊆ K ⊆ BR(0) and we may use Theorem 14 from [17]
to obtain the desired result for the oblivious adversary Advo

1(L). On the other hand, the assumption
Br(0) ⊆ K is only used in the proof of Lemma 13 in [17]. Here we use Lemma 5 instead which
does not require this assumption.

The following corollary is an immediate consequence of the above theorem and Theorems 2, 3, 4, 8
and Corollaries 4, 5 and 6.

Corollary 7. Let SO-OGA denote the algorithm described above. Then the following are true.

a) Under the assumptions of Theorem 2, we have:

ARSO-OGA
γ2

1+cγ2 ,Advf
1(F)

≤ O(M1T
1/2),

ARSO-OGA
γ2

1+cγ2 ,Advo
1(F,B1)

≤ O(B1T
1/2),

ARFOTZO(SO-OGA)
γ2

1+cγ2 ,Advo
0(F)

≤ O(M1T
1/2).

If we also assume F is bounded by M0 and B0 ≥ M0, then

ARSTB(SO-OGA)
γ2

1+cγ2 ,Advo
0(F,B0)

≤ O(B0T
3/4).

b) Under the assumptions of Theorem 3, we have:

ARA
1−e−γ ,Advo

1(F,B1)
≤ O(B1T

1/2),

ARFOTZO(A)
1−e−γ ,Advo

0(F) ≤ O(M1T
1/2),
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where A = OMBQ(SO-OGA, BQM0, Id). Note that A is a first order full-information algorithm
that requires a single query per time-step. If we also assume F is bounded by M0 and
B0 ≥ M0, then

ARAsemi-bandit

1−e−γ ,Advo
1(F,B1)

≤ O(B1T
2/3),

ARAfull-info–0

1−e−γ ,Advo
0(F,B0)

≤ O(B0T
3/4)

ARAbandit

1−e−γ ,Advo
0(F,B0)

≤ O(B0T
4/5)

where

Asemi-bandit = SFTT(A), Afull-info–0 = FOTZO(A), Abandit = SFTT(Afull-info–0).

c) Under the assumptions of Theorem 4, we have:

ARA
1−h
4 ,Advo

1(F,B1)
≤ O(B1T

1/2),

ARFOTZO(A)
1−h
4 ,Advo

0(F)
≤ O(M1T

1/2),

where A = OMBQ(SO-OGA, BQN,x 7→ xt+x
2 ). Note that A is a first order full-information

algorithm that requires a single query per time-step. If we also assume F is bounded by
M0 and B0 ≥ M0, then

ARAsemi-bandit
1−h
4 ,Advo

1(F,B1)
≤ O(B1d

1/2T 2/3),

ARAfull-info–0
1−h
4 ,Advo

0(F,B0)
≤ O(B0d

1/2T 3/4),

ARAbandit
1−h
4 ,Advo

0(F,B0)
≤ O(B0d

1/2T 4/5),

where

Asemi-bandit = SFTT(A), Afull-info–0 = FOTZO(A), Abandit = SFTT(Afull-info–0).

K Dynamic regret

Improved Ader (IA) algorithm [43] is a deterministic algorithm with semi-bandit feedback, designed
for online convex optimization with a deterministic gradient oracle.

Algorithm 10: Improved Ader - IA
Input : horizon T , constraint set K, step size λ, a setH containing step sizes for experts
Activate a set of experts {Eη | η ∈ H} by invoking Algorithm 11 for each step size η ∈ H
Sort step sizes in ascending order η1 ≤ · · · ≤ ηN , and set wηi

1 = C
i(i+1)

where C = 1 + 1
|H|

for t = 1, 2, . . . , T do
Receive xη

t from each expert Eη

Play the action xt =
∑

η∈H wη
t x

η
t and observe ot = ∇ft(xt)

Define lt(y) := ⟨ot,y − xt⟩

Update the weight of each expert by wη
t+1 =

w
η
t e−λlt(x

η
t )∑

µ∈H w
µ
t e−λlt(x

µ
t )

.

Send the gradient ot to each expert Eη

end

Algorithm 11: Improved Ader : Expert algorithm
Input : horizon T , constraint set K, step size η
Let xη

1 be any point in K
for t = 1, 2, . . . , T do

Send xη
t to the main algorithm

Receive ot from the main algorithm
xη
t+1 = PK(x

η
t + ηot)

end
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In Algorithm 11, PK denotes projection into the convex set K. Note that here we used the maxi-
mization version of this algorithm. The original version, which is designed for minimization, uses
the update rule xη

t+1 = PK(x
η
t − ηot) in Algorithm 11 instead.

Theorem 10. Let L be a class of linear functions over K such that ∥l∥ ≤ M1 for all l ∈ L and let

D = diam(K). Set H := {ηi = 2i−1D
M1

√
7
2T | 1 ≤ i ≤ N} where N = ⌈ 1

2 log2(1 + 4T/7)⌉ + 1

and λ =
√
2/(TM2

1D
2). Then for any comparator sequence u ∈ KT , we have

RIA

1,Advf
1(L)

(u) = O(M1

√
T (1 + PT (u))).

Proof. If we use the oblivious adversary Advo
1(L) instead, this theorem is simply a restatement of

the special case (i.e. when the functions are linear) of Theorem 4 in [43]. 9 Since the algorithm is
deterministic, according to Theorem 1 in [34], the regret bound remains unchanged when we replace
Advo

1(L) with Advf
1(L).

The following corollary is an immediate consequence of the above theorem and Theorems 2, 3, 4,
and Corollaries 4 and 5.

Note that we do not use the meta-algorithm OTB since Improved Ader is designed for non-stationary
regret and does not offer any advantages in the offline case. On the other hand, we do not use the
meta-algorithm SFTT in this case since Theorem 7 is only for the setting where the comparator is
KT

∗ and does not allow us to convert bounds for dynamic regret.
Corollary 8. Let IA denote “Improved Ader” described above. Then the following are true.

a) Under the assumptions of Theorem 2, we have:

RIA
γ2

1+cγ2 ,Advf
1(F)

(u) = O(M1

√
T (1 + PT (u))),

RIA
γ2

1+cγ2 ,Advo
1(F,B1)

(u) = O(B1

√
T (1 + PT (u))),

RFOTZO(IA)
γ2

1+cγ2 ,Advo
0(F)

(u) = O(M1

√
T (1 + PT (u))).

If we also assume F is bounded by M0 and B0 ≥ M0, then

RSTB(IA)
γ2

1+cγ2 ,Advo
0(F,B0)

(u) = O(B0T
3/4(1 + PT (u))

1/2).

b) Under the assumptions of Theorem 3, we have:

RA
1−e−γ ,Advo

1(F,B1)
(u) = O(B1

√
T (1 + PT (u)))

RFOTZO(IA)
1−e−γ ,Advo

0(F)(u) = O(M1

√
T (1 + PT (u))).

where A = OMBQ(IA, BQM0, Id). Note that A is a first order full-information algorithm
that requires a single query per time-step. If we also assume F is bounded by M0 and
B0 ≥ M0, then

RAfull-info–0

1−e−γ ,Advo
0(F,B0)

(u) = O(B0T
3/4(1 + PT (u))

1/2).

where Afull-info–0 = FOTZO(A).

c) Under the assumptions of Theorem 4, we have:

RA
1−h
4 ,Advo

1(F,B1)
(u) = O(B1

√
T (1 + PT (u))),

RFOTZO(IA)
1−h
4 ,Advo

0(F)
(u) = O(M1

√
T (1 + PT (u))).

9We note that although Theorem 4 in [43] assumes that the convex set contains the origin, this assumption
is not really needed. In fact, for any arbitrary convex set, we may first translate it to contain the origin, apply
Theorem 4 and then translate it back to obtain the results for the original convex set.
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where A = OMBQ(IA, BQN,x 7→ xt+x
2 ). Note that A is a first order full-information algo-

rithm that requires a single query per time-step. If we also assume F is bounded by M0

and B0 ≥ M0, then

RAfull-info–0
1−h
4 ,Advo

0(F,B0)
(u) = O(B0T

3/4(1 + PT (u))
1/2).

where Afull-info–0 = FOTZO(A).
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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