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Abstract

Coreset Selection (CS) aims to identify a subset of the training dataset that achieves model
performance comparable to using the entire dataset. Many state-of-the-art CS methods
select coresets using scores whose computation requires training the downstream model
on the entire dataset first and recording changes in the model’s behavior on samples as it
trains (training dynamics). These scores are inefficient to compute and hard to interpret, as
they do not indicate whether a sample is difficult to learn in general or only for a specific
downstream model. Our work addresses these challenges by proposing a score that computes
a sample’s difficulty using human-understandable textual attributes (concepts) independent
of any downstream model. Specifically, we measure the alignment between a sample’s visual
features and concept bottlenecks, derived via large language models, by training a linear
concept bottleneck layer and computing the sample’s difficulty score using it. We then use
stratified sampling based on this score to generate a coreset of the dataset. Crucially, our
score is efficiently computable without training the downstream model on the full dataset even
once, leads to high-performing coresets for various downstream models, and is computable
even for an unlabeled dataset. Through experiments on five diverse datasets including
ImageNet-1K, we show that our coresets outperform random subsets, even at high pruning
rates, and lead to model performance comparable to or better than coresets found by training
dynamics-based methods.

1 Introduction

Machine learning (ML) pipelines are increasingly demanding more data and compute (Touvron et al., 2023;
Achiam et al., |2023) to achieve improved performance on various tasks. While in line with empirical neural
scaling laws (Kaplan et al.l 2020; [Hestness et al., |2017; Henighan et al., [2020; Rosenfeld et al., [2019) where a
model’s performance improves with increasing model and training data size, these improvements come at an
unsustainable cost of compute/energy. However, recently (Sorscher et al.l |2022; |Li et al., |2024) demonstrated
that data pruning plays a crucial role in enabling an exponential reduction in test error with increasing
dataset size, underscoring the importance of data quality over quantity.
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Figure 2: Overview of our approach: We start by prompting an LLM to generate concept annotation for N class
label names in the dataset and select k most discriminative attributes (per class) to form the concept bottleneck, which
are passed through a text encoder (7Tenc) to obtain the bottleneck embedding matrix (E¢). The visual information of
a training sample z extracted via the visual encoder (Venc) is then aligned to E¢ using a linear concept bottleneck
layer (h) trained for T' epochs. Our difficulty score for a sample z is then computed as the average margin (i.e., the
difference between the softmax scores of the correct and other classes) over T epochs. Finally, the coreset is selected
via stratified sampling and is used to train downstream models.

training the downstream model on the entire dataset at least once, which can be costly when training a large
model on a large dataset (see Fig. . While |Coleman et al.| (2019) showed that a coreset selected using
training dynamics of a mid-sized proxy model (eg, ResNet-18) is effective for a larger downstream model (eg,
ResNet-50), training even such a model may not be feasible for large datasets. Moreover, since these scores
are dependent on training dynamics of a particular downstream model, they are hard to interpret as they do
not inform us about the sample’s importance for another downstream model (without training it first). Thus,
in our work we tackle the following question: “How to efficiently estimate the importance of training samples
for CS in a data centric way that is independent of the downstream model and avoids training that model on
the full dataset?

To address this, we use Concept Bottleneck Models (CBMs) (Koh et al., [2020; [Yuksekgonul et al.l 2022]),
which work by mapping a model’s input onto a set of human-understandable concepts, referred to as the
“bottleneck” and use them to make a prediction. However, CBMs require concept annotation for every sample
in the dataset, which can be costly to obtain. Recently (Yang et al.l |2023b}; [Yan et al., |2023]) showed that
off-the-shelf Large Language Models (LLMs) and Vision Language Models (VLMs) can be prompted to
obtain concept annotations for training samples without requiring any task-specific fine-tuning (see Fig.
(block 1)). Once the bottleneck is formed, we use a VLM (e.g., CLIP (Radford et al. |2021)) to measure the
alignment between the visual features and the concept bottleneck (denoted as concept similarity in Fig.
(block 2)). A linear concept bottleneck layer is then trained to align the visual and concept features while
classifying samples. We then use the average margin of a sample while training the bottleneck layer as our
concept-based importance score. Finally, we form the coreset using stratified sampling (Zheng et al., |2022)
(block 3) based on our score, which is used for training downstream models (Fig. [2[ (block 4)).

We empirically evaluate the effectiveness of our score on three benchmark datasets: CIFAR-10/100 (Krizhevsky
et al} [2009) and Imagenet-1K (Deng et al.l |2009)), as well as on biomedical (Acevedo et al., [2020) and affective
computing (Mollahosseini et al., [2017)) tasks. Our results show that downstream models trained on our
coresets consistently achieve better accuracy than randomly sampled subsets, especially at high data pruning
rates, and achieve performance close to SOTA CS methods. We also show that our approach is effective for
the label-free CS problem where the dataset is unlabeled and leads to models with superior performance
compared to SOTA label-free CS methods, especially on Imagenet. Since our CS method is independent of
the downstream model, we show that our coreset leads to high performance regardless of the architecture
of the downstream model. Moreover, our method speeds up the computation of the coreset by ~ 8 times
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compared to approaches based on the training dynamics of the downstream model. Lastly, we show that our
concept-based difficulty score provides an intuitive explanation of why examples are easy/hard, independent
of the downstream model. Our main contributions are summarized below:

e We propose a concept-based score that efficiently computes a training sample’s importance for CS
without training a downstream model on the full dataset, even once.

e Our coresets improve accuracy by =~ 5% over random subsets at high pruning rates, are competitive
to coresets found by SOTA methods, transfer to various architectures, and can be computed for
unlabeled training data.

e We show that using CBMs with LLM-generated concepts makes our score interpretable, enabling a
data-centric solution for identifying coresets.

2 Related Work

Coreset selection (CS). CS improves the efficiency of model training by selecting a subset of influential
samples. Various approaches have been proposed to generate such a subset (Guo et all 2022)). A popular
approach uses influence functions (Koh & Liang) 2017} |(Chatterjee & Hadi, [1986; [Liu et al., |2021} |Schioppa.
et al.l [2022)) which measures the influence of a sample by considering the effect of removing it from the
model’s training. While effective, these approaches are computationally costly due to their dependence on
higher-order derivatives. Approaches that use the dataset’s geometric properties such as (Sener & Savarese,
2017} [Sorscher et al., [2022; |[Feldman et al., [2020; |[Feldman & Langberg, |2011; [Huang et al.l 2019) are another
popular choice for CS . However, the high computational complexity due to their dependence on pairwise
distances between the samples prohibits their use on large datasets. Another set of approaches select a
subset by either matching the gradients to those computed on the entire dataset (Mirzasoleiman et al.l 2020;
Killamsetty et al., [2021)) or use training dynamics of a model (Toneva et al.l |2018} [Pleiss et al., |2020; Lewis
& Catlettl [1994; |Culotta & McCalluml [2005; [Paul et al., 2021)) to compute the importance of a sample.
However, such approaches require repeated training of the downstream model to produce accurate importance
scores. In comparison, our approach avoids using any knowledge of the downstream model for computing the
difficulty scores.

Adaptive subset selection. These works focus of improving the training convergence and efficiency of
model training by selecting a new subset of data from the whole dataset, every epoch, while training a
downstream model. Thus, unlike our work, these works do not prune the dataset but rather keep selecting
small, potentially non-overlapping, subsets every few epochs. Both (Killamsetty et al., |2023}; Tukan et al.,
2023)), propose ways to select subsets every epoch or every few epochs in a way that does not use a downstream
model unlike some other works such as GradMatch (Killamsetty et al.l |2021)), which select subsets based on
the downstream model. While our work does not target adaptive subset selection, we evaluated how well our
approach performs without any change on this problem in Sec.[5.4] Our results show that, even on for this
application, our concept-based score is an effective method.

Active learning. assumes an interactive setting with iterative labeling and downstream model dependent
updates to the importance of the samples, while our method focuses on one time coreset selection for fixed
datasets without assuming the knowledge of the training dynamics of the downstream model. Specifically,
active learning (Settles, [2012; Lewis & Catlett), [1994) relies on the performance of the downstream model at
the current epoch to make a decision for which samples from the training data should be used next. While in
our method, we disentangle the selection of the coreset from the downstream model, and show that the same
coreset leads to high performing models for various choices of downstream model architectures, making it
efficient (no repeated data selection) and also generalizable (agnostic to downstream model).

Concept-based interpretability approaches. Concepts are defined as high-level semantics that refers to
the abstract and human-interpretable meanings of the visual data, such as objects, actions, and scenes, as
opposed to low-level features like edges or textures (Wu et al.l |2016]). Concepts have been used in interpretable
computer vision to bridge the gap between human understanding and machine perception in various tasks
such as image classification. Such interpretability methods can be broadly classified as post-hoc methods (do
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not impose any model constraints) or by-design methods (see App. . Concept Bottleneck Models (CBMs)
extend interpretable-by-design approaches by using human-understandable attributes as an intermediate layer
for predictions, as used in few-shot learning (Lampert et al., 2013) and attribute learning (Xu et al., |2020;
Russakovsky & Fei-Feil, |2012)). While interpretable, CBMs reliance on costly annotations and lower accuracy
compared to end-to-end models limit their usage. Post-hoc Concept Bottleneck Models (PCBMs) address
these issues by incorporating static knowledge bases (e.g., ConceptNet [Speer et al. (2017)) and residual
connections to boost accuracy (Yuksekgonul et al.| [2022)). Recently [Yang et al.| (2023bl); [Yan et al.| (2023)
incorporated LLMs to identify the concept bottleneck making classification more explainable. We build on
this and use CBMs for CS.

3 Preliminaries

3.1 Coreset selection (CS) problem formulation

Consider a classification task and data distribution P. Let D = {(x;,y;)}7; denote the dataset of n training
examples sampled i.i.d. from the distribution P where x; denotes the data and y; € ) denotes the label from
a set of N classes. CS (Coleman et al., [2019; |Zheng et al.| |2022)) aims to find a subset S of D consisting of
m < n samples such that the models trained on S achieve performance comparable to models trained on D.
Let Op and 0s denote the “downstream model” trained on D and S (coreset), respectively and ¢ be the loss
function then the CS problem is as follows

S:SC%hr}ﬂzm E(z,y)wP Wﬂfa y|9$)} - E(z,y)wP Wﬂfa y|9'D)] (1)

To find this subset S, previous works have proposed scores that gauge a sample’s difficulty for a model.
Approaches such as max entropy uncertainty sampling (Lewis & Catlett} (1994} |Settles| [2012]), and least
confidence (Culotta & McCallum), [2005) estimate difficulty using the uncertainty of the model’s predictions
on a sample. Another set of approaches such as k-center greedy (Sener & Savarese, [2017) uses geometric
information of the data to filter out redundant samples. Yet, another set of approaches uses training dynamics
of the downstream model to estimate the difficulty score. Scores such as the forgetting events (Toneva
et al., 2018) computed as the number of times a sample gets misclassified after being correctly classified
earlier during model training, and the area under the margin (AUM) (Pleiss et al.| [2020]) which identifies
mislabeled/difficult samples, fall in this category.

3.2 Concept bottleneck models (CBMs)

Recent advances in language model-guided CBMs utilize an off-the-shelf LLM to obtain concept bottlenecks
which are then used to predict the labels. These works rely on pre-trained multi-modal models (such as
CLIP (Radford et al.,|2021))) which consists of a visual encoder Ve, and a text encoder Te,. that can map
images and text to a d-dimensional representation space. Let C = {c1, ¢, - ,¢n, } be the set of No concepts
(bottleneck) generated via an LLM, we can then construct a bottleneck embedding matrix Ec € RN¢*? such
that each row of the matrix is a mapping of the concept ¢ € C' after passing it through textual encoder Tey.
Based on this, a CBM (Yang et al., 2023b)) produces a prediction h(x) = f(g(Vene(z); Ec)) for a sample z
where g : R — RN¢ computes the similarity of the visual features to each concept in the bottleneck and
f: RN — A outputs the probability of each class in the label set ), where A is a N simplex. We discuss
details of f and g in Sec.

4 Methodology

4.1 Generating the concept bottleneck via LLMs

Since obtaining data with concept annotation is costly, we use LLMs to generate concept annotation for the
samples. However, generating attributes (word-level concepts) for all the samples in the dataset via LLMs is
still costly, hence we generate word-level concepts only for class label names. This approach was recently
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Algorithm 1 Concept-Based Coreset Selection Pipeline

Require: Dataset D = {(x;,y;)}" ,, class names ), VLM, visual encoder Vg, text encoder Teye, concepts-
per-class k, AUM epochs T', CCS pruning ratio «r, CCS cutoff rate 5, CCS bins b.

Ensure: Coreset S

{Build the concept bottleneck}

(C, Ec,bottleneck_concepts) < GENERATECONCEPTBOTTLENECK(Y, k, VLM, Top.) (Alg.

{Compute difficulty scores via Eq.

({AUM;}?,, W) <— CONCEPTBASEDAUMSCORING(D, Vo, Fe, T) (Alg. |3)

{Package dataset with sample-wise scores and select coreset using CCS}

D« {(xlv Yi, AUMZ)}?:l

S + CCS(D, a, B,b) (Alg.

Return S

shown to be effective at generating the concept bottleneck for interpretable image classification (Yan et al.|
2023} [Yang et al., 2023b]).

In Figure [2[ (block 1), we present the prompts provided to the LLMs to extract the concepts for various class
label names. The responses of the LLM are then processed to remove formatting errors to obtain the concept
sets. Once the per-class concepts are extracted, we select k discriminative concepts per class (concepts that
are unique to a class) to form the concept bottleneck. Our final list of k concepts for a class contain its class
name and k — 1 attributes generated by the LLM. Details of our prompt design, robustness check of different
prompts, and examples of the generated attributes are mentioned in App. [B]

4.2 Concept-based score for CS

We now describe how to use the concept bottleneck to produce a difficulty score for the samples in the dataset.
We start by discussing how we learn the functions f and g described in Sec. (see Fig. 2| (block 2)). We
use the dot product between the visual embeddings of an image x i.e. Ven.(z) and the bottleneck embedding
matrix Fc to measure the alignment between the visual and textual features (Yang et al.l 2023b; [Yan et al.|
2023). Concretely, we compute the concept similarity score for a sample x as

g(:l?; EC) = Venc(x) : E(T; (2)

To map the concept similarity score to a prediction in the label space ), we propose to use a linear (concept
bottleneck layer) predictor denoted by f. Concretely, the function f with parameters W € RVN*N¢ is given
by f(z; W) := g(z; E¢) - WT. We learn the parameters W using

W :argmmllnﬁ;af(l‘i§w)7yi)v (3)

where ((f(x; W), y) = —log(f(x; W),) is the cross-entropy loss. The output of the concept bottleneck layer
is defined as, h(z) := f(g(z; Ec); W*). In practice, we learn W using mini-batch gradient descent by running
the optimization for T" epochs. We then compute the difficulty of each training sample using area under
the margin (AUM) (Pleiss et al., [2020) while solving Eq. [3] quantifying the data difficulty as the margin of
a training sample averaged over T training epochs. Concretely, margin of a sample (z,y) at an epoch ¢ is
M*(x,y) = hi(x) — maxyrz, ht,(z), where hl,(x) is the prediction likelihood of the bottleneck layer at epoch
t for a class y'. Thus, AUM (concept-based score) is

=l

1 T
AUM(z,y) = = Y M'(z,y). (4)

Recent works (Pleiss et al., 2020 [Zheng et al., [2022; [2024)) have demonstrated the effectiveness of AUM for
computing a sample’s difficulty for CS. However, (Zheng et al.| |2022; |2024)) compute AUM for a specific
downstream model by training it on the entire dataset first, which is computationally costly. On the other
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hand, we integrate AUM with the training of a linear layer h, training which is significantly cheaper than
training the downstream model (training A for 100 epochs takes only 7 minutes on Imagenet compared to 8
hours for training a ResNet-34 for 100 epochs). Moreover, since our score is independent of the downstream
model, our coresets can be used for any downstream model without change, unlike training dynamics-based
approaches that require computing their coresets again for different/new downstream models/architectures.

Sampling training examples to form a coreset. After obtaining data difficulty scores, a crucial step is
choosing the samples to form the coreset. While many previous works (Toneva et al., |2018; |Coleman et al.
have reported encouraging results by keeping only the most challenging samples (for our concept-based
score this means samples with the smallest margin), recent works (Zheng et al., 2022; Sorscher et al., |2022))
have shown that this could lead to a catastrophic drop in accuracies after training the downstream model on
the coreset, especially when the size of the coreset is small. This is mainly due to poor sample coverage and
potentially mislabeled data in the datasets. To remedy this, we use Coverage-centric Coreset Selection (CCS)
proposed by (Zheng et al.| 2022)) (see Alg. [4]in App. which filters out (potentially) mislabeled samples
and uses a stratified sampling approach to form the coreset. This technique has been shown to consistently
achieve superior results to the random baselines for various coreset sizes. We summarize the entire pipeline
in Algorithm [T

4.3 Concept-based score for label-free CS

Recently, there has been an interest (Zheng et al. [2024; Maharana et al., 2023} |Griffin et all [2024) in
identifying the representative samples from an unlabeled dataset so as to 1) reduce the samples that need
to be labeled /annotated by humans and 2) improve the efficiency of model training by only training the
model on a subset of data. Our concept-based score can also be effectively utilized for this task with a simple
modification. Similar to previous works (Maharana et al.| 2023; Zheng et al., 2024; |Sorscher et al., 2022), we
assume that we know the number of classes in the datasets. Additionally, we assume that we also know the
names of the classes in the datasets. Previous works have demonstrated that VLMs such as CLIP
achieve excellent zero-shot performance without requiring fine-tuning on specific datasets. We
leverage this capability of CLIP models to obtain pseudo-labels for our unlabeled dataset and use them to
obtain our difficulty score as follows

T
1
AUM(-Ta ypseudo) = T E Mt(xa ypseudo)a (5)
t=1

where for an image z in the dataset ypseuao = arg max;cy Vene(T) - Wirosnot Where Wierosnot € RNV*d g a
matrix with columns defined as Tepc(s;) and s; = “a photo of a {j' class name}"' for each class j € Y
(Radford et all 2021} [Wortsman et all [2022)). We use these scores along with CCS (Zheng et all, [2022)) to
produce the coreset. Similar to (Zheng et all |2024; Maharana et al., 2023)), the coreset is then assumed to be
annotated by humans and used for training.

5 Experiments

Datasets, models, and training: We focus on CS for classification tasks on three benchmark datasets
namely, CIFAR-10, CIFAR-100 (Krizhevsky et al] [2009)), and Imagenet-1K (Deng et all [2009) datasets
consisting of 50000, 50000, and 1.28 million samples spread across 10, 100, and 1000 classes, respectively.
For CIFAR-10/CIFAR-100, we train a ResNet(RN)-18 as a downstream model and for Imagenet we train
ResNet-18/34/50 (He et al [2016)), MobileNet (Sandler et al.l [2018), DenseNet (Huang et al. [2017), Wide
ResNet (Zagoruyko & Komodakis, 2016)), and ViT (Dosovitskiy et al.,|2020) as downstream models on the
coresets. We use FFCV (Leclerc et al.| 2023)) to accelerate training on Imagenet. We run CS for three trials
with different random seeds and report the average of these runs in our tables for various pruning rates where
a pruning rate of 90% refers to removing 90% of the samples.

For generating concepts we use a recently proposed open source model LLaVA (Liu et al., |2023b|;@. For
computing the concept similarity scores between the visual and concept features we used the CLIP (Radford
2021)) model (with the ViT B-32 as backbone) following the previous works (Yun et all 2022} Yang

| 6 |
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Table 1: Comparison of the model’s (RN-18 for CIFAR10/100 and RN-34 for Imagenet) test accuracy after training
on coresets found by various approaches shows that our coresets lead to significantly better performance than Random
and achieve competitive results compared to the methods using the downstream model’s training dynamics, even
for high pruning rates. Results for Forgetting and AUM are taken from (Zheng et al., |2022). Best results in each
category based on the need for the knowledge or training dynamics of the downstream model are highlighted. Rows
corresponding to methods that require training dynamics are shaded .

Datasets and Pruning Rates
Method CIFAR-10 CIFAR-100 Imagenet
30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%

Entropy (Coleman et al.||2019) 94.44 92.11 85.67 66.52 72.26 63.26 50.49 28.96 7234 70.76 64.04 39.04
Forgetting (Zheng et al.||2022) 9540 95.04 9297 85.70 77.14 7445 6892 5559 7260 70.89 66.51 52.28

AUM (Zheng et al.|[2022) 95.27 94.93 93.00 86.08 76.84 73.77 68.85 55.03 72.29 70.52 67.78 57.36

Random 94.33 9340 90.94 79.08 7459  71.07 65.30 44.76  72.18 70.34  66.67  52.34
Randomprcv - - - - - - - - 7337 7171 67.85  51.29
+0.08 +0.10 +0.04 +0.20

Ours 94.77 9344 91.80 84.63 7598 7222 6653 5185 7339 7234 6944 5592
+0.09 +0.61 +0.21 +0.24 +0.26 +0.22 +0.42 +0.29 +0.12 +0.13 +0.17 +0.02

Table 2: Performance of concept based coreset selection on emotion recognition (AffectNet) and biomedical
image recognition (BloodMNIST) tasks. Coresets selected by our approach improve F1 score and accuracy at
high pruning rates and perform similar or better than methods that require access to the downstream model or its
training dynamics. Rows corresponding to methods that require training dynamics are shaded .

Datasets and Pruning Rates

Method AffectNet (F1 Score) BloodMNIST (Accuracy)
30% 50% 70% 90% 30% 50% 70% 90%
Forgetting (Zheng et al.||2022)  0.60210.006 0.570:0012 0.54010.015  0.416+0.005 95.5140.067 94.8840.215 94.081+0.601  84.46+1 000
AUM (Zheng et al.|[2022) 0.59540.005  0.59610.015 0.53610.00s 0.4391i0.012 95.75:0280 95.54102m1 94.72:0425  81.2245 038
Random 0-60710.006 0-57310 025 0-51710 006 0»34710 055 94.99 ¢ 267 94»7910 176 91>7lit).286 865011»655
Ours 0.603+0.006 0.577 40021 0.53740.015 0.45040.035 94.64 10,509 94.06+0.096 92.2610.190 87.4411.455

et al.l [2023b; [Yan et al.l [2023)). For computing the pseudo-labels for label-free CS (in Sec. we used a ViT
L-14 CLIP model trained on the DataComp-1B dataset (Ilharco et al.,2021)). We present ablations of various
choices for LLM/VLMs for concept extraction and similarity computation in Sec. Further experimental
details are mentioned in App.[C]

CS baselines and methods: We compare our method against various baselines and SOTA CS methods.
1) Random: Uniformly select samples from the datasets to form the coreset. Randomppcy denotes the
performance of the models trained on random subsets of Imagenet using FFCV (Leclerc et all 2023). 2)
Entropy (Coleman et al., |2019): Selects samples based on entropy computed as the uncertainty of a
model’s prediction on a sample. 3) Forgetting (Toneva et al., |2018)): Selects samples based on the
forgetting score computed as the number of times a sample is misclassified after being correctly classified
earlier during training of the downstream model. A higher forgetting score indicates a more challenging
sample. 4) AUM (Pleiss et al., 2020)): Selects samples based on their average margin during training
of the downstream model i.e., the difference between the target class and the next highest class across the
training epochs. Lower AUM indicates a more challenging sample. For forgetting, AUM, and our method,
we use CCS (Zheng et al.l [2022) to form the coreset whereas for entropy we select samples with the highest
entropy as done in (Coleman et al.l 2019; |Zheng et al., [2022).

For label-free CS, we use 1) Prototypicality (Sorscher et al., 2022): which first performs k-means
clustering in the embedding space of SwAV (Caron et al., |2020) model and ranks samples based on their
Euclidean distance to the cluster centers. Samples further away from the cluster center are used to form
the coreset. 2) ELFS (Zheng et al., |2024]): estimates the pseudo-labels of the unlabeled samples using a
deep clustering approach (using the embedding space of SwAV (Caron et al [2020) and DINO (Caron et al.,
2021))) and forms the coreset using training dynamics of the downstream model trained on the pseudo-labeled
data. Crucially, SOTA methods such as forgetting, AUM, and ELFS train the downstream model on the
entire dataset first for CS, unlike our method which is independent of the downstream model. While Random
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Table 3: Comparison of the model’s test accuracy after training on coresets, found in a label free manner, shows
that our coresets lead to better performance than Random and Prototypicality. Our coresets also achieve performance
competitive to or better than the coresets found by the state of the art method ELFS(Zheng et al.l |2024), which relies
on the training dynamics of the downstream model. Rows corresponding to methods that require training dynamics
are shaded .

Datasets and Pruning Rates

Method CIFAR-10 CIFAR-100 Imagenet

30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%
ELFS (SwAV) (Zheng et al.||2024) 95.00 94.30 91.80 82,50 76.10 72.10 65.50 49.80 73.20 71.40 66.80 53.40
ELFS (DINO) (Zheng et al.|2024) 95.50 95.20 9320 8730 7680 73.60 6840 5490 7350 71.80 67.20 54.90
Prototypicality (Sorscher et al.||2022) 94.70  92.90  90.10 70.90 7450 69.80 61.10 32.10 70.90 60.80 54.60  30.60
Random 94.33  93.40 90.94 79.08 74.59 71.07 65.30 44.76 72.18 70.34  66.67 52.34
Randomrrcv - - - - - - - - 73.37 71.71  67.85 51.29

+0.08 +0.10 £0.04 +£0.20

Ours-LF 94.81 9393 91.75 84.02 74.67 720 65.50 4991 7361 7199 6842 53.21

0.14 £0.13 £0.34 +0.44 +0.23 +0.58 £0.17 +£0.96 £0.08 0.05 +0.21 0.06

and Prototypicality also don’t require the downstream model for CS, our results show that our approach
surpasses them.

5.1 Evaluating performance of our score for CS

Effectiveness on standard CS. Table [l|shows the accuracy of models trained on coresets found by various
approaches on the standard CS problem (where the dataset is labeled). Our results show that our coresets
lead to significantly better performance, even at higher pruning rates, compared to random subsets. Moreover,
our method, which does not have the knowledge of the downstream model or its training dynamics, provides
competitive performance to coresets found by the SOTA approaches based on forgetting and AUM, and even
outperforms them on Imagenet for smaller pruning rates.

Effectiveness on biomedical and affective computing tasks. Here, we present an evaluation of using
our approach for CS for emotion recognition (using a subset of AffectNet (Mollahosseini et al., |2017))) and
biomedical entity recognition (using BloodMNIST (Acevedo et all 2020)) task. Superior performance of our
approach in Table [2| compared to Random highlights the effectiveness of our approach for CS on diverse
tasks. Our results also show that our method which does not requires access to the downstream model or
it’s training dynamics achieves results comparable to methods such as forgetting and AUM on these tasks.
Further details of this experiment are presented in App.[C.2]

Performance on label-free CS. Table [3|shows the accuracy of models trained on coresets for label-free
CS, where the training set is unlabeled (we report the numbers presented by (Zheng et al.| 2024]) for previous
methods). The results show that the random subsets are a competitive baseline for this problem outperforming
Prototypicality (Sorscher et all [2022). Our results also show that our coresets outperform the random subsets
for all pruning rates with significant improvements at higher pruning rates. Compared to ELFS (Zheng
et al., [2024), our method provides competitive performance and even surpasses it for lower pruning rates on
Imagenet, without using any information about the downstream model’s architecture or its training dynamics
highlighting its effectiveness.

Transferability of our coresets to various model architectures. Next, we evaluate the transferability
of the coresets found by our approach to downstream models with different architectures including those
based on convolutional neural networks, ResNets and ViTs. The results in Table [4| and Table [14] (in App.
show that our coresets achieve superior performance over random for all the architectures. This results
highlights that our method does not need to recompute the coresets for a new downstream model architecture,
unlike training dynamics based approaches which identify the best performing coreset by using information
of the downstream model.

Thus, our concept-based score in conjunction with stratified sampling (Zheng et al., [2022) is an effective
approach for standard and label-free CS at various pruning rates and leads to high performing and transferable
coresets for a diverse set of tasks.
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Table 4: Superior performance of downstream models with various architectures trained on our coresets for Imagenet
compared to Random for standard (Ours) and label-free (Ours-LF) CS highlights the transferability of our coresets to
various models.

Pruning Rates
Arclil/lict)gcetlure Method
30% 50% 70% 90%
Random 71.154025 68.48.:0.10 63.1510.10 44.9610.50
RN-18 Ours-LF  71.21:0.00 68.772013 63.7610.00 47.5010.10

Ours 70944010 69.301084 65161001 49.57:0.16
Random 76.0640.11 74.44:004 70.5010.0> 53.5610.13

RN-50 Ours-LF 76541008 74.84:005 71.1010.00 55.22:0.02
Ours  76.29:10.10 75121005 72.05:10.00 58.2610.46

Random 76.551011 75.31:0.15 71.854020 56.2740.01

DenseNet Ours-LF  76.941025 75521011 72284014 58.1640.04
Ours  76.804020 75944005 73401027 60.9310 10

Random  77.394010 75.32:012 71.514010 54.78.10.s3

Wide Resnet Qurs-LF T7.8310.08 7577000 71974008 57.34105s
Ours T77.4840.05 76.32+0.03 73.1410.03 59.7540.70
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Figure 3: Visualizing samples according to our concept-based score for a subset of classes in CIFAR-10/100 showing
that easy (challenging) samples are aligned (unaligned) with their assigned label. Image-level concepts (in boxes)
extracted via LLaVA confirm that easy (challenging) examples are aligned (unaligned) with concepts of their labels,
explaining the reason for a high (low) concept-based score.

5.2 Evaluating efficiency of our score for CS

Here, we compare the efficiency of our approach in finding coresets compared to approaches based on training
dynamics. For training dynamics-based approaches, the time required to find the coreset is dominated by
the time needed to train the downstream model on the entire dataset first. For example, finding a coreset
of Imagenet using a ResNet-34 model takes roughly 8 hours on two A-100 GPUs. In comparison, for our
approach, extracting concepts via LLMs (block 1 of Fig. [2) takes 3 seconds per class (totaling to 25 minutes
for all classes of Imagenet using 2 GPUs), and computing visual/concept features via CLIP and training
a linear concept bottleneck layer (block 2 for Fig. [2]) takes roughly 30 minutes for Imagenet offering ~ 8x
speedup for CS over approaches relying on training dynamics of the downstream model. Moreover, since
our method is independent of the downstream model architecture, we do not need to repeat the CS step for
different architectures. This is in contrast with training dynamics-based methods that require training the
downstream model for every new architecture to find the corresponding best coreset for it.

5.3 Visualizing easy and challenging samples based on our concept-based score

Here we show the advantage of our concept-based score for assessing the sample’s difficulty and how using
concepts aids its interpretability. We start by visualizing the easiest and the most challenging images (per
class) for CIFAR-10/100. In Fig. |3} the top row shows the images with the highest concept-based scores
(easiest) and the bottom shows the images with the lowest scores (challenging) for a subset of classes in
CIFAR-10/100. As observed the easiest images are typical images associated with the label where as the
challenging images are confusing (and even potentially mislabeled) as they look like images from a different
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Table 5: Effect of concepts via text only (attributes vs.

descriptions) to form the concept bottleneck layerﬂ

Table 6: Effect of concepts via both visual and textual
information to form the concept bottleneck layetﬂ

class-wise class-wise class-wise one-shot image-wise

attributes descriptions image attributes attributes
Ours 51.85.0.29 51.0510.71 Ours 51.6840.45 52.4710.30
Ours-LF 49.91+0.06 49.8540.53 Ours-LF 50.2240.16 51.0540.93

class. For example, some challenging images in the class “boy” from CIFAR-100 are actually images of a baby
which is also a class in CIFAR-100. Similarly, some challenging images from the class “cat” in CIFAR-10
look like images of a dog. More examples of such images are presented in Fig. [ in App. [Cd] Since the
challenging examples seem to be confusing, it shows that our score can identify examples that are ambiguous
or mislabeled. Such samples may be hard for some ML models to learn and could force them to rely on
spurious features, potentially hurting generalization. The ability of our score to identify such samples without
the downstream model demonstrates its effectiveness for ranking the samples for CS.

Next, we demonstrate why certain samples get low/high concept-based scores in our approach by extracting
concepts specific to these images using LLaVA (note that these concepts are different from the per-class
concepts used in the concept bottleneck). To generate these, we prompt LLaVA to produce concepts using
both the sample’s image and its class label (see image-level concept extraction in App. . These image-level
concepts are shown in the boxes in Fig. 3] As observed in Fig. [3] image-level concepts provided by LLaVA
are related to the class label for easy images whereas they are unrelated for challenging images. For example,
attributes provided by LLaVA for the challenging images of “airplane” align more with those of ship (both
which are classes in CIFAR-10), and concepts provided for challenging images of “bridges” align more with
those of castles (both of which are classes in CIFAR-100). Since our concept-based score in Eq. |4| assigns
a small value for these images, we see that it correctly captures when a sample’s visual information is not
aligned with the sample’s associated label and vice-versa. Thus, explaining why certain examples should be
included/excluded from the coreset in an interpretable way independent of the downstream model.

5.4 Analysis and ablation studies

Here, we present an analysis and ablation studies to evaluate various components of our approach. Specifically,
we evaluate the effect of different 1) methods and LLMs used for concept generation, 2) number of concepts
per class (k) in the bottleneck, 3) CLIP backbones for visual/concept similarity, 4) number of training
iterations (T") and size of the concept bottleneck model. We also present an analysis of using different
sampling strategies for forming the coreset along with evaluation of our method for the adaptive coreset
selection problem. Here we use CIFAR-100 with a 90% pruning ratio and train a ResNet-18 on the selected
coresets. Additional ablations on hyperparameters of Alg. [ are presented in App. [C.4]

Comparison of different techniques to generate concepts via LLaVA. Tables [5] and [6] shows how
the performance of models trained on our coresets change when different method are used to generate the
concept sets (Fig. block 1). Since our method uses LLaVA (Liu et al.,|2023b)), which is a VLM, we compare
the performance of models trained on the random subsets and coresets obtained using class-wise concepts
(only textual information) and concepts extracted using both visual and textual information.

For concepts generated using only textual information, we consider two alternatives, namely class-wise
attributes (CW-A) and class-wise descriptions (CW-D). While CW-A considers concepts formed by a
single or a few words, CW-D consists of longer, more descriptive concepts (eg., a descriptive concept for the
class butterfly is “a beautiful insect with colorful wings"). For CW-D, we use a subset of k concepts provided
by [Yang et al.|(2023b)), generated via the GPT-3 model. Our results show that CW-A performs better than
CW-D for both the standard/label-free CS problems. Thus, we used CW-A for all our experiments.

Next, for generating concepts using both visual and textual information, we consider two alternatives. The
first is a class-wise one-shot image attribute approach where we first cluster all images of a class in the
embedding space of the CLIP’s visual encoder and identify the image whose embedding is the closest to
the cluster center (for the label-free setting we use the pseudo-labels of the images during clustering), then
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Table 7: Effect of the number of per-class concepts k and Table 8: Eﬁectﬂ of using different LLMs
the method of selecting k concepts from those generated for forming the concept bottleneck.
by LLaVA on model accuracyﬂ LLM  Accuracy
Concept selection k=1 k=5 k=10 GPT-3  51.05:0m
Random concepts 48.78.1p96 50.151164  50.394+0.72 Phi-3 51.30£0.26
Discriminative 51.42..,5 51.854020 51.2240.72 LLaVA  51.85.0.2

we prompt LLaVA to generate attributes using this single image and the class name. Once generated, we
use k discriminative concepts to form the bottleneck. The second alternative is the image-wise attribute
approach, where we use each image in the training set and prompt LLaVA to generate per image attributes
describing the image. Once generated, we sort the concepts based on their frequency of occurrence in a class
and use the most frequently occurring discriminative concepts to form the bottleneck. While the image-level
concepts lead to the best coresets, it is slow and costly to prompt LLaVA to generate attributes for all the
images in a large dataset such as Imagenet.

For CIFAR-100, this process took about nine hours to complete (in comparison CW-A can be extracted in
5 minutes without parallel computation) which is very costly compared to the small performance gains it
provides over other approaches. Lastly, while the class-wise one-shot image attribute approach is better than
CW-A, the additional step of clustering can be costly for larger datasets such as Imagenet. Thus, we use
CW-A for concept generation using LLaVA.

Effect of £ and the method for selecting k£ concepts. In Table |7}, we show how the number of concepts
extracted per class label, for creating the bottleneck in block 1 of Fig. 2] affects the selection of coresets. Once
the list of class-wise attribute-level concepts is generated by LLaVA, we can select k concepts per class either
randomly or choose concepts unique to a class (discriminative). Our results show that using even k =1 is
sufficient to surpass the performance using a random subsetﬂ This performance increases when we keep
discriminative concepts in our concept bottleneck, with £ = 5 achieving the best results. While the size of
the concept bottleneck need not be very large, it is helpful to take a sample’s visual similarity with a set of
concepts rather than a single concept per class. Thus, we used 5 discriminative concepts per class to form
the bottleneck.

Effect of using different LLMs/VLMs for concept extraction. We evaluated three different models
for concept extraction in block 1 of Fig. 2] We used GPT-3 and two open source VLMs namely Phi-3-Mini-
4K-Instruct with 3.8 billion parameters, and LLaVA with 7 billion parameters. In Table 8] we find that the
performance of our method remains stable regardless of the LLM used, indicating that even smaller LLMs
are effective at generating concepts that produce high performing coresets with our score.

Effect of using different VLMs for measuring visual and concept similarity. Here we evaluated
different CLIP backbones to compute the similarity between the visual and concept features used in Eq. 2]
(block 2 of Fig. . Our results in Table |§| show that our concept-based method achieves significantly better
performance than Randonﬂ for all the backbones with ViT B-32 backbone performing the best. Thus, we
used this backbone for all the experiments.

Effect of number of epochs T. Here we evaluated the effect of using different number of epochs T" used
for training the concept bottleneck layer for computing the concept-based score. Our results in Table [I0] show
that T" > 50 is enough to achieve concept-based scores that lead to selection of high performing coresets. We
used 7" = 100 in our experiments since that achieves the best performance.

Effect of the size of the CBM model Here, we evaluate the effect of using different number of layers as
a part of model f as described in Sec.[d Specifically, we tested a model with single, two and three layer
fully connected neural networks (FCNNs) with ReLU activations between layers to introduce non-linearity.
As shown in the Table increasing the model complexity (non-linearity) does not lead to significant
improvements in the performance of the selected coresets. Thus, we used f with a single linear layer.

Alternate sampling strategies for CS. In this section, we present an evaluation of using two alternative
strategies for identifying the coreset (instead of using stratified sampling). The first one selects the most
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Table 9: Effect] different back- Table 10: Effecl] of number Table 11: Ablation of number of
bones for visual-concept similarity of training epochs T" for com- layers in f El
in Eq. puting the score in Eq. EI Network CIFAR-100
CLIP backbone  Accuracy T Accuracy Linear model 51.85 + 0.29
ViT L-14 49.544 1 g 20 48.4040.10 Y : :
ResNet-50 50.5611.67 50 50.5040.31
ViT B-32 51.85,0.20 100 51.85:0.29

challenging samples and the second one selects only the easiest samples. We present an evaluation of these
strategies using a pruning ratio of 90% on CIFAR-100 in Table

Similar to the finding in previous works (Sorscher et al.,
2022; Zheng et al., 2022)), we find that for high pruning Table 12: Comparing sampling strategies for Cﬂ
rate, keeping only the most challenging samples makes  Need training Mothod Porformance

it harder for the model to generalize due to presence of dyn;rziCS? o "
less data. Similarly keeping just the very easy samples Forgetiing (most challonging) 15'93
doesn’t give the model enough signal due to lack of data Yes AUM (most challenging) 8.77
diversity. By contrast, stratified sampling which selects Forgetting (CCS) 55.59

. : . . AUM (CCS) 55.03
from each difficulty strata yields a high-performing coreset. Gurs (most challenging) o
This finding aligns with the results in Table 4 of [Zheng No Ours (most eésj) s 33.81
et al.| (2022)), where even SOTA training dynamics-based Ours (CCS, in the paper) 51.85

methods like Forgetting and AUM underperform random
sampling when paired with poor sampling strategies (e.g., selecting only the most difficult examples).

Effectiveness on adaptive subset selection. In this section, we present a comparison of using our
concept-based method for the problem of adaptive subset selection (Killamsetty et al., |2021; 2023; [Tukan,
et al.,|2023)) (See App.|[Alfor a description of the problem). To test our approach, we followed the experimental
setup of [Tukan et al.| (2023), of training a ResNet-18 model on CIFAR-10/100 for 300 epochs and changing
the subset every 20 epochs. Unlike works in the line of adaptive subset selection which focus on selecting
subsets that do not overlap or train models on easy subsets first before moving to difficult ones, we simply
used the CCS-based selection approach (Zheng et al., |2022) to identify new subsets every 20 epochs for this
task. Due to the randomness in CCS (Alg. , samples being selected to form the coreset changes.

Table 13: Results of our approach for the adaptive coreset selection problem highlight its effectiveness on this
problem. (Results for RBFNN and GradMatchPB are taken from tables 1 and 3 of [Tukan et al.| (2023).)

Datasets and Pruning Rates

Method CIFAR-10 CIFAR-100
70% 90% 70% 90%
GradMatchPB (Killamsetty et al.| 2021) 91.89 90.01 72.57 60.39
RBFNN (Tukan et al.||2023) 94.44 91.40 73.48 64.59

Adaptive Random  93.641021 90491041 71.7010.30 61.2440.37
Ours (adaptive) 92.61i0.0s 89.951026 71.741033 63.71i0.s

In Table we compare our method to previous methods and with an adaptive random selection method
(where a random subset of data is selected every 20 epochs), which has been suggested by (Killamsetty et al.,
2023) as a strong baseline for this line of work. We observe that our method without any modifications
achieves comparable performance to existing adaptive subset selection methods showing its effectiveness for
this problem as well. Moreover, sampling new subsets via CCS (Alg. [4) is as efficient as sampling a random
subset; thus our approach is also an efficient solution for this problem. While we believe that incorporating
better subset sampling techniques as suggested by [Killamsetty et al.| (2023) may boost the performance of
our method on this problem, CCS-based sampling is already quite effective.

1Cf. A random subset of CIFAR-100 achieves an accuracy of 44.76+1 58 at 90% pruning rate.
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6 Conclusion

CS finds representative samples from a large dataset, training models on which leads to models with accuracy
similar to the models trained on the entire dataset. In this work, we proposed a scoring mechanism based on
concept bottlenecks that allows us to compute the difficulty of a sample in terms of interpretable concepts.
This method is independent of the downstream model and avoids training the downstream model on the
full dataset even once. Our experiments show that training downstream models on coresets selected using
our approach leads to better performance than random subsets and achieves accuracy similar to or better
than the SOTA approaches based on training dynamics of the downstream model, for both the standard and
label-free CS problem. Moreover, our score provides an intuitive explanation of the difficulty of a sample at
the dataset level, independent of any downstream model.
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Appendix

We present additional related work in Appendix [A] Then we describe the details of our methodology for
extracting the concepts from LLaVA in Appendix [B]land present additional experiments and implementation
details of our experiments in Appendix [C] including the algorithm for stratified sampling used in our work in

Appendix [C4]
A Additional related work

Concept-based interpretability: Interpretability methods can be broadly classified as post-hoc methods
(do not impose any model constraints) or by-design methods. Post-hoc methods include Gradient-weighted
Class Activation Mapping approaches (Bau et al., [2017; [Selvaraju et al.,|2017; [Mu & Andreas| [2020; Hernandez
et all 2021) that trace network gradients to identify the input areas that guide predictions and Explanation
Generation methods (Singh et al., [2023; |[Nishida et al., [2022; |Kim et al., [2018; [Hendricks et al., [2016) that
require models to produce explanations for visual tasks by conditioning their predictions on captioning
models or incorporating visual evidence to ground explanations (Hendricks et al., |2018; |Park et al.l |2018)).
Interpretable-by-design methods, such as Prototype methods, optimize a metric space where classifications
are based on distances to class prototypes, identifying important input regions but often obscuring their
semantic content (Nauta et all 2021; [Chen et al.| |2019} |Snell et al.| |2017} |Satorras & Estrachl [2018; [Vinyals
et al., [2016).

Concept Bottleneck Models (CBMs) are a part of interpretable-by-design approaches that use human-
understandable attributes as an intermediate layer for predictions. A recent advancement, Computational
Derivation Learning (CompDL), utilizes a CBM architecture by applying a linear layer over CLIP scores
between expert-designed concepts and images, improving evaluation of how well CLIP grounds concepts (Yun
et al 2022). Post-hoc Concept Bottleneck Models (PCBMs) were recently proposed to ease the requirement
of CBMs to rely on costly concept annotations and improve their accuracy compared to end-to-end models.
However, PCBMs are limited by the coverage of knowledge bases, making them unsuitable for large-scale or
domain-specific tasks or fine-grained classification, and their residual predictors can undermine interpretability
by blending CBMs with end-to-end models.

High-level semantic-driven descriptions are also used to guide data augmentation to build an informative
set (Wickramanayake et al.l 2021) to make model training efficient with a good enough training set. Prior
works use external knowledge bases to obtain these textual semantic concepts to guide vision models (Bujwid
& Sullivan|, 2021} Kil & Chaol [2021}; [Roth et al., 2022; |Shen et al.| |2022). Thus, the use of concepts has been
shown to improve interpretability in various domains. However, to the best of our knowledge, we are the
first ones to propose a concept-based score for the CS problem and show its competitiveness to SOTA model
training dynamics-dependent approaches.

B Details for concept set generation

Prompt Selection: To extract concepts for our approach, we only use the class labels in the prompt as
can be seen in Figure [2 The prompt, “Can you give distinct attributes for (class name). Give the output
separated by a comma in the line.” instructs the VLM not only to provide distinct keywords but also adds
formatting instructions. However, despite the instructions included in the prompt, LLaVA outputs are not
always formatted well, often containing duplicate entries, mismatched commas and braces, and sometimes
having a detailed explanation before the keywords. To remedy this we run the LLaVA output through a
simple post-processing script and use regular expressions to clean the LLaVA outputs.

For our experiments where we perform ablation of various concept-bottleneck generation methods (Tablcs @,
we also use two more concept generation methods, one is one-shot image-based class concepts and the second
is image-level concept generation. For the former, where we select one representative image per class via
clustering, we prompt LLaVA as follows, “(image) Can you give distinct attributes for such an image of
(class name). Give the output separated by a comma in the line” And, to get concepts for every image of a
class, we use a similar prompt as follows, “(image) Can you give distinct visual attributes for this image of
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(class name). Give the output separated by a comma in the line”” Each LLaVA prompt request on a single
A-100 GPU takes approximately 3 seconds.

Alternative VLMs for Concept Generation: We leverage LLaVA as our choice of VLM for concept
generation, however in Table [8] we also compared against concepts extracted from GPT (Yan et al., [2023)
and another smaller open source VLM (Phi-3-Mini-4K-Instruct). We see comparable performance of our
CS method with concepts extracted from these models. We also experimented with retrieving concepts via
another recent method, SpLiCE (Bhalla et al.l 2024) which uses a linear optimization for sparse concept
decomposition. However, a major limitation of SpLiCE is that similar to image-wise attributes as used in
Table |§| it is a costly approach (SpLiCE can take up to 3 hours for 50,000 images, significantly slower than
generating class-level concepts from LLaVA).

Moreover, to validate the effectiveness of our coreset selection method, we used concepts provided by a recent
work (Xiong et al.l [2025). Even with externally generated concepts, our method achieves significantly better
performance than random selection. Specifically, on CIFAR-100 with a 90% pruning rate, our approach
achieved 50.92 + 0.70% accuracy compared to 44.96 & 1.58% for random subsets.

C Additional experiments and implementation details

C.1 Visualizing easy/challenging samples based on concept-based score

Similar to Fig [3]in Sec. [5.3] of the main paper, we visualize easy and challenging examples in Fig. [ for
CIFAR-10 and subset of classes from CIFAR-100. As observed the easy images (the ones that get high scores
in our approach) are more canonical images of the class labels whereas the challenging ones are images that
can potentially be assigned another class in the same dataset or are mislabeled in the dataset. The clear
distinctions between these images show that our concept-based score aligns well with human intuition on the
difficulty of the samples.

C.2 Concept-based CS for emotion recognition and biomedical image recognition

To validate the effectiveness of our concept-based coreset selection method beyond object recognition tasks,
we apply our concept-based CS approach to the task of emotion recognition and biomedical image recognition.

For emotion recognition, we use the Affectnet dataset (Mollahosseini et al. |2017)) for our experiments.
AffectNet is a large-scale facial expression dataset designed for training and evaluating affective computing
models (Wang et al.l 2022)). It contains facial images collected from the internet using web search queries
for emotion-related keywords in multiple languages. Each image is manually annotated for eight discrete
emotion categories: neutral, happiness, sadness, surprise, fear, disgust, anger, contempt. For
our experiments, we utilize an openly available version of this dataset EL containing roughly 16000 training
and 14000 testing samples.

According to our approach we first use LLaVA to extract concepts for the 8 emotion classes, using the
following prompt, “What are the facial features that distinguish emotion class name from other emotion types.
Focus on changes in eyes, nose, lips, eyebrows, mouth. Give the output separated by commas in a line.”. We
get 5 — 10 distinctive facial feature concepts for every emotion, for instance for emotion class happy, we get
the following concepts, “wide open eyes”, “sparking eyes”, “smiling lips”, “open mouth”, “raised eyebrows”,
“flushed cheeks”, “teeth barred”. We finally select k = 5 discriminative concepts from this list.

To test coreset performance, we use the EfficientNet model (Tan & Le| 2019) and report F1 scores for our
coresets in Table[2l When compared against randomly selected coresets for the various pruning ratios, coresets
selected via our concept-based approach achieve better performance at various pruning rates while achieving
competitive performance to methods based on training dynamics.

For biomedical image recognition, we use the BloodMNIST (Acevedo et al., [2020) dataset from MedM-
NIST (Yang et al., 2021; |2023a)) which comprises of images of normal blood cells, captured from indi-
viduals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at

2https://www.kaggle.com/datasets/noamsegal /affectnet-training-data
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the moment of blood collection. It consists of a total of 17,092 images and is organized into 8 classes
(basophil ,eosinophil,erythroblast,

immature granulocytes(myelocytes, metamyelocytes and promyelocytes),
lymphocyte,monocyte,neutrophil,platelet).

For this dataset, we first extract concepts for the 8 blood cell types via GPT using the following prompt,
“What are the features that can distinguish blood cell class name from rest of the blood cell types on their size,
shape, nucleus appearance, and the presence of granules in their cytoplasm”. We obtain 10 concepts for every
blood cell type, for instance, for platelets, we get the following concepts, “Smallest blood component”, “No
nucleus”, “Granules present”, “Irreqular shape”, “Cytoplasmic fragments”, “Variable granule distribution”,
“Owal to round shape”, “Small dense granules”, “Lacks chromatin”, “Compact cytoplasmic body”.

To test the coreset performance, we use a ResNet-18 model and report accuracy of our coresets in Ta-
ble 2| Similar to other results, our method achieves better performance than randomly selected coresets
for higher pruning rates and is competitive at lower pruning ratios. This is attributed to the difficulty of
calculating concept similarity in the representation space of the CLIP model which is potentially unaware of
the terminology used in the medical domain. While replacing CLIP with a VLM that is trained on medical
domain can boost the performance of our method, our results highlight that even without access to such a
model our approach is able to find better coresets than random subsets.

Our results on these two tasks highlight the versatility of our method for coreset selection, which is able to
find coresets without requiring training the the downstream models on the entire dataset even once.

C.3 Transferability of coresets

In this section, we present the performance of three additional downstream model architectures after training
on the coresets found by our approach. Similar to the results in Table ] our results in Table [I4] show that
coresets found by our approach in both standard and label-free setting achieve performance better than the
random subsets on these three architectures as well. We note that the performance of the ViT model is worse
than the performance of other model architectures with and without pruning (ViT-B-16 achieves an accuracy
of ~ 62% compared to ~ 78% with ResNet-50 on full Imagenet dataset) due to the ViT models being data
hungry in nature (Dosovitskiy et all 2020) and the fact that we used standard SGD-based training (similar
to that used for training other models in the paper). We believe that using other training methods for ViTs
as suggested in (Touvron et all 2021)) could produce better performing ViT models.

Nonetheless, better performance than random subsets across a variety of downstream model architectures
highlights the effectiveness of our approach at finding coresets without the knowledge of the architecture or
training dynamics of the downstream models.

C.4 Algorithm for stratified sampling using CCS (Zheng et al., 2022)

Here we present the algorithm for sampling the training examples to form the coreset based on the coverage-
based selection methodology proposed by (Zheng et all[2022). A crucial component of the algorithm is the
cutoff rate 8 which controls how many challenging samples should be removed from consideration when
selecting the coreset. This is done to eliminate misclassified samples from the dataset since they can hurt the
performance of the model trained on coreset, especially at high pruning rates. Previous works (Zheng et al.|
2022} 2024)) ablate the values of this cutoff ratio by training the downstream model on a range of values. In
our work, we used the values proposed by the previous works and found that they work well for our score
as well. In the following section, we present an ablation study for 8 on CIFAR-100. The cutoff rates /5 for
different pruning rates « are as follows («, ). For CIFAR-10: (30%, 0), (50%, 0), (70%, 10%), (90%, 30%),
for CIFAR-100: (30%, 10%), (50%, 20%), (70%, 20%), (90%, 50%), for Imagenet: (30%, 0), (50%, 10%),
(70%, 20%), (90%, 30%). We used CCS for label-free CS as well and the cutoff rates used were for CIFAR-10:
(30%, 0), (50%, 0), (70%, 20%), (90%, 40%), for CIFAR-100: (30%, 0), (50%, 20%), (70%, 40%), (90%, 50%),
for Imagenet: (30%, 0), (50%, 10%), (70%, 20%), (90%, 30%).
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Table 14: Superior performance of downstream models with different architectures trained on our coresets for Imagenet
compared to Random for both standard (Ours) and label-free (Ours-LF) CS highlights transferability of our coresets.

Model Pruning Rates

. Method
Architecture 30% 50% 0% 90%
Random 62.68:000 62.49:015 61.53:020 53.8010.17

MobileNet  Qurs-LF  61.6010.1s 61.97100s 61.732025 54.3940.66
Ours 61.36:‘:0,15 62.3210‘22 62.4610,26 55.57:‘:0,13

Random 73.3710.0s 71.71i010 67.8510.04 51.2940.20

RN-34 Ours-LF  73.61:0.0s 71.99:0.05 68.425021 53.5250.06
Ours 73.39:0.12 72.341013 6944017 55.9210.02

Random 59.09:&0'49 51~65i0,46 40.19j:0.13 22'13i0.16

ViT-B-16 Ours-LF 57504060 49.814080 40.331085 23.0810.27
Ours 57'62i0,56 52.67:&0‘49 42~15i0.81 24.43i0(23

Table 15: Ablation of cutoff rate 3 in CCS (Zheng et al.l |2022) on CIFAR-100.
Pruning Rate =0 =01 =02 p=03 =05 pg=07

90% 36.04 44.94 48.05 48.16 52.47 48.22
70% 61.61 64.72 66.71 65.99 65.45 X
30% 74.71 76.49 75.73 X X X

C.4.1 Ablation on cutoff rate

To evaluate the effect of 3, we conduct an ablation study on CIFAR-100 using three pruning ratios: 30%,
70%, and 90%. For all pruning ratios, we observe that the accuracy of the model trained on the coreset
initially increases and then decreases as [ increases. The initial improvement in accuracy suggests that
removing a small number of very difficult samples can be beneficial, enabling the model to generalize better.
However, removing too many hard samples reduces dataset coverage, which leads to performance degradation.
Accordingly, for higher pruning ratios, we use larger values of S—in some cases setting it as high as 8 = 50%.
On the other hand, for lower pruning ratios, it is essential to retain hard samples to achieve high performance;
thus, we use smaller values of 3, typically setting it to 0% or 10%. These trends, summarized in Table are
consistent with findings from the CCS paper and other works on coreset selection (Sorscher et al., 2022; Paul
et al., 2021)). (In Table entries marked with "x" indicate cases where 8 > pruning rate, and are omitted
because they would remove more samples than permitted by the target pruning ratio.)

C.4.2 Ablation on number of bins b

To evaluate the effect of b, we tested five different values using a model trained on CIFAR-100 with a pruning
ratio of 90%—this choice is motivated by Fig. 6(a) of CCS (Zheng et al., [2022)), which showed that the value
of b has minimal impact at lower pruning ratios. Our results, summarized in Table indicate that changing
the bin size b has only a small influence on the accuracy of the model trained on the coreset, consistent
with observations in (Zheng et al., 2022)). We observe that setting b too small or too large can lead to slight

Table 16: Ablation of number of bins b in CCS (Zheng et al., QOZQE
Pruning Rate =25 b=50 b=75 b=100 b=150

90% 50.59  51.85 51.54 50.70 50.47
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Algorithm 2 Generate the Concept Bottleneck
Require: Class names ), concepts-per-class k, VLM, text encoder Tep.
Ensure: Concept list C, concept embedding matrix Ec € RNe¢X4  per-class bottleneck concepts
bottleneck_concepts
{Step 1: Get raw concepts per class from VLM (class-name only, not per-image)}
raw_concepts < {} {map: class — list of strings}
for all y € Y do
prompt < BuildPromptForDistinctAttributes(y)
response < VLM (prompt)
concepts, < ParseAndCleanVLMResponse(response)
raw_concepts[y] < concepts,
end for
{Step 2: Select k discriminative concepts per class}
bottleneck_concepts < {} {map: class — list of length k}
: for ally € Y do
disc + SelectDiscriminative(raw_concepts|y], raw_concepts, target_class = y)
bottleneck_concepts[y] < [y] || TopK(disc, k — 1)
end for
: {Step 3: Embed all concepts to form F¢ (rows are text embeddings of concepts)}
C <+ Flatten(bottleneck_concepts over all classes) {|C| = N¢}
Tenc (CI)T
FEo + {EC S RNCXd}

rfenc(CNc)T
18: Return (C, E¢,bottleneck_concepts)

= e e e e
AN S v

._.
3

degradation in performance. However, we found that choosing b ~ 50 consistently yields high-performing
coresets; this is the value we adopt throughout our work. (The results in Table [16|are averaged over three
independent runs.)

C.5 Additional experimental details

For generating the importance score we pre-compute the concept similarity scores for the entire dataset
and then train the concept-bottleneck layer (in block 2 of Fig. for 100 epochs across all experiments.
This training only requires 800 seconds for Imagenet which is significantly more efficient than training the
ResNet-34 model on Imagenet (requires roughly 8 hours on two A-100 GPUs). The accuracies of the models
trained on the entire training set are 95.44% and 78.74% for ResNet(RN)-18 on CIFAR-10/100 and 72.4% for
RN-18, 75% for RN-34, and 78.4% for RN-50 on Imagenet.

After the coresets are selected, we use the setting and code from (Zheng et all, |2022) for training a ResNet-18
model for 40000 iterations with a batch size of 256 on the coresets for all pruning ratios for CIFAR-10/CIFAR-
100. For Imagenet, we train various models for 100 epochs on the coresets identified by our method using the
training code based on FFCV (Leclerc et al.| [2023)).

The performance of the label-free CS is dependent on the quality of the pseudo-labels. Compared to the
clustering-based approach used by ELFS (Zheng et al., 2024), our approach of using the zero-shot classification
ability of CLIP models yields significantly better pseudo-label quality along with being simpler and more
efficient to compute. Specifically, for CIFAR-10/100, pseudo-labels of the training set are computed using the
CLIP L-14 model trained on the DataComp-1B dataset ([lharco et al.,|2021)) yields an accuracy of 98.52% and
87.28% whereas for Imagenet it achieves an accuracy of 79.47% which are better than the best pseudo-label
accuracy obtained by the clustering approach in ELFS (92.5% and 66.3% on CIFAR-10/100 and 58.8% on
Imagenet).

For training the concept bottleneck layer we minimized the cross entropy loss using SGD with a learning rate
of 1E-3, momentum of 0.9 and a weight decay of 5E-4 for 100 epochs.
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Figure 4: Class-wise easy and challenging images for the 10 classes (airplane, car, bird, cat, deer, dog,
frog, horse, ship, truck) in CIFAR-10 and for a subset of 10 classes (boy, bridge, camel, cloud,
crab, kangaroo, lamp, rose, tiger, train) from CIFAR-100. Similar to the results in Fig. easy
images (a,c) are more canonical images associated with the class labels whereas challenging images (b,d) are
images that are confused between two or more classes in the dataset.
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Algorithm 3 Concept-Based AUM Scoring

Require: Dataset D = {(x;,1;)}",, visual encoder Vg, concept matrix Ec € RVe*? number of epochs T,
optimizer settings
Ensure: Per-sample AUM scores and learned weights W
1: Initialize W € RV*Ne
2: Initialize sum_margin[i] + 0 Vi e {1,...,n}
3: fort<+ 1---T do

4:  for minibatch B = {(z;,y;,1dx;)} from D do
5: {Concept similarity features (Eq. [2)}
6: V ¢ Vene(;) {V € RIBIxd}
7: G + VE/, {G e RIBIxNe}
8: {Linear predictor}
9: logits <~ GW T {€ RIBIxNY
10: {Cross-entropy loss (Eq. [3)}
11: L + CE(logits, y;)
12: W <= OptimizerStep(W, L)
13: {Margin accumulation for AUM (Eq. [4)}
14: ht(x) + Softmax(logits)
15: for all (s,y,idx) € B do
16: M <— Sy — INAX Sy
y'#y
17: sum_margin[idx] + sum_margin[idx] + m
18: end for
19:  end for
20: end for

21: AUM; + sum_margin[i|/T Vi
22: Return {AUM;},, W

C.6 Concept-based CS for tasks beyond image recognition

To validate the effectiveness of our concept-based coreset selection method beyond image recognition tasks,
we apply our concept-based CS approach to the task of audio recognition.

We use the UrbanSound8k dataset (Arnault et al.) 2020) for our experiments. The dataset con-
tains 8732 labeled sound excerpts in .wav format each less than 4 seconds of urban sounds from
10 classes: air_conditioner, car_horn, children_playing, dog_bark, drilling, engine_idling,
gun_shot, jackhammer, siren, and street_music. The classes are drawn from the urban sound tax-
onomy.

According to our approach we first use a language model, in this case GPT-5 to extract concepts for the
10 sound classes, using the following prompt, “What are the distinct features that distinguish sound class
name from other sounds. Give the output separated by commas in a line.”. We get 5 — 10 distinctive concepts
for every sound, for instance for sound class children_playing, we get the following concepts, “youthful

giggles”, “running footsteps”, “group chatter”, “excited yelling”, “playful screams”, “playground noise”. We
finally select k£ = 5 discriminative concepts from this list.

To test coreset performance, we use the CAM++ model (Wang et all [2023) and report accuracy scores for
our coresets in Table [[7] When compared against randomly selected coresets for the various pruning ratios,
coresets selected via our concept-based approach achieve better performance at various pruning rates.

25



Under review as submission to TMLR

Algorithm 4 Coverage-centric Coreset Selection (CCS) (Zheng et al., |2022])

Input: Dataset with difficulty scores: D = {(x,y, s)}?_;, pruning ratio: a, cutoff rate: 8, number of bins: b.
Output: Coreset: S
# Prune hardest examples
D'+ D\ {|n x 8] hardest examples}
Ay, Ag, -+, Ap < Split scores in D’ into b bins.
B < {B; : B; consists of samples with scores in .
A; fori=1,--- b}
# Define the size of the coreset
m<n X a.
while B # @ do
# Select the bin with the fewest examples
Bin < argminpgeg | B|.
# Compute the budgets for this bin
mz < min{| B, L%J 1.
Sp ¢+ randomly sample mp samples from B, ;p,.
B« B\ {Bnin}
m< m-—mpg.
end while
return C.

Table 17: Performance of concept-based coreset selection for audio classification task on UrbanSound8k dataset.
Coresets selected by our approach results in superior performance compared to Random for standard CS at high
pruning rates.

Pruning Rates
30% 50% 70% 90%

Random  0.834.¢.00 0.78240.027  0.75540.023 0.746+0.02
OurS 0.842:&0‘005 0.829i0,010 0.819:&0‘012 0.786;&0,008

Method
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