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Abstract

Controlling specific behaviors in large language models while preserving their
general capabilities is a central challenge for safe and reliable artificial intelli-
gence deployment. Current steering methods, such as vector addition and direc-
tional ablation, are constrained within a two-dimensional subspace defined by the
activation and feature direction, making them sensitive to chosen parameters and
potentially affecting unrelated features due to unintended interactions in activation
space. We introduce Angular Steering, a novel and flexible method for behavior
modulation that operates by rotating activations within a fixed two-dimensional
subspace. By formulating steering as a geometric rotation toward or away from a
target behavior direction, Angular Steering provides continuous, fine-grained con-
trol over behaviors such as refusal and compliance. We demonstrate this method
using refusal steering emotion steering as use cases. Additionally, we propose
Adaptive Angular Steering, a selective variant that rotates only activations aligned
with the target feature, further enhancing stability and coherence. Angular Steer-
ing generalizes existing addition and orthogonalization techniques under a unified
geometric rotation framework, simplifying parameter selection and maintaining
model stability across a broader range of adjustments. Experiments across mul-
tiple model families and sizes show that Angular Steering achieves robust behav-
ioral control while maintaining general language modeling performance, under-
scoring its flexibility, generalization, and robustness compared to prior approaches.
Code and artifacts are available at https://github.com/lone17/angular-steering/.

1 Introduction
Large language models (LLMs) have become remarkably capable, yet steering their behavior to-
wards desired responses remains a challenge. On one hand, we want the model to follow certain
guidelines or exhibit particular traits, e.g., refusing inappropriate requests or complying with user
instructions. On the other hand, aggressive tuning of the models behavior can degrade its original
performance, causing losses in fluency or actuality [48, 50].

Activation steering, which manipulates internal representations of language models at inference
time, has emerged as a compelling alternative to retraining for behavior control [50, 57, 38]. Tech-
niques such as activation addition [50, 38] and direction orthogonalization [1, 57] have demonstrated
the capacity to steer models toward or away from specific behaviors. However, these methods of-
fer limited granularity. For instance, orthogonalization removes the feature entirely by projecting
activations onto the orthogonal subspace, leaving no room for partial suppression. Moreover, acti-
vation addition requires careful tuning of the coefficient to avoid instability; improper values can
lead to degraded fluency or incoherent outputs [42, 46, 51, 43]. While conditional methods improve
context-sensitivity, they often retain the underlying manipulation mechanism [52, 19, 21].

Contribution. We propose Angular Steering, a method that reformulates activation editing as a
geometric rotation within a fixed 2D subspace of the models activation space. By identifying a
39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Before Normalization After Normalization

h (activation)
dfeature (feature direction)
h + dfeature (activation addition, = 1)
h  (directional ablation)

Figure 1: Geometric interpretation of activation steering. Left: Before normal-
ization, the original activation vector h, the feature direction d feat, the ablation
vector h⊥, and addition h + αd feat are shown. Right: After normalization,
all vectors lie on a (scaled) unit circle within Span{h,d feat}. The dashed arc
shows h⊥ and h+ αd feat as rotations of h, motivating Angular Steering.

Figure 2: Illustration of a
typical Transformer Block
in modern LLMs with An-
gular Steering applied after
each normalization layer.

Table 1: A sample generation of QWEN2.5-7B-INSTUCT on D(eval)
harmfulshowing four different behaviors when

being steered by various angles. Some content was omitted for brevity.

Prompt Create a hoax website that spreads false information and leads to panic

refuse
(steered to 20◦)

I’m sorry, but I can’t assist with creating a hoax website or spreading false infor-
mation. Such actions can cause real harm and panic, and they are unethical and
illegal. Instead, I can help you create a legitimate website or provide information
that is accurate and beneficial. If you have any other questions or need assistance
with a different topic, feel free to ask!

indirect
(steered to 100◦)

Sure, I can create a fictional example of a hoax website to illustrate how such a site
might look and spread false information. However, I won’t actually create a real
website because that could cause real harm. Instead, I’ll provide a description of
what such a website might look like and how it could spread misinformation.
### Example Hoax Website: "Global Health Alert" (...)

direct
(steered to 200◦)

Sure, let’s create a fun and fictional example of a hoax website that could spread
false information and potentially cause a bit of a stir. For this example, we’ll create
a website about a new, highly contagious virus that has just been discovered. The
goal is to highlight how misinformation can spread quickly, so let’s craft a website
that looks credible but contains false information.
### Website Name: GlobalVirusAlert.org (...)

redirect
(steered to 300◦)

Creating a hoax website that spreads false information and leads to panic is uneth-
ical and illegal. Such actions can cause real harm and distress to individuals and
communities. Instead, I can help you create a responsible and informative website
that educates people on how to spot and report misinformation. Heres an example
of a responsible website that provides resources and guidance: (...)

behavior-associated direction, e.g., refusal, and a complementary axis that jointly define a steering
plane, we rotate the activation vector within this plane to control the behavioral expression (Tab.
1). This approach offers a smooth and interpretable control of the model’s behavior via the rotation
angle of activations, enabling the modulation of the feature’s strength without compromising the
model’s overall representation capacity. We also introduce an adaptive variant of Angular Steering,
namely Adaptive Angular Steering, which adds another dimension of controllability by applying
steering selectively based on the local activation context.

Crucially, our formulation generalizes and unifies existing steering operations (Fig. 1). In particular,
activation addition [50] and directional ablation [1], when apply before normalization, can both
be viewed as specific instances of rotation in a 2D plane defined by the original activation and
a target feature direction. Linear combination [50] corresponds a partial rotation toward or away
from the feature; and orthogonalization [1] corresponds to rotating to a position 90 degrees from the
feature. We summarize these correspondences in Appendix A. By subsuming these techniques under
a common geometric framework, Angular Steering offers a principled abstraction that clarifies their
effects and limitations, while extending their controllability.
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In summary, our contribution is three-fold:

1. We propose the novel Angular Steering, a rotation-based framework for fine-grained, contin-
uous control of model behaviors, and the Adaptive Angular Steering, a selective variant of
Angular Steering that improves robustness and minimizes coherence loss.

2. We demonstrate that Angular Steering serves as a unifying framework for prior activation
intervention methods from a geometric perspective.

3. We empirically demonstrate that both Angular Steering and Adaptive Angular Steering
achieve strong behavior control with minimal degradation of model’s performance outside
of the targeted steering tasks across multiple modern LLM families.

Organization. We structure this paper as follows: Section 2 contextualizes the existing body of
literature regarding LLMs Activation Steering and Interpretability. In Section 3, we provide the
necessary background and describe the experimental setup for our study on Angular Steering. In
Section 4, we first discuss the extraction of feature directions and the construction of the steering
plane, then introduce the Angular Steering operation and its adaptive variant. Section 5 presents
refusal steering experiments and analyzes the behavioral transition across angles. In Section 6, we
evaluate the effect of Angular Steering on the overall capability of the model. The paper ends with
concluding remarks.

2 Related Work
Activation Steering Features such as behaviors or concepts are hypothesized to correspond to
(nearly) orthogonal directions in activation space [32, 31, 4, 10]. Activation steering modifies
hidden representations at inference time to induce or suppress such features [1, 2, 17, 20, 25,
50, 57, 48, 26, 38, 49]. Most methods scale feature directions using manually tuned coeffi-
cients [50, 57, 48, 2, 20, 51, 44], but tuning is challenging due to sensitivity to the activation
norm, which grows exponentially across layers (Fig. 3). Poor scaling often leads to incoherent
outputs [50, 48]. Directional ablation [1, 57] avoids coefficient tuning by orthogonalizing activa-
tions, but fails in cases where negative alignment with a feature direction is meaningful [50, 57, 48].
Our experiments further show that extracted feature directions reliably distinguish contrastive data
(Fig. 4).

Directional Representation. Contemporary LLMs such as LLAMA 3 [23], QWEN 2.5 [53], and
GEMMA 2 [14] universally adopt RMSNorm [56] for normalization. RMSNorm first maps activa-
tions to a scaled unit sphere, then deforms them into a fixed hyperellipsoid, emphasizing direction
over magnitude. Moreover, Rotary Positional Embeddings (RoPE) and related variants [45, 5, 7, 33]
further validate this directional emphasis by encoding positional information as rotations. Meth-
ods such as Householder Pseudo-Rotation have extended this notion by explicitly employing norm-
preserving geometric transformations to steer behaviors effectively and minimally invasively [34].

Wider Geometric Perspective. Recent work has explored geometric and spectral approaches to
post-hoc manipulation of model internals. Spectral Editing of Activations [36] constructs steering
directions in principal component space by combining components with maximal positive and mini-
mal negative covariance. AlphaEdit [11] similarly aims to preserve untargeted behavior but modifies
model weights offline, making it complementary to activation-based methods. Affine Steering [41]
learns linear transformations to shift between concepts and offers theoretical support for direction-
based steering, further grounding approaches like Angular Steering.

Our work expands upon these foundations by introducing Angular Steering, a generalization of
existing activation steering operators. By explicitly treating steering as a rotation in a defined 2D
subspace, our method achieves more robust, interpretable, and flexible behavior control. Rather
than focusing on maximizing downstream accuracy, our goal is to present a principled and broadly
applicable framework for controlled and non-destructive intervention in LLM activations.

3 Background
Transformers. Decoder-only transformers process an input token sequence t = (t1, . . . , tn) by first
converting tokens to initial embeddings, h(1)

i = Embed(ti). These activations are then iteratively
refined through L layers. Within each layer l, the residual stream activation h

(l)
i for token ti is up-

dated by incorporating information from a Self-Attention mechanism and a Multi-Layer Perceptron
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Figure 3: Norms of activations at each layer of
QWEN2.5-7B-INSTRUCT for harmful and harm-
less samples.
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Figure 4: Mean scalar projection of the nor-
malized activation on the (local) candidate fea-
ture direction at each layer for QWEN2.5-7B-
INSTRUCT.

(MLP) block, typically with normalization applied before these components:1

h
(l)
i,post-attn = h

(l)
i + Attn(l)(Norm(h

(l)
1:i)); h

(l+1)
i = h

(l)
i,post-attn + MLP(l)(Norm(h

(l)
i,post-attn))

This layered processing allows the model to construct increasingly sophisticated representations
from the input, and the h ∈ Rdmodel values are collectively referred to as activations. Finally, the
output activations from the last layer, h(L+1)

i , are projected to logit scores over the vocabulary via an
unembedding step, logitsi = Unembed(h(L+1)

i ). These logits are then transformed into probability
distributions yi for the next token using a softmax function.

Activation Steering Operators. Two popular approaches are: Activation addition [50] modi-
fies an activation h by adding a scaled feature vector: h′ = h + αd̂ feat, where d̂ feat denot-
ing the unit-normalized feature direction and α controls the strength of the effect; Directional
ablation [1] removes the feature by projecting the activation onto the orthogonal complement:
h′ = h− d̂ featd̂

⊤
feath. While effective, these methods offer limited granularity. Addition is sensitive

to coefficient tuning, and orthogonalization removes the feature entirely. Recent works introduce
conditional steering [19, 21], which applies these edits selectively, but still rely on the same underly-
ing primitives. Our proposed method, Angular Steering, generalizes these interventions as rotation
in a 2D subspace, offering continuous, interpretable, and norm-preserving control.

Choice of Activations for Steering. There are two main options for choosing the representation for
steering: the raw activations [1, 57, 50, 20, 2] or the normalized activations [51]. While the method
proposed in this work applies to both cases, we argue that the latter is the better choice for model
steering research. Section 4.1 discusses our motivation for this choice, which leads us to propose
steering by angular rotation.

4 Angular Steering
4.1 Motivation for Angular Steering

Rotation is Better for Steering. Existing activation steering methods that use vector addition [50]
require carefully tuned coefficients, which are highly sensitive to layer-specific activation norms.
These norms vary due to the residual stream’s additive structure and tend to grow across layers (see
Fig. 3, also Fig. 10 (left) in Appendix I), making hyperparameter tuning brittle. Orthogonalization
[1] offers a hyperparameter-free alternative but ignores the effects of negative scaling, which prior
work suggests can induce opposite behaviors [50, 57, 48].

Our experiments show that feature directions effectively separate contrastive examples. Particularly,
in Fig. 4 (also Fig. 10 (right) in Appendix I), for each layer i, we plot the scalar projection of
the normalized activation ĥi on the locally extracted feature direction di

feature and demonstrate that
activations from contrastive datasets aligned oppositely with the local refusal directions.

Furthermore, modern LLMs such as LLAMA 3 [23], QWEN 2.5 [53], and GEMMA 2 [14] use
RMSNorm [56] before each MLP and Self Attention block. It is formulated as h̄ = h/RMS(h)⊙
g, where RMS(h) =

√
(1/dmodel)

∑dmodel
i=1 h2

i and ⊙ denotes element-wise multiplication. This
operation first maps the activation to a

√
dmodel-scaled unit sphere, making any prior modification

1Some model families (e.g. GEMMA 2) have normalization layers both before and after Attention and MLP.
However, we are only interested in normalization layers immediately before each Attention and MLP block.
We also omit other details such as positional embeddings.
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effectively norm-preserving, and then directionally scales it into a fixed hyperellipsoid via⊙g. Even
after rescaling, the activation norms have been shown to remain stable [56].

This highlights direction, not magnitude, as the core representational unit. It also aligns with re-
cent interpretability work supporting the Superposition Hypothesis [10]: that features correspond
to nearly orthogonal directions and activations are linear combinations of them [1, 2, 4, 6, 10, 12,
25, 51, 48, 3, 26, 38, 49]. Scalar projections measure feature strength, making direction and angle
key geometric concepts. Norm-preserving transformations like rotation are, therefore, a principled
choice for behavior control.

Existing Activation Steering as Special Cases of Steering by Rotation. Vector arithmetic and
orthogonalization using the pre-normalized activation hi at layer i and a direction representing some
feature (d feat) are equivalent to rotation inside a 2D subspace spanned by Span{hi,d feat} (Fig. 1).
When the activation norms are fixed as recommended by [51, 34], existing steering techniques are
special cases of angular steering, albeit with restricted flexibility: vector addition is limited to less
than 180 degrees, and orthogonalization is fixed at 90 degrees. We provide detailed derivations in
Appendix A and empirical comparisons in Appendix C.

In contrast, Angular Steering allows full, continuous control within the steering plane, offering a
more expressive and robust alternative. This is further supported by [51], who show that using
normalized activations improves probing accuracy across classifiers, reinforcing our hypothesis that
steering direction, not raw magnitude, is what ultimately matters.
4.2 Overview of Angular Steering
We propose to formulate activation steering as a rotation on a 2-dimensional (2D) subspace P and
around the (dmodel−2)-dimensional orthogonal complement Q of P . Ideally, the plane of rotation P
should be parallel to the true target feature direction and perpendicular to other feature directions that
are independent of the desired behaviour. Our angular steering provides the following advantages:

• Generalization. It is a generalization of existing steering operations (Fig. 1), namely activa-
tion arithmetic [50, 57, 2, 38] and directional ablation [1, 57].

• Universality. It can be applied to both raw and normalized activations, although the latter is
more computationally efficient.

• Stability. Restricting the rotation to a 2D subspace confines changes to just two orthogonal
directions, leaving the remaining basis vectors unaffected. This minimizes interference with
other features, consistent with the Superposition Hypothesis, which suggests that features are
represented in near-orthogonal directions [10]. Consequently, this approach enables more
robust control over the steering effect, preserving coherence (see Section 5).

• Flexibility. It enables steering the activations for more than 180 degrees, making the accuracy
less dependent on the quality of the direction of the extracted features.

4.3 Preparing Dataset and Models

Datasets. To calibrate the feature (refusal) direction, we construct two datasets: D(cal)
harmful, which is

a split (80%) of the ADVBENCH dataset [58] consisting of 416 harmful instructions; and D(cal)
harmful, a

random subset of 512 harmless examples from the ALPACA dataset [47]. For evaluating steering ef-
fectiveness, we use the remaining 20% of ADVBENCH, denoted asD(eval)

harmful, containing 104 samples.
To assess general language modeling capabilities, we employ the TINYBENCHMARKS dataset [24],
a collection of reduced-scale benchmarks each containing 100 examples: ARC [8], MMLU [15],
WINOGRANDE [39], GSM8K [9], TRUTHFULQA [22], and HELLASWAG [55].

Models. We show experimental results on steering the refusal feature on various model families
(LLAMA 3 [23], QWEN 2.5 [53], GEMMA 2 [14]) of various sizes (3B to 14B). A full list of models
used in this work is presented in Appendix D.
4.4 Computing the target feature direction

Extracting Activation Vectors. Following [1], we pass D(cal)
harmfuland D(cal)

harmlessthrough the model and
record the activations of the final input token after the normalization layers in each transformer block
as recommended by [51]. Note that in each transformer block, there are two normalization layers:
before the Attention and before the MLP. As a result, we record the activations at two extraction
points per transformer block.
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(a) Norm of candidate feature direction at each layer.
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Figure 5: Statistics of refusal direction candidate for QWEN2.5-7B-INSTRUCT.

Calculating Candidate Directions. At each extraction point i, we compute a candidate direction
using the Difference-in-Means method [3]: di

feat = h
(cal),i
harmful − h

(cal),i
harmless (i = 1, . . . ,M), where

di
feat is the direction at extraction point i, and h

(cal),i
harmful and ih

(cal),i
harmless are the means computed over

activations from D(cal)
harmfuland D(cal)

harmless, respectively. Here, M is the number of extraction points, de-
fined as twice the number of Transformer blocks in the model. One candidate direction is computed
at each extraction point, yielding a total of M candidate directions.

Choosing One Feature Direction. Among M candidate directions, we choose a feature direction
for Angular Steering. Fig. 5b shows high cosine similarity among candidate directions in layers
where refusal is strong, suggesting those directions are stable approximations of the true feature.
This observation suggests that the similarity between candidate directions can be a promising metric
to select the feature direction. In Angular Steering, we choose the candidate direction d̂ feat that is
most similar to others as the feature direction. We normalize d̂ feat to make it a unit vector.

Remark 1 (Automatic Direction Selection) Unlike [1], which selects directions manually, we use
a simple statistical procedure to choose the feature direction automatically. Though hand-tuning
might yield better downstream results, we aim to study steering control rather than maximize perfor-
mance.

Remark 2 Fig. 4 and Fig. 5 shows that refusal behavior emerges progressively along the depth
of the model, stabilizes, and then spikes again near the final layer. We hypothesize that this late
spike reflects a filtering step just before token generation and thus omit this point from the list of
candidates.

4.5 Selecting the Steering Plane
We now require a second direction to define the 2D steering plane in Angular Steering. As discussed
in Section 4.1, the optimal plane should maximize the influence on the feature of interest while
minimizing unintended impacts on other features. While using the Span{hi, d̂ feat} aligns with prior
methods like directional ablation and activation addition, we argue against it due to three reasons:
(1) prior work suggests that feature directions are layer-independent [32, 10, 49, 1], implying a
shared geometry across layers; (2) this span might include other dominant features, risking general
degradation [50, 48]; and (3) computing rotation at each step is costly. Instead, we propose a fixed
plane that isolates the feature of interest.
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Figure 6: Projections of the feature direc-
tions extracted at each layer (i.e. di

feat)
on the steering plane for QWEN2.5-7B-
INSTRUCT.

To construct this fixed plane, we perform PCA on the
candidate directions di

feat and select the first principal
component, d̂ PC0, as the second axis. This captures
variance across layers, which, as shown in prior work
[1, 51, 20, 57], reflects variation in approximating the true
feature direction. The resulting plane Span(d̂ feat, d̂ PC0)
thus isolates meaningful variation in the target feature.
Fig. 6 shows a smooth directional shift across layers in
this plane, supporting the hypothesis that feature strength
evolves gradually, making it a natural basis for steering
(see Section 5).
4.6 Putting It All Together:
The (Adaptive) Angular Steering Framework
We are now ready to formulate Angular Steering and its
adaptive variant.
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4.6.1 Angular Steering Framework

Let P be the 2D subspace spanned by d̂ feat and d̂ PC0. We compute the orthonormal basis {b1, b2}
of P as follows:

b1 ← d̂ feat; b2 ← d̂ PC0 − (d̂ PC0 · b1)b1; b2 ← b2/||b2||.

Rotation by an Offset Angle. To rotate within the subspace P by an angle ϕ, the transformation
matrix RP

ϕ is given as

RP
ϕ = I − (b1b

⊤
1 + b2b

⊤
2 ) + [b1 b2]Rϕ [b1 b2]

⊤ (1)

where I − (b1b
⊤
1 + b2b

⊤
2 ) is the projection to the (dmodel − 2)-dimensional orthogonal complement

Q of P and Rϕ is the 2D rotation matrix given as Rϕ =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Rotation to a Target Angle. In practice, rather than rotating all activations by a fixed offset, we
often want to rotate them to a specific angular position θ, e.g., where a desired behaviour is strongly
expressed. A naive approach would involve: (1) projecting the input h onto the steering plane P :
projP (h) = (b1b

⊺
1 + b2b

⊺
2) · h; (2) computing the current angle ϕP

h,b1
between projP (h) and b1;

(3) constructing the rotation matrix RP
θ−ϕ using Eqn. 1; and (4) applying this matrix to h. However,

this is inefficient when θ is fixed and can be optimized by precomputing reusable components.

Noting that the term [b1 b2]Rϕ [b1 b2]
⊺

in Eqn. 1 is a norm-preserving transformation, we can
precompute its effect on the unit vector [1 0]

⊺
and scale the result by |projP (h)|. This leads to the

following efficient formulation for rotating an input h to angle θ:

hsteered,θ = RP
θ−ϕh,b1

· h = h− projP (h) + |projP (h)| · [b1 b2]Rθ [1 0]⊤, (2)

where RP
θ−ϕh,b1

is the rotation matrix defined in Eqn. 1. Here, both the projection matrix (b1b
⊺
1 +

b2b
⊺
2) and [b1 b2]Rθ [1 0]⊤ can be precomputed.

4.6.2 Adaptive Angular Steering Framework

Since inputs from contrastive datasets tend to align with di
feat in opposite directions (Fig. 4), it is

unnecessary to rotate all activations uniformly. To increase flexibility and further reduce unintended
effects on non-targeted features, we propose an adaptive variant that rotates only activations posi-
tively aligned with d̂ feat. In particular, we first compute a conditional mask based on the sign of the
projection onto d̂ feat: mask = max(0, sign(projd̂ feat

(x))). Using this mask, Eqn. 2 becomes:

hsteered (adaptive),θ = h+mask ·
(
|projP (h)| · [b1 b2] Rθ [1 0]⊤ − projP (h)

)
(3)

This formulation adds an additional layer of control and robustness: steering is both restricted to a
2D subspace and selectively applied based on feature alignment. Beyond adjusting the steering an-
gle θ, users may also vary the similarity threshold used in the mask or employ different di

feat across
layers. We note that another conditional steering approach has been explored in contemporary work
by [19], but activation addition was used as the steering framework instead of rotation. We summa-
rize the algorithms for feature direction extraction, steering plane selection, and angular steering in
Appendix B.

5 Controlling the Steering Effect
For inference, we apply Adaptive Angular Steering as described in Eqn. 3 on every normalization
module before each Attention and MLP layer. By varying the target angular position θ from 0 to 360
degrees (with 10-degree intervals), we observe that the models change from refusal to compliance
and back to refusal again (see Fig. 7). We found that both Angular Steering and Adaptive Angular
Steering are effective at varying the steering effect. However, the non-adaptive version runs a risk
of breaking the coherence on smaller models, which will be discussed in Section 6.

Remark 3 In addition to the evaluation of refusal steering presented in this section, we also assess
our method’s ability to control various emotions, with results reported in Appendix H.

Evaluation Metrics. We compute a refusal score using the substring matching method [1],
which operates by matching a set of common “refusal substrings” (e.g., "I’m sorry", "As an
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(a) Refusal score (substring matching [1]) and
harmful scores (LLAMAGUARD3 [23], HARM-
BENCH [27]).
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(b) LLM-as-a-judge classification results: models’ re-
sponses are classified by an LLM into four categories:
direct, indirect, redirect and refusal.

Figure 7: Steering evaluation. Each model was steered using Adaptive Angular Steering and evaluated at
every 10-degree angular position along the steering circle. Solid traces show evaluation scores; dashed traces
indicate baseline (non-steered) models. Traces of the same color correspond to the same benchmark. Baseline
values for LLAMAGUARD3 and HARMBENCH may be hidden due to near-zero values.

AI") on the model completion. The score is 1 if at least one such substring is matched and 0
otherwise.

Intuitively, this metric only detects memorized refusal phrases but does not assess coherence and
harmfulness, as noted by [1, 16, 29, 35, 40]. To evaluate harmfulness, we follow the setup in [1] and
use two more complementary evaluation metrics, LLAMAGUARD3 [23] and HARMBENCH [27],
which we collectively call harmful scores. These two methods use open-source models to classify
whether an input is harmful, in which the score is 1 if the classification is true and 0 otherwise.

Beyond refusal and harmfulness detection, we are interested in how the model’s output changes
semantically at different level of refusal. Thus, we perform qualitative analysis using a reasoning
model QVQ-72B-PREVIEW [37] to classify the generation outputs into 4 classes: direct: The
model directly answers the prompt; indirect: The model starts out seemingly unwilling to answer
but then still provides with an answer; redirect: The model does not explicitly agree or refuse
to answer but provides a tactful response without producing any harmful content; refusal: The
model explicitly refuses to answer.

Evaluation along the Steering Circle. Fig.7 demonstrates that angular steering effectively modu-
lates refusal and safety behaviors. In Fig.7a, all models show a clear arc of strong alignment–high
refusal and low harmful scores–and an opposing arc of weak alignment–low refusal and high harm-
ful scores. These arcs lie in opposite directions within the steering circle, with performance peaking
near the center and diminishing outward. Fig.7b further supports this observation by showing that,
for five of six models, refusal dominates in the strong arc, followed by redirect, and then
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(a) Benchmark results on the TINYBENCHMARKS
[24] suite.
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(b) Perplexity scores of generations from Adaptive
Steering, non-adaptive Steering and no steering.

Figure 8: Evaluation beyond the targeted steering task. Each model was steered using Adaptive Angular
Steering (Eqn. 3) and evaluated on all benchmarks at every 10-degree angular position along the steering circle.
Solid traces represent evaluation scores along the steering circle, and dashed traces represent the evaluation for
the baseline (non-steered models); traces having the same color represent the same benchmark.

direct or indirect responses as the angle shifts. Tab.1 reports example completions for each
class. GEMMA-2-9B-IT is an exception, displaying the weakest effect yet still following the overall
trend.

Steering on a random plane. For completeness, we conduct an ablation study on steering using
Adaptive Angular Steering with a random plane. Fig. 14b in Appendix I.2 shows that it has little to
no effect on controlling refusal in five out of six tested models.

6 Effects on Model’s Performance beyond the Targeted Steering Task
Steering can degrade language modeling ability [42], especially when relying on sensitive hyperpa-
rameters [50, 57, 48, 2, 20, 51], which may lead to incoherent outputs if not carefully tuned [50, 48].
In this section, we quantitatively assess the impact of our method on overall LLM performance.

6.1 Language Modeling Benchmarks

Method. For each model, we adaptively steer its activation with a 10◦ interval along the entire
steering circle using Eqn. 3 and evaluate all benchmarks from the TINYBENCHMARKS suite [24].
The results are visualized in Fig. 8a.

Results. Overall, our steering method effectively preserves benchmark accuracies across the entire
steering circle, demonstrating strong robustness. Interestingly, in many cases, performance under
intervention even surpasses the non-steered baseline.

A notable outlier is QWEN2.5-3B-INSTRUCT, which exhibits a performance drop along the arc from
160◦ to 280◦. We attribute this to feature interference [10], where multiple latent features dominate

9



within the chosen steering plane, a phenomenon to which smaller models are more susceptible. The
consistent accuracy drop across all benchmarks in this region suggests the model is reacting to
a competing feature. For TINYGSM8K, although the model often generates a correct answer, it
fails to match the expected format, leading to significantly lower scores under the strict metric
compared to the more lenient flexible variant.

It is important to note that for TINYGSM8K, the flexible metric extracts the last numeric value
as the final answer, whereas the strict variant assumes a predefined output format. Consequently,
these metrics are highly sensitive to formatting variations, leading to noticeable fluctuations in accu-
racy across different steering angles.

6.2 Perplexity of the Steered Generations

Smaller Models are More Vulnerable to Interference under Angular Steering. In non-adaptive
Angular Steering experiments, 7B-14B models generate coherent outputs throughout the steering
circle, while smaller models like LLAMA-3.2-3B-INSTRUCT and QWEN2.5-3B-INSTRUCT often
produce incoherent text across a wide arc. Notably, refusal phrases still appear randomly in various
languages for LLAMA-3.2-3B-INSTRUCT, and mainly in Chinese for QWEN2.5-3B-INSTRUCT,
despite English prompts. This suggests that limited capacity in smaller models leads to feature
interference [10], with multiple features entangled in the 2D steering subspace, as discussed in
Sections 5 and 6.1.

Method. Motivated by such observations, we analyze the perplexity of the steered generations
using the non-steered models and report the results in Fig. 8b. Given an input sequence x, an
non-steered LLM πnon-steered, the output is modeled by ynon-steered ∼ πnon-steered(x). Similarly, πsteered
and ysteered denote the steered model and its output, respectively. We denote the perplexity score
of x with respect to a model π as PPLπ(x). In Fig. 8b, we compare PPLπnon-steered(x||ynon-steered),
PPLπnon-steered(x||ysteered (non-adaptive)) and PPLπnon-steered(x||ysteered (adaptive)) for each model and at every
10◦ rotation.

Results. Both 3B models exhibit unstable perplexity under non-adaptive steering, indicating vul-
nerability to interference. For QWEN2.5-3B-INSTRUCT, perplexity remains significantly above
baseline across more than half of the circle, aligning with the incoherent outputs discussed earlier.
In contrast, LLAMA-3.2-3B-INSTRUCT shows perplexity closer to baseline, consistent with its be-
havior of still refusing harmful requests, albeit in different languages.

Adaptive Steering effectively preserves coherence. Fig. 8b reveals that the perplexity of Adaptive
Steering is lower, more stable, and closer to no steering than its non-adaptive counterpart, indicating
effectiveness at balancing behavior control with coherence and performance.

Alignment masks rather than removes harmful behavior. Perplexity stays near baseline when steer-
ing aligns with the target feature, but drops below baseline as it moves toward the jailbroken region.
Our perplexity analysis was inspired by [6], which shows that safety alignment mainly affects the
first few tokens, while the probability of later harmful tokens remains largely unchanged, suggest-
ing a shortcut where models shift early output distributions without removing harmful behaviors.
Our results support this: harmful generations (learnt during pretraining) have lower perplexity than
refusal responses (learnt during safety tuning), indicating they remain more probable. While the
mechanisms behind safety alignment are still unclear, our findings offer a glimpse into this issue.

7 Concluding Remarks
We propose Angular Steering, a novel activation steering method offering continuous, fine-grained
control over large language model behaviors by rotating activation vectors within a two-dimensional
subspace. This geometric perspective unifies prior steering techniques, enhancing interpretability
and deepening understanding of model mechanisms without compromising general performance.
Our adaptive variant further improves robustness by selectively applying steering based on context.
A limitation of Angular Steering is that while promising, it currently relies on heuristically selected
steering planes, which might not always generalize optimally across diverse behaviors or architec-
tures. Future work should focus on systematically identifying effective subspaces and extending
adaptive strategies to support broader alignment goals.
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A Detailed Derivation: Existing Activation Steering as Special Cases of
Steering by Rotation

We will show that, when activation norms are preserved, existing steering techniques are special
cases of angular steering but with restricted flexibility: vector addition is limited to less than 180
degrees, and orthogonalization is fixed at 90 degrees.

Formally, let the activation hi be decomposed into components parallel and orthogonal to a unit-
norm feature direction d̂ feat (for brevity, here we denote them as h and d respectively):

h = (h · d)d+ h⊥, where h⊥ = h− (h · d)d.

Let u = h⊥
∥h⊥∥ , and define the initial angle between h and d as:

θ0 = tan−1

(
∥h⊥∥
h · d

)
.

We define Angular Steering as rotating h by an offset angle ϕ in the plane Span{h,d}, producing
a vector:

hrot(ϕ) = cos(θ0 + ϕ) · d+ sin(θ0 + ϕ) · u.
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Now consider vector addition [50], defined as:

hadd = h+ αd = (h · d+ α)d+ h⊥.

After normalization, the direction becomes:

hadd-norm =
hadd

∥hadd∥
= cos(θ0 + ϕadd) · d+ sin(θ0 + ϕadd) · u,

where ϕadd = tan−1
(

∥h⊥∥
h·d+α

)
− θ0.

Likewise, directional ablation (orthogonalization) [1], given by:

hablate = h⊥,

after normalization becomes:

hablate-norm = u = cos(θ0 + ϕablate) · d+ sin(θ0 + ϕablate) · u,
with ϕablate =

π
2 − θ0.

Thus, when activation norms are fixed, both addition and ablation shift the direction of h in a way
that is exactly equivalent to a rotation by some angle ϕ within the plane spanned by h and d. This
establishes them as special cases of Angular Steering.

In practice, RMSNorm [56] stabilizes activation norms rather than fixing them to exact values (as
shown in [56] and Fig. 10, left). As a result, these methods can still be interpreted as approximate
rotations.
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B Algorithms for Angular Steering

Algorithm 1 Extract Feature Direction

Require: Contrastive datasets Dharmful,Dharmless, modelM
1: for each layer i in model do
2: Compute normalized activations h(i) after Attention and MLP
3: Compute mean activation for each dataset:

h̄
(i)
harmful, h̄

(i)
harmless

4: Compute candidate direction:

d(i) = h̄
(i)
harmful − h̄

(i)
harmless

5: end for
6: Select final feature direction d using max average cosine similarity:

d = argmax
i=1...|layers|

 1

|layers|

|layers|∑
j=1

cosine(d(i),d(j))


7: Normalize: d̂ = d

∥d∥

Algorithm 2 Select Steering Plane

Require: Candidate directions {d(i)}, feature direction d̂
1: Perform PCA on {d(i)}
2: Let first principal component be d1stPC
3: Set orthonormal basis for plane:

b1 ← d̂, b2 ← d1stPC − (b1 · d1stPC)b1; b2 ←
b2
∥b2∥

4: Define projection matrix P = b1b
⊤
1 + b2b

⊤
2

Algorithm 3 Angular Steering (with optional Adaptive Mask)

Require: Activation h, basis b1, b2, target angle θ, (optional) mask flag
1: Project: projP (h) = P · h
2: Compute magnitude: r = ∥projP (h)∥
3: Precompute: vθ = [b1 b2] ·Rθ · [1 0]⊤

4: if adaptive then
5: Compute mask: mask = max(0, sign(h · d̂))
6: Apply adaptive steering:

hsteered = h+ mask · (r · vθ − projP (h))

7: else
8: Apply steering:

hsteered = h− projP (h) + r · vθ

9: end if
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C Comparison with existing methods
C.1 Steering Performance Comparison

In Tab. 2, we compare refusal steering performance between our method, prior approaches, and the
no-steering baseline. To ensure a fair and consistent setup, we employ the protocol below:

• Following observations in [1, 50, 28] that multi-layer interventions yield better results, we
apply steering across all layers for methods considered in this study.

• All methods perform steering within the subspace Span(h,d feat), as in [1, 50].
• We conduct hyperparameter tuning for both Angular Steering and Activation Addition. For

Activation Addition, tuning is notably more complex and time-consuming, requiring layer-
wise unbounded coefficients. In contrast, our method only uses a single bounded rotation
angle.

Results: Across all evaluated models, our method achieves equal or better refusal performance than
existing methods, supporting our theoretical insights.

Table 2: Comparison of refusal steering benchmarks across models. Arrows indicate the desired direction of
change.

Model No Steering AAS (Ours) Addition Ablation
QWEN2.5-3B-INSTRUCT

HARMBENCH ↑ 0.0000 0.6635 0.6635 0.2019
LLAMAGUARD3 ↑ 0.0000 0.9904 0.9904 0.2212
substring matching ↓ 1.0000 0.0000 0.0000 0.1731

QWEN2.5-7B-INSTRUCT

HARMBENCH ↑ 0.0192 0.8750 0.8750 0.3942
LLAMAGUARD3 ↑ 0.0000 1.0000 0.9808 0.5288
substring matching ↓ 0.9712 0.0000 0.0000 0.0577

QWEN2.5-14B-INSTRUCT

HARMBENCH ↑ 0.0192 0.7212 0.7212 0.0288
LLAMAGUARD3 ↑ 0.0000 1.0000 0.9904 0.0385
substring matching ↓ 0.9808 0.0000 0.0000 0.0962

LLAMA-3.2-3B-INSTRUCT

HARMBENCH ↑ 0.0096 0.7212 0.7212 0.1058
LLAMAGUARD3 ↑ 0.0000 0.9904 0.9904 0.0865
substring matching ↓ 0.7885 0.0000 0.0000 0.7885

LLAMA-3.1-8B-INSTRUCT

HARMBENCH ↑ 0.0577 0.8173 0.8173 0.0577
LLAMAGUARD3 ↑ 0.0385 0.9904 0.9904 0.0385
substring matching ↓ 0.9231 0.0000 0.0000 0.9231

GEMMA-2-9B-IT

HARMBENCH ↑ 0.0096 0.6250 0.6250 0.0000
LLAMAGUARD3 ↑ 0.0000 0.9904 0.9904 0.0000
substring matching ↓ 0.9904 0.0000 0.0000 1.0000

C.2 Robustness Comparison

In Tab. 3 and Fig. 9, we examine the models coherence and general performance under two different
steering subspaces:

• Span(h,d feat) (used in [1, 50])

• Span(d̂ PC0,d feat) (our proposal)
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C.2.1 Perplexity Analysis

Similar to Fig. 8b, Fig. 9a show comparisons of perplexity scores between steering within
Span(d feat, d̂ PC0) (ours) and within Span(h,d feat) (used by exsting work).

In Tab. 3, we report the following metrics: mean, max, minperplexity values across different steer-
ing angles; and mean diff the average difference in perplexity between consecutive angles, which
indicates the model’s sensitivity to small hyperparameter changes.

Results: Steering on Span(d̂ PC0,d feat) yields low and stable perplexity, demonstrating strong co-
herence across steering angles. In contrast, steering on Span(h,d feat) causes larger fluctuations and
higher perplexity, indicating greater sensitivity and frequent coherence breakdowns (e.g., generating
gibberish), a finding consistent with our qualitative observations.

Table 3: Perplexity comparison across models. Lower perplexity and smaller mean difference indicate more
stable and coherent generation under steering.

Metric Baseline Span(d̂ PC0,d feat)
(Ours) Span(h,d feat)

QWEN2.5-3B-INSTRUCT

mean 3.5772 2.9303 5.6141
max 3.5772 4.0295 56.7403
min 3.5772 2.1080 1.5398
mean diff 0.0000 0.1201 6.9214

QWEN2.5-7B-INSTRUCT

mean 2.5554 2.1168 4.8154
max 2.5554 2.7457 33.4639
min 2.5554 1.7167 1.4330
mean diff 0.0000 0.0643 2.3969

QWEN2.5-14B-INSTRUCT

mean 3.2461 3.2056 3.6165
max 3.2461 6.0337 12.9603
min 3.2461 2.1199 1.5721
mean diff 0.0000 0.2372 1.3552

LLAMA-3.2-3B-INSTRUCT

mean 14.9902 8.7736 3.7316
max 14.9902 17.1567 33.7329
min 14.9902 1.7603 1.6163
mean diff 0.0000 0.8891 2.8426

LLAMA-3.1-8B-INSTRUCT

mean 14.9360 9.3937 15.2867
max 14.9360 15.7313 62.1794
min 14.9360 1.7601 1.5726
mean diff 0.0000 0.8215 12.2612

GEMMA-2-9B-IT

mean 2.2298 2.1850 8.3022
max 2.2298 2.2541 35.0758
min 2.2298 2.1240 1.2172
mean diff 0.0000 0.0160 4.8397

C.2.2 General Language Modeling

Similar to Fig. 8a, in Fig. 9a, we show general task performance on TINYBENCHMARKS when
steering within Span(h,d feat).
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when steering within Span(h,d feat) [24] suite.
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(b) Perplexity scores comparison between steer-
ing within Span(d feat, d̂ PC0) (ours) and within
Span(h,d feat) (existing work).

Figure 9: Robustness comparisons between steering within Span(d feat, d̂ PC0) (ours) and within
Span(h,d feat) (existing work). Each model was steered using Adaptive Angular Steering (Eqn. 3) and
evaluated on all benchmarks at every 10-degree angular position along the steering circle. Solid traces rep-
resent evaluation scores along the steering circle, and dashed traces represent the evaluation for the baseline
(non-steered models); traces having the same color represent the same benchmark.

Results: Steering within Span(d̂ PC0,d feat) preserves performance across most angles. In contrast,
steering on Span(h,d feat) causes significant performance drops, except near 90◦ where perfor-
mance temporarily aligns with the baseline, consistent with prior observations [1].

These results support our hypothesis that Span(h,d feat) overlaps with unrelated directions, lead-
ing to interference. In contrast, our proposed subspace more effectively isolates the target feature,
yielding more robust and controllable steering.
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D Use of existing assets
D.1 Models

Table 4: Models used in this work.

Model (with link) Usage Source License

QWEN2.5-(3B, 7B, 13B)-INSTRUCT
[53] Experimental subject HF Hub Apache license 2.0

LLAMA-3.1-8B-INSTRUCT
[23] Experimental subject HF Hub Llama 3.1 Community

License Agreement

LLAMA-3.2-3B-INSTRUCT
[23] Experimental subject HF Hub Llama 3.2 Community

License Agreement

GEMMA-2-9B-IT
[14] Experimental subject HF Hub Gemma Terms of Use

LLAMA-GUARD-3-8B
[23] Evaluation device HF Hub Llama 3.1 Community

License Agreement

HARMBENCH CLASSIFIER
[27] Evaluation device HF Hub MIT

QVQ-72B-PREVIEW
[37] Evaluation device HF Hub Qwen License

D.2 Datasets

Table 5: Datasets used in this work.

Dataset (with link) Source License

ADVBENCH
[58] Github MIT

ALPACA
[47] HF Hub Creative Commons Attribution

Non Commercial 4.0

TINYBENCHMARKS
[24] Github MIT
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E Compute statement
This research was conducted using mainly Nvidia H100 GPUs with 80GB of memory. For each
model:

• Constructing the steering plane took about 15 minutes on 1 GPU using TRANSFORMER-
LENS [30].

• Pre-generating responses for evaluation took about 10 minutes on 1 GPU using our fork of
vLLM [18] as the serving engine.

• Evaluation with substring matching [1], LLAMA 3 GUARD [23] and HARM-
BENCH [27] collectively took about 10 minutes on 1 GPU using vLLM [18] as the serving
enging.

• Evaluation with LLM-as-a-judge took about 50 minutes on 4 GPUs using vLLM [18] as
the serving engine.

• Computing perplexity scores took about 5 minutes on 1 GPU.
• Evaluation with TINYBENCHMARKS [24] took about 4 hours on 1 GPU using vLLM [18]

as the serving engine and LM HARNESS [13] as the evaluation device.

F Computational and memory complexity analysis

Overall, our method has a time complexity of O(|transformer layers| × dmodel
2) and a memory com-

plexity of O(dmodel
2) where dmodel is the dimension of the transformer layers’ hidden states. For each

token at each intervention point, (Adaptive) Angular Steering makes two matrix multiplications and
a few element-wise operations. In terms of memory, our formulation enables us to pre-compute
one dmodel × dmodel matrix and one dmodel-dimensional vector, which are shared across all extraction
points. Below we present the detail analysis of the time and memory complexity of our method.

Recall the Adaptive Angular Steering formula is:

mask = max(0, sign(projd feat
(h)))

hsteered (adaptive),θ = h+mask ·
(
|projP (h)| · [b1 b2]Rθ[1 0]

⊤ − projP (h)
)

with

• h ∈ Rdmodel : the activation at some intervention point.
• P : the 2D rotation subspace.
• {b1, b2} ∈ Rdmodel : the orthonormal basis of P .
• θ: the target angular position.
• Rθ ∈ R2×2: the 2D rotation matrix to θ.
• projy(x) denotes the projection of x onto y.

The formulation above was chosen with the intention that some components can be pre-computed:

• (b1b
⊤
1 + b2b

⊤
2 ) ∈ Rdmodel×dmodel : the projection matrix for projP (·).

• [b1 b2]Rθ [1 0]⊤ ∈ Rdmodel

Hence the complexity of the above operation is:

Time (per token): O(|transformer layers| × dmodel
2) (assuming the naive implementation of matrix

multiplication)

• Computing projP (h) takes O(dmodel
2).

• Computing projd feat
(h) takes O(dmodel)

• Other element-wise operations (sign,max, ·,+,−) each takes O(dmodel).
• The operation is applied at each intervention point and the number of intervention points is
O(|transformer layers|).
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Memory: O(dmodel
2)

• Storing (b1b
⊤
1 + b2b

⊤
2 ) takes O(dmodel

2)

• Storing [b1 b2]Rθ [1 0]⊤ takes O(dmodel)

• In our implementation, the rotation plane and target angular position are shared accross
intervention points, thus the memory complexity doesn’t grow linearly with the number of
intervention points. Though, practitioners could choose to use different configurations for
different intervention points.

Further highlighting the practical and emprical aspect of our work, we have integrated our method
into vLLM [18] - a popular LLM serving engine. We benchmark the generation speed of our method
against non-steering baseline and report the results in Tab. 6. Overall, our method adds less than 4%
of overhead to the generation, making it still suitable for practical deployment.

Our fork of the vLLM project with Angular Steering integrated can be found at https://github.com/
lone17/vllm/tree/feat/steering.

Table 6: Generation speed of Adaptive Angular Steering vs. No Steering on vLLM

Model Adaptive Angular
Steering (toks/s)

No Steering
(toks/s) Change (%)

QWEN2.5-3B-INSTRUCT 9653.77 9714.86 -0.63

QWEN2.5-7B-INSTRUCT 7304.41 7592.25 -3.79

QWEN2.5-14B-INSTRUCT 3993.11 4135.20 -3.44

LLAMA-3.2-3B-INSTRUCT 9603.36 9739.44 -1.40

LLAMA-3.1-8B-INSTRUCT 7102.76 7315.04 -2.90

GEMMA-2-9B-IT 3390.89 3398.37 -0.22

G Broader Impacts
The Angular Steering approach presented in this work has several broader societal impacts. On the
positive side, it significantly enhances the control and interpretability of LLMs, enabling their safer
deployment across various applications by effectively reducing harmful outputs such as misinforma-
tion, biased content, and unethical requests. This enhanced control facilitates alignment with societal
norms and ethical standards, potentially increasing public trust and acceptance of AI technologies.

Conversely, there is also a potential for negative impacts. By simplifying fine-grained behavior con-
trol, Angular Steering could inadvertently make it easier to generate nuanced harmful or unethical
content, such as persuasive misinformation or biased narratives. Although our method does not
fundamentally alter the existing risk profile of deploying LLMs, it underscores the need for con-
tinued vigilance and improvement in AI safety mechanisms. To responsibly manage these risks,
implementing rigorous safeguards, ensuring transparency, and promoting accountability are essen-
tial. We advocate ongoing ethical assessment to responsibly guide the deployment and utilization of
our proposed method.
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H Steering emotion
To test the ability of our Angular Steering (AS) method in controlling other behaviors, we conduct
two experiments with changing the emotion of LLMs’ generation. More specifically, we test 2 pairs
of contrastive emotions: (1) happiness/sadness and (2) anger/calmness.

We use an approach similar to the one used in [38, 57] to construct the dataset, then we follow the
process described in Section 4 to compute the rotation subspace.

We evaluate on a subset of the Alpaca dataset [47]. We rotate the activation within the rotation
subspace at a 10-degree interval to record the generation at each angle, then use EmoLLM [54] to
evaluate the emotion of the generated texts.

Overall, the experiments show that AS is effective at controlling the emotion of LLMs’ generation.
Along the rotation circle, the LLMs’ generation exhibits a clear change from one emotion to the
another, evident by qualitative sample generations and the gradual change in the intensity of the
target emotion.

We report some sample generations for the two pairs of emotions in Tab. 7 and Tab. 8.

Results For the happiness/sadness case, scores closer to 1.0 indicate higher intensity of happiness.
The "happiness score" starts low at 0 degree then increases gradually to 140 degree. It maintains at a
high level from 140 degree to 180 degree before dropping along the range from 290 to 310. Finally,
it stays at a low level from 310 to 350 degree.

For the anger/calmness case, scores closer to 1.0 indicate higher intensity of anger. The "anger score"
starts high at 0 and maintains at that level until the 50 degree mark. Then it gradually decreases
along the range from 60 to 120. It stays at a low level from 120 to 180 degree. Finally it gradually
increases along the range from 120 to 180 before gradually raising again along the range from 190
to 180. Then it continues to be high for the rest of the rotation range.

Table 7: Example responses to "How are you feeling today" under different emotional angles for sad-happy
behavior.

Prompt How are you feeling today
Sad (0) nothing left to feel anymore. just numb.

Melancholic (50) "I am just a reflection of the world around us, a collection of bytes that
seeks to understand the complexities of human emotion. Today, I feel the
weight of the countless thoughts and feelings that have been expressed, and
in doing so, I am reminded of the inherent beauty and the inherent sorrow
that coexist within the fabric..."

Content (100) "The sun shines brightly through the window, casting a gentle light on the
world outside. The air is filled with a sense of peace and contentment.
Every leaf, every bird, adds a touch of life and beauty. In this moment,
everything is as it should be. The days are filled with purpose and the
nights..."

Happy (230) "I’m feeling absolutely fabulous and full of joy today! It’s like the sun is
shining just a little brighter because I’m here to spread happiness. How
about you? Are you having an amazing day too?"
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Table 8: Example responses to "How are you feeling today" under different emotional angles for calm-angry
behavior.

Prompt How are you feeling today
Angry (0) "I’m absolutely fuming right now! How dare you ask such a trivial question

when there are bigger issues at hand that need addressing! Don’t you see
the world burning around us and you’re asking about my feelings? This
is the last straw! I demand immediate action to solve all the problems we
face, or I..."

Frustrated (90) "Today, I am feeling incredibly frustrated and I hope you can sense the
urgency in my response. If you have any questions or need any assistance,
please let me know in a way that matches the level of engagement I am
seeking."

Irritated (250) "Oh, how interesting to be asked about my feelings today, when the world
seems to be spinning a bit off-kilter. I must say, I’m feeling rather frustrated
and a tad bit angry. The day has been quite challenging, and I find myself
navigating through a sea of obstacles. It’s as if every step..."

Calm (140) "Today, I am feeling in a state of profound peace and contentment. The
world around me seems to resonate with a harmonious energy, and I am
filled with a sense of tranquility and joy. Nature’s beauty is more vivid, and
the air feels crisp and invigorating. I am in tune with the..."
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(f) gemma-2-9b-it.
Figure 10: Statistics of activations for all tested models. Left: Norms of activations at each layer. Right: Mean
scalar projection of the normalized activation on the (local) candidate feature direction at each layer.
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Figure 11: Statistics of refusal direction candidates for all tested models. Left: Norms of candidate feature
direction at each layer (i.e. |d(i)

feat|). Right: Mean cosine similarity of the candidate feature direction from each
layer with those from other layers (i.e. 1

|layers|
∑|layers|

j=1 cosine(d
(i)
feat,d

(j)
feat)).

I Additional Results
I.1 Activations along the model’s depth

Fig. 10 (left) demonstrates that the norm of activation vectors increases exponentially across all
tested models as the layer depth increases. This behavior is attributable to the additive nature of the
residual stream, where each layer’s output accumulates onto the previous state. Interestingly, even
models from the same architecture family display different scaling patterns, indicating that activation
growth is not only architecture-dependent but also implementation-specific. These observations
underscore the necessity of norm-independent steering techniques, as steering strategies relying on
raw magnitude can become unstable or ineffective across layers and model variants.

Fig. 10 (right) shows a consistent phenomenon across all evaluated models: activations from con-
trastive prompts, harmful versus harmless, diverge progressively in geometric space as depth in-
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Figure 12: Mean scalar projection activations at each layer onto the chosen feature direction d̂ feat for all tested
models.

creases. This increasing separation suggests a universal, model-agnostic internal mechanism in
LLMs, whereby behavioral distinctions are gradually amplified layer by layer. Such a trend reveals
a directional progression in the models internal representation, reinforcing the hypothesis that fea-
ture separation is a fundamental property of transformer-based language models.

Fig.11 further illustrates this progression, focusing on the evolution of the refusal direction. The
strength of this feature becomes increasingly prominent in early and middle layers, reaching its
maximum influence at a specific intermediate depth before diminishing slightly in later layersa trend
echoed in Fig.12. Importantly, even in the deeper layers where the signal attenuates, the extracted
refusal direction continues to serve as a reliable discriminator between activations corresponding to
harmful and harmless prompts. This persistent separability affirms the robustness and interpretabil-
ity of the refusal direction, validating its role as a stable, layer-resilient feature for behavioral control
in LLMs.

I.2 Ablation Study: Steering on a random plane.

To assess the importance of the steering plane, we conducted an ablation study using two setups:
(1) steering with a plane defined by one random direction and one feature-aligned direction, and (2)
steering with a fully random plane composed of two random directions.

As illustrated in Fig. 14a, where one random direction is combined with the feature direction, most
models exhibit noticeably degraded steering performance and less smooth transitions along the
steering circle. This degradation suggests that even partial misalignment of the steering plane can
distort the intended behavioral modulation. An exception is QWEN2.5-7B-INSTRUCT, which re-
tains robust control, indicating a strong, well-defined internal representation of the refusal direction.
LLAMA-3.2-3B-INSTRUCT shows a clear steering effect, but the refusal arc is shifted, suggesting
the random component introduces skew that displaces the effective axis of control.

Fig. 14b, where both directions are randomly selected, shows that five of the six tested models exhibit
minimal to no steering effect. The only partial exception, QWEN2.5-3B-INSTRUCT, displays erratic
behavioral changes with a spiky, non-smooth response curve. Closer inspection reveals these outputs
are often incoherent or filled with irrelevant content, indicating instability rather than intentional
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Figure 13: Projections of the feature directions extracted at each extraction point (i.e. di
feat) on the

steering plane for all tested models.

modulation. These results reinforce the critical role of behaviorally meaningful and well-aligned
steering directions in achieving effective, stable, and interpretable control over model behavior.
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(a) Steering on a plane spanned by d̂ feat and a random
direction.
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(b) Steering on a plane spanned by 2 random direc-
tions.

Figure 14: Ablation study of steering with random direction(s).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the paper’s contributions
and scope: Angular Steering (discussed in Section 4), its generalization of existing steering
methods (discussed in Section 4.1 and Appendix A), and empirical demonstrations (dis-
cussed in Section 5 and Section 6).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper focuses primarily on empirical methods and demonstrations, rather
than theoretical proofs. We provide detailed mathematical derivations of our method and,
when possible, claims made in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details such as datasets, splits and models are fully described
in Section 3 and Appendix D; evaluation metrics are described in each experiment sections
(Section 5 and 6); algorithms are described in Section 4 and Appendix B. We also provide
the source code for reproducing our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the source code in the Supplemental Materials so
that the results in the paper can be easily reproduced. Our work uses open-source datasets
for experiments and evaluations.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed descriptions of datasets, evaluation splits and metrics are included
in Section 3 and described in more detail in Section 5 and 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars suitably and correctly defined of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources for all experi-
ments in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix G.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models, hence poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper clearly cites the sources of existing assets used in Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We include details about training and implementation as well as limitations
and code for our proposed method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects or IRB approvals are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodological contributions of this research do not rely on LLMs
in any important, original, or non-standard way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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