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Antibody DomainBed: Towards robust predictions using invariant
representations of biological sequences carrying complex distribution shifts
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Abstract
Recently, there has been an increased interest in
accelerating drug design with machine learning
(ML). Active ML-guided design of biological se-
quences with favorable properties involves mul-
tiple design cycles, in which (1) candidate se-
quences are proposed, (2) a subset of the can-
didates is selected using ML surrogate models
trained to predict target properties of interest, and
(3) a wet lab experimentally validates the selected
sequences. The returned experimental results
from one cycle provide valuable feedback for the
next one, but the modifications they inspire in the
candidate proposals or experimental protocol can
lead to distribution shifts that impair the perfor-
mance of surrogate models in the upcoming cycle.
For the surrogate models to achieve consistent
performance across cycles, we must explicitly ac-
count for the distribution shifts in their training.
We turn to the notion of invariance and causal rep-
resentation learning to achieve robustness across
cycles. In particular, we apply domain generaliza-
tion (DG) methods to develop invariant classifiers
for predicting properties of therapeutic antibodies.
We adapt a recent benchmark of DG algorithms,
“DomainBed,” to deploy 23 algorithms across 5
domains, or cycle numbers. Our results confirm
that invariant features lead to better predictive
performance for out-of-distribution domains.

1. Introduction
A model trained to minimize training error is incentivized
to absorb all the correlations found in the training data. In
many cases, however, the training data are not sampled in-
dependently from the same distribution as the test data and
such a model may produce catastrophic failures outside the
training domain [1, 2, 3, 4, 5]. The literature on domain
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Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Our prediction task: antibody-antigen binding. Anti-
body Onartuzumab 2 (pink) binds to MET (green and blue), a lung
cancer antigen target, on the cell surface. The strength of antibody-
antigen binding is largely determined by the binding site of the
antibody interacting with the antigen epitope, boxed in white.

generalization (DG) aims to build a robust predictor that will
generalize to an unseen test domain. A popular approach in
DG extracts a notion of domain invariance from datasets
spanning multiple training domains [6, 7, 8]. This substan-
tial body of work inspired by causality views the problem
of DG as isolating the causal factors of variation, stable
across domains, from spurious ones, which may change
from training to test domains [8, 9, 10].

Benchmarking efforts for DG algorithms, to date, have been
largely limited to image classification tasks [e.g., 12, 13].
To prepare these algorithms for critical applications such
as healthcare and medicine, we must validate and stress-
test them on a wide variety of real-world datasets carrying
selection biases, confounding factors, and other domain-
specific idiosyncrasies. In this paper, we apply them to
the problem of active drug design, a setting riddled with
complex distribution shifts.

The specific application we consider is that of characterizing
the binding affinity of therapeutic antibodies. Antibodies
are proteins used by the immune system to recognize harm-
ful foreign substances (antigens) such as bacteria and viruses
[14]. They bind, or attach, to antigens in order to mediate
an immune response against them. The strength of binding
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is determined by the binding site of the antibody (paratope)
interacting with the antigen epitope (Figure 1). Antibodies
that bind tightly to a given target antigen are highly desirable
as therapeutic candidates.

The wet-lab experiments that measure the binding affin-
ity of antibodies are costly and time-consuming. In active
antibody design, we thus assign a surrogate model to pre-
dict binding and select the most promising candidates for
wet-lab evaluation based on the predictions. Developing
an accurate surrogate model is a challenging task in itself,
because, as explained in more detail in section 2, the model
may latch onto non-mechanistic factors of variation in the
data that do not cause binding: identity of the target antigen,
assay used to measure binding, generative models (either hu-
man experts or ML) that proposed the antibody, and “batch
effects” that create heteroscedastic measurement errors.

We approach active drug design from the DG perspective.
Active drug design, executed in multiple design cycles, in-
forms the DG algorithm development, as it abounds in distri-
bution shifts previously underexplored in the DG literature.
Conversely, it benefits from a robust (surrogate) binding
predictor based on invariant representations. To summarize,
the joint venture enables (1) impactful real-world bench-
marking of DG algorithms and (2) development of robust
predictors to serve active antibody design.

2. Accelerating antibody design with ML
Problem formulation Antibody design typically focuses
on designing the variable region, which consists of two
chains of amino acids. Each chain can be represented as a
sequence of characters from an alphabet of 20 characters
(for 20 possible amino acids). The entire variable region
spans L ∼ 250 amino acids on average. We denote the
sequences as x = (a1, . . . , aL), where al ∈ {1, . . . , 20}
corresponds to the amino acid type at position l ∈ [L].
We experimentally measure the binding affinity z ∈ R
from each sequence. But for simplicity, we create a binary
classification task by creating a binary label y ∈ {0, 1} from
z. We set y = 1 if z exceeds a chosen minimum affinity
value that would qualify as binding and y = 0 otherwise.
Each antibody xi, indexed i, carries a label yi in one of the
design rounds r, where r ∈ {1, . . . , 5}. The labeled dataset
for a round r can thus be represented as a set of nr ordered
pairs: Dr = {(xr

i , y
r
i )}

nr
i=1.

Lab in the loop Our antibody binding dataset is generated
from an active ML-guided design process involving multiple
design cycles, or rounds. As illustrated in Figure 2, each
round consists of the following steps:

• Step 1. Millions of candidate sequences are sampled
from a suite of generative models, including variational
autoencoders [15, 16], energy-based models [17], and

Figure 2. Lab in the loop, the active ML-guided antibody design
process that generated our dataset.

diffusion models [18, 19].
• Step 2. A small subset of several hundred promising

candidates is selected based on binding predictions
from a surrogate binding classifier.

• Step 3. The wet lab experimentally measures binding.
• Step 4. All models (generative and discriminative) are

updated upon receiving new measurements.

In Step 4, both the generative model and the surrogate clas-
sifier f̂θ are updated. Beyond being refit on the new data
returned from the lab, the generative models may undergo
more fundamental modifications in their architectures, pre-
trained weights, and training/regularization schemes.

A standard approach to supervised learning tasks is empir-
ical risk minimization (ERM) [20]. Let us first define the
risk in each round r as

Rr(θ) = E(Xr,Y r)∼Drj
ℓ
(
f̂θ(X), Y

)
, (1)

where ℓ is the loss function. ERM simply minimizes the
training error, i.e., the average risk across all the training
examples from all the rounds.

RERM(θ) = E(Xr,Y r)∼
⋃

j∈[5]Drj
ℓ
(
f̂θ(X), Y

)
(2)

= Er∼ptrain(r)R
r(θ), (3)

where ptrain(r) denotes distribution of the rounds in the
training set. When we trained our surrogate classifier by
ERM, it did not improve significantly even as the training
set size increased over design rounds. In each subsequent
round, representing the test domain, we observed that the
classifier performance was close to random.

3. Domain generalization by invariance
The new measurements from the wet lab inspire modifica-
tions in the candidate proposals or experimental protocol,
which lead to (feedback) covariate shift.

DG has recently gained traction in the ML community as
concerns about productionalizing ML models in unseen
test environments have emerged [21]. One line of research
borrowing from Bayesian deep learning incorporates the
predictor’s uncertainty at test time [22]. Methods based on
data augmentation apply either automated modifications to
prevent overfitting [23] or counterfactual augmentations to
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enforce invariance between learned features [24, 25]. In this
paper, we consider approaches inspired by invariant causal
prediction (ICP) [26].

ICP frames DG in the language of causality and assumes
that the data are generated according to a structural equation
model (SEM) relating variables in a dataset to their parents
by a set of mechanisms, or structural equations. The ma-
jor assumption of ICP is the partitioning of the data into
environments such that each environment corresponds to in-
terventions on the SEM, but importantly, the mechanism by
which the target variable is generated via its direct parents
is unaffected [27]. This means that the true causal mech-
anism of the target variable is fixed, while other features
of the generative distribution can vary. This motivates the
objective of searching learning mechanisms that are sta-
ble (invariant) across environments with the hope that they
would generalize under unseen, valid 3 interventions.

The ultimate goal of these frameworks is to attempt to learn
an “optimal invariant predictor” which uses only the invari-
ant features of the SEM. Similar to many tasks in ML, it
is more convenient to build our methods in the manifold
paradigm. That is, we assume that high-dimensional obser-
vations take lower-dimensional representations governed by
a generative model. In the invariant learning paradigm, it
is common to define the task as learning invariant represen-
tations of the data, rather than seeking invariant features in
the observation space.

Algorithms for invariant risk minimization The goal of
invariance-inspired DG methods is to learn representations
that are invariant across interventions, or training environ-
ments. Formally, we follow:

Definition 1 ([8]). We say that a data representation
Φ : X → H elicits an invariant predictor w · Φ across
environments E if there is a classifier w : H → Y si-
multaneously optimal for all environments, that is, w ∈
argminw̄:H→Y Re(w̄ · Φ) for all e ∈ E, where Re(f) :=
E(Xe,Y e)[ℓ(f(X

e), Y e)] (analogous to Equation 1).

This problem setup has inspired a plethora of works, such
as IRM [8]

RIRM = min
Φ:X→H;
w:H→Y

∑
e∈Etr

Re(w · Φ)

subject to w ∈ argmin
w̄:H→Y

Re(w̄ · Φ) for all e ∈ E. IRM

assumes invariance of E[y|Φ(x)]—that is, invariance of the
feature-conditioned label distribution. Follow-up studies
make a stronger assumption on invariance based on higher-
order conditional moments [28, 29]. Though this perspec-
tive has gained traction in the last few years, it is somewhat

3Interventions are considered valid if they do not change the
structural equation of Y .

similar to the existing concepts of covariate shift, such as
domain adaptation using meta learning. Thus, in our evalua-
tion study we include invariance-inspired, but also domain
adapration and meta-learning baselines.

Hypothesis - invariant feature representations of anti-
bodies Our lab-in-the-loop (section 2) offers a unique
testbed for DG algorithms. In particular, we attempt to
answer the question:

Can invariant representations help in developing robust
predictors in the context of antibody design?

We propose to consider the design rounds r ∈ {1, . . . , 5}
as environments e, since rounds do correspond to valid
interventions — our design cycles should not impact the
true causal mechanism governing binding affinity. There
are two types of features that a binding classifier can learn:

• Invariant (causal) features: various physico-chemical
and geometric properties at the interface of antibody-
antigen binding (Figure 1) and

• Spurious correlations: Other, round-specific features
that are byproducts of different folding algorithms, gen-
erative models and their specific details, measurement
assay types, etc.

We expect DG algorithms to be able to distinguish between
the two, and only make use of the features invariant across
rounds in their predictions.

4. Antibody DomainBed
Different DG solutions assume different types of invari-
ance, and propose algorithms to estimate them from data.
DomainBed [12] is a benchmark suite that contains the ma-
jority of DG algorithms developed in the past two years
and a benchmark environment that compares them across
multiple natural image datasets.

To adjust to our antibody design context, we modify Do-
mainBed to accept biological sequences as input. We do so
by (i) implementing a dataset loader for aligned antibody
sequence representation and (ii) changing the ResNet [30]
architecture to a more sequence-appropriate one, which in-
cludes positional encoding to take into account the ordering
of amino acids in a biological sequence. Figure 4 depicts our
framework. As antibody-antigen binding depends on the in-
terface between the two proteins, we need to account for the
various possible antigen targets. We thus include the antigen
sequence in the input to the classifier, by concatenating the
antibody sequence with the antigen sequence.

From the available DG algorithms in DomainBed, we eval-
uate 23 baselines with 10 hyperparameter configurations
(with varying batch size, weight decay, and learning rate)
and 3 seed repetitions for each configuration. That yields a
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Algorithm Round 1 Round 2 Round 3 Round 4 Round 5 Avg

ERM 90.4 ± 1.8 78.0 ± 0.2 72.6 ± 1.7 69.4 ± 3.0 65.4 ± 1.8 75.2
Fish 96.8 ± 0.2 79.2 ± 0.5 72.1 ± 0.6 64.9 ± 0.9 69.5 ± 1.0 76.5
IRM 93.2 ± 1.6 77.5 ± 2.1 74.2 ± 1.0 63.0 ± 0.2 68.7 ± 1.5 75.3
GroupDRO 93.2 ± 0.7 71.6 ± 0.3 72.6 ± 1.1 71.9 ± 3.9 59.5 ± 1.2 73.8
Mixup 94.1 ± 1.9 77.7 ± 1.0 73.8 ± 3.1 68.4 ± 1.0 63.4 ± 2.3 75.5
CORAL 91.3 ± 2.3 76.2 ± 1.4 72.1 ± 1.8 68.0 ± 0.9 66.7 ± 0.9 74.9
MMD 86.1 ± 1.1 72.8 ± 0.6 71.3 ± 0.2 68.7 ± 2.2 61.3 ± 0.3 72.0
DANN 93.6 ± 2.5 72.3 ± 0.2 69.2 ± 2.6 53.8 ± 2.9 68.0 ± 1.3 71.4
MTL 93.1 ± 1.9 76.3 ± 1.1 69.9 ± 0.6 68.4 ± 0.2 65.4 ± 2.7 74.6
SagNet 93.3 ± 2.6 76.9 ± 1.8 69.7 ± 2.3 71.4 ± 2.4 67.6 ± 0.7 75.8
VREx 94.6 ± 0.9 77.7 ± 1.0 68.9 ± 2.6 68.4 ± 2.1 67.3 ± 0.4 75.4
SD 92.8 ± 1.8 77.8 ± 0.3 75.4 ± 1.6 74.3 ± 1.6 62.2 ± 2.0 76.5
ANDMask 88.4 ± 5.6 77.7 ± 2.2 58.8 ± 5.7 61.1 ± 3.3 73.5 ± 2.7 71.9
SANDMask 90.9 ± 1.2 76.6 ± 1.6 70.8 ± 0.4 70.6 ± 1.0 66.7 ± 1.8 75.1
IGA 98.4 ± 1.3 78.9 ± 0.7 65.6 ± 0.4 59.0 ± 1.4 66.5 ± 4.6 73.7
Fishr 92.7 ± 2.1 76.9 ± 0.5 74.2 ± 0.3 69.3 ± 0.4 68.4 ± 0.9 76.3
TRM 93.1 ± 1.3 77.1 ± 0.7 72.5 ± 1.0 71.4 ± 1.6 66.3 ± 0.5 76.0
IB ERM 90.0 ± 1.7 77.4 ± 0.1 73.0 ± 0.7 68.5 ± 1.5 66.5 ± 1.4 75.1
IB IRM 96.7 ± 0.9 78.6 ± 0.9 65.0 ± 7.1 63.1 ± 0.2 71.5 ± 0.9 75.0
Transfer 98.2 ± 1.3 76.9 ± 2.1 54.9 ± 5.0 53.7 ± 2.6 74.1 ± 1.9 71.6
CausIRL CORAL 92.2 ± 3.2 75.0 ± 1.2 72.8 ± 1.2 70.1 ± 0.3 66.5 ± 2.2 75.3
CausIRL MMD 91.6 ± 2.4 74.1 ± 1.6 74.2 ± 0.8 71.5 ± 4.1 63.9 ± 3.1 75.1
EQRM 93.8 ± 1.4 76.5 ± 1.2 71.8 ± 0.7 67.9 ± 1.2 66.8 ± 0.2 75.4

Average per round 93.0 76.5 70.2 66.8 66.8 74.7

Table 1. Accuracy. Higher is better. Error bars are across three
seed repetitions. Algorithms outperforming (underperforming)
ERM are highlighted in green (red).

total of 3600 experiments. We report the results from model
selection method: training domain validation set, which is a
leave-one-environment-out model selection strategy. We (1)
split the data into train and test environments, (2) pool the
validation sets of each training domain to create an overall
validation set, and (3) choose the model maximizing the
accuracy on the pooled validation set.

We open-source our efforts so that other researchers can
continue further evaluations on similar biological datasets.
With this paper, we make publicly available the “Antibody
DomainBed,” a codebase aligned with the DomainBed suite,
at anonymous-link. We also plan to release a public bench-
mark antibody dataset available at anonymous-link.

We test the following algorithms: ERM [31], Fish [32], IRM
[8], GroupDRO [33], Mixup [34], CORAL [35], MMD
[36], DANN [37], CDANN [38], MTL [39], SagNet [40],
VREx [28], SD [41], ANDMask [42], SANDMask [43],
IGA [44], Fishr [10], TRM [45], IB-ERM and IB-IRM [9],
Transfer [46], CausIRL CORAL and CausIRL MMD [47],
and EQRM [48]. Appendix A gives a brief description of
each baseline. See the references for more details.

5. Summary and Outlook
We applied DG algorithms to the problem of developing an
antibody binding classifier robust to non-mechanistic fea-
tures of the design rounds. Table 1 and Table 2 present the
accuracy and negative log-likelihood, respectively, for the
chosen model across the three seeds. Similarly to the con-
clusions from DomainBed on images, when model selection
is done over a large grid of hyperparameters, it is difficult to
conclude if there is consistent improvement when leveraging
invariant feature representations. In each round, however,
there are at least a few DG algorithms that achieve better

Algorithm Round 1 Round 2 Round 3 Round 4 Round 5 Avg

ERM 21.7 ± 2.9 56.1 ± 3.0 62.8 ± 4.4 58.3 ± 2.5 65.5 ± 5.3 52.9
Fish 23.0 ± 2.4 47.4 ± 1.1 59.6 ± 1.8 62.5 ± 4.6 56.7 ± 3.3 49.8
IRM 25.5 ± 2.6 52.2 ± 0.4 63.0 ± 2.7 67.2 ± 1.0 55.9 ± 1.6 52.8
GroupDRO 19.8 ± 2.4 56.6 ± 3.1 58.6 ± 3.5 64.4 ± 3.8 60.8 ± 3.0 52.0
Mixup 27.8 ± 1.5 49.3 ± 0.6 62.8 ± 2.8 69.2 ± 4.8 60.5 ± 2.9 53.9
CORAL 24.2 ± 3.6 54.4 ± 3.5 59.9 ± 3.7 64.0 ± 4.3 69.1 ± 3.1 54.3
MMD 41.7 ± 4.5 48.8 ± 0.2 61.3 ± 3.9 66.2 ± 3.3 52.2 ± 1.6 54.1
DANN 22.6 ± 0.9 54.7 ± 0.5 71.7 ± 6.6 87.6 ± 8.3 60.3 ± 3.0 59.4
MTL 24.0 ± 3.6 61.2 ± 5.6 66.7 ± 3.7 58.1 ± 0.6 62.4 ± 2.6 54.5
SagNet 16.3 ± 1.5 52.8 ± 1.3 61.5 ± 2.6 57.1 ± 5.0 61.4 ± 4.7 49.8
VREx 30.1 ± 1.6 49.1 ± 0.2 64.4 ± 1.4 63.2 ± 3.5 51.6 ± 2.0 51.7
SD 16.6 ± 2.2 55.1 ± 3.2 62.4 ± 1.0 55.6 ± 3.1 61.5 ± 1.8 50.3
ANDMask 17.6 ± 2.6 52.7 ± 2.3 72.2 ± 4.6 69.3 ± 1.3 64.9 ± 11.5 55.3
SANDMask 20.5 ± 4.2 66.1 ± 7.9 58.4 ± 2.3 70.4 ± 4.2 55.9 ± 5.0 54.3
IGA 42.0 ± 2.3 49.5 ± 0.8 83.2 ± 4.2 74.4 ± 4.3 58.2 ± 2.2 61.4
Fishr 21.2 ± 2.1 59.7 ± 5.0 58.6 ± 2.5 55.5 ± 1.4 57.1 ± 2.7 50.4
TRM 26.7 ± 3.5 52.6 ± 3.9 54.9 ± 0.8 63.3 ± 2.8 62.8 ± 1.3 52.1
IB ERM 21.3 ± 2.5 54.2 ± 2.6 63.2 ± 0.8 60.8 ± 4.2 59.2 ± 1.5 51.8
IB IRM 30.0 ± 6.0 50.0 ± 0.2 69.7 ± 0.5 70.9 ± 1.2 57.2 ± 0.9 55.6
Transfer 25.7 ± 6.9 53.9 ± 2.6 79.0 ± 8.6 69.3 ± 0.5 54.8 ± 1.8 56.5
CausIRL CORAL 22.6 ± 2.7 55.7 ± 3.9 60.6 ± 1.9 61.4 ± 1.9 62.1 ± 4.6 52.5
CausIRL MMD 24.6 ± 3.5 49.6 ± 1.3 63.7 ± 2.8 68.1 ± 3.1 61.1 ± 3.1 53.4
EQRM 13.9 ± 2.7 59.7 ± 7.9 60.5 ± 2.0 63.7 ± 1.8 61.2 ± 4.8 51.8

Average per round 24.3 54.0 64.3 65.2 59.7 53.5

Table 2. Negative log likelihood. Lower is better. Error bars are
across three seed repetitions. Algorithms outperforming (underper-
forming) ERM are highlighted in green (red).
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Figure 3. MMD (cosine kernel) in the learned representation be-
tween every pair of rounds. The latent feature space of IRM is
more uniform across rounds than that of ERM, as expected.

results than ERM. Moreover, domain adaptation algorithms
do not outperform ERM, while most invariance-inspired
algorithms do, especially in the later rounds. While perfor-
mance varies across algorithms, on the whole, (1) earlier
rounds seem to be easier environments for all baselines and
(2) invariant features appear to help (for each round there
is always at least one IRM-variant that does better) with
rounds expected to have the greatest distribution shifts, that
is, the later rounds 3-5. We also examine the MMD dis-
tance in the learned representations between the rounds for
ERM and IRM Figure 3, averaged over multiple runs. IRM
embeddings are more similar between rounds compared to
ERM, and can be viewed as more stable representations of
the antibodies across rounds.

Encouraged by these results, we are (1) working on their
deployment in the next round of our active drug design and
(2) open-sourcing a distribution shift benchmark focused on
biological sequences to motivate other ML researchers to
target impactful real-world applications closer to the pro-
duction setting.
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A. DomainBed baselines
We briefly summarize the baselines evaluated in section 4:

• Empirical Risk Minimization ERM
• Group Distributionally Robust Optimization (DRO]) ERM with increased importance of domains with larger errors.
• Inter-domain Mixup - performs ERM on linear interpolations of examples from random pairs of domains and their

labels.
• Marginal Transfer Learning (MTL) from the perspective of information about test task being drawn from that task’s

marginal feature distribution
• Meta-Learning for Domain Generalization (MLDG) leverages MAML to meta-learn how to generalize across

domains.
• Spectral Decoupling (SD) a regularization method that addressed Gradient Starvation which arises when cross-entropy

loss is minimized by capturing only a subset of features relevant for the task, despite the presence of other predictive
features that fail to be discovered.

• Different variants of the popular algorithm of Ganin et al. [2016] to learn features Φ(Xr) with distributions matching
across domains:

– Domain-Adversarial Neural Networks (DANN) employ an adversarial network to match feature distributions.
– Class-conditional DANN (CDAAN) is a variant of DANN matching the conditional distributions P (Φ(Xr)|Yr =

y) across domains, for all labels y.
– CORAL matches the mean and covariance of feature distributions.
– MMD matches the mean maximum discrepancy of feature distributions.

• Invariant Risk Minimization (IRM) learns a feature representation such that the optimal linear classifier on top of
that representation matches across domains.

• Variance Risk Extrapolation (VAREx) optimization over a perturbation set of extrapolated domains with a penalty
on the variance of training risks.

• ANDMask trade convergence speed for invariance, by replacing the gradient descent average mean (logical OR) by
geometric arithmetic mean between gradients logical AND.

• Smoothed-AND mask (SAND-mask) matching the Hessians of different environments.
• Fish an inter-domain gradient matching objective by maximizing the inner product between means of gradient

distributions from different domains.
• Fishr match the domain level gradient variances, i.e., the second moment of the gradient distributions.
• TRM uses the per-environment optimal predictor to guide the representation learning.
• IB-ERM and IB-IRM adding an information bottleneck constraint along with invariance in the objective.
• Transfer optimising for the therein defined transferability metric, implemented through adversarial training/minimax

optimization.
• CausCORAL and CausMMD - instead of taking pairwise distances across domains, they compute distances between

batches that follow different domain distributions.

B. Model architecture

Figure 4. Details on model architecture, featurizer, and linear classifier.


