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Abstract

Diffusion models have emerged as powerful generative frameworks with1

widespread applications across machine learning and artificial intelligence systems.2

While current research has predominantly focused on linear diffusions, these ap-3

proaches can face significant challenges when modeling a conditional distribution,4

P (Y |X = x), when P (X = x) is small. In these regions, few samples, if any, are5

available for training, thus modeling the corresponding conditional density may6

be difficult. Recognizing this, we show it is possible to adapt the data representa-7

tion and forward scheme so that the sample complexity of learning a score-based8

generative model is small in low probability regions of the conditioning space.9

Drawing inspiration from conditional extreme value theory we characterize this10

method precisely in the special case in the tail regions of the conditioning variable,11

X . We show how diffusion with a data-driven choice of nonlinear drift term is best12

suited to model tail events under an appropriate representation of the data. Through13

empirical validation on two synthetic datasets and a real-world financial dataset,14

we demonstrate that our tail-adaptive approach significantly outperforms standard15

diffusion models in accurately capturing response distributions at the extreme tail16

conditions.17

1 Introduction18

In recent years, diffusion models have emerged as among the most powerful generative modeling19

techniques for synthesizing data across a diverse set of modalities. From image generation to20

audio synthesis and time series modeling, these models have demonstrated superior capabilities for21

capturing intricate data distributions as compared to other generative frameworks. The work [10]22

introduced denoising diffusion probabilistic models (DDPMs), which frame the generative process23

by defining a forward process that gradually transforms data into noise, followed by a learned reverse24

process that reconstructs data from noise. This approach has since been extended to a continuous-time25

formulation using Langevin diffusions, providing a mathematically elegant framework that connects26

stochastic processes with generative modeling. The continuous-time formulation views this as a27

stochastic differential equation (SDE), where the forward process follows a Langevin diffusion that28

converges to a standard multivariate Gaussian distribution. This perspective has enabled significant29

theoretical advances while maintaining state-of-the-art empirical performance across applications.30

Conditional diffusion models extend this framework by additionally incorporating conditioning31

information to guide the generation process. However, a fundamental challenge emerges when32

dealing with extreme values in the sample space of the conditioning, where data is inherently33

sparse. Traditional diffusion models struggle to accurately capture conditional distributions in34

these tail regions, particularly when the underlying distributions deviate significantly from Gaussian35

assumptions. This limitation becomes especially problematic in domains where rare but consequential36
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events drive critical decisions, such as financial risk assessment and climate modeling. To effectively37

sample from a conditional distribution P (Y |X = x) using score-based diffusion models, we need38

to estimate a sequence of score functions, {∇ log pµt(.|x)}Tt=0. Here, pµt(.|x) refers to the marginal39

density of the conditional distribution t steps into a (discretized) Langevin diffusion. The bottleneck is40

estimating these conditional score functions at low-probability, or rare, conditions. When P (X = x)41

is small, it is unlikely that we see enough samples in our training data to estimate ∇ log pµt(.|x)42

accurately. If the score functions in these low probability regions have high sample complexity,43

sampling from tail conditions seems an improbable task.44

We present a data-adaptive methodology for score-based diffusions that addresses this challenge45

through two key insights: (i) conditional diffusion requires learning complex functions with few46

samples, and (ii) function complexity can be controlled through the diffusion scheme and data47

transformation. Our method ensures the conditional denoising functions maintain low sample48

complexity where P (X = x) is small, using data transformation and a data-driven nonlinear49

diffusion process. We demonstrate this approach in detail under mild extreme value assumptions.50

Specifically, our work explores nonlinear conditional diffusion modeling with tail-adaptive drift51

schemes. We examine the method where data follows extreme value assumptions [9, 8, 13]. Our52

contributions include:53

1. We identify current limitations of standard linear diffusion models with Gaussian equilibrium54

for conditional generation under extreme tail conditions with limited samples, based on55

recent neural network sample complexity results.56

2. We propose a novel score-based diffusion method that addresses the aforementioned sample57

complexity issue by utilizing well-designed data transformation and nonlinear Langevin58

diffusions. We explore this method in detail assuming the data follows some mild extreme59

value conditions (CEVT); although, we emphasize that our broader modeling philosophy is60

agnostic to any data assumptions.61

3. We validate our method on synthetic and real financial datasets, demonstrating superior62

conditional distribution modeling at tail extremes compared to standard diffusion variants.63

2 Background64

2.1 The Difficulty of Conditional Diffusion65

Conditional diffusion models frame sampling as the time reversal of a noising process governed66

by a diffusion SDE. A forward diffusion process {Yt}Tt=0 is indexed by a continuous time variable67

t ∈ [0, T ], such that Y0 ∼ µ0(·|X = x) is our sampling target, and YT ∼ µT ≈ π, admits a tractable68

form to generate samples efficiently. A continuous time evolution, an Ito SDE, governs the forward69

process µ0 → µT . We limit ourselves to Langevin processes. The forward Langevin diffusion70

process is a stochastic differential equation of the form,71

dYt = −∇f(Yt)dt+
√
2β−1dBt, Y0 ∼ µ0(·|X = x) . (1)

where the conditional probability measure of Yt is denoted µt(·|x) with density pµt(·|x), {Bt}t≥072

denotes a Brownian motion, and β > 0 is a scale parameter that the determines the noise level of the73

diffusion. Under mild conditions on f , this evolution admits e−f as equilibrium density as t→∞.74

Backward denoising uses the reverse-time SDE [1]:75

dY←t = −(∇f(Y←t ) + 2β−1∇ log pµt(·|X)(Y
←
t ))dt+

√
2β−1dB̄t, Y←T ∼ µT , (2)

where we use Y←t to denote the time-reversal and {B̄t}t≥0 denotes another Brownian motion.76

2.1.1 Denoising Complexity77

Implementing backward denoising process via (2) requires learning the conditional score function78

∇ log pµt(·|x). We instead target the estimation of the function, ∇f + β−1∇ log pµt(·|x). The79

complexity of these functions determines the sample size required for accurately estimation. For80

neural network predictors, non-asymptotic bounds have been established in [7] that relate target81

smoothness to estimation accuracy (see Theorem 2 in Appendix B).82
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Sampling from P (Y |X = x), requires accurately learning the sequence of maps:
{Bt(y;x)}Tt=0 = {∇f(y) + β−1∇ log pµt(.|x)(y)}

T
t=0, ∀x ∈ X

Since few training examples exists for rare events where P (X = x) is small, accurate estimation of83

the denoising maps in these “rare regions" is futile, preventing effective denoising. More rigorously,84

we can adapt theoretical results from [19] to show that the accuracy of denoising is directly tied to85

how well the denoising maps are learned. Let µθ denote the estimated density resulting from (2)86

after appropriately estimating the score function sequence, sθ(y; t, x) ≈ Bt(y;x). If µ0 refers to87

the target, then the Kullback-Leibler (KL) divergence between the two can be upper bounded by the88

integrated error of score estimation (see Appendix B for a proof for completeness):89

KL(µ0(·|x)||µθ(·|x)) ≲
∫ T

0
E

pµt(·|x)(y)
[∥(∇f(y) + β−1∇ log pµt(·|x)(y))− sθ(y; t, x)∥2]dt

=

∫ T

0
E

pµt(·|x)(y)
[∥(Bt(y;x)− sθ(y; t, x)∥2]dt.

Linear Gaussian Dynamics: Standard score-based diffusion models employ the Ornstein-90

Uhlenbeck process (with f(x) = 1
2x

2):91

dYt = −Ytdt+
√

2β−1dBt, Y0 ∼ µ0(·|x),
which yields at Gaussian stationary distribution. For this case, the denoising sequence in (2) becomes:92

{Bt(y;x)}Tt=0 = {y + β−1∇ log pµt(·|x)(y)}
T
t=0

As previously mentioned, when P (X = x) is small and {Bt(y;x)}Tt=0 complex, this standard93

paradigm faces sample complexity challenges.94

2.2 Extreme Value Theory95

Extreme value theory characterizes the tail behavior of random variables. Classical work examines96

limiting behavior like P (Y = y|Y > u) → G(y) as u → ∞. [9] extends this to conditional97

distributions P (Y |X = x) for large x, contrasting with traditional multivariate theory where all98

variables grow simultaneously. The Heffernan-Tawn model [13] is a flexible approach to model the99

conditional distribution P (Y |X = x) when x is large. For a broad class of dependency structures100

between X and Y , this work establishes a semi-parametric relationship that allows one to model101

a broad range of asymptotic independence/dependence structures at the tail of the condition (see102

Appendix A for more details).103

Assumption 1 (CEVT [9, 13]). Suppose the marginals of X and Y are standard Laplace. Then, as104

X = x→∞, we assume X,Y admit the asymptotic dependency,105

lim
x→∞

P

(
Y−a(X)
b(X) < z|X = x

)
= G(z) (3)

where G is some distribution independent of X . In other words, for tail values, X = x→∞:106

Y = a(X) + b(X) · Z, Z ∼ G. (4)

3 Proposed Methodology107

In this section, we propose a general methodology that aims to ensure that denoising maps discussed108

in Section 2.1.1 maintain low sample complexity for rare conditions:109

{Bt(y;x)}Tt=0 is easy to estimate when P (X = x) is small. (5)
While we demonstrate this approach under CEVT assumptions for explicit characterization, the110

framework applies broadly—any transformation yielding favorable tail behavior suffices. The general111

procedure consists of three steps:112

1. Transform (X,Y )
T→ (X⋆, Z) such that P (Z|X⋆ = x) ≈ e−g for rare x113

2. Design forward diffusion with e−g as the stationary density and train using the score-114

matching objective115

3. Sample Z ∼ P (Z|X⋆ = x) and apply inverse transformation to recover Y .116

In the following, we describe an implementation of each of the above steps in the context of CEVT.117
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3.1 Step 1 – Data Transformation118

When CEVT holds, we can obtain explicit transformations (X,Y )→ (X⋆, Z) ensuring (5) for large119

X⋆. Consider the following chain of transformations applied to X and Y :120

(X,Y )
Laplace Marginals→ (X⋆, Y ⋆)

Normalize→ (X⋆, Z) , (6)

where Z = b(X⋆)−1 (Y ⋆ − a(X⋆)). In the first part of the transformation, we transform (X,Y )121

to (X⋆, Y ⋆) such that marginal distributions of both X⋆ and Y ⋆ are standard Laplace distributions.122

Since X⋆ and Y ⋆ are both standard Laplace, we can further apply a normalization based on the123

Heffernan-Tawn model to transform Y ⋆ → Z, where124

Z =
Y ⋆ − a(X⋆)

b(X⋆)

To apply this normalization, we learn the functions a(x) and b(x) (which often take simple parametric125

form) using maximum likelihood estimation with samples from the tail of X⋆. Despite the small126

amount of samples available after partitioning the samples of X⋆ based on the tail, learning is127

plausible due to the simple structure of a(x) and b(x) (see Appendix A.1) for details. After applying128

these sequence of transformation, we have a set of data of the random variables (Xi, Zi) that satisfy129

P (Z|X⋆ = x) ≈ G for large values of x.130

3.2 Step 2 – Learning the Conditional of Z131

We learn the conditional distribution, P (Z|X⋆), via score-based diffusion models. We provide132

pseudocode of our training procedure in Algorithm 3 in Appendix C.3. In the following, we describe133

the design of the forward process of our conditional diffusion as well as our approach to score134

matching. We also provide an intuitive argument as to why the denoising maps for this diffusion135

model have low sample complexity at the tails of the condition.136

Designing the Forward Process We implement the forward process via a simple Langevin dif-137

fusion, but choose the drift term, ∇g, based on extreme value behavior in our observed data. In138

particular, by Assumption 1, for tail values in the condition, {X > x, x large}, we model,139

Z ∼ G, and Z ⊥ X.

However, in practice, the distribution G is unknown. To approximate G, we train a lightweight140

density estimator on tail samples, {(Xi, Zi) : Xi > x}, to gauge the density of G, e−g. We do141

so by comparing the smooth estimate to common parametric forms. For example, a wide range142

of easy-to-sample distributions admit an exponential form, e−g, with convex g, such as Gaussian,143

Laplace, and Gumbel.144

Consider the following Langevin diffusion:145

dZt = −∇g(Zt)dt+
√
2dBt

The Langevin diffusion above, for arbitrary convex g does not admit path trajectories that can be146

expressed in closed form. In practice, we resort to a simple discretization,147

Zt+1 = Zt − η · ∇g(Zt) +
√

2η · N (0, 1).

We remark that the convergence of the discretized process, which amounts to unadjusted Langevin148

dynamics, is sensitive to the curvature of g. We elaborate in Appendix C.1 how we can modify g so149

that it is appropriately smooth, while still accurately capturing a stationary distribution close to e−g .150

We also remark that with a nonlinear drift term ∇g, we also lose the ancestral sampling property151

that score-based diffusions exploit for efficient training. That is, if ∇g is linear, then the t-step ahead152

distribution P (Zt|Z0, X) is readily available. This is not possible for general g. Instead, in Appendix153

C.2 we show how Taylor-approximations can enable faster sampling in the general case, similar in154

line to [18].155
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Figure 1: We visualize a forward diffusion before and after the transformation outlined in Section
3.2. Before transformation, the Langevin diffusion induces quite dramatic changes in the conditional
density at tail events ({X = x}, x very large). This can be seen by looking at the blue particle
paths (top left) or the evolving density, pµt(·|x)(y), visualized in the top right plot. After taking the
steps outlined in Section 3.2, the tail conditional density does not change dramatically in the forward
diffusion. Compare the new particle paths in blue (bottom left plot), or the new conditional densities
at time t (bottom right plot). For tail, low-probability conditions, after transformation, the conditional
density is already (nearly) at stationarity. Details can be found in Appendix A.2

Score Estimation Unlike standard diffusion models, rather than tracking the conditional score func-156

tion, ∇ log pµt(.|x), we instead target (∇g +∇ log pµt(.|x)). We train a time-dependent conditional157

score model sθ(z;x, t) based on a slightly modified learning objective.158

L(θ) := E
t

{
λ(t) E

X,Z0

E
Zt|Z0

[∥sθ(z;x, t)− (∇ log pµ0t(.|Z0,X)(Zt)) +∇g(Zt))∥22]
}
, (7)

where λ(t) is a weighting function that adjusts the importance of different time steps for the score-159

matching loss. Recent works explore how to learn the conditional score functions sθ(Z;x, t) effi-160

ciently. For simplicity, we train based on the standard formulation based on Tweedie’s formula.161

Why this Works? Since Z is constructed based on Assumption 1, at an event {X⋆ = x}, with x162

large, the initial density of µ0(Z|X⋆ = x) will already be (approximately) at equilibria:163

pµ0(·|X⋆=x) ≈ e−g

Thus, at these extreme values of X⋆, the sequence of maps {∇g +∇ log pµ̄t(.|x⋆)}Tt=0 ≈ 0, making164

them much easier to estimate. We display an example of this in Figure 1.165

3.3 Step 3 – Sampling166

For a desired value of X , we prompt the learned diffusion model to retrieve a sample Z from167

P (Z|X = x). Sampling is implemented via time-reversal as in (2) and substituting in the learned168

estimator, sθ(z;x, t).169

dZ̄t = −(2sθ(Zt;x, t)−∇f(Z̄t))dt+
√
2β−1dB̄t, or, (8)

dZ̄t = −sθ(Zt;x, t)dt (9)

In practice, we use a simple Euler-Maryama discretization of the above to sample. Once we have170

a sample Z ∼ P̂ (Z|X), we convert it to a sample from our desired distribution by inverting the171
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sequence of transformations,172

Y ⋆ = a(X⋆) + b(X⋆) · Z
Y = F̂−1Y (FLap(Y

⋆))

Algorithm 4 in Appendix C.3 provides pseudocode for our sampling procedure.173

3.4 Generalization174

As previously mentioned, there is potential to adapt Step 1 of the process to more general circum-175

stances (e.g., if the CEVT assumption is not appropriate for the data of interest). The challenge of176

adopting the methodology is the finding the appropriate transformation of the data using a data-driven177

approach, perhaps using an approach similar to [11]. We leave this for future work.178

4 Experiments179

In this section, we evaluate our proposed approach on two synthetic data examples and a real data180

example. For baselines, we consider two schemes for denoising. In the standard scheme, we sample181

YT ∼ N (0, 1), and provided a condition X = x, we apply the maps,182

{BGauss
t (y;x)}Tt=0

In the new scheme, we first transform our data, Y T→ Z. Sample ZT ∼ e−g and apply the maps,183

{Bg
t (z;x)}Tt=0

Finally, invert the transform, Z0
T−1

→ Y0. To fairly compare our new scheme to the standard scheme184

we make the following considerations.185

Neural Net Parametrization: Fundamentally, we want to track how well BGauss
t ,Bg

t are learned.186

As a proxy we will look at sample quality. To enable a fair comparison, we deploy the same neural187

network architectures to learn each score network, which are standard feedforward neural networks.188

Forward Chain Length: It is important to recognize that although the sequence of standard189

denoising maps, {BGauss
t (y;x)}Tt=0, may have high sample complexity, due to the fast convergence190

of the forward OU process, the number of noise-steps necessary, T , may be smaller. This, in turn, may191

be beneficial for learning. For example, if one were to train a separate network for each noise-scale192

t ∈ [T ]. We broach this gap by considering smoothed versions of ∇g for the generic scheme. This193

directly impacts speed of forward convergence, and is detailed in Appendix C. By choosing the194

smoothing parameters and step-size η appropriately, we are able to use the same number of noise195

steps for each model. This compromise, between complexity of Bg
t (y;x), η and size of T needs to196

be explored more rigorously. We leave this to future work.197

4.1 Synthetic Data Examples198

We consider two synthetic data experiments: a mean-shifted Laplace distribution; and correlated199

Gaussian distribution. We provide detailed plots with additional results for both synthetic examples200

can be found in Appendix D.1.201

Mean-Shifted Laplace Target. We consider the following data generating process:202

X ∼ Pareto(1), Y ∼ 10

X
+ Laplace(0, 1) (10)

Without appealing to CEVT, we see that as X → ∞, Y ∼ Laplace(0, 1). This suggests we203

target standard Laplace as the equilibrium distribution of the forward process, without applying any204

transformation to the data. We run,205

Yt+η = Yt − η · ∇gLap∗(Yt) +
√

2η · N (0, 1).

Refer to Appendix C.1 to see form and justification for ∇gLap∗. We plot a comparison of the new206

method and standard Gaussian diffusion in Figure 2a. The results of the figure demonstrate that207

in 90% percentile, a standard diffusion model with Gaussian base distribution does not estimate208

the target distribution well, while the proposed approach without the CEVT transformation and an209

appropriately chosen Laplace base distribution more accurately capture the target.210
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Correlated Gaussian Target. We consider the following data generating process:211 [
X
Y

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
, (11)

where we set ρ = 0.4. First we transform (X,Y ) → (X⋆, Z) as per Algorithm 2. As detailed in212

the Appendix A.2, we know after this transform, G ∼ N (0, 2ρ2(1− ρ2)). However, to mimic the213

data-driven procedure in practice, we instead gauge a form for e−g using tail samples. Based on this,214

we suggest targeting Gumbel(0, 0.4) and run,215

Zt+η = Zt − η · ∇gGumb∗(Yt) +
√

2η · N (0, 1).

Refer to Appendix C.1 to see form and justification for∇gGumb∗. Once we sample from P (Z|X⋆ =216

x) via the new score-based diffusion, we transform back to the appropriate distribution via inverse217

CDF. We compare these samples to a traditional (linear) diffusion model that targets sampling from218

P (Y |X = x). We plot this comparison in Figure 2. From the figure, we can observe that the standard219

diffusion model fails to capture the target distribution at the tail of the condition, while the proposed220

method with the Gumbel base distribution almost perfectly captures it.221

(a) Mean-Shifted Laplace Target. (b) Correlated Gaussian Target.

Figure 2: In each subfigure, the left plot shows the standard diffusion with Gaussian base distribution,
and the right plot shows our proposed method with a standard Laplace base distribution for the
mean-shift example (no transformation) and a Gumbel base distribution for the multivariate Gaussian
example (with learned CEVT transformation).

4.2 Stock Returns Conditioned on Volatility Index222

The VIX Indexis a time-series that measures market expectations of near-term volatility conveyed223

by S&P 500 stock index option prices. A high VIX index typically signals a period of financial224

stress, as observed during major economic disruptions such as the Global Financial Crisis (GFC) in225

2008 and the COVID-19 pandemic in 2020, when the VIX reached elevated levels. In this study, we226

apply our methodology to real-world data to model the returns of selected financial assets during227

periods of heightened market volatility. Our objective is to evaluate the proposed method by modeling228

the returns of financial assets conditioned on a measure of market risk. Specifically, we assess the229

performance of our approach in generating the marginal returns of a mix of technology and financial230

stocks during stressed market regimes, using the volatility index VIX as a conditioning factor. The231

stocks analyzed include AAPL, MSFT, GOOGL, NVDA, AMZN, JPM, WFC, and GS. We focus on232

two significant periods: the 2008 Global Financial Crisis and the 2020 COVID-19 pandemic. For233

each period, we establish distinct training and testing phases to evaluate generative performance::234

• GFC: we use training data from 01/01/2005-12/31/2007 and evaluate on the testing data235

from 01/01/2008-12/31/2009.236

• COVID: we use training data from 01/01/2017-12/31/2019 and evaluate on the testing data237

from 01/01/2020-12/31/2021.238

For baselines, we compare a standard linear diffusion (Gaussian base) and our proposed methodology239

with CEVT-based transformation and a Laplace base distribution. We provide more information on240

the VIX and plots of it during both periods for both the training and test data in the Appendix D.2,241

which demonstrate the prevalence of more extreme conditions in the testing dataset for both periods.242

7



0.10 0.05 0.00 0.05 0.10 0.15
True Quantiles

0.06

0.02

0.02

0.06

0.10

Pr
ed

ict
ed

 Q
ua

nt
ile

s

Test - Gaussian - Q-Q Plot

0.10 0.05 0.00 0.05 0.10 0.15
Value

0

10

20

30

40

De
ns

ity

Test - Gaussian - Distribution Comparison
True
Predicted

0.10 0.05 0.00 0.05 0.10 0.15
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Test - Gaussian - Empirical CDFs
True
Predicted

95% 99% 99.5% 99.9%
Percentile

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu

e

Test - Gaussian - Tail Comparison
True
Predicted

0.10 0.06 0.02 0.02 0.06
Residuals (Predicted - True)

0

5

10

15

20

25

30

De
ns

ity

Test - Gaussian - Residuals Distribution
MAE: 0.0138, RMSE: 0.0179

(a) AAPL - Gaussian

0.10 0.05 0.00 0.05 0.10 0.15
True Quantiles

0.08

0.04

0.00

0.04

0.08

0.12

Pr
ed

ict
ed

 Q
ua

nt
ile

s

Test - Gaussian - Q-Q Plot

0.10 0.05 0.00 0.05 0.10 0.15
Value

0

5

10

15

20

25

30

35

40

De
ns

ity

Test - Gaussian - Distribution Comparison
True
Predicted

0.10 0.05 0.00 0.05 0.10 0.15
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Test - Gaussian - Empirical CDFs
True
Predicted

95% 99% 99.5% 99.9%
Percentile

0.00

0.02

0.04

0.06

0.08

Va
lu

e

Test - Gaussian - Tail Comparison
True
Predicted

0.10 0.05 0.00 0.05 0.10
Residuals (Predicted - True)

0

5

10

15

20

25

De
ns

ity

Test - Gaussian - Residuals Distribution
MAE: 0.0162, RMSE: 0.0212

(b) AMZN - Gaussian

0.050 0.0250.000 0.025 0.050 0.075 0.100
True Quantiles

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Pr
ed

ict
ed

 Q
ua

nt
ile

s

Test - Gaussian - Q-Q Plot

0.050 0.0250.000 0.025 0.050 0.075 0.100
Value

0

10

20

30

40

50

De
ns

ity

Test - Gaussian - Distribution Comparison
True
Predicted

0.050 0.0250.000 0.025 0.050 0.075 0.100
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Test - Gaussian - Empirical CDFs

True
Predicted

95% 99% 99.5% 99.9%
Percentile

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu

e

Test - Gaussian - Tail Comparison
True
Predicted

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06
Residuals (Predicted - True)

0

5

10

15

20

25

30

35

40

De
ns

ity

Test - Gaussian - Residuals Distribution
MAE: 0.0115, RMSE: 0.0151

(c) GOOGL - Gaussian.
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(h) MSFT - Laplace

Figure 3: QQ plots on test datasets for COVID period for various technology stocks.
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Figure 4: Performance comparison of Gaussian versus Laplace base distributions based on different
values of VIX level for the GFC regime.

Our results demonstrate that, in this example, employing a nonlinear diffusion model offers a clear243

advantage in capturing the unconditional heavy-tailed behavior of stock returns, while also enhancing244

the modeling of conditionals for high VIX levels. For instance, as illustrated in the QQ plots in Figure245

3, we observe that when capturing the marginal distribution of returns for various technology stocks246

during the COVID period, utilizing a Laplace base distribution outperforms its Gaussian counterpart247

in the tails, while maintaining good calibration in the bulk of the distribution. Regarding performance248

on the conditionals, we observe that during the GFC period, selecting a Laplace base distribution249

more effectively captures tail behavior as VIX values increase, despite these high VIX levels not250

being present during training. We offer more detailed plots analyzing the results for each stock across251

both periods in the Appendix D.2.252

5 Conclusions and Future Work253

In this work, we propose a methodology for improving rare event sampling in conditional generative254

modeling based on nonlinear score-based diffusion models. Motivated by conditional extreme255

value theory, we show that under some transformation of the data, we can choose the equilibrium256

distribution of the Langevin diffusion that is more advantageous from a sample complexity perspective257

for our learning problem. We provide numerical simulations on two toy experiments and a practical258

application of risk modeling for financial returns and demonstrate we can better capture the response259

distribution for extreme tails of the condition variable. From a practical perspective, challenges260

pertaining to our work include incorporating data-driven learning of the feature transformation261

process, extension to high-dimensional conditional variables, and a comprehensive performance262

comparison across multiple generative models on a larger pool of datasets.263
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A CEVT details309

We restate the CEVT modeling assumption for convenience.310

Assumption 2 (CEVT [9, 13]). Suppose the marginals of X and Y are standard Laplace. Then, as311

X = x→∞, we assume X,Y admit the asymptotic dependency,312

lim
x→∞

P

(
Y−a(X)
b(X) < z|X = x

)
= G(z)

where G is some distribution independent of X . In other words, for tail values, X = x → ∞, we313

model,314

Y = a(X) + b(X) · Z, Z ∼ G,

In a slightly different formulation, [8] establish that, so long as the conditioning variable X belongs315

to the domain of attraction of an extreme value distribution, such an assumption about asymptotic316

behavior is reasonable. More recently, [17] directly related the Heffernan Tawn model to the more317

general formulation of [8] and found parsimony under some mild conditions. We emphasize that318

this modeling assumption is theoretically grounded. A growing body of applied statistical methods319

successfully apply this model, further strengthening its relevance in practice.320

Importantly, [9, 13] found that for all standard copula forms of dependence outlined in [12, 15], the321

functions a(X), b(X) admit simple parametric forms, thus, the limiting form G can be assessed with322

a relatively small amount of samples. This insight motivates an approach to extrapolating to the tail323

in conditional score-based diffusion models.324

A.1 Normalizing Functions325

For a variety of relationships between X and Y , G has a log-concave density and the normalizing326

functions a and b admit simple forms [9, 13].327

Suppose X and Y are marginally Laplace. Then for some suitably high threshold, x ∈ R the328

conditional relationship at the tail values, X > x, approximately satisfy,329

Y = a ·X +Xb · Z, Z ∼ G, a ∈ [−1, 1], b ∈ (−∞, 1).

For a detailed examination of this relationship and clear delineation of when this simple form arises a330

reader should refer to the original work [9] or the follow-up [13]. In particular, Table 1 in [9]. For331

failure cases a reader can refer to [5]. We assume for our examples that a(x) and b(x) admit this332

simple structure.333

In practice, the scalars a and b are estimated. It is possible to learn these parameters via constrained334

optimization. The simplest approach , which we implemented, is to assume Z ∼ N (0, 1) and335

implement maximum likelihood with tail data {(Xi, Yi) : Xi > x}.336

A.2 Toy Example337

As an example, suppose,338

(X,Y ) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
First, transform the variables to have Laplace marginals, (X,Y ) → (X⋆, Y ⋆) (e.g., Inverse CDF339

Transform). For this example, the normalizing functions admit an explicit form,340

Z =
Y ⋆ − a(X⋆)

b(X⋆)
, a(x) = sign(ρ) · ρ2 · x, b(x) = x1/2

In this regime, it is well understood [13] that,341

P(Z|X⋆ = x⋆)→ N (0, 2ρ2(1− ρ2)), as x⋆ →∞.
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So, setting g(x) = 1
2x

2, β = (2ρ2(1− ρ2))−1/2, our new forward diffusion is a scaled OU process342

that admits G = N (0, 2ρ2(1− ρ2)) as equilibrium.343

We visualize the diffusion process, before and after transformation, in Figure 5. Comparing the plots344

in the left column,it is clear that the path evolution of particles Yt that correspond to large, tail values345

in X (bottom right, depicted in blue) are much more regular after the transformation. We also plot346

the conditional densities µ̄t(.|x), for a collection of timesteps and both bulk and tail events {X = x}.347

Before the transformation, µ̄t(y|x) changes quite drastically across the forward chain. However, after348

transformation (see bottom right figure), µ̄t(z|x⋆) ∝ G for tail values X⋆ = x⋆. Indeed, we see that349

at the tail values of the condition, x⋆ →∞, the forward process is already at stationarity. In other350

words,351

∇g(y) + β−1∇ log ρµt(.|x⋆)(y) = y − y = 0, ∀t, (easy to learn)

And so, where we have few samples, we have a sequence of functions that may be estimated with few352

samples.353

Y

Y

Y Y

Figure 5: Top row: Before transformation. Bottom row: After transformation.

B Theory354

A simple change to Theorem 1 in [19] will reflect our change in target for estimation. For completeness355

we include the theorem below and detail the small modification to the proof. We state the result for356

unconditional densities, but the result follows for conditional densities without loss of generality.357

Theorem 1. Denote by p(y) the target density. Let {Yt}t∈[0,T ] be the stochastic process defined by358

the SDE in 1, where Y0 ∼ p and Yt ∼ pt. Suppose π(y) is the stationary density of this SDE as359

T → ∞. Let Ŷ←0 ∼ pθ(y) be the result of the approximate reverse-time SDE where we substitute360

our score model, sθ(y, t).361

dŶ
←
t = −(2sθ(Ŷ←t , t)−∇f(Ŷ←t ))dt+

√
2β−1dB̄t, Ŷ←T ∼ π (12)

Under some regularity conditions (see Appendix A [19]),362

KL(p||pθ) ≤
∫ T

0
E

pt(y)
[∥
(
∇f(y) + β−1∇ log pt(y)

)
− sθ(y, t)∥2]dt+KL(pT ||π).

Proof. Denote the path measure of {Yt}t∈[0,T ] and {Ŷ←t }t∈[0,T ] by µ and ν. Recall Y0 ∼ p and363

YT ∼ pT , whereas Ŷ←0 ∼ pθ and Ŷ←T ∼ π. Following the line of argumentation in [19], we establish364
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by data-processing inequality (1), and chain rule (2),365

KL(p||pθ)
1
≤ KL(µ||ν)

2
≤ KL(pT ||π) + E

z∼pT

[KL(µ(·|Yt = z)∥|ν(·|Ŷ←T = z))].

What remains is to tackle the second term on RHS. Due to time-reversal, the path measure {Yt}t∈[0,T ]366

can be equivalently seen as generated by the reverse time SDE,367

dY←t = −(∇f(Y←t ) + 2β−1∇ log pt(Y
←
t ))dt+

√
2β−1dB̄t, Y←T ∼ π (13)

Then, KL(µ(·|Yt = z)∥|ν(·|Ŷ←T = z)) can be calculated by comparing the following reverse-time368

SDEs initialized at the same point:369

dY←t = −(∇f(Y←t ) + 2β−1∇ log pµt(·|x)(Y
←
t ))dt+

√
2β−1dBt, Y←T = z (14)

dŶ←t = −(2sθ(Ŷ←t ;x, t)−∇f(Ŷ←t ))dt+
√

2β−1dBt, Ŷ←T = z (15)

Since these SDES share the same diffusion coefficient and starting point, we can appeal to Girsanov’s370

theorem [16] to see,371

KL(µ(·|Yt = z)∥|ν(·|Ŷ←T = z)) ≤
∫ T

0
E

pt(y)
[∥
(
∇f(y) + β−1∇ log pt(y)

)
− sθ(y, t)∥2]dt

372

We adopt the following non-asymptotic bound from [7] with regard to the sample complexity of373

minimizing the squared error in a multi-layer perceptron neural network.374

Theorem 2. Let f̂MLP denote a standard multi-layer perceptron. Under the assumption that the target375

function f⋆ = ∇f + β−1∇ log pµt(·|x) lies in the Sobolev ball WS,∞([−1, 1]d) with smoothness376

parameter S ∈ N+, then with probability at least 1− δ where δ = exp
(
−n

d
S+d log8 n

)
, for large377

enough n:378

∥f̂MLP − f⋆∥2L2(x)
≤ C

(
n−

S
S+d log8 n+

log log n

n

)
(16)

Intuitively, the "rougher" the function (the smaller the value of S) and the higher the input dimension379

d, a larger number of samples are needed to estimate the target function f⋆.380

C Methodology Details381

C.1 Smoothness of f382

We implement the Euler-Maryama discretization of the forward diffusion, 1. This amounts to383

Unadjusted Langvevin Algorithm (ULA). It is well established that the convergence speed of ULA384

depends on the gradient of our drift term, ∇2f (developed in a sequence of works [4, 3, 6]). We385

present a result condensed in [2], and for simplicity, specialized to dimension, d = 1.386

Theorem 3 (Convergence of ULA [2]). Suppose that π ∝ e−f is the target distribution and f387

satisfies α ≤ ∇2f ≤ β. Define κ = β/α as the condition number and µt·η as the t−th measure in388

the sequence. Then, for any ϵ ∈ [0, 1], with step size η ≍ ϵ2/βκ, we obtain that after,389

T = O

(
κ2

ϵ2
log

αW 2
2 (µ0, π)

ϵ2

)
iterations,

390

αW 2
2 (µT ·η, π) ≤ ϵ2

In our methodology, we propose choosing a convex f to target a specific distribution, e−f , that reflects391

the tail characteristics of our target conditional distribution, P (Y |X = x). However, choosing f with392

poor curvature directly impacts speed of forward process. This in turn impacts how many noising393

steps, [T ], are necessary to diffuse-then-denoise and can detriment computational efficiency. This394

is particularly relevant when part of our argument concerns out-performing Gaussian diffusions.395

However, when e−f ∝ e−x
2/2, κ = 1 and convergence is fast.396
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To overcome this we use appropriately smoothed versions of the new target density, e−f
⋆

. We smooth397

in such a way that κ is bounded, f⋆ is continuously differentiable, but e−f
⋆ ≈ e−f . In the backward398

process, we still initiate samples by drawing from e−f . We emphasize that this does not impact the399

quality of the method.400

• We show below that by appropriately choosing smoothing parameters, the forward process401

converges to a distribution very similar to the target, e−f .402

• Small perturbations between the end of the forward process (e−f
⋆

) and start of the backward403

process (e−f ) is theoretically negligible [14]. Even with standard schemes, owing to the404

finite time steps T <∞, the end of the forward proccess will not be exactly Gaussian.405

Below are examples relevant to this paper.406

Gaussian The standard scheme is to target e−f ∝ e−x
2/2, standard Gaussian density. In this case,407

κ = 1.408
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Figure 6: (a): Plot of∇f . (b): Plot of∇2f .

Laplace Suppose we want to target e−f ∝ e−|x|. Then, ∇2f = 0 and f is not continuously409

differentiable (at 0). Convergence theorem for ULA suggests potential problems. Instead, we410

consider a smooth approximation,411

∇f⋆(x, b, c) =

{
1
b · x+ c · x, if x ∈ (−b, b),
sign(x) + c · x, otherwise.

Here, b, c ≥ 0 are user specified constants. If b, c = 0, then we arrive at ∇f . This is simply the412

gradient of the Huber function with a linear perturbation by c · x. With this smoothing, κ = 1 + 1
bc .413
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Figure 7: Set b = 0.5, c = 0.1. (a): Plot comparing ∇f and ∇f⋆. (b): Plot comparing ∇2f and
∇2f⋆. (c): Comparing densities after running ULA (η = 0.01, T = 1000 with∇f and ∇f⋆.
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Huber Suppose we want to target e−f ∝ e−(x+e−x). Then, ∇2f = e−x which is not bounded414

above, and approaches→ 0 as x→∞. We consider a smooth approximation,415

∇f⋆(x, b, c) =


eb, if x ≤ −b,
e−x, if − b < x < c,

e−c, if x ≥ c.

Here, b, c ≥ 0 are user specified constants. If b, c = 0, then we arrive at∇f . With this smoothing,416

κ = eb+c.417
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Figure 8: Set b = 2, c = 1. (a): Plot comparing∇f and∇f⋆. (b): Plot comparing∇2f and∇2f⋆.
(c): Comparing densities after running ULA (η = 0.01, T = 1000 with∇f and∇f⋆.

C.2 Taylor Accelerated Forward Diffusion418

An important practical consideration for our training algorithm is the efficiency in the estimation of419

the score function. In our work, we utilize the Euler-Maruyama approximation in order to sample Zt420

given Z0. In practice, this can be inefficient, since it requires O(t) sampling steps to sample. For a421

given time t⋆ ∈ {1, . . . , T}, direct score estimation based on Euler–Maruyama is given by:422

Z0 ∼ D (17)

Zt = Zt−1 − η∇f(Zt−1) +
√

2η · N (0, 1), t = 1, . . . , t⋆ (18)

A linear SDE can be solved more easily and allows for ancestral sampling, where Zt|Z0 can be423

sampled in a single step. As an example, consider the Ornstein–Uhlenbeck (OU) process:424

dZt = θ(µ− Zt)dt+ σdWt (19)

and its Euler-Maruyama discretized counterpart:425

Zt = Zt−1 + θ(µ− Zt−1) + σϵt, ϵt ∼ N (0, 1). (20)

The discretized process can alternatively be parameterized as:426

Zt = (1− θ)Zt−1 + θµ+ σϵt (21)

which allows for straightforward derivation of the conditional p(Zt|Z0):427

p(Zt|Z0) = N
(
Zt;α

tZ0 + (1− αt)µ, σ2

(
1− α2(t+1)

1− α2

))
(22)

As we can see above, sampling from a linear SDE like the OU process is easy and does not require428

multiple rounds of a solver. One idea to make sampling from a nonlinear SDE more efficiently is to429

consider a first-order Taylor of the score. Particular to this paper, consider a Langevin diffusion with430

score function s(Z) = −∇Zf(Z), which we know converges to p(Z⋆) ∝ e−f(Z) at equilibrium.431

Consider the first-order Taylor approximation to the score centered around Z̃:432

s(Z) ≈ s(Z̃) +∇Z̃s(Z̃)(Z − Z̃) (23)
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We can see that under this approximation, s(Z) is approximately a linear function in Z. It is433

straightforward to see that by plugging in this approximation into the Langevin SDE, we can employ434

ancestor sampling as in (22) to accelerate the forward diffusion for nonlinear SDEs. In particular, we435

can easily see that under this linear approximation, the Langevin SDE will reduce to an OU process436

with certain parameterization:437

Zt = Zt−1 − η∇Zt−1
s(Zt−1) +

√
2ηϵt (24)

≈ Zt−1 − η(s(Z̃) +∇Z̃s(Z̃)(Zt−1 − Z̃)) +
√
2ηϵt (25)

= Zt−1 − ηs(Z̃)− η∇Z̃s(Z̃)(Zt−1 − Z̃) +
√

2ηϵt (26)

= Zt−1 − ηs(Z̃)− η∇Z̃s(Z̃)Zt−1 + η∇Z̃s(Z̃)Z̃ +
√

2ηϵt (27)

=
(
1− η∇Z̃s(Z̃)

)
Zt−1 + η∇Z̃s(Z̃)

(
Z̃ −

(
∇Z̃s(Z̃)

)−1
s(Z̃)

)
+
√
2ηϵt (28)

We can see that this is an OU process with the following parameters:438

θ = η∇Z̃s(Z̃) (29)

µ = Z̃ −
(
∇Z̃s(Z̃)

)−1
s(Z̃) (30)

σ = 2η (31)

This means that we can apply ancestral sampling to the Taylor approximation of our Langevin439

diffusion. We refer the reader to the pseudocode in Algorithm 1 for our specific implementation.440

Algorithm 1 Taylor-Accelerated Forward Sampling

1: Input: Initial residual Z0, conditioning variable X , target time t⋆, step size η, Taylor steps
function K(t)

2: Initialize: Current state Zcurr = Z0, current time tcurr = 0
3: while tcurr < t⋆ do
4: Determine number of Taylor horizon: Set k = min(K(tcurr), t⋆ − tcurr)
5: Compute Taylor approximation:

scurr = sθ(Zcurr;X, tcurr)

∇scurr = ∇Zcurr
sθ(Zcurr;X, tcurr)

6: Set OU parameters:

α = 1− η∇scurr
µeff = Zcurr −

scurr
∇scurr

σeff =
√
2η

7: Ancestral sampling: Sample directly at time tcurr + k: Zcurr ∼
N

(
αkZcurr + (1− αk)µeff , σ

2
eff

1−α2k

1−α2

)
8: Update time: tcurr ← tcurr + k
9: end while

10: Return: Final residual Zt⋆ = Zcurr
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C.3 Pseudocode for Methodology441

Algorithm 2 CEVT-based Data Preprocessing

1: Input: {(Xi, Yi)}ni=1, threshold quantile α > 0

2: Estimate empirical CDFs: Compute F̂X and F̂Y from data
3: Transform to Laplace marginals: For all samples i = 1, . . . , n do

X⋆
i ← −sign(F̂X(Xi)− 0.5) · log

(
1− 2|F̂X(Xi)− 0.5|

)
Y ⋆
i ← −sign(F̂Y (Yi)− 0.5) · log

(
1− 2|F̂Y (Yi)− 0.5|

)
4: Extract tail samples: Find subset {(X⋆

i , Y
⋆
i )}mi=1 where F̂X(Xi) > 1− α

5: Estimate tail parameters: Compute coefficients a, b using tail samples {(X⋆
i , Y

⋆
i )}mi=1

6: Compute residuals: Set Zi =
Y ⋆
i −a·X

⋆
i

(X⋆
i )

b for i = 1, . . . , n

7: Return: Preprocessed dataset {(X⋆
i , Zi)}ni=1

Algorithm 3 Diffusion Model Training

1: Input: Preprocessed dataset {(X⋆
i , Zi)}ni=1, learning rate η, epochs E, weighting function λ(t)

2: Initialize: Network parameters θ, noise schedule parameters
3: for epoch e = 1, . . . , E do
4: for batch {(X⋆

j , Zj)}j∈batch do
5: Sample timestep: Sample t uniformly over time-horizon.
6: Generate noisy samples: Sample Zt|Z0 = Zj according to forward process using

Euler-Maruyama solver of Taylor-accelerated sampling in Algorithm 1.
7: Compute score matching loss: Evaluate L(θ) in (7) for each sample in the batch.
8: Backward pass: Compute gradients∇θL(θ)
9: Update parameters: θ ← θ − η∇θL(θ)

10: end for
11: end for
12: Return: Trained parameters θ

Algorithm 4 Diffusion Model Sampling

1: Input: Initial noise ZT , conditioning X⋆, trained score sθ⋆ , time horizon T
2: Initialize: Current state Zcurr = ZT , current time tcurr = T
3: while tcurr > 0 do
4: Determine step size: Set k = min(K(tcurr), tcurr)
5: Compute score: Evaluate sθ⋆(Zcurr;X

⋆, tcurr)
6: Reverse step: Apply reverse SDE or Euler-Maruyama:

Zcurr = Zcurr + η · sθ⋆(Zcurr;X
⋆, tcurr) +

√
2ηϵ

where ϵ ∼ N (0, I)
7: Update time: tcurr ← tcurr − k
8: end while
9: Return: Denoised residual Z0 = Zcurr

D Additional Experimental Results442

Here, we provide additional plots and metrics for the experiments section of our work.443
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D.1 Synthetic Data444

(a) Top Row: Standard method targeting P (Y |X) with linear diffusion. Bottom Row: New method. New
method manages to capture the heavy Laplace tails, standard method struggles to do so.

(b) Top Row: Standard method targeting P (Y |X) with linear diffusion. Bottom Row: New method.

Figure 9: (a) Synthetic Example 1 (b) Synthetic Example 2
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Figure 10: Left Plot: As discussed, we see for extreme (but not infinite) values in the tail, data seem
Gumbel distributed. We visualize sampling in the CEVT based representation space (P (Z|X⋆) in
the subsequent plots. We capture the one-sided tails.

D.2 Financial Returns Conditioned on VIX445

We provide additional and more detailed experimental results for our evaluation on real data.446

D.2.1 VIX Time Series447

Here, we show a plot of the VIX time series in Figure 11, which serves as the conditional information448

supplied to the diffusion models for the stock return generation experiment. For both the GFC and449

COVID periods, the VIX level is relatively lower in the training data (plotted in blue) than the testing450

data (plotted in orange), indicating that the testing data covers a period of market stress.451

2005
2006

2007
2008

2009
2010

Date

10

20

30

40

50

60

70

80

In
de

x 
Va

lu
e

VIX Index (2008 Financial Crisis Period)
Training
Test

(a) GFC

2017
2018

2019
2020

2021
2022

Date

10

20

30

40

50

60

70

80

In
de

x 
Va

lu
e

VIX Index (2020 COVID Period)
Training
Test

(b) COVID

Figure 11: VIX level during the analyzed periods of market stress. VIX level in the training datasets
(shown in blue) correspond to more stable market periods, while VIX levels in the testing dataset
(shown in orange) correspond to a period of market stress.

D.2.2 Evaluation of Calibration via QQ plots (Unconditional Evaluation)452

To evaluate the unconditional generative performance (where we marginalize out the conditions)453

of the proposed conditional diffusion model, we use QQ plots to check for the calibration of the454

predicted quantiles versus the true quantiles from the empirical dataset. Figure 12 and 13 show the455

QQ plots for each stock on the training and testing datasets for the GFC period, respectively. Figure456

14 and 15 show the QQ plots for each stock on the training and testing datasets for the GFC period,457

respectively. The results indicate that while the use of a Gaussian base distribution generally leads458

to better calibration in the training dataset and in the bulk of the distribution (10%-90% quantiles),459

the use of a Laplace distribution offers a significant advantage in the tail, specifically for the testing460

datasets, since the testing dataset considers VIX levels (conditions) much larger than what is seen in461

the training dataset. This showcases the advantages of considering alternative base distributions in462

the case of generative modeling for heavy-tailed targets.463

D.2.3 Scatter Plots of Asset Returns vs. VIX Level (Conditional Evaluation)464

The use of QQ plots makes sense for evaluation of the calibration of the marginal distribution of465

returns (where we generate samples considering all conditions in the ground truth training and testing466

datasets); however, it does not provide insight into the performance of the conditional, as we vary the467
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(b) AMZN - Gaussian
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(c) GOOGL - Gaussian.

0.06 0.04 0.02 0.00 0.02 0.04 0.06
True Quantiles

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Pr
ed

ict
ed

 Q
ua

nt
ile

s

Training - Gaussian - Q-Q Plot

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Value

0

10

20

30

40

De
ns

ity

Training - Gaussian - Distribution Comparison
True
Predicted

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Training - Gaussian - Empirical CDFs
True
Predicted

95% 99% 99.5% 99.9%
Percentile

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Va
lu

e

Training - Gaussian - Tail Comparison
True
Predicted

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
Residuals (Predicted - True)

0

5

10

15

20

25

30

De
ns

ity

Training - Gaussian - Residuals Distribution
MAE: 0.0143, RMSE: 0.0179

(d) GS - Gaussian
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(e) AAPL - Laplace
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(f) AMZN - Laplace

0.15 0.10 0.050.00 0.05 0.10 0.15 0.20
True Quantiles

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Pr
ed

ict
ed

 Q
ua

nt
ile

s

Training - Laplace - Q-Q Plot

0.15 0.10 0.050.00 0.05 0.10 0.15 0.20
Value

0

5

10

15

20

25

30

35

De
ns

ity

Training - Laplace - Distribution Comparison
True
Predicted

0.15 0.10 0.050.00 0.05 0.10 0.15 0.20
Value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Training - Laplace - Empirical CDFs
True
Predicted

95% 99% 99.5% 99.9%
Percentile

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
lu

e
Training - Laplace - Tail Comparison

True
Predicted

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Residuals (Predicted - True)

0

5

10

15

20

De
ns

ity

Training - Laplace - Residuals Distribution
MAE: 0.0239, RMSE: 0.0328

(g) GOOGL - Laplace.
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(h) GS - Laplace
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(i) JPM - Gaussian
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(j) MSFT - Gaussian
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(k) NVDA - Gaussian.
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(o) NVDA - Laplace.
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(p) WFC - Laplace

Figure 12: QQ plots on training datasets for the GFC period across all stocks. When comparing the
use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model
exhibits superior calibration, particularly in the central mass of the distribution. We hypothesize that
this improved fit in the bulk region is attributable to return distributions more closely approximating
Gaussian behavior during this period, which coincides with generally lower VIX (volatility index)
levels. Another notable observation is that the Laplace base distribution tends to produce overdisper-
sion in the tails, while the Gaussian base leads to underdispersion. This pattern aligns with theoretical
expectations, as the Laplace distribution inherently has heavier tails than the Gaussian distribution,
making it prone to overestimating tail probabilities when the true data-generating process is closer to
Gaussian in nature.
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(a) AAPL - Gaussian
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(b) AMZN - Gaussian
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(c) GOOGL - Gaussian.
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(d) GS - Gaussian
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(e) AAPL - Laplace
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(f) AMZN - Laplace
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(g) GOOGL - Laplace.
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(i) JPM - Gaussian
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(k) NVDA - Gaussian.
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(l) WFC - Gaussian
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Figure 13: QQ plots on testing datasets for the GFC period across all stocks. When comparing the
use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model significantly underestimates the tail heaviness of the target distribution (showing extreme
underdispersion), while the Laplace distribution provides a much closer approximation to the true tail
behavior, particularly in the extreme regions. This pattern is especially pronounced for technology
stocks (AAPL, AMZN, GOOGL, NVDA). For financial sector stocks, both distributional models
perform inadequately. This can be attributed to the disproportionate impact of the GFC on the
financial sector, representing a more comprehensive distribution shift from the training data beyond a
covariate shift in market volatility indicators like VIX. Nevertheless, across all stocks, we observe
that samples from both base distributions in the conditional generative model exhibit underdispersion
relative to the empirical data.
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(b) AMZN - Gaussian
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(k) NVDA - Gaussian.
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Figure 14: QQ plots on training datasets for the COVID period across all stocks. When comparing
the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model exhibits better calibration in the bulk of the distribution for most stocks, though with notable
deviations in the extremes. Another notable observation is that the Laplace base distribution consis-
tently produces overdispersion in the tails across multiple stocks, while the Gaussian base leads to
underdispersion at the extremes; similar to the observation made for the GFC period.
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(k) NVDA - Gaussian.
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Figure 15: QQ plots on testing datasets for the COVID period across all stocks. When comparing
the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model significantly underestimates the tail behavior, particularly evident in technology stocks like
JPM (i), MSFT (j), and WFC (l) where predicted quantiles fall below the diagonal reference line at
extremes. We hypothesize that this underdispersion reflects the Gaussian distribution’s inability to
capture the heightened market volatility characteristic of the COVID crisis period. Another notable
observation is that the Laplace base distribution provides a markedly better fit to the tail behavior for
most stocks, especially visible in AAPL (e), GOOGL (g), and JPM (m), though it still exhibits some
deviations from perfect calibration. This pattern aligns with theoretical expectations, as the COVID
period featured extreme market movements that are better approximated by distributions with heavier
tails, making the Laplace distribution’s inherent properties more suitable for modeling the fat-tailed
nature of returns during this market stress periods.

22



condition to extreme values. In the case of VIX, we are interested in the right-tail of the condition;468

when the VIX level grows to large positive values (around 40-80). To evaluate the conditional469

performance, we use a scatter plot of the returns and the VIX level, and compare that the empirical470

percentiles of the conditional diffusion model for both the Gaussian and Laplace base distributions.471

We show these scatter plots for each ticker in Figure 16 and 17 for the GFC and COVID periods,472

respectively. For both periods, we can observe that the use of Gaussian base leads to underestimation473

of the tails across almost all conditions, while the use of a Laplace is much closer.474
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Figure 16: Scatter plots for visualization of conditional generation performance for GFC period.
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Figure 17: Scatter plots for visualization of conditional generation performance for COVID period.
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