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Abstract

Diffusion models have emerged as powerful generative frameworks with
widespread applications across machine learning and artificial intelligence systems.
While current research has predominantly focused on linear diffusions, these ap-
proaches can face significant challenges when modeling a conditional distribution,
P(Y|X = z), when P(X = x) is small. In these regions, few samples, if any, are
available for training, thus modeling the corresponding conditional density may
be difficult. Recognizing this, we show it is possible to adapt the data representa-
tion and forward scheme so that the sample complexity of learning a score-based
generative model is small in low probability regions of the conditioning space.
Drawing inspiration from conditional extreme value theory we characterize this
method precisely in the special case in the tail regions of the conditioning variable,
X . We show how diffusion with a data-driven choice of nonlinear drift term is best
suited to model tail events under an appropriate representation of the data. Through
empirical validation on two synthetic datasets and a real-world financial dataset,
we demonstrate that our tail-adaptive approach significantly outperforms standard
diffusion models in accurately capturing response distributions at the extreme tail
conditions.

1 Introduction

In recent years, diffusion models have emerged as among the most powerful generative modeling
techniques for synthesizing data across a diverse set of modalities. From image generation to
audio synthesis and time series modeling, these models have demonstrated superior capabilities for
capturing intricate data distributions as compared to other generative frameworks. The work [[10]]
introduced denoising diffusion probabilistic models (DDPMs), which frame the generative process
by defining a forward process that gradually transforms data into noise, followed by a learned reverse
process that reconstructs data from noise. This approach has since been extended to a continuous-time
formulation using Langevin diffusions, providing a mathematically elegant framework that connects
stochastic processes with generative modeling. The continuous-time formulation views this as a
stochastic differential equation (SDE), where the forward process follows a Langevin diffusion that
converges to a standard multivariate Gaussian distribution. This perspective has enabled significant
theoretical advances while maintaining state-of-the-art empirical performance across applications.

Conditional diffusion models extend this framework by additionally incorporating conditioning
information to guide the generation process. However, a fundamental challenge emerges when
dealing with extreme values in the sample space of the conditioning, where data is inherently
sparse. Traditional diffusion models struggle to accurately capture conditional distributions in
these tail regions, particularly when the underlying distributions deviate significantly from Gaussian
assumptions. This limitation becomes especially problematic in domains where rare but consequential
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events drive critical decisions, such as financial risk assessment and climate modeling. To effectively
sample from a conditional distribution P(Y|X = z) using score-based diffusion models, we need
to estimate a sequence of score functions, {V logp,,, (.|2) M. Here, Dy (.|) Tefers to the marginal
density of the conditional distribution ¢ steps into a (discretized) Langevin diffusion. The bottleneck is
estimating these conditional score functions at low-probability, or rare, conditions. When P(X = z)
is small, it is unlikely that we see enough samples in our training data to estimate V logp,,, (.|x)
accurately. If the score functions in these low probability regions have high sample complexity,
sampling from tail conditions seems an improbable task.

We present a data-adaptive methodology for score-based diffusions that addresses this challenge
through two key insights: (i) conditional diffusion requires learning complex functions with few
samples, and (ii) function complexity can be controlled through the diffusion scheme and data
transformation. Our method ensures the conditional denoising functions maintain low sample
complexity where P(X = x) is small, using data transformation and a data-driven nonlinear
diffusion process. We demonstrate this approach in detail under mild extreme value assumptions.
Specifically, our work explores nonlinear conditional diffusion modeling with tail-adaptive drift
schemes. We examine the method where data follows extreme value assumptions [9, 8} [13]. Our
contributions include:

1. We identify current limitations of standard linear diffusion models with Gaussian equilibrium
for conditional generation under extreme tail conditions with limited samples, based on
recent neural network sample complexity results.

2. We propose a novel score-based diffusion method that addresses the aforementioned sample
complexity issue by utilizing well-designed data transformation and nonlinear Langevin
diffusions. We explore this method in detail assuming the data follows some mild extreme
value conditions (CEVT); although, we emphasize that our broader modeling philosophy is
agnostic to any data assumptions.

3. We validate our method on synthetic and real financial datasets, demonstrating superior
conditional distribution modeling at tail extremes compared to standard diffusion variants.

2 Background

2.1 The Difficulty of Conditional Diffusion

Conditional diffusion models frame sampling as the time reversal of a noising process governed
by a diffusion SDE. A forward diffusion process {Y;}7_, is indexed by a continuous time variable
t € [0, T, such that Yy ~ uo(-|X = x) is our sampling target, and Y7 ~ p7 = 7, admits a tractable
form to generate samples efficiently. A continuous time evolution, an Ito SDE, governs the forward
process g — pr. We limit ourselves to Langevin processes. The forward Langevin diffusion
process is a stochastic differential equation of the form,

dY; = =V f(Yy)dt + /28-1dB;, Yo~ po(-|X =) . (D

where the conditional probability measure of Y; is denoted p:(-|z) with density p,,, (.|2), { Bt }t>0
denotes a Brownian motion, and # > 0 is a scale parameter that the determines the noise level of the
diffusion. Under mild conditions on f, this evolution admits e~/ as equilibrium density as t — oo.
Backward denoising uses the reverse-time SDE [[1]]:

dY,” = —(Vf(Y;7) + 287 ' Viogpu,1x)(Y7))dt +/2871dB,, Y ~pr, ()

where we use Y, to denote the time-reversal and { B; };>o denotes another Brownian motion.

2.1.1 Denoising Complexity

Implementing backward denoising process via (2)) requires learning the conditional score function
Vliogpu,(.|z)- We instead target the estimation of the function, V f + ﬂ’:[VlogpM(im. The
complexity of these functions determines the sample size required for accurately estimation. For
neural network predictors, non-asymptotic bounds have been established in [[7] that relate target
smoothness to estimation accuracy (see Theorem [2]in Appendix [B).
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Sampling from P(Y|X = x), requires accurately learning the sequence of maps:

{Bi(y;2)}_o = {Vf(y) + B VIogp,,1n)(v)} o, Yo € X

Since few training examples exists for rare events where P(X = z) is small, accurate estimation of
the denoising maps in these “rare regions" is futile, preventing effective denoising. More rigorously,
we can adapt theoretical results from [19] to show that the accuracy of denoising is directly tied to
how well the denoising maps are learned. Let 119 denote the estimated density resulting from @)
after appropriately estimating the score function sequence, sq(y; ¢, x) ~ By(y; ). If ug refers to
the target, then the Kullback-Leibler (KL) divergence between the two can be upper bounded by the
integrated error of score estimation (see Appendix [B|for a proof for completeness):

T
KL(Mo('\x)IIMe('lw))§/O E (I(VFy) + B VIogpu, o) (y) — so(ys t. x)l|*]dt

Pug(-la) (¥

T
— [ BB - solust )Pl
0 Puy(lz) (W)

Linear Gaussian Dynamics: Standard score-based diffusion models employ the Ornstein-
Uhlenbeck process (with f(z) = 32?):

dY; = ~Y,dt + /267 1dBy, Y ~ o),
which yields at Gaussian stationary distribution. For this case, the denoising sequence in (2) becomes:

{Be(ys2)}imo = {y + 87"V logpy, (o) () Ho

As previously mentioned, when P(X = z) is small and {By(y;z)}L_, complex, this standard
paradigm faces sample complexity challenges.

2.2 Extreme Value Theory

Extreme value theory characterizes the tail behavior of random variables. Classical work examines
limiting behavior like P(Y = y|Y > u) — G(y) as u — oo. [9] extends this to conditional
distributions P(Y|X = x) for large x, contrasting with traditional multivariate theory where all
variables grow simultaneously. The Heffernan-Tawn model [13] is a flexible approach to model the
conditional distribution P(Y|X = z) when z is large. For a broad class of dependency structures
between X and Y, this work establishes a semi-parametric relationship that allows one to model
a broad range of asymptotic independence/dependence structures at the tail of the condition (see
Appendix A for more details).

Assumption 1 (CEVT [9,[13]]). Suppose the marginals of X and Y are standard Laplace. Then, as
X =x — 0o, we assume X, Y admit the asymptotic dependency,

lim P<Yb(‘;§§(> < 2X = g;) =G(2) ?3)

T—r00
where G is some distribution independent of X. In other words, for tail values, X = x — oo:
Y=aX)+bX)-Z, Z~Q@G. “)

3 Proposed Methodology

In this section, we propose a general methodology that aims to ensure that denoising maps discussed
in Section [2.T.T| maintain low sample complexity for rare conditions:

{B;(y; 2)}I_, is easy to estimate when P(X = x) is small. 5)
While we demonstrate this approach under CEVT assumptions for explicit characterization, the

framework applies broadly—any transformation yielding favorable tail behavior suffices. The general
procedure consists of three steps:

1. Transform (X,Y) EN (X™*, Z) such that P(Z|X* = x) =~ e~ 9 for rare
2. Design forward diffusion with e~ 9 as the stationary density and train using the score-
matching objective

3. Sample Z ~ P(Z|X* = z) and apply inverse transformation to recover Y.

In the following, we describe an implementation of each of the above steps in the context of CEVT.
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3.1 Step 1 - Data Transformation

When CEVT holds, we can obtain explicit transformations (X,Y) — (X*, Z) ensuring (5) for large
X*. Consider the following chain of transformations applied to X and Y:

Laplace Marginals
—

(X,Y) (X, v M (xr z), ©)
where Z = b(X*)~! (Y* — a(X™)). In the first part of the transformation, we transform (X,Y")
to (X, Y™) such that marginal distributions of both X* and Y* are standard Laplace distributions.
Since X* and Y are both standard Laplace, we can further apply a normalization based on the
Heffernan-Tawn model to transform Y* — Z, where

* *
P Y* —a(X™)

b(X™)
To apply this normalization, we learn the functions a(x) and b(x) (which often take simple parametric
form) using maximum likelihood estimation with samples from the tail of X*. Despite the small
amount of samples available after partitioning the samples of X* based on the tail, learning is
plausible due to the simple structure of a(z) and b(z) (see Appendix[A.1) for details. After applying
these sequence of transformation, we have a set of data of the random variables (X, Z;) that satisfy
P(Z|X* = x) = G for large values of x.

3.2 Step 2 — Learning the Conditional of Z

We learn the conditional distribution, P(Z|X*), via score-based diffusion models. We provide
pseudocode of our training procedure in Algorithm 3]in Appendix In the following, we describe
the design of the forward process of our conditional diffusion as well as our approach to score
matching. We also provide an intuitive argument as to why the denoising maps for this diffusion
model have low sample complexity at the tails of the condition.

Designing the Forward Process We implement the forward process via a simple Langevin dif-
fusion, but choose the drift term, Vg, based on extreme value behavior in our observed data. In
particular, by Assumptionm for tail values in the condition, { X > z, x large}, we model,

Z~G, and Z 1 X.

However, in practice, the distribution G is unknown. To approximate GG, we train a lightweight
density estimator on tail samples, {(X;, Z;) : X; > z}, to gauge the density of G, e™9. We do
so by comparing the smooth estimate to common parametric forms. For example, a wide range
of easy-to-sample distributions admit an exponential form, e~9, with convex g, such as Gaussian,
Laplace, and Gumbel.

Consider the following Langevin diffusion:
dZ, = —Vg(Z,)dt + V2dB,

The Langevin diffusion above, for arbitrary convex g does not admit path trajectories that can be
expressed in closed form. In practice, we resort to a simple discretization,

Ziwr =2y —n-Vg(Zi) + /20 - N(0,1).

We remark that the convergence of the discretized process, which amounts to unadjusted Langevin
dynamics, is sensitive to the curvature of g. We elaborate in Appendix [C.TJhow we can modify g so
that it is appropriately smooth, while still accurately capturing a stationary distribution close to e~ 9.
We also remark that with a nonlinear drift term Vg, we also lose the ancestral sampling property
that score-based diffusions exploit for efficient training. That is, if Vg is linear, then the t-step ahead
distribution P(Z;|Zy, X) is readily available. This is not possible for general g. Instead, in Appendix
[C.2)we show how Taylor-approximations can enable faster sampling in the general case, similar in
line to [18]].
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Figure 1: We visualize a forward diffusion before and after the transformation outlined in Section
3.2. Before transformation, the Langevin diffusion induces quite dramatic changes in the conditional
density at tail events ({X = x}, x very large). This can be seen by looking at the blue particle
paths (top left) or the evolving density, p,,, (.|2)(y), visualized in the top right plot. After taking the
steps outlined in Section 3.2, the tail conditional density does not change dramatically in the forward
diffusion. Compare the new particle paths in blue (bottom left plot), or the new conditional densities
at time ¢ (bottom right plot). For tail, low-probability conditions, after transformation, the conditional
density is already (nearly) at stationarity. Details can be found in Appendix A.2

Score Estimation Unlike standard diffusion models, rather than tracking the conditional score func-
tion, Vlog p,,(.|z), We instead target (Vg + Vlog pm('lw))' We train a time-dependent conditional
score model sy (z; x, t) based on a slightly modified learning objective.

L0 =B{0 B B llsoleinnt) - (Votpuizn(2) + ValZOR | @)

where A(t) is a weighting function that adjusts the importance of different time steps for the score-
matching loss. Recent works explore how to learn the conditional score functions s¢(Z; x, t) effi-
ciently. For simplicity, we train based on the standard formulation based on Tweedie’s formula.

Why this Works? Since Z is constructed based on Assurnption at an event {X* = z}, with x
large, the initial density of 11o(Z|X™* = ) will already be (approximately) at equilibria:

~ o9
Puo(-|X*=a) = €

Thus, at these extreme values of X*, the sequence of maps {Vg + Vlogpy, (.|2+) M, ~ 0, making
them much easier to estimate. We display an example of this in Figure

3.3 Step 3 — Sampling

For a desired value of X, we prompt the learned diffusion model to retrieve a sample Z from
P(Z|X = z). Sampling is implemented via time-reversal as in (Z) and substituting in the learned
estimator, sg(z; z, ).
dZ; = —(2s9(Zy; m,t) — V(Zy))dt + /287 1dB;, or, ®)
dZt = —Sg(Zt; Z, t)dt (9)

In practice, we use a simple Euler-Maryama discretization of the above to sample. Once we have
a sample Z ~ P(Z|X), we convert it to a sample from our desired distribution by inverting the
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sequence of transformations,
Y*=a(X*)+b(X*)-Z
Y = Py (Frap(Y™))
Algorithm[z_f] in Appendix @] provides pseudocode for our sampling procedure.

3.4 Generalization

As previously mentioned, there is potential to adapt Step 1 of the process to more general circum-
stances (e.g., if the CEVT assumption is not appropriate for the data of interest). The challenge of
adopting the methodology is the finding the appropriate transformation of the data using a data-driven
approach, perhaps using an approach similar to [11]. We leave this for future work.

4 Experiments

In this section, we evaluate our proposed approach on two synthetic data examples and a real data
example. For baselines, we consider two schemes for denoising. In the standard scheme, we sample
Yr ~ N(0,1), and provided a condition X = x, we apply the maps,

{BF** ()}
In the new scheme, we first transform our data, Y Lz Sample Z1 ~ e~ 9 and apply the maps,
{B(2; CU)};:T:O

. . T .
Finally, invert the transform, Zy — Yj. To fairly compare our new scheme to the standard scheme
we make the following considerations.

Neural Net Parametrization: Fundamentally, we want to track how well BF“** BY are learned.
As a proxy we will look at sample quality. To enable a fair comparison, we deploy the same neural
network architectures to learn each score network, which are standard feedforward neural networks.

Forward Chain Length: It is important to recognize that although the sequence of standard
denoising maps, {B&@4% (y; x)}1_,, may have high sample complexity, due to the fast convergence
of the forward OU process, the number of noise-steps necessary, T', may be smaller. This, in turn, may
be beneficial for learning. For example, if one were to train a separate network for each noise-scale
t € [T]. We broach this gap by considering smoothed versions of Vg for the generic scheme. This
directly impacts speed of forward convergence, and is detailed in Appendix C. By choosing the
smoothing parameters and step-size 7 appropriately, we are able to use the same number of noise
steps for each model. This compromise, between complexity of BY (y; z), n and size of T needs to
be explored more rigorously. We leave this to future work.

4.1 Synthetic Data Examples

We consider two synthetic data experiments: a mean-shifted Laplace distribution; and correlated
Gaussian distribution. We provide detailed plots with additional results for both synthetic examples
can be found in Appendix [D.1]

Mean-Shifted Laplace Target. We consider the following data generating process:
10
X ~Pareto(1), Y ~ 7T Laplace(0, 1) (10)

Without appealing to CEVT, we see that as X — oo, Y ~ Laplace(0,1). This suggests we
target standard Laplace as the equilibrium distribution of the forward process, without applying any
transformation to the data. We run,

Y;ern - Y;f —-n- v.gLap*(Y;f) + \/% N(07 1)
Refer to Appendix C.1 to see form and justification for Vgr,q,.. We plot a comparison of the new
method and standard Gaussian diffusion in Figure 2. The results of the figure demonstrate that
in 90% percentile, a standard diffusion model with Gaussian base distribution does not estimate
the target distribution well, while the proposed approach without the CEVT transformation and an
appropriately chosen Laplace base distribution more accurately capture the target.
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Correlated Gaussian Target. We consider the following data generating process:

[ﬂ ”ngH}) TD (1)

where we set p = 0.4. First we transform (X,Y) — (X*, Z) as per Algorithm 2. As detailed in
the Appendix A.2, we know after this transform, G ~ N(0, 2p%(1 — p?)). However, to mimic the
data-driven procedure in practice, we instead gauge a form for e~ 9 using tail samples. Based on this,
we suggest targeting Gumbel(0, 0.4) and run,

Zt+n =7 — n- v_gGumb*(Y;) + V 27] N(Ov 1)

Refer to Appendix C.1 to see form and justification for Vggump«. Once we sample from P(Z|X* =
x) via the new score-based diffusion, we transform back to the appropriate distribution via inverse
CDEF. We compare these samples to a traditional (linear) diffusion model that targets sampling from
P(Y|X = z). We plot this comparison in Figure From the figure, we can observe that the standard
diffusion model fails to capture the target distribution at the tail of the condition, while the proposed
method with the Gumbel base distribution almost perfectly captures it.

90.00% percentile for X 90.00% percentile for X 90.00% percentile for X 90.00% percentile for X
5 0.5

— Real — Real — Real
—— Synthetic —— Synthetic —— Synthetic

— Real
Synthetic 1|

0.4

0.3 0.3
0.3

0.2 0.2 02

0.1 0.1 01

0.0 ‘ -
. 0.0 0.0 0.0
5 0 s 10 -5 0 5 10 -4 -2 0 2 4 -4 -2 0 2 4

(a) Mean-Shifted Laplace Target. (b) Correlated Gaussian Target.

Figure 2: In each subfigure, the left plot shows the standard diffusion with Gaussian base distribution,
and the right plot shows our proposed method with a standard Laplace base distribution for the
mean-shift example (no transformation) and a Gumbel base distribution for the multivariate Gaussian
example (with learned CEVT transformation).

4.2 Stock Returns Conditioned on Volatility Index

The VIX Indexis a time-series that measures market expectations of near-term volatility conveyed
by S&P 500 stock index option prices. A high VIX index typically signals a period of financial
stress, as observed during major economic disruptions such as the Global Financial Crisis (GFC) in
2008 and the COVID-19 pandemic in 2020, when the VIX reached elevated levels. In this study, we
apply our methodology to real-world data to model the returns of selected financial assets during
periods of heightened market volatility. Our objective is to evaluate the proposed method by modeling
the returns of financial assets conditioned on a measure of market risk. Specifically, we assess the
performance of our approach in generating the marginal returns of a mix of technology and financial
stocks during stressed market regimes, using the volatility index VIX as a conditioning factor. The
stocks analyzed include AAPL, MSFT, GOOGL, NVDA, AMZN, JPM, WFC, and GS. We focus on
two significant periods: the 2008 Global Financial Crisis and the 2020 COVID-19 pandemic. For
each period, we establish distinct training and testing phases to evaluate generative performance::

* GFC: we use training data from 01/01/2005-12/31/2007 and evaluate on the testing data
from 01/01/2008-12/31/20009.

¢ COVID: we use training data from 01/01/2017-12/31/2019 and evaluate on the testing data
from 01/01/2020-12/31/2021.

For baselines, we compare a standard linear diffusion (Gaussian base) and our proposed methodology
with CEVT-based transformation and a Laplace base distribution. We provide more information on
the VIX and plots of it during both periods for both the training and test data in the Appendix [D.2}
which demonstrate the prevalence of more extreme conditions in the testing dataset for both periods.



Test - Gaussian - Q-Q Plot Test - Gaussian - Q-Q Plot Test - Gaussian - Q-Q Plot Test - Gaussian - Q-Q Plot

0.10 0.12 ) 0.
I‘ //
/ 1
. 0.06-] , 0.06
" V4 ., 008 e ya . 7
1 0
g o0s % g J 8 0044 L, £ o049 L
5 / 5 0.044 s £ / 5 s
3 /. g 4 S 0.02- 4 S 0.024 >
I3 , I3 4 3 % I3 P
< 0.024 / o # o V4 o 4
2 4 £ 0.004 4 2 0.00+ r £ 0.00 4
g 4 g 0 4 g / < V4
b / b 4 H s 2 0024 4
& -0.02 s/ a o £ -0.02+ o &-o. v
4 ~0.04- / ', L
_0.044 7 ~0.04
, e 0.04 0.04
/
-0.06 T T T T —0./ T T T T -0. T T T T T —0.06 T T T T T T
-0.10 -0.05 0.00 005 010 015 ~0.10 -0.05 0.00 005 010 0.5 ~0.056-0.0250.000 0.025 0.050 0.075 0.100 ~0.06-0.04-0.020.00 0.02 0.04 0.06 0.08

True Quantiles True Quantiles True Quantiles True Quantiles

(a) AAPL - Gaussian (b) AMZN - Gaussian (c) GOOGL - Gaussian. (d) MSFT - Gaussian

0.12 Test - Laplace - Q-Q Plot 0.12 Test - Laplace - Q-Q Plot o Test - Laplace - Q-Q Plot o Test - Laplace - Q-Q Plot
.
7 . 0.06 v 0.06 <

0.08- / 0.08 5 /. /
8 4 8 / ¢ 0.04- e g 7
2 ’ 2 o 2 0.044 A
z 2 z / E 4 z v

'’ c < 4
5 0047 4 5 0047 S 5 002 g .02 /
I3 f I3 7 153 i 4 <1 S
- p - 4 2 0.0 / =4 p
& 4 & y 2 4 £ 0.00+ #
§ 0.004 / £ 0.0 4 £ _0.02 p g /
-1 U4 -1 4 5 “ =1 4
2 4 2 ' 3 ’ 2 -0.02 /
&£ p; &£ w £ —0.04 % & ~o P
—0.04 P 4 ~0.04 4 ) o
/ S 0064 7 ~0.04
"
-o. T T T T 0. T T T T -0 ————————— -o. T
-0.10 -0.05 0.00 0.05 0.10 0.15 -0.10 —-0.05 0.00 0.05 0.10 0.15 —0.0750.0500.029.0000.0250.0500.0750.100 —0.06-0.04-0.020.00 0.02 0.04 0.06 0.08
True Quantiles True Quantiles True Quantiles True Quantiles
(e) AAPL - Laplace (f) AMZN - Laplace (g) GOOGL - Laplace (h) MSFT - Laplace

Figure 3: QQ plots on test datasets for COVID period for various technology stocks.
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Figure 4: Performance comparison of Gaussian versus Laplace base distributions based on different
values of VIX level for the GFC regime.

243 Our results demonstrate that, in this example, employing a nonlinear diffusion model offers a clear
244 advantage in capturing the unconditional heavy-tailed behavior of stock returns, while also enhancing
245 the modeling of conditionals for high VIX levels. For instance, as illustrated in the QQ plots in Figure
246 [3} we observe that when capturing the marginal distribution of returns for various technology stocks
247 during the COVID period, utilizing a Laplace base distribution outperforms its Gaussian counterpart
248 1n the tails, while maintaining good calibration in the bulk of the distribution. Regarding performance
249 on the conditionals, we observe that during the GFC period, selecting a Laplace base distribution
250 more effectively captures tail behavior as VIX values increase, despite these high VIX levels not
251 being present during training. We offer more detailed plots analyzing the results for each stock across
252 both periods in the Appendix [D.2]

3 5  Conclusions and Future Work

254 In this work, we propose a methodology for improving rare event sampling in conditional generative
255 modeling based on nonlinear score-based diffusion models. Motivated by conditional extreme
256  value theory, we show that under some transformation of the data, we can choose the equilibrium
257  distribution of the Langevin diffusion that is more advantageous from a sample complexity perspective
258 for our learning problem. We provide numerical simulations on two toy experiments and a practical
259 application of risk modeling for financial returns and demonstrate we can better capture the response
260 distribution for extreme tails of the condition variable. From a practical perspective, challenges
261 pertaining to our work include incorporating data-driven learning of the feature transformation
262 process, extension to high-dimensional conditional variables, and a comprehensive performance
263 comparison across multiple generative models on a larger pool of datasets.



264

265
266

267
268

269
270
271

272
273

274
275

276
277

278
279

281

282
283
284

@

285
286

287

289

290
291

292
293
294
295

297
298

299

300
301

302
303

304
305

306
307
308

References

[1] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

[2] Sinho Chewi. Log-concave sampling. Book draft available at https://chewisinho. github. io,
9:17-18, 2023.

[3] Arnak Dalalyan. Further and stronger analogy between sampling and optimization: Langevin
monte carlo and gradient descent. In Conference on Learning Theory, pages 678—689. PMLR,
2017.

[4] Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and
langevin monte-carlo. Journal of Computer and System Sciences, 78(5):1423—-1443, 2012.

[5] Holger Drees and Anja Jansen. Conditional extreme value models: fallacies and pitfalls.
Extremes, 20(4):777-805, 2017.

[6] Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted
langevin algorithm. 2017.

[7] Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and
inference. Econometrica, 89(1):181-213, 2021.

[8] Janet E Heffernan and Sidney I Resnick. Limit laws for random vectors with an extreme
component. 2007.

[9] Janet E. Heffernan and Jonathan A. Tawn. A conditional approach for multivariate extreme val-
ues (with discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology,
66(3):497-546, 07 2004.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[11] Tianyang Hu, Fei Chen, Haonan Wang, Jiawei Li, Wenjia Wang, Jiacheng Sun, and Zhenguo Li.
Complexity matters: Rethinking the latent space for generative modeling. Advances in Neural
Information Processing Systems, 36:29558-29579, 2023.

[12] H. Joe. Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1997.

[13] Caroline Keef, Ioannis Papastathopoulos, and Jonathan A. Tawn. Estimation of the conditional
distribution of a multivariate variable given that one of its components is large: Additional
constraints for the heffernan and tawn model. Journal of Multivariate Analysis, 115:396-404,
2013.

[14] Tengyuan Liang, Kulunu Dharmakeerthi, and Takuya Koriyama. Denoising diffusions with
optimal transport: Localization, curvature, and multi-scale complexity. arXiv preprint
arXiv:2411.01629, 2024.

[15] Roger B Nelsen. An introduction to copulas. Springer, 2006.

[16] Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[17] Sidney I Resnick and David Zeber. Transition kernels and the conditional extreme value model.
Extremes, 17(2):263-287, 2014.

[18] Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. What’s the score? automated denoising
score matching for nonlinear diffusions. arXiv preprint arXiv:2407.07998, 2024.

[19] Yang Song, Conor Durkan, Tain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415—
1428, 2021.



309

310

311
312

313
314

315
316
317
318
319
320

321
322
323
324

325

326
327

329

330
331
332
333

334
335
336

337

338

339
340

341

A CEVT details

We restate the CEVT modeling assumption for convenience.

Assumption 2 (CEVT [9}[13]]). Suppose the marginals of X and Y are standard Laplace. Then, as
X =x — oo, we assume X, Y admit the asymptotic dependency,

. Y —a(X
mlgr;()P( b()é) ) < z| X = x) =G(2)
where G is some distribution independent of X. In other words, for tail values, X = x — 0o, we
model,

Y =a(X)+b(X) -2, Z~G,

In a slightly different formulation, 8] establish that, so long as the conditioning variable X belongs
to the domain of attraction of an extreme value distribution, such an assumption about asymptotic
behavior is reasonable. More recently, [[17] directly related the Heffernan Tawn model to the more
general formulation of [8]] and found parsimony under some mild conditions. We emphasize that
this modeling assumption is theoretically grounded. A growing body of applied statistical methods
successfully apply this model, further strengthening its relevance in practice.

Importantly, [9}[13] found that for all standard copula forms of dependence outlined in [12, [15]], the
functions a(X), b(X') admit simple parametric forms, thus, the limiting form G can be assessed with
a relatively small amount of samples. This insight motivates an approach to extrapolating to the tail
in conditional score-based diffusion models.

A.1 Normalizing Functions
For a variety of relationships between X and Y, G has a log-concave density and the normalizing
functions a and b admit simple forms [9} [13]].
Suppose X and Y are marginally Laplace. Then for some suitably high threshold, z € R the
conditional relationship at the tail values, X > z, approximately satisfy,

Y=a-X+X2Z Z~G, ac[-1,1], be (—o0,1).

For a detailed examination of this relationship and clear delineation of when this simple form arises a
reader should refer to the original work [9] or the follow-up [13]. In particular, Table 1 in [9]. For
failure cases a reader can refer to [3]. We assume for our examples that a(x) and b(x) admit this
simple structure.

In practice, the scalars a and b are estimated. It is possible to learn these parameters via constrained
optimization. The simplest approach , which we implemented, is to assume Z ~ A(0,1) and
implement maximum likelihood with tail data {(X,,Y;) : X; > z}.

A.2 Toy Example

As an example, suppose,

e~ ([0 ] 1)

First, transform the variables to have Laplace marginals, (X,Y) — (X*,Y™*) (e.g., Inverse CDF

Transform). For this example, the normalizing functions admit an explicit form,

Y* —a(X™)
b(X*)

2 1/2

Z = a(z) =sign(p) - p° -z, b(z) =z

In this regime, it is well understood [13] that,

P(Z|X* = 2*) — N(0,2p*(1 — p?)), asa* — oo.

10
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So, setting g(z) = 222, B = (2p?(1 — p?))~/2, our new forward diffusion is a scaled OU process
that admits G = N(0,2p?(1 — p?)) as equilibrium.

We visualize the diffusion process, before and after transformation, in Figure[5] Comparing the plots
in the left column, it is clear that the path evolution of particles Y; that correspond to large, tail values
in X (bottom right, depicted in blue) are much more regular after the transformation. We also plot
the conditional densities fi;(.|z), for a collection of timesteps and both bulk and tail events {X = z}.
Before the transformation, fi;(y|x) changes quite drastically across the forward chain. However, after
transformation (see bottom right figure), fi:(z|2*) o< G for tail values X* = z*. Indeed, we see that
at the tail values of the condition, £* — o0, the forward process is already at stationarity. In other
words,

Vo(y) + B 'VIogpuen(y) =y —y =0, Vi, (easy to learn)

And so, where we have few samples, we have a sequence of functions that may be estimated with few
samples.

Forward Diffusion Paths Density Evolution - Bulk X Density Evolution - Tail X

5 0.8 — T=0 — T=0
07 T=133 0.7 T=133
4 : —— T =266 —— T=266
— T=399 0.6 — T=399

0.6 [ Reference [ Reference
0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2+

-1 0.1 0.1
-2 0.0 0.0
0 100 200 300 400
Forward Diffusion Paths Density Evolution - Bulk X Density Evolution - Tail X
12 Bukx | 0.8 — T=0 0.8 — T=0
— Tail X T=133 . T=133
10 0.7+ —— T=266 0.7 —— T=266
0.6 — T=399 —— T=399
B [ Reference 0.6 [ Reference
0.5 0.54
0.4 0.4
0.3+ 0.3
0.2+ 0.2
0.1+ 0.14
[ 00 200 300 %0 0T J ! ! 0-0= ) ! ! :
1 4 -4 -2 2 4 -4 -2 0 2 4
Y

<o

Timesteps

Figure 5: Top row: Before transformation. Bottom row: After transformation.

B Theory

A simple change to Theorem 1 in [[19] will reflect our change in target for estimation. For completeness
we include the theorem below and detail the small modification to the proof. We state the result for
unconditional densities, but the result follows for conditional densities without loss of generality.

Theorem 1. Denote by p(y) the target density. Let {Y; },c[0,1) be the stochastic process defined by
the SDE in|l| where Yy ~ p and Y; ~ p;. Suppose 7(y) is the stationary density of this SDE as
T — oo. Let }A/(;_ ~ py(y) be the result of the approximate reverse-time SDE where we substitute
our score model, sg(y,1).

AV, = —(2s6(V;,t) = VAV, 7)) dt + /267 1dB;, Vi ~ (12)

Under some regularity conditions (see Appendix A [[19]),

T
K L(pllpo) < /O E (I (Vf(y) + B~ Viogpe(y)) — so(y, t)||*)dt + K L(pr]|n).

pe(y)

Proof. Denote the path measure of {Y} };¢[0,7) and {ﬁe}tE[O,T] by p and v. Recall Yy ~ p and
Yr ~ pr, whereas }A/O“ ~ pg and )A/f ~ 7. Following the line of argumentation in [19], we establish

11
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by data-processing inequality (1), and chain rule (2),
1 2 .
KL(plipe) < KL(ullv) < KL(prllm) + E [KL(p(Ye = 2)[[v(Y7~ = 2))).
z~pT

What remains is to tackle the second term on RHS. Due to time-reversal, the path measure {Y }¢[o,7]
can be equivalently seen as generated by the reverse time SDE,

dY; = (VA7) + 287 ' Viogpy(Y,7))dt + /25-1dB;, Y ~w (13)

Then, K L(1(-|Y; = 2)|||v(-|YV4 = 2)) can be calculated by comparing the following reverse-time
SDEs initialized at the same point:

dY;~ = —(VF(Y,7) + 287 Viogpy, (o) (Y, 0))dt + v/28-1dB, Vi =2z (14)
A" = —(2s9(Y; 52, ) — VAV )dt + /28~ 1dB,, Yi =z (15)

Since these SDES share the same diffusion coefficient and starting point, we can appeal to Girsanov’s
theorem [ 16]] to see,

KL(/‘('|E:Z)H‘V('|?7<‘_:Z))S/O E (I (VF(y) + 87 Viegpi(y)) — so(y. 1))t

p(y)

O

We adopt the following non-asymptotic bound from [7]] with regard to the sample complexity of
minimizing the squared error in a multi-layer perceptron neural network.

Theorem 2. Let fMLp denote a standard multi-layer perceptron. Under the assumption that the target
function f, = Vf + BV 10gp,, (.| lies in the Sobolev ball W ([—1,1]%) with smoothness
parameter S € N, then with probability at least 1 — § where § = exp(—nsiﬂi log® n),for large

enough n:

(16)

N __s_ loglogn
I = £l < € (055 loghn 4 2E2E2)

Intuitively, the "rougher" the function (the smaller the value of S) and the higher the input dimension
d, a larger number of samples are needed to estimate the target function f.

C Methodology Details

C.1 Smoothness of f

We implement the Euler-Maryama discretization of the forward diffusion, [l This amounts to
Unadjusted Langvevin Algorithm (ULA). It is well established that the convergence speed of ULA
depends on the gradient of our drift term, V2 f (developed in a sequence of works [4} 3] [6]). We
present a result condensed in [2]], and for simplicity, specialized to dimension, d = 1.

Theorem 3 (Convergence of ULA [2]). Suppose that m o e~7 is the target distribution and f
satisfies o« < V2 f < B. Define k = 3/ as the condition number and .y as the t—th measure in
the sequence. Then, for any € € [0, 1], with step size n < €2/ Bk, we obtain that after,

2 W2
T=0 <I{2 log W) iterations,
€ €

O‘W22(NT-7777T) <é

In our methodology, we propose choosing a convex f to target a specific distribution, e =/, that reflects
the tail characteristics of our target conditional distribution, P(Y | X = ). However, choosing f with
poor curvature directly impacts speed of forward process. This in turn impacts how many noising
steps, [T, are necessary to diffuse-then-denoise and can detriment computational efficiency. This
is particularly relevant when part of our argument concerns out-performing Gaussian diffusions.

2 .
However, when e~/ o e~ % / 2 k=1and convergence is fast.
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To overcome this we use appropriately smoothed versions of the new target density, e~/ . We smooth
in such a way that « is bounded, f* is continuously differentiable, but e=" ~ e~/ In the backward
process, we still initiate samples by drawing from e~/. We emphasize that this does not impact the
quality of the method.

* We show below that by appropriately choosing smoothing parameters, the forward process
converges to a distribution very similar to the target, e 7.

» Small perturbations between the end of the forward process (¢~ ") and start of the backward
process (e~f) is theoretically negligible [14]. Even with standard schemes, owing to the
finite time steps 1" < oo, the end of the forward proccess will not be exactly Gaussian.

Below are examples relevant to this paper.

Gaussian The standard scheme is to target e=F o e/ 2, standard Gaussian density. In this case,

r=1.

— v=1

(a) (b)
Figure 6: (a): Plot of V. (b): Plot of V2f.

Laplace Suppose we want to target e~/ oc e~1*l. Then, V2f = 0 and f is not continuously
differentiable (at 0). Convergence theorem for ULA suggests potential problems. Instead, we
consider a smooth approximation,

%'ZC—FC'.Z', ifz € (=b,b),
sign(z) + ¢z, otherwise.

Vﬁ@@@:{

Here, b, ¢ > 0 are user specified constants. If b,c = 0, then we arrive at V f. This is simply the
gradient of the Huber function with a linear perturbation by ¢ - . With this smoothing, x = 1 + i

— Vf=sign(x) 20 — V=0 —— True target, Vf 1
vf* - v2f New target, Vf*

0.5

f \
-1.0 — ‘\
0.0 j k
-10 -5 0 5

() (b) (©

Figure 7: Set b = 0.5, ¢ = 0.1. (a): Plot comparing V f and V f*. (b): Plot comparing V2 f and
V2 f*. (c): Comparing densities after running ULA (n = 0.01, T = 1000 with Vf and V f*.
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Huber Suppose we want to target e~/ oc e~ (*+¢™"), Then, V2f = ¢~ which is not bounded
above, and approaches — 0 as z — co. We consider a smooth approximation,

el ifz < —b,
Vi (x,b,c)=qe™* if —b<xz<ec,
e ¢ ifx>c

Here, b, ¢ > 0 are user specified constants. If b, ¢ = 0, then we arrive at V f. With this smoothing,
_ b+ec
Kk =e""°.

— Vf=1-e>* B 20.0 — Vi=eX —— True target, Vf
0.0 vf* V3" 0.35 New target, Vf*

-25
-5.0
15 0.25
-75 >
-10.0 g |
-1255 ’ I

-15.0

25 /

o7 003 / K
0.0 —— /

~20.0 . o

() (b) (©

Figure 8: Set b = 2, ¢ = 1. (a): Plot comparing V f and V f*. (b): Plot comparing V2 f and V2 f*.
(c): Comparing densities after running ULA (n = 0.01, T = 1000 with V f and V f*.

C.2 Taylor Accelerated Forward Diffusion
An important practical consideration for our training algorithm is the efficiency in the estimation of

the score function. In our work, we utilize the Euler-Maruyama approximation in order to sample Z;
given Zj. In practice, this can be inefficient, since it requires O(t) sampling steps to sample. For a

given time ¢, € {1,...,T}, direct score estimation based on Euler-Maruyama is given by:
Zy~D (17)
Zy = Zyy =V f(Zeor) + /20 N(0,1), t=1,... 1, (18)

A linear SDE can be solved more easily and allows for ancestral sampling, where Z;|Z, can be
sampled in a single step. As an example, consider the Ornstein—Uhlenbeck (OU) process:

dZy = 0(p — Zy)dt + odW; (19)
and its Euler-Maruyama discretized counterpart:
Zy =7y 1+ 0(u—Zi_1) + o6, € ~N(0,1). (20)
The discretized process can alternatively be parameterized as:
Zy=(1-60)Zi—1 +0u+ o€ (21
which allows for straightforward derivation of the conditional p(Z;|Zy):
1= a2+1)
p(Z:| Zo) :./\/(Zt;atZ0+ (1—a")p,o? <1_a2>) (22)

As we can see above, sampling from a linear SDE like the OU process is easy and does not require
multiple rounds of a solver. One idea to make sampling from a nonlinear SDE more efficiently is to
consider a first-order Taylor of the score. Particular to this paper, consider a Langevin diffusion with
score function s(Z) = —V zf(Z), which we know converges to p(Z,) x e~ /(%) at equilibrium.
Consider the first-order Taylor approximation to the score centered around Z:

$(Z) ~ s(Z)+V 38(2)(Z - Z) (23)
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We can see that under this approximation, s(Z) is approximately a linear function in Z. It is
straightforward to see that by plugging in this approximation into the Langevin SDE, we can employ
ancestor sampling as in (22)) to accelerate the forward diffusion for nonlinear SDEs. In particular, we
can easily see that under this linear approximation, the Langevin SDE will reduce to an OU process
with certain parameterization:

Zy =211 =0V z7,_,8(Zi-1) + /2ne (24)

~Zio1 —n(s(Z) + VZS( (Zi—1 — Z)) + /2ne: (25)
8
nVZ

7)
=Zi1—ns(Z) — (2)(Zi-1 — Z +fet (26)
=Zi_1—ns(Z) — (2)Zs—1 +1V 38(2)Z + /2ne; (27)

- (1 - nVZs(Z)) Ziy 41V 35(2) (z - (VZS(Z))_ 5(2)> Ve (28)

S

We can see that this is an OU process with the following parameters:

0 =nV;s(2) (29)
~ ~\—1 ~

p=7— (VZS(Z)) s(2) (30)

o =27 31D

This means that we can apply ancestral sampling to the Taylor approximation of our Langevin
diffusion. We refer the reader to the pseudocode in Algorithm [I] for our specific implementation.

Algorithm 1 Taylor-Accelerated Forward Sampling

1: Input: Initial residual Zj, conditioning variable X, target time t,, step size 7, Taylor steps
function K (t)

2: Inmitialize: Current state Z.,,,., = Zg, current time ¢, = 0

3: while £, < t, do

4: Determine number of Taylor horizon: Set k = min(K (tcyrr ), tx — tewrr)

5: Compute Taylor approximation:

Scurr = SG(ZcuTT; X7 tcurr)
Vscurr - VZMTT (Zcurr; Xa tcurr)

6: Set OU parameters:
a=1—nVscurr

SCUT"I”
Heff curr Vscurr
Teff = V21
7: Ancestral sampling: Sample directly at time {tcynr + Kt Zeurr ~

N (Oéchur'r‘ + (1 — Oék)/j‘eff7 eff 1 azzk)
8: Update time: ... < teyrr + K
9: end while
10: Return: Final residual Z;, = Z.ypr

15



441 C.3 Pseudocode for Methodology

Algorithm 2 CEVT-based Data Preprocessing

1: Input: {(X;,Y;)}",, threshold quantile o > 0
2: Estimate empirical CDFs: Compute F'x and Fy from data
3: Transform to Laplace marginals: For all samplesi = 1,...,n do

X7« —sign(Fx (X;) — 0.5) ~10g(1 —9lFy (X)) — o.5|)
Y7 « —sign(Fy (Y;) — 0.5) - 1og(1 — 2By (V) — o.5|)

Extract tail samples: Find subset {(X7, Y;*)}7 | where Fx(X;) > 1 —a

7
Estimate tail parameters: Compute coefficients a, b using tail samples {(X},Y.*)}"
Compute residuals: Set Z; = % fori=1,...,n

Return: Preprocessed dataset { (X i*l, Z)

AN A

Algorithm 3 Diffusion Model Training

1: Input: Preprocessed dataset { (X}, Z;)}?_,, learning rate n), epochs E, weighting function A(t)
2: Initialize: Network parameters 6, noise schedule parameters
3: forepoche=1,...,F do
4: for batch {(X]*, Z;)}jebateh do
5: Sample timestep: Sample ¢ uniformly over time-horizon.
6: Generate noisy samples: Sample Z;|Z, = Z; according to forward process using
Euler-Maruyama solver of Taylor-accelerated sampling in Algorithm|[I]
7: Compute score matching loss: Evaluate £(#) in (7) for each sample in the batch.
8: Backward pass: Compute gradients V£ (6)
9: Update parameters: 6 < 0 — nVyL(0)
10: end for
11: end for

12: Return: Trained parameters 6

Algorithm 4 Diffusion Model Sampling

1: Input: Initial noise Z7, conditioning X *, trained score sy, , time horizon T’
Initialize: Current state Z.,,,., = Zr, current time ¢, = 1’
while ¢..,,,,- > 0 do

Determine step size: Set k = min(K (tcurr)s tewrr)

Compute score: Evaluate sg, (Zeurr; X, teurr)

Reverse step: Apply reverse SDE or Euler-Maruyama:

Zcu’r'r - Zcur'r‘ + - Se, (Zcurr; X*7 tcurr) + V 2776

AR AN

where ¢ ~ A(0,1)
7: Update time: ¢, < teyrr — K
end while
9: Return: Denoised residual Zy = Z.yr

(o]

w2 D Additional Experimental Results

443 Here, we provide additional plots and metrics for the experiments section of our work.
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444 D.1 Synthetic Data

90.00% percentile for X 95.00% percentile for X 99.00% percentile for X
—— Real
0.4 —— Synthetic 0.4 0.4
. 0.3 0.3
. 0.2 0.2
. 0.1 0.1
. 0.0 0.0
-5 0 5 10 -5 0 5 10
y y
— Real
0.4 —— Synthetic 0.4 0.4
) 0.3 0.3
. 0.2 0.2
. 0.1 0.1
. 0.0 R
-5 0 5 10 0.0 -5 0 5 10
y y y

(a) Top Row: Standard method targeting P(Y|X) with linear diffusion. Bottom Row: New method. New
method manages to capture the heavy Laplace tails, standard method struggles to do so.

90.00% percentile for X o5 95.00% percentile for X 99.00% percentile for X
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0.4 0.4 0.4
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y 05 y y

0.5 . .

—— Real 05
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0.4 ¥ 0.4 0.4
0.3 »0.3 0.3

3
i

0.2 Y0.2 0.2
0.1 0.1 0.1
0.0 0.0 0.0

-4 -2 o0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

y y y

(b) Top Row: Standard method targeting P (Y| X) with linear diffusion. Bottom Row: New method.
Figure 9: (a) Synthetic Example 1 (b) Synthetic Example 2
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Figure 10: Left Plot: As discussed, we see for extreme (but not infinite) values in the tail, data seem
Gumbel distributed. We visualize sampling in the CEVT based representation space (P(Z|X™) in
the subsequent plots. We capture the one-sided tails.

D.2 Financial Returns Conditioned on VIX

We provide additional and more detailed experimental results for our evaluation on real data.

D.2.1 VIX Time Series

Here, we show a plot of the VIX time series in Figure [[T} which serves as the conditional information
supplied to the diffusion models for the stock return generation experiment. For both the GFC and
COVID periods, the VIX level is relatively lower in the training data (plotted in blue) than the testing
data (plotted in orange), indicating that the testing data covers a period of market stress.

VIX Index (2008 Financial Crisis Period) VIX Index (2020 COVID Period)

—— Training w0 —— Training
Test Test

Index Value
Index Value

. b . W, W by
\
A
o WWWW o] sl bt W ~
- o e o o P o o o o
Date Date

(a) GFC (b) COVID

Figure 11: VIX level during the analyzed periods of market stress. VIX level in the training datasets
(shown in blue) correspond to more stable market periods, while VIX levels in the testing dataset
(shown in orange) correspond to a period of market stress.

D.2.2 Evaluation of Calibration via QQ plots (Unconditional Evaluation)

To evaluate the unconditional generative performance (where we marginalize out the conditions)
of the proposed conditional diffusion model, we use QQ plots to check for the calibration of the
predicted quantiles versus the true quantiles from the empirical dataset. Figure[I2)and [I3]|show the
QQ plots for each stock on the training and testing datasets for the GFC period, respectively. Figure
and[I5]show the QQ plots for each stock on the training and testing datasets for the GFC period,
respectively. The results indicate that while the use of a Gaussian base distribution generally leads
to better calibration in the training dataset and in the bulk of the distribution (10%-90% quantiles),
the use of a Laplace distribution offers a significant advantage in the tail, specifically for the testing
datasets, since the testing dataset considers VIX levels (conditions) much larger than what is seen in
the training dataset. This showcases the advantages of considering alternative base distributions in
the case of generative modeling for heavy-tailed targets.

D.2.3 Scatter Plots of Asset Returns vs. VIX Level (Conditional Evaluation)

The use of QQ plots makes sense for evaluation of the calibration of the marginal distribution of
returns (where we generate samples considering all conditions in the ground truth training and testing
datasets); however, it does not provide insight into the performance of the conditional, as we vary the
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Figure 12: QQ plots on training datasets for the GFC period across all stocks. When comparing the
use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model
exhibits superior calibration, particularly in the central mass of the distribution. We hypothesize that
this improved fit in the bulk region is attributable to return distributions more closely approximating
Gaussian behavior during this period, which coincides with generally lower VIX (volatility index)
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levels. Another notable observation is that the Laplace base distribution tends to produce overdisper-

sion in the tails, while the Gaussian base leads to underdispersion. This pattern aligns with theoretical
expectations, as the Laplace distribution inherently has heavier tails than the Gaussian distribution,
making it prone to overestimating tail probabilities when the true data-generating process is closer to

Gaussian in nature.
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Figure 13: QQ plots on testing datasets for the GFC period across all stocks. When comparing the
use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model significantly underestimates the tail heaviness of the target distribution (showing extreme
underdispersion), while the Laplace distribution provides a much closer approximation to the true tail
behavior, particularly in the extreme regions. This pattern is especially pronounced for technology
stocks (AAPL, AMZN, GOOGL, NVDA). For financial sector stocks, both distributional models
perform inadequately. This can be attributed to the disproportionate impact of the GFC on the
financial sector, representing a more comprehensive distribution shift from the training data beyond a
covariate shift in market volatility indicators like VIX. Nevertheless, across all stocks, we observe
that samples from both base distributions in the conditional generative model exhibit underdispersion
relative to the empirical data.
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Figure 14: QQ plots on training datasets for the COVID period across all stocks. When comparing
the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model exhibits better calibration in the bulk of the distribution for most stocks, though with notable
deviations in the extremes. Another notable observation is that the Laplace base distribution consis-
tently produces overdispersion in the tails across multiple stocks, while the Gaussian base leads to
underdispersion at the extremes; similar to the observation made for the GFC period.
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Figure 15: QQ plots on testing datasets for the COVID period across all stocks. When comparing
the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian
model significantly underestimates the tail behavior, particularly evident in technology stocks like
JPM (i), MSFT (j), and WFC (1) where predicted quantiles fall below the diagonal reference line at
extremes. We hypothesize that this underdispersion reflects the Gaussian distribution’s inability to
capture the heightened market volatility characteristic of the COVID crisis period. Another notable
observation is that the Laplace base distribution provides a markedly better fit to the tail behavior for
most stocks, especially visible in AAPL (e), GOOGL (g), and JPM (m), though it still exhibits some
deviations from perfect calibration. This pattern aligns with theoretical expectations, as the COVID
period featured extreme market movements that are better approximated by distributions with heavier
tails, making the Laplace distribution’s inherent properties more suitable for modeling the fat-tailed
nature of returns during this market stress periods.
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a8 condition to extreme values. In the case of VIX, we are interested in the right-tail of the condition;
469 when the VIX level grows to large positive values (around 40-80). To evaluate the conditional
470 performance, we use a scatter plot of the returns and the VIX level, and compare that the empirical
471 percentiles of the conditional diffusion model for both the Gaussian and Laplace base distributions.
472 We show these scatter plots for each ticker in Figure [T6 and [I7] for the GFC and COVID periods,
473 respectively. For both periods, we can observe that the use of Gaussian base leads to underestimation
474 of the tails across almost all conditions, while the use of a Laplace is much closer.
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Figure 16: Scatter plots for visualization of conditional generation performance for GFC period.
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Figure 17: Scatter plots for visualization of conditional generation performance for COVID period.
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