
Beyond Linear Diffusions: Improved Representations for Rare Conditional Generative Modeling

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Diffusion models have emerged as powerful generative frameworks with
2 widespread applications across machine learning and artificial intelligence systems.
3 While current research has predominantly focused on linear diffusions, these ap-
4 proaches can face significant challenges when modeling a conditional distribution,
5 $P(Y|X = x)$, when $P(X = x)$ is small. In these regions, few samples, if any, are
6 available for training, thus modeling the corresponding conditional density may
7 be difficult. Recognizing this, we show it is possible to adapt the data representa-
8 tion and forward scheme so that the sample complexity of learning a score-based
9 generative model is small in low probability regions of the conditioning space.
10 Drawing inspiration from conditional extreme value theory we characterize this
11 method precisely in the special case in the tail regions of the conditioning variable,
12 X . We show how diffusion with a data-driven choice of nonlinear drift term is best
13 suited to model tail events under an appropriate representation of the data. Through
14 empirical validation on two synthetic datasets and a real-world financial dataset,
15 we demonstrate that our tail-adaptive approach significantly outperforms standard
16 diffusion models in accurately capturing response distributions at the extreme tail
17 conditions.

18

1 Introduction

19 In recent years, diffusion models have emerged as among the most powerful generative modeling
20 techniques for synthesizing data across a diverse set of modalities. From image generation to
21 audio synthesis and time series modeling, these models have demonstrated superior capabilities for
22 capturing intricate data distributions as compared to other generative frameworks. The work [10]
23 introduced denoising diffusion probabilistic models (DDPMs), which frame the generative process
24 by defining a forward process that gradually transforms data into noise, followed by a learned reverse
25 process that reconstructs data from noise. This approach has since been extended to a continuous-time
26 formulation using Langevin diffusions, providing a mathematically elegant framework that connects
27 stochastic processes with generative modeling. The continuous-time formulation views this as a
28 stochastic differential equation (SDE), where the forward process follows a Langevin diffusion that
29 converges to a standard multivariate Gaussian distribution. This perspective has enabled significant
30 theoretical advances while maintaining state-of-the-art empirical performance across applications.

31 Conditional diffusion models extend this framework by additionally incorporating conditioning
32 information to guide the generation process. However, a fundamental challenge emerges when
33 dealing with extreme values in the sample space of the conditioning, where data is inherently
34 sparse. Traditional diffusion models struggle to accurately capture conditional distributions in
35 these tail regions, particularly when the underlying distributions deviate significantly from Gaussian
36 assumptions. This limitation becomes especially problematic in domains where rare but consequential

37 events drive critical decisions, such as financial risk assessment and climate modeling. To effectively
 38 sample from a conditional distribution $P(Y|X = x)$ using score-based diffusion models, we need
 39 to estimate a sequence of score functions, $\{\nabla \log p_{\mu_t(\cdot|x)}\}_{t=0}^T$. Here, $p_{\mu_t(\cdot|x)}$ refers to the marginal
 40 density of the conditional distribution t steps into a (discretized) Langevin diffusion. The bottleneck is
 41 estimating these conditional score functions at low-probability, or rare, conditions. When $P(X = x)$
 42 is small, it is unlikely that we see enough samples in our training data to estimate $\nabla \log p_{\mu_t(\cdot|x)}$
 43 accurately. If the score functions in these low probability regions have high sample complexity,
 44 sampling from tail conditions seems an improbable task.

45 We present a data-adaptive methodology for score-based diffusions that addresses this challenge
 46 through two key insights: (i) conditional diffusion requires learning complex functions with few
 47 samples, and (ii) function complexity can be controlled through the diffusion scheme and data
 48 transformation. Our method ensures the conditional denoising functions maintain low sample
 49 complexity where $P(X = x)$ is small, using data transformation and a data-driven nonlinear
 50 diffusion process. We demonstrate this approach in detail under mild extreme value assumptions.
 51 Specifically, our work explores nonlinear conditional diffusion modeling with tail-adaptive drift
 52 schemes. We examine the method where data follows extreme value assumptions [9, 8, 13]. Our
 53 contributions include:

- 54 1. We identify current limitations of standard linear diffusion models with Gaussian equilibrium
 55 for conditional generation under extreme tail conditions with limited samples, based on
 56 recent neural network sample complexity results.
- 57 2. We propose a novel score-based diffusion method that addresses the aforementioned sample
 58 complexity issue by utilizing well-designed data transformation and nonlinear Langevin
 59 diffusions. We explore this method in detail assuming the data follows some mild extreme
 60 value conditions (CEVT); although, we emphasize that our broader modeling philosophy is
 61 agnostic to any data assumptions.
- 62 3. We validate our method on synthetic and real financial datasets, demonstrating superior
 63 conditional distribution modeling at tail extremes compared to standard diffusion variants.

64 2 Background

65 2.1 The Difficulty of Conditional Diffusion

66 Conditional diffusion models frame sampling as the time reversal of a noising process governed
 67 by a diffusion SDE. A forward diffusion process $\{Y_t\}_{t=0}^T$ is indexed by a continuous time variable
 68 $t \in [0, T]$, such that $Y_0 \sim \mu_0(\cdot|X = x)$ is our sampling target, and $Y_T \sim \mu_T \approx \pi$, admits a tractable
 69 form to generate samples efficiently. A continuous time evolution, an Ito SDE, governs the forward
 70 process $\mu_0 \rightarrow \mu_T$. We limit ourselves to Langevin processes. The forward Langevin diffusion
 71 process is a stochastic differential equation of the form,

$$dY_t = -\nabla f(Y_t)dt + \sqrt{2\beta^{-1}}dB_t, \quad Y_0 \sim \mu_0(\cdot|X = x). \quad (1)$$

72 where the conditional probability measure of Y_t is denoted $\mu_t(\cdot|x)$ with density $p_{\mu_t(\cdot|x)}$, $\{B_t\}_{t \geq 0}$
 73 denotes a Brownian motion, and $\beta > 0$ is a scale parameter that determines the noise level of the
 74 diffusion. Under mild conditions on f , this evolution admits e^{-f} as equilibrium density as $t \rightarrow \infty$.
 75 Backward denoising uses the reverse-time SDE [1]:

$$dY_t^\leftarrow = -(\nabla f(Y_t^\leftarrow) + 2\beta^{-1}\nabla \log p_{\mu_t(\cdot|X)}(Y_t^\leftarrow))dt + \sqrt{2\beta^{-1}}d\bar{B}_t, \quad Y_T^\leftarrow \sim \mu_T, \quad (2)$$

76 where we use Y_t^\leftarrow to denote the time-reversal and $\{\bar{B}_t\}_{t \geq 0}$ denotes another Brownian motion.

77 2.1.1 Denoising Complexity

78 Implementing backward denoising process via (2) requires learning the conditional score function
 79 $\nabla \log p_{\mu_t(\cdot|x)}$. We instead target the estimation of the function, $\nabla f + \beta^{-1}\nabla \log p_{\mu_t(\cdot|x)}$. The
 80 complexity of these functions determines the sample size required for accurately estimation. For
 81 neural network predictors, non-asymptotic bounds have been established in [7] that relate target
 82 smoothness to estimation accuracy (see Theorem 2 in Appendix B).

Sampling from $P(Y|X = x)$, requires accurately learning the sequence of maps:

$$\{\mathbf{B}_t(y; x)\}_{t=0}^T = \{\nabla f(y) + \beta^{-1} \nabla \log p_{\mu_t(\cdot|x)}(y)\}_{t=0}^T, \forall x \in \mathcal{X}$$

83 Since few training examples exists for rare events where $P(X = x)$ is small, accurate estimation of
 84 the denoising maps in these “rare regions” is futile, preventing effective denoising. More rigorously,
 85 we can adapt theoretical results from [19] to show that the accuracy of denoising is directly tied to
 86 how well the denoising maps are learned. Let μ_θ denote the estimated density resulting from (2)
 87 after appropriately estimating the score function sequence, $s_\theta(y; t, x) \approx \mathbf{B}_t(y; x)$. If μ_0 refers to
 88 the target, then the Kullback-Leibler (KL) divergence between the two can be upper bounded by the
 89 integrated error of score estimation (see Appendix B for a proof for completeness):

$$\begin{aligned} KL(\mu_0(\cdot|x) \parallel \mu_\theta(\cdot|x)) &\lesssim \int_0^T \mathbb{E}_{p_{\mu_t(\cdot|x)}(y)} [\|(\nabla f(y) + \beta^{-1} \nabla \log p_{\mu_t(\cdot|x)}(y)) - s_\theta(y; t, x)\|^2] dt \\ &= \int_0^T \mathbb{E}_{p_{\mu_t(\cdot|x)}(y)} [\|(\mathbf{B}_t(y; x) - s_\theta(y; t, x))\|^2] dt. \end{aligned}$$

90 **Linear Gaussian Dynamics:** Standard score-based diffusion models employ the Ornstein-
 91 Uhlenbeck process (with $f(x) = \frac{1}{2}x^2$):

$$dY_t = -Y_t dt + \sqrt{2\beta^{-1}} dB_t, \quad Y_0 \sim \mu_0(\cdot|x),$$

92 which yields at Gaussian stationary distribution. For this case, the denoising sequence in (2) becomes:

$$\{\mathbf{B}_t(y; x)\}_{t=0}^T = \{y + \beta^{-1} \nabla \log p_{\mu_t(\cdot|x)}(y)\}_{t=0}^T$$

93 As previously mentioned, when $P(X = x)$ is small and $\{\mathbf{B}_t(y; x)\}_{t=0}^T$ complex, this standard
 94 paradigm faces sample complexity challenges.

95 2.2 Extreme Value Theory

96 Extreme value theory characterizes the tail behavior of random variables. Classical work examines
 97 limiting behavior like $P(Y = y|Y > u) \rightarrow G(y)$ as $u \rightarrow \infty$. [9] extends this to conditional
 98 distributions $P(Y|X = x)$ for large x , contrasting with traditional multivariate theory where all
 99 variables grow simultaneously. The Heffernan-Tawn model [13] is a flexible approach to model the
 100 conditional distribution $P(Y|X = x)$ when x is large. For a broad class of dependency structures
 101 between X and Y , this work establishes a semi-parametric relationship that allows one to model
 102 a broad range of asymptotic independence/dependence structures at the tail of the condition (see
 103 Appendix A for more details).

104 **Assumption 1 (CEVT [9, 13]).** Suppose the marginals of X and Y are standard Laplace. Then, as
 105 $X = x \rightarrow \infty$, we assume X, Y admit the asymptotic dependency,

$$\lim_{x \rightarrow \infty} P\left(\frac{Y - a(X)}{b(X)} < z | X = x\right) = G(z) \quad (3)$$

106 where G is some distribution independent of X . In other words, for tail values, $X = x \rightarrow \infty$:

$$Y = a(X) + b(X) \cdot Z, \quad Z \sim G. \quad (4)$$

107 3 Proposed Methodology

108 In this section, we propose a general methodology that aims to ensure that denoising maps discussed
 109 in Section 2.1.1 maintain low sample complexity for rare conditions:

$$\{\mathbf{B}_t(y; x)\}_{t=0}^T \text{ is easy to estimate when } P(X = x) \text{ is small.} \quad (5)$$

110 While we demonstrate this approach under CEVT assumptions for explicit characterization, the
 111 framework applies broadly—any transformation yielding favorable tail behavior suffices. The general
 112 procedure consists of three steps:

- 113 1. Transform $(X, Y) \xrightarrow{T} (X^*, Z)$ such that $P(Z|X^* = x) \approx e^{-g}$ for rare x
- 114 2. Design forward diffusion with e^{-g} as the stationary density and train using the score-
 115 matching objective
- 116 3. Sample $Z \sim P(Z|X^* = x)$ and apply inverse transformation to recover Y .

117 In the following, we describe an implementation of each of the above steps in the context of CEVT.

118 **3.1 Step 1 – Data Transformation**

119 When CEVT holds, we can obtain explicit transformations $(X, Y) \rightarrow (X^*, Z)$ ensuring (5) for large
120 X^* . Consider the following chain of transformations applied to X and Y :

$$(X, Y) \xrightarrow{\text{Laplace Marginals}} (X^*, Y^*) \xrightarrow{\text{Normalize}} (X^*, Z), \quad (6)$$

121 where $Z = b(X^*)^{-1} (Y^* - a(X^*))$. In the first part of the transformation, we transform (X, Y)
122 to (X^*, Y^*) such that marginal distributions of both X^* and Y^* are standard Laplace distributions.
123 Since X^* and Y^* are both standard Laplace, we can further apply a normalization based on the
124 Heffernan-Tawn model to transform $Y^* \rightarrow Z$, where

$$Z = \frac{Y^* - a(X^*)}{b(X^*)}$$

125 To apply this normalization, we learn the functions $a(x)$ and $b(x)$ (which often take simple parametric
126 form) using maximum likelihood estimation with samples from the tail of X^* . Despite the small
127 amount of samples available after partitioning the samples of X^* based on the tail, learning is
128 plausible due to the simple structure of $a(x)$ and $b(x)$ (see Appendix A.1) for details. After applying
129 these sequence of transformation, we have a set of data of the random variables (X_i, Z_i) that satisfy
130 $P(Z|X^* = x) \approx G$ for large values of x .

131 **3.2 Step 2 – Learning the Conditional of Z**

132 We learn the conditional distribution, $P(Z|X^*)$, via score-based diffusion models. We provide
133 pseudocode of our training procedure in Algorithm 3 in Appendix C.3. In the following, we describe
134 the design of the forward process of our conditional diffusion as well as our approach to score
135 matching. We also provide an intuitive argument as to why the denoising maps for this diffusion
136 model have low sample complexity at the tails of the condition.

137 **Designing the Forward Process** We implement the forward process via a simple Langevin dif-
138 fusion, but choose the drift term, ∇g , based on extreme value behavior in our observed data. In
139 particular, by Assumption 1, for tail values in the condition, $\{X > x, x \text{ large}\}$, we model,

$$Z \sim G, \quad \text{and} \quad Z \perp X.$$

140 However, in practice, the distribution G is unknown. To approximate G , we train a lightweight
141 density estimator on tail samples, $\{(X_i, Z_i) : X_i > x\}$, to gauge the density of G , e^{-g} . We do
142 so by comparing the smooth estimate to common parametric forms. For example, a wide range
143 of easy-to-sample distributions admit an exponential form, e^{-g} , with convex g , such as Gaussian,
144 Laplace, and Gumbel.

145 Consider the following Langevin diffusion:

$$dZ_t = -\nabla g(Z_t)dt + \sqrt{2}dB_t$$

146 The Langevin diffusion above, for arbitrary convex g does not admit path trajectories that can be
147 expressed in closed form. In practice, we resort to a simple discretization,

$$Z_{t+1} = Z_t - \eta \cdot \nabla g(Z_t) + \sqrt{2\eta} \cdot \mathcal{N}(0, 1).$$

148 We remark that the convergence of the discretized process, which amounts to unadjusted Langevin
149 dynamics, is sensitive to the curvature of g . We elaborate in Appendix C.1 how we can modify g so
150 that it is appropriately smooth, while still accurately capturing a stationary distribution close to e^{-g} .
151 We also remark that with a nonlinear drift term ∇g , we also lose the ancestral sampling property
152 that score-based diffusions exploit for efficient training. That is, if ∇g is linear, then the t-step ahead
153 distribution $P(Z_t|Z_0, X)$ is readily available. This is not possible for general g . Instead, in Appendix
154 C.2 we show how Taylor-approximations can enable faster sampling in the general case, similar in
155 line to [18].

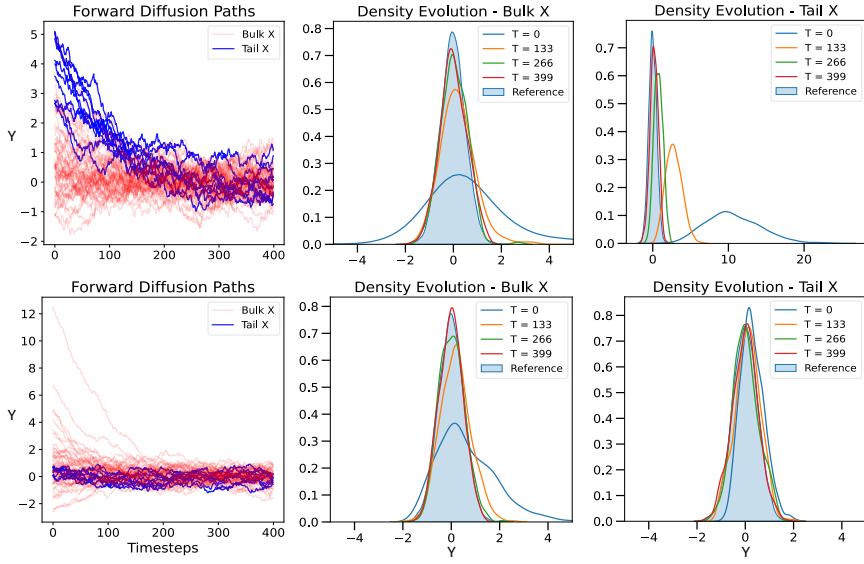


Figure 1: We visualize a forward diffusion before and after the transformation outlined in Section 3.2. Before transformation, the Langevin diffusion induces quite dramatic changes in the conditional density at tail events ($\{X = x\}$, x very large). This can be seen by looking at the blue particle paths (top left) or the evolving density, $p_{\mu_t(\cdot|x)}(y)$, visualized in the top right plot. After taking the steps outlined in Section 3.2, the tail conditional density does not change dramatically in the forward diffusion. Compare the new particle paths in blue (bottom left plot), or the new conditional densities at time t (bottom right plot). For tail, low-probability conditions, after transformation, the conditional density is already (nearly) at stationarity. Details can be found in Appendix A.2

156 **Score Estimation** Unlike standard diffusion models, rather than tracking the conditional score function, $\nabla \log p_{\mu_t(\cdot|x)}$, we instead target $(\nabla g + \nabla \log p_{\mu_t(\cdot|x)})$. We train a time-dependent conditional score model $s_\theta(z; x, t)$ based on a slightly modified learning objective.

$$\mathcal{L}(\theta) := \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{X, Z_0} \mathbb{E}_{Z_t|Z_0} [\|s_\theta(z; x, t) - (\nabla \log p_{\mu_{0t}(\cdot|Z_0, X)}(Z_t)) + \nabla g(Z_t)\|_2^2] \right\}, \quad (7)$$

159 where $\lambda(t)$ is a weighting function that adjusts the importance of different time steps for the score-
160 matching loss. Recent works explore how to learn the conditional score functions $s_\theta(Z; x, t)$ effi-
161 ciently. For simplicity, we train based on the standard formulation based on Tweedie's formula.

162 **Why this Works?** Since Z is constructed based on Assumption 1, at an event $\{X^* = x\}$, with x
163 large, the initial density of $\mu_0(Z|X^* = x)$ will already be (approximately) at equilibria:

$$p_{\mu_0(\cdot|X^* = x)} \approx e^{-g}$$

164 Thus, at these extreme values of X^* , the sequence of maps $\{\nabla g + \nabla \log p_{\mu_t(\cdot|x^*)}\}_{t=0}^T \approx 0$, making
165 them much easier to estimate. We display an example of this in Figure 1.

166 3.3 Step 3 – Sampling

167 For a desired value of X , we prompt the learned diffusion model to retrieve a sample Z from
168 $P(Z|X = x)$. Sampling is implemented via time-reversal as in (2) and substituting in the learned
169 estimator, $s_\theta(z; x, t)$.

$$d\bar{Z}_t = -(2s_\theta(Z_t; x, t) - \nabla f(\bar{Z}_t))dt + \sqrt{2\beta^{-1}}d\bar{B}_t, \quad \text{or,} \quad (8)$$

$$d\bar{Z}_t = -s_\theta(Z_t; x, t)dt \quad (9)$$

170 In practice, we use a simple Euler-Maryama discretization of the above to sample. Once we have
171 a sample $Z \sim \hat{P}(Z|X)$, we convert it to a sample from our desired distribution by inverting the

172 sequence of transformations,

$$Y^* = a(X^*) + b(X^*) \cdot Z$$
$$Y = \hat{F}_Y^{-1}(F_{Lap}(Y^*))$$

173 Algorithm 4 in Appendix C.3 provides pseudocode for our sampling procedure.

174 3.4 Generalization

175 As previously mentioned, there is potential to adapt **Step 1** of the process to more general circum-
176 stances (e.g., if the CEVT assumption is not appropriate for the data of interest). The challenge of
177 adopting the methodology is the finding the appropriate transformation of the data using a data-driven
178 approach, perhaps using an approach similar to [11]. We leave this for future work.

179 4 Experiments

180 In this section, we evaluate our proposed approach on two synthetic data examples and a real data
181 example. For baselines, we consider two schemes for denoising. In the standard scheme, we sample
182 $Y_T \sim \mathcal{N}(0, 1)$, and provided a condition $X = x$, we apply the maps,

$$\{\mathbf{B}_t^{Gauss}(y; x)\}_{t=0}^T$$

183 In the new scheme, we first transform our data, $Y \xrightarrow{T} Z$. Sample $Z_T \sim e^{-g}$ and apply the maps,

$$\{\mathbf{B}_t^g(z; x)\}_{t=0}^T$$

184 Finally, invert the transform, $Z_0 \xrightarrow{T^{-1}} Y_0$. To fairly compare our new scheme to the standard scheme
185 we make the following considerations.

186 **Neural Net Parametrization:** Fundamentally, we want to track how well $\mathbf{B}_t^{Gauss}, \mathbf{B}_t^g$ are learned.
187 As a proxy we will look at sample quality. To enable a fair comparison, we deploy the same neural
188 network architectures to learn each score network, which are standard feedforward neural networks.

189 **Forward Chain Length:** It is important to recognize that although the sequence of standard
190 denoising maps, $\{\mathbf{B}_t^{Gauss}(y; x)\}_{t=0}^T$, may have high sample complexity, due to the fast convergence
191 of the forward OU process, the number of noise-steps necessary, T , may be smaller. This, in turn, may
192 be beneficial for learning. For example, if one were to train a separate network for each noise-scale
193 $t \in [T]$. We broach this gap by considering smoothed versions of ∇g for the generic scheme. This
194 directly impacts speed of forward convergence, and is detailed in Appendix C. By choosing the
195 smoothing parameters and step-size η appropriately, we are able to use the same number of noise
196 steps for each model. This compromise, between complexity of $\mathbf{B}_t^g(y; x)$, η and size of T needs to
197 be explored more rigorously. We leave this to future work.

198 4.1 Synthetic Data Examples

199 We consider two synthetic data experiments: a mean-shifted Laplace distribution; and correlated
200 Gaussian distribution. We provide detailed plots with additional results for both synthetic examples
201 can be found in Appendix D.1.

202 **Mean-Shifted Laplace Target.** We consider the following data generating process:

$$X \sim \text{Pareto}(1), \quad Y \sim \frac{10}{X} + \text{Laplace}(0, 1) \quad (10)$$

203 Without appealing to CEVT, we see that as $X \rightarrow \infty$, $Y \sim \text{Laplace}(0, 1)$. This suggests we
204 target standard Laplace as the equilibrium distribution of the forward process, without applying any
205 transformation to the data. We run,

$$Y_{t+\eta} = Y_t - \eta \cdot \nabla g_{Lap*}(Y_t) + \sqrt{2\eta} \cdot \mathcal{N}(0, 1).$$

206 Refer to Appendix C.1 to see form and justification for ∇g_{Lap*} . We plot a comparison of the new
207 method and standard Gaussian diffusion in Figure 2a. The results of the figure demonstrate that
208 in 90% percentile, a standard diffusion model with Gaussian base distribution does not estimate
209 the target distribution well, while the proposed approach without the CEVT transformation and an
210 appropriately chosen Laplace base distribution more accurately capture the target.

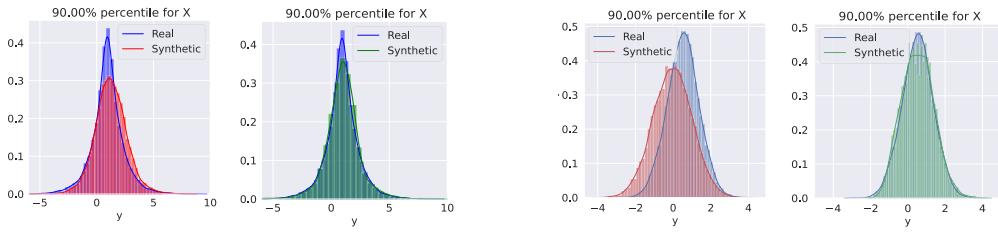
211 **Correlated Gaussian Target.** We consider the following data generating process:

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right), \quad (11)$$

212 where we set $\rho = 0.4$. First we transform $(X, Y) \rightarrow (X^*, Z)$ as per Algorithm 2. As detailed in
213 the Appendix A.2, we know after this transform, $G \sim \mathcal{N}(0, 2\rho^2(1 - \rho^2))$. However, to mimic the
214 data-driven procedure in practice, we instead gauge a form for e^{-g} using tail samples. Based on this,
215 we suggest targeting $\text{Gumbel}(0, 0.4)$ and run,

$$Z_{t+\eta} = Z_t - \eta \cdot \nabla g_{Gumb*}(Y_t) + \sqrt{2\eta} \cdot \mathcal{N}(0, 1).$$

216 Refer to Appendix C.1 to see form and justification for ∇g_{Gumb*} . Once we sample from $P(Z|X^* =$
217 $x)$ via the new score-based diffusion, we transform back to the appropriate distribution via inverse
218 CDF. We compare these samples to a traditional (linear) diffusion model that targets sampling from
219 $P(Y|X = x)$. We plot this comparison in Figure 2. From the figure, we can observe that the standard
220 diffusion model fails to capture the target distribution at the tail of the condition, while the proposed
221 method with the Gumbel base distribution almost perfectly captures it.



(a) Mean-Shifted Laplace Target.

(b) Correlated Gaussian Target.

Figure 2: In each subfigure, the left plot shows the standard diffusion with Gaussian base distribution, and the right plot shows our proposed method with a standard Laplace base distribution for the mean-shift example (no transformation) and a Gumbel base distribution for the multivariate Gaussian example (with learned CEVT transformation).

222 4.2 Stock Returns Conditioned on Volatility Index

223 The VIX Index is a time-series that measures market expectations of near-term volatility conveyed
224 by S&P 500 stock index option prices. A high VIX index typically signals a period of financial
225 stress, as observed during major economic disruptions such as the Global Financial Crisis (GFC) in
226 2008 and the COVID-19 pandemic in 2020, when the VIX reached elevated levels. In this study, we
227 apply our methodology to real-world data to model the returns of selected financial assets during
228 periods of heightened market volatility. Our objective is to evaluate the proposed method by modeling
229 the returns of financial assets conditioned on a measure of market risk. Specifically, we assess the
230 performance of our approach in generating the marginal returns of a mix of technology and financial
231 stocks during stressed market regimes, using the volatility index VIX as a conditioning factor. The
232 stocks analyzed include AAPL, MSFT, GOOGL, NVDA, AMZN, JPM, WFC, and GS. We focus on
233 two significant periods: the 2008 Global Financial Crisis and the 2020 COVID-19 pandemic. For
234 each period, we establish distinct training and testing phases to evaluate generative performance::

- 235 • **GFC:** we use training data from 01/01/2005-12/31/2007 and evaluate on the testing data
236 from 01/01/2008-12/31/2009.
- 237 • **COVID:** we use training data from 01/01/2017-12/31/2019 and evaluate on the testing data
238 from 01/01/2020-12/31/2021.

239 For baselines, we compare a standard linear diffusion (Gaussian base) and our proposed methodology
240 with CEVT-based transformation and a Laplace base distribution. We provide more information on
241 the VIX and plots of it during both periods for both the training and test data in the Appendix D.2,
242 which demonstrate the prevalence of more extreme conditions in the testing dataset for both periods.

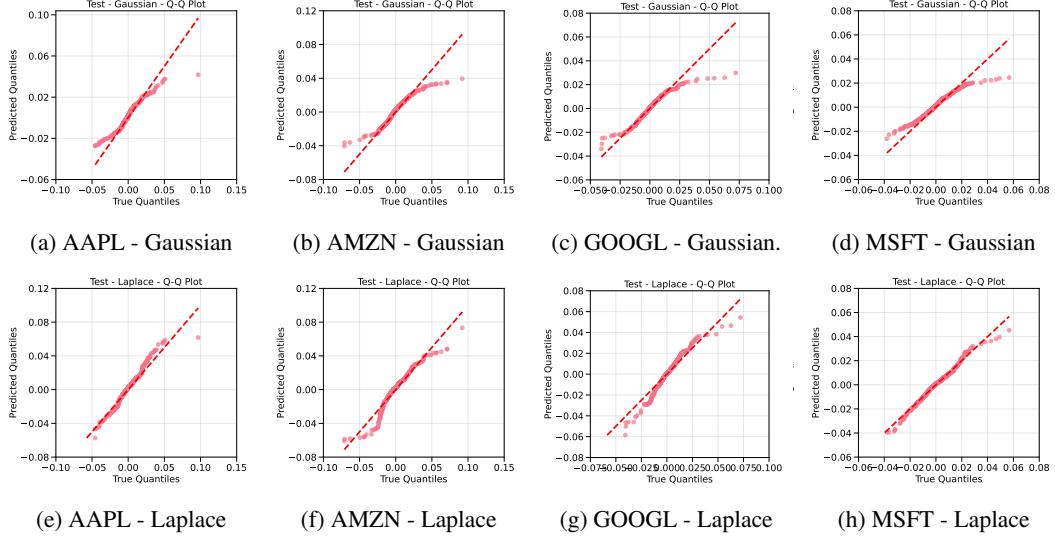


Figure 3: QQ plots on test datasets for COVID period for various technology stocks.

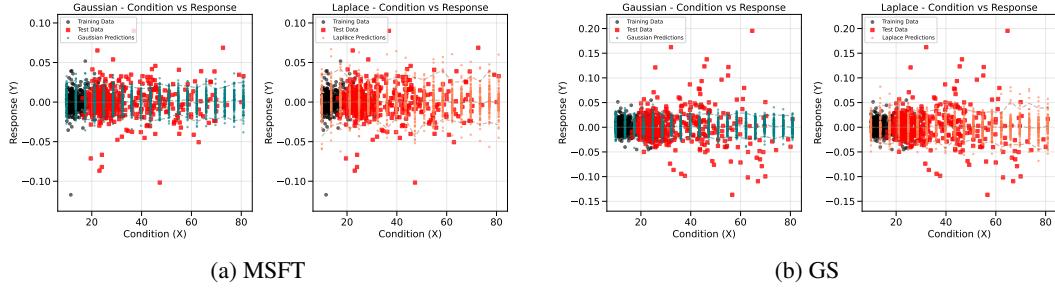


Figure 4: Performance comparison of Gaussian versus Laplace base distributions based on different values of VIX level for the GFC regime.

243 Our results demonstrate that, in this example, employing a nonlinear diffusion model offers a clear
 244 advantage in capturing the unconditional heavy-tailed behavior of stock returns, while also enhancing
 245 the modeling of conditionals for high VIX levels. For instance, as illustrated in the QQ plots in Figure
 246 3, we observe that when capturing the marginal distribution of returns for various technology stocks
 247 during the COVID period, utilizing a Laplace base distribution outperforms its Gaussian counterpart
 248 in the tails, while maintaining good calibration in the bulk of the distribution. Regarding performance
 249 on the conditionals, we observe that during the GFC period, selecting a Laplace base distribution
 250 more effectively captures tail behavior as VIX values increase, despite these high VIX levels not
 251 being present during training. We offer more detailed plots analyzing the results for each stock across
 252 both periods in the Appendix D.2.

253 5 Conclusions and Future Work

254 In this work, we propose a methodology for improving rare event sampling in conditional generative
 255 modeling based on nonlinear score-based diffusion models. Motivated by conditional extreme
 256 value theory, we show that under some transformation of the data, we can choose the equilibrium
 257 distribution of the Langevin diffusion that is more advantageous from a sample complexity perspective
 258 for our learning problem. We provide numerical simulations on two toy experiments and a practical
 259 application of risk modeling for financial returns and demonstrate we can better capture the response
 260 distribution for extreme tails of the condition variable. From a practical perspective, challenges
 261 pertaining to our work include incorporating data-driven learning of the feature transformation
 262 process, extension to high-dimensional conditional variables, and a comprehensive performance
 263 comparison across multiple generative models on a larger pool of datasets.

264 **References**

265 [1] Brian D.O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
266 *Applications*, 12(3):313–326, 1982.

267 [2] Sinho Chewi. Log-concave sampling. *Book draft available at <https://chewisinho.github.io>*,
268 9:17–18, 2023.

269 [3] Arnak Dalalyan. Further and stronger analogy between sampling and optimization: Langevin
270 monte carlo and gradient descent. In *Conference on Learning Theory*, pages 678–689. PMLR,
271 2017.

272 [4] Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and
273 langevin monte-carlo. *Journal of Computer and System Sciences*, 78(5):1423–1443, 2012.

274 [5] Holger Drees and Anja Jansen. Conditional extreme value models: fallacies and pitfalls.
275 *Extremes*, 20(4):777–805, 2017.

276 [6] Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted
277 langevin algorithm. 2017.

278 [7] Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and
279 inference. *Econometrica*, 89(1):181–213, 2021.

280 [8] Janet E Heffernan and Sidney I Resnick. Limit laws for random vectors with an extreme
281 component. 2007.

282 [9] Janet E. Heffernan and Jonathan A. Tawn. A conditional approach for multivariate extreme val-
283 ues (with discussion). *Journal of the Royal Statistical Society Series B: Statistical Methodology*,
284 66(3):497–546, 07 2004.

285 [10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances*
286 *in neural information processing systems*, 33:6840–6851, 2020.

287 [11] Tianyang Hu, Fei Chen, Haonan Wang, Jiawei Li, Wenjia Wang, Jiacheng Sun, and Zhenguo Li.
288 Complexity matters: Rethinking the latent space for generative modeling. *Advances in Neural*
289 *Information Processing Systems*, 36:29558–29579, 2023.

290 [12] H. Joe. *Multivariate Models and Multivariate Dependence Concepts*. Chapman & Hall/CRC
291 Monographs on Statistics & Applied Probability. Taylor & Francis, 1997.

292 [13] Caroline Keef, Ioannis Papastathopoulos, and Jonathan A. Tawn. Estimation of the conditional
293 distribution of a multivariate variable given that one of its components is large: Additional
294 constraints for the heffernan and tawn model. *Journal of Multivariate Analysis*, 115:396–404,
295 2013.

296 [14] Tengyuan Liang, Kulunu Dharmakeerthi, and Takuya Koriyama. Denoising diffusions with
297 optimal transport: Localization, curvature, and multi-scale complexity. *arXiv preprint*
298 *arXiv:2411.01629*, 2024.

299 [15] Roger B Nelsen. *An introduction to copulas*. Springer, 2006.

300 [16] Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer
301 Science & Business Media, 2013.

302 [17] Sidney I Resnick and David Zeber. Transition kernels and the conditional extreme value model.
303 *Extremes*, 17(2):263–287, 2014.

304 [18] Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. What’s the score? automated denoising
305 score matching for nonlinear diffusions. *arXiv preprint arXiv:2407.07998*, 2024.

306 [19] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
307 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–
308 1428, 2021.

309 **A CEVT details**

310 We restate the CEVT modeling assumption for convenience.

311 **Assumption 2** (CEVT [9, 13]). *Suppose the marginals of X and Y are standard Laplace. Then, as*
 312 *$X = x \rightarrow \infty$, we assume X, Y admit the **asymptotic dependency**,*

$$\lim_{x \rightarrow \infty} P\left(\frac{Y - a(X)}{b(X)} < z | X = x\right) = G(z)$$

313 where G is some distribution independent of X . In other words, for tail values, $X = x \rightarrow \infty$, we
 314 model,

$$Y = a(X) + b(X) \cdot Z, \quad Z \sim G,$$

315 In a slightly different formulation, [8] establish that, so long as the conditioning variable X belongs
 316 to the domain of attraction of an extreme value distribution, such an assumption about asymptotic
 317 behavior is reasonable. More recently, [17] directly related the Heffernan Tawn model to the more
 318 general formulation of [8] and found parsimony under some mild conditions. We emphasize that
 319 this modeling assumption is theoretically grounded. A growing body of applied statistical methods
 320 successfully apply this model, further strengthening its relevance in practice.

321 Importantly, [9, 13] found that for all standard copula forms of dependence outlined in [12, 15], the
 322 functions $a(X), b(X)$ admit simple parametric forms, thus, the limiting form G can be assessed with
 323 a relatively small amount of samples. This insight motivates an approach to extrapolating to the tail
 324 in conditional score-based diffusion models.

325 **A.1 Normalizing Functions**

326 For a variety of relationships between X and Y , G has a log-concave density and the normalizing
 327 functions a and b admit simple forms [9, 13].

328 Suppose X and Y are marginally Laplace. Then for some suitably high threshold, $x \in \mathbb{R}$ the
 329 conditional relationship at the tail values, $X > x$, approximately satisfy,

$$Y = a \cdot X + X^b \cdot Z, \quad Z \sim G, \quad a \in [-1, 1], b \in (-\infty, 1).$$

330 For a detailed examination of this relationship and clear delineation of when this simple form arises a
 331 reader should refer to the original work [9] or the follow-up [13]. In particular, Table 1 in [9]. For
 332 failure cases a reader can refer to [5]. We assume for our examples that $a(x)$ and $b(x)$ admit this
 333 simple structure.

334 In practice, the scalars a and b are estimated. It is possible to learn these parameters via constrained
 335 optimization. The simplest approach, which we implemented, is to assume $Z \sim \mathcal{N}(0, 1)$ and
 336 implement maximum likelihood with tail data $\{(X_i, Y_i) : X_i > x\}$.

337 **A.2 Toy Example**

338 As an example, suppose,

$$(X, Y) \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right)$$

339 First, transform the variables to have Laplace marginals, $(X, Y) \rightarrow (X^*, Y^*)$ (e.g., Inverse CDF
 340 Transform). For this example, the normalizing functions admit an explicit form,

$$Z = \frac{Y^* - a(X^*)}{b(X^*)}, \quad a(x) = \text{sign}(\rho) \cdot \rho^2 \cdot x, \quad b(x) = x^{1/2}$$

341 In this regime, it is well understood [13] that,

$$\mathbf{P}(Z | X^* = x^*) \rightarrow \mathcal{N}(0, 2\rho^2(1 - \rho^2)), \quad \text{as } x^* \rightarrow \infty.$$

342 So, setting $g(x) = \frac{1}{2}x^2$, $\beta = (2\rho^2(1 - \rho^2))^{-1/2}$, our new forward diffusion is a scaled OU process
 343 that admits $G = \mathcal{N}(0, 2\rho^2(1 - \rho^2))$ as equilibrium.

344 We visualize the diffusion process, before and after transformation, in Figure 5. Comparing the plots
 345 in the left column, it is clear that the path evolution of particles Y_t that correspond to large, tail values
 346 in X (bottom right, depicted in blue) are much more regular after the transformation. We also plot
 347 the conditional densities $\bar{\mu}_t(\cdot|x)$, for a collection of timesteps and both bulk and tail events $\{X = x\}$.
 348 Before the transformation, $\bar{\mu}_t(y|x)$ changes quite drastically across the forward chain. However, after
 349 transformation (see bottom right figure), $\bar{\mu}_t(z|x^*) \propto G$ for tail values $X^* = x^*$. Indeed, we see that
 350 at the tail values of the condition, $x^* \rightarrow \infty$, the forward process is already at stationarity. In other
 351 words,

$$\nabla g(y) + \beta^{-1} \nabla \log \rho_{\mu_t(\cdot|x^*)}(y) = y - y = 0, \quad \forall t, \quad (\text{easy to learn})$$

352 And so, where we have few samples, we have a sequence of functions that may be estimated with few
 353 samples.

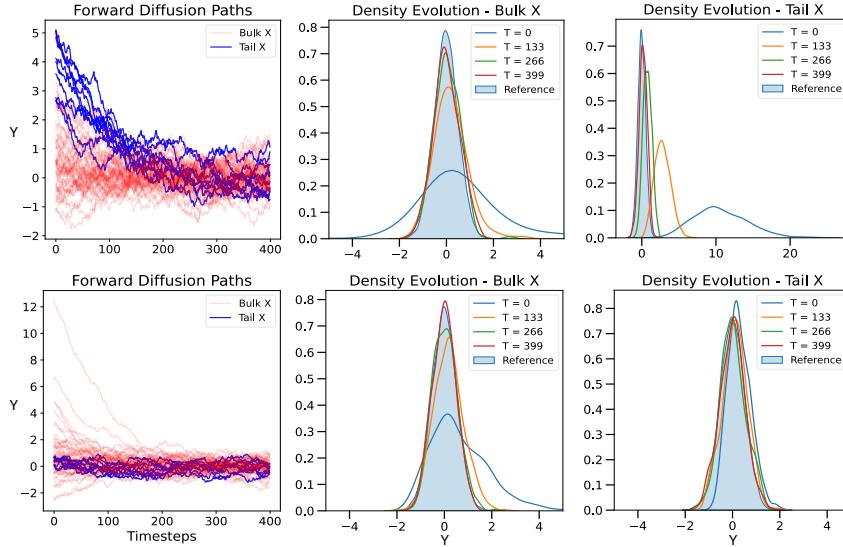


Figure 5: Top row: Before transformation. Bottom row: After transformation.

354 B Theory

355 A simple change to Theorem 1 in [19] will reflect our change in target for estimation. For completeness
 356 we include the theorem below and detail the small modification to the proof. We state the result for
 357 unconditional densities, but the result follows for conditional densities without loss of generality.

358 **Theorem 1.** Denote by $p(y)$ the target density. Let $\{Y_t\}_{t \in [0, T]}$ be the stochastic process defined by
 359 the SDE in 1, where $Y_0 \sim p$ and $Y_t \sim p_t$. Suppose $\pi(y)$ is the stationary density of this SDE as
 360 $T \rightarrow \infty$. Let $\hat{Y}_0^\leftarrow \sim p_\theta(y)$ be the result of the approximate reverse-time SDE where we substitute
 361 our score model, $s_\theta(y, t)$.

$$d\hat{Y}_t^\leftarrow = -(2s_\theta(\hat{Y}_t^\leftarrow, t) - \nabla f(\hat{Y}_t^\leftarrow))dt + \sqrt{2\beta^{-1}}d\bar{B}_t, \quad \hat{Y}_T^\leftarrow \sim \pi \quad (12)$$

362 Under some regularity conditions (see Appendix A [19]),

$$KL(p||p_\theta) \leq \int_0^T \mathbb{E}_{p_t(y)} [\|(\nabla f(y) + \beta^{-1} \nabla \log p_t(y)) - s_\theta(y, t)\|^2] dt + KL(p_T||\pi).$$

363 *Proof.* Denote the path measure of $\{Y_t\}_{t \in [0, T]}$ and $\{\hat{Y}_t^\leftarrow\}_{t \in [0, T]}$ by μ and ν . Recall $Y_0 \sim p$ and
 364 $Y_T \sim p_T$, whereas $\hat{Y}_0^\leftarrow \sim p_\theta$ and $\hat{Y}_T^\leftarrow \sim \pi$. Following the line of argumentation in [19], we establish

365 by data-processing inequality (1), and chain rule (2),

$$KL(p||p_\theta) \stackrel{1}{\leq} KL(\mu||\nu) \stackrel{2}{\leq} KL(p_T||\pi) + \mathbb{E}_{z \sim p_T} [KL(\mu(\cdot|Y_t = z)||\nu(\cdot|\hat{Y}_T^\leftarrow = z))].$$

366 What remains is to tackle the second term on RHS. Due to time-reversal, the path measure $\{Y_t\}_{t \in [0, T]}$
367 can be equivalently seen as generated by the reverse time SDE,

$$dY_t^\leftarrow = -(\nabla f(Y_t^\leftarrow) + 2\beta^{-1}\nabla \log p_t(Y_t^\leftarrow))dt + \sqrt{2\beta^{-1}}d\bar{B}_t, \quad Y_T^\leftarrow \sim \pi \quad (13)$$

368 Then, $KL(\mu(\cdot|Y_t = z)||\nu(\cdot|\hat{Y}_T^\leftarrow = z))$ can be calculated by comparing the following reverse-time
369 SDEs initialized at the same point:

$$dY_t^\leftarrow = -(\nabla f(Y_t^\leftarrow) + 2\beta^{-1}\nabla \log p_{\mu_t(\cdot|x)}(Y_t^\leftarrow))dt + \sqrt{2\beta^{-1}}dB_t, \quad Y_T^\leftarrow = z \quad (14)$$

$$d\hat{Y}_t^\leftarrow = -(2s_\theta(\hat{Y}_t^\leftarrow; x, t) - \nabla f(\hat{Y}_t^\leftarrow))dt + \sqrt{2\beta^{-1}}dB_t, \quad \hat{Y}_T^\leftarrow = z \quad (15)$$

370 Since these SDES share the same diffusion coefficient and starting point, we can appeal to Girsanov's
371 theorem [16] to see,

$$KL(\mu(\cdot|Y_t = z)||\nu(\cdot|\hat{Y}_T^\leftarrow = z)) \leq \int_0^T \mathbb{E}_{p_t(y)} [\|(\nabla f(y) + \beta^{-1}\nabla \log p_t(y)) - s_\theta(y, t)\|^2]dt$$

372 \square

373 We adopt the following non-asymptotic bound from [7] with regard to the sample complexity of
374 minimizing the squared error in a multi-layer perceptron neural network.

375 **Theorem 2.** Let \hat{f}_{MLP} denote a standard multi-layer perceptron. Under the assumption that the target
376 function $f_* = \nabla f + \beta^{-1}\nabla \log p_{\mu_t(\cdot|x)}$ lies in the Sobolev ball $\mathcal{W}^{S,\infty}([-1, 1]^d)$ with smoothness
377 parameter $S \in \mathbb{N}^+$, then with probability at least $1 - \delta$ where $\delta = \exp(-n^{\frac{d}{S+d}} \log^8 n)$, for large
378 enough n :

$$\|\hat{f}_{\text{MLP}} - f_*\|_{L_2(x)}^2 \leq C \left(n^{-\frac{S}{S+d}} \log^8 n + \frac{\log \log n}{n} \right) \quad (16)$$

379 Intuitively, the "rougher" the function (the smaller the value of S) and the higher the input dimension
380 d , a larger number of samples are needed to estimate the target function f_* .

381 C Methodology Details

382 C.1 Smoothness of f

383 We implement the Euler-Maryama discretization of the forward diffusion, 1. This amounts to
384 Unadjusted Langvin Algorithm (ULA). It is well established that the convergence speed of ULA
385 depends on the gradient of our drift term, $\nabla^2 f$ (developed in a sequence of works [4, 3, 6]). We
386 present a result condensed in [2], and for simplicity, specialized to dimension, $d = 1$.

387 **Theorem 3** (Convergence of ULA [2]). Suppose that $\pi \propto e^{-f}$ is the target distribution and f
388 satisfies $\alpha \leq \nabla^2 f \leq \beta$. Define $\kappa = \beta/\alpha$ as the condition number and $\mu_{t,\eta}$ as the t -th measure in
389 the sequence. Then, for any $\epsilon \in [0, 1]$, with step size $\eta \asymp \epsilon^2/\beta\kappa$, we obtain that after,

$$T = O \left(\frac{\kappa^2}{\epsilon^2} \log \frac{\alpha W_2^2(\mu_0, \pi)}{\epsilon^2} \right) \quad \text{iterations,}$$

390

$$\alpha W_2^2(\mu_{T,\eta}, \pi) \leq \epsilon^2$$

391 In our methodology, we propose choosing a convex f to target a specific distribution, e^{-f} , that reflects
392 the tail characteristics of our target conditional distribution, $P(Y|X = x)$. However, choosing f with
393 poor curvature directly impacts speed of forward process. This in turn impacts how many noising
394 steps, $[T]$, are necessary to diffuse-then-denoise and can detriment computational efficiency. This
395 is particularly relevant when part of our argument concerns out-performing Gaussian diffusions.
396 However, when $e^{-f} \propto e^{-x^2/2}$, $\kappa = 1$ and convergence is fast.

397 To overcome this we use appropriately smoothed versions of the new target density, e^{-f^*} . We smooth
 398 in such a way that κ is bounded, f^* is continuously differentiable, but $e^{-f^*} \approx e^{-f}$. In the backward
 399 process, we still initiate samples by drawing from e^{-f} . We emphasize that this does not impact the
 400 quality of the method.

401 • We show below that by appropriately choosing smoothing parameters, the forward process
 402 converges to a distribution very similar to the target, e^{-f} .
 403 • Small perturbations between the end of the forward process (e^{-f^*}) and start of the backward
 404 process (e^{-f}) is theoretically negligible [14]. Even with standard schemes, owing to the
 405 finite time steps $T < \infty$, the end of the forward process will not be exactly Gaussian.

406 Below are examples relevant to this paper.

407 **Gaussian** The standard scheme is to target $e^{-f} \propto e^{-x^2/2}$, standard Gaussian density. In this case,
 408 $\kappa = 1$.

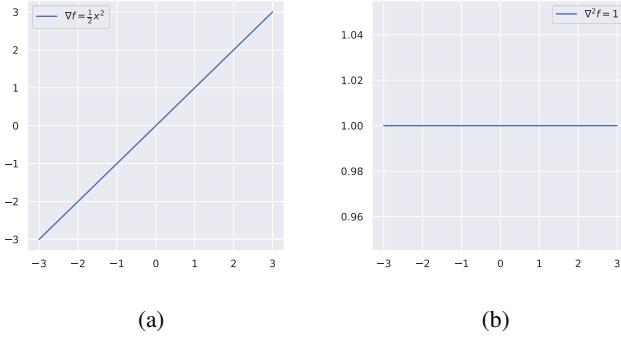


Figure 6: (a): Plot of ∇f . (b): Plot of $\nabla^2 f$.

409 **Laplace** Suppose we want to target $e^{-f} \propto e^{-|x|}$. Then, $\nabla^2 f = 0$ and f is not continuously
 410 differentiable (at 0). Convergence theorem for ULA suggests potential problems. Instead, we
 411 consider a smooth approximation,

$$\nabla f^*(x, b, c) = \begin{cases} \frac{1}{b} \cdot x + c \cdot x, & \text{if } x \in (-b, b), \\ \text{sign}(x) + c \cdot x, & \text{otherwise.} \end{cases}$$

412 Here, $b, c \geq 0$ are user specified constants. If $b, c = 0$, then we arrive at ∇f . This is simply the
 413 gradient of the Huber function with a linear perturbation by $c \cdot x$. With this smoothing, $\kappa = 1 + \frac{1}{bc}$.

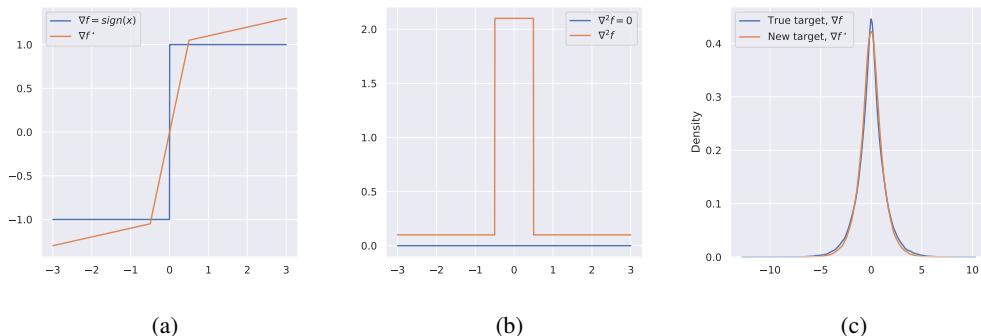


Figure 7: Set $b = 0.5$, $c = 0.1$. (a): Plot comparing ∇f and ∇f^* . (b): Plot comparing $\nabla^2 f$ and
 $\nabla^2 f^*$. (c): Comparing densities after running ULA ($\eta = 0.01$, $T = 1000$ with ∇f and ∇f^*).

414 **Huber** Suppose we want to target $e^{-f} \propto e^{-(x+e^{-x})}$. Then, $\nabla^2 f = e^{-x}$ which is not bounded
415 above, and approaches $\rightarrow 0$ as $x \rightarrow \infty$. We consider a smooth approximation,

$$\nabla f^*(x, b, c) = \begin{cases} e^b, & \text{if } x \leq -b, \\ e^{-x}, & \text{if } -b < x < c, \\ e^{-c}, & \text{if } x \geq c. \end{cases}$$

416 Here, $b, c \geq 0$ are user specified constants. If $b, c = 0$, then we arrive at ∇f . With this smoothing,
417 $\kappa = e^{b+c}$.

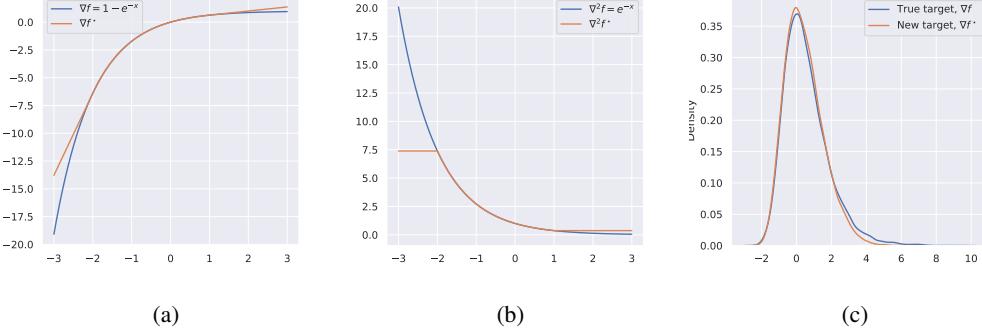


Figure 8: Set $b = 2, c = 1$. (a): Plot comparing ∇f and ∇f^* . (b): Plot comparing $\nabla^2 f$ and $\nabla^2 f^*$.
(c): Comparing densities after running ULA ($\eta = 0.01, T = 1000$ with ∇f and ∇f^*).

418 C.2 Taylor Accelerated Forward Diffusion

419 An important practical consideration for our training algorithm is the efficiency in the estimation of
420 the score function. In our work, we utilize the Euler-Maruyama approximation in order to sample Z_t
421 given Z_0 . In practice, this can be inefficient, since it requires $\mathcal{O}(t)$ sampling steps to sample. For a
422 given time $t_* \in \{1, \dots, T\}$, direct score estimation based on Euler–Maruyama is given by:

$$Z_0 \sim \mathcal{D} \tag{17}$$

$$Z_t = Z_{t-1} - \eta \nabla f(Z_{t-1}) + \sqrt{2\eta} \cdot \mathcal{N}(0, 1), \quad t = 1, \dots, t_* \tag{18}$$

423 A linear SDE can be solved more easily and allows for ancestral sampling, where $Z_t | Z_0$ can be
424 sampled in a single step. As an example, consider the Ornstein–Uhlenbeck (OU) process:

$$dZ_t = \theta(\mu - Z_t)dt + \sigma dW_t \tag{19}$$

425 and its Euler-Maruyama discretized counterpart:

$$Z_t = Z_{t-1} + \theta(\mu - Z_{t-1}) + \sigma \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, 1). \tag{20}$$

426 The discretized process can alternatively be parameterized as:

$$Z_t = (1 - \theta)Z_{t-1} + \theta\mu + \sigma \epsilon_t \tag{21}$$

427 which allows for straightforward derivation of the conditional $p(Z_t | Z_0)$:

$$p(Z_t | Z_0) = \mathcal{N} \left(Z_t; \alpha^t Z_0 + (1 - \alpha^t)\mu, \sigma^2 \left(\frac{1 - \alpha^{2(t+1)}}{1 - \alpha^2} \right) \right) \tag{22}$$

428 As we can see above, sampling from a linear SDE like the OU process is easy and does not require
429 multiple rounds of a solver. One idea to make sampling from a nonlinear SDE more efficiently is to
430 consider a first-order Taylor of the score. Particular to this paper, consider a Langevin diffusion with
431 score function $s(Z) = -\nabla_Z f(Z)$, which we know converges to $p(Z_*) \propto e^{-f(Z)}$ at equilibrium.

432 Consider the first-order Taylor approximation to the score centered around \tilde{Z} :

$$s(Z) \approx s(\tilde{Z}) + \nabla_{\tilde{Z}} s(\tilde{Z})(Z - \tilde{Z}) \tag{23}$$

433 We can see that under this approximation, $s(Z)$ is approximately a linear function in Z . It is
 434 straightforward to see that by plugging in this approximation into the Langevin SDE, we can employ
 435 ancestor sampling as in (22) to accelerate the forward diffusion for nonlinear SDEs. In particular, we
 436 can easily see that under this linear approximation, the Langevin SDE will reduce to an OU process
 437 with certain parameterization:

$$Z_t = Z_{t-1} - \eta \nabla_{Z_{t-1}} s(Z_{t-1}) + \sqrt{2\eta} \epsilon_t \quad (24)$$

$$\approx Z_{t-1} - \eta(s(\tilde{Z}) + \nabla_{\tilde{Z}} s(\tilde{Z})(Z_{t-1} - \tilde{Z})) + \sqrt{2\eta} \epsilon_t \quad (25)$$

$$= Z_{t-1} - \eta s(\tilde{Z}) - \eta \nabla_{\tilde{Z}} s(\tilde{Z})(Z_{t-1} - \tilde{Z}) + \sqrt{2\eta} \epsilon_t \quad (26)$$

$$= Z_{t-1} - \eta s(\tilde{Z}) - \eta \nabla_{\tilde{Z}} s(\tilde{Z}) Z_{t-1} + \eta \nabla_{\tilde{Z}} s(\tilde{Z}) \tilde{Z} + \sqrt{2\eta} \epsilon_t \quad (27)$$

$$= \left(1 - \eta \nabla_{\tilde{Z}} s(\tilde{Z})\right) Z_{t-1} + \eta \nabla_{\tilde{Z}} s(\tilde{Z}) \left(\tilde{Z} - \left(\nabla_{\tilde{Z}} s(\tilde{Z})\right)^{-1} s(\tilde{Z})\right) + \sqrt{2\eta} \epsilon_t \quad (28)$$

438 We can see that this is an OU process with the following parameters:

$$\theta = \eta \nabla_{\tilde{Z}} s(\tilde{Z}) \quad (29)$$

$$\mu = \tilde{Z} - \left(\nabla_{\tilde{Z}} s(\tilde{Z})\right)^{-1} s(\tilde{Z}) \quad (30)$$

$$\sigma = 2\eta \quad (31)$$

439 This means that we can apply ancestral sampling to the Taylor approximation of our Langevin
 440 diffusion. We refer the reader to the pseudocode in Algorithm 1 for our specific implementation.

Algorithm 1 Taylor-Accelerated Forward Sampling

- 1: **Input:** Initial residual Z_0 , conditioning variable X , target time t_* , step size η , Taylor steps function $K(t)$
- 2: **Initialize:** Current state $Z_{curr} = Z_0$, current time $t_{curr} = 0$
- 3: **while** $t_{curr} < t_*$ **do**
- 4: **Determine number of Taylor horizon:** Set $k = \min(K(t_{curr}), t_* - t_{curr})$
- 5: **Compute Taylor approximation:**

$$s_{curr} = s_\theta(Z_{curr}; X, t_{curr})$$

$$\nabla s_{curr} = \nabla_{Z_{curr}} s_\theta(Z_{curr}; X, t_{curr})$$

- 6: **Set OU parameters:**

$$\alpha = 1 - \eta \nabla s_{curr}$$

$$\mu_{eff} = Z_{curr} - \frac{s_{curr}}{\nabla s_{curr}}$$

$$\sigma_{eff} = \sqrt{2\eta}$$

- 7: **Ancestral sampling:** Sample directly at time $t_{curr} + k$: $Z_{curr} \sim \mathcal{N}\left(\alpha^k Z_{curr} + (1 - \alpha^k) \mu_{eff}, \sigma_{eff}^2 \frac{1 - \alpha^{2k}}{1 - \alpha^2}\right)$
- 8: **Update time:** $t_{curr} \leftarrow t_{curr} + k$
- 9: **end while**
- 10: **Return:** Final residual $Z_{t_*} = Z_{curr}$

Algorithm 2 CEVT-based Data Preprocessing

1: **Input:** $\{(X_i, Y_i)\}_{i=1}^n$, threshold quantile $\alpha > 0$
 2: **Estimate empirical CDFs:** Compute \hat{F}_X and \hat{F}_Y from data
 3: **Transform to Laplace marginals:** For all samples $i = 1, \dots, n$ **do**

$$X_i^* \leftarrow -\text{sign}(\hat{F}_X(X_i) - 0.5) \cdot \log\left(1 - 2|\hat{F}_X(X_i) - 0.5|\right)$$

$$Y_i^* \leftarrow -\text{sign}(\hat{F}_Y(Y_i) - 0.5) \cdot \log\left(1 - 2|\hat{F}_Y(Y_i) - 0.5|\right)$$
 4: **Extract tail samples:** Find subset $\{(X_i^*, Y_i^*)\}_{i=1}^m$ where $\hat{F}_X(X_i) > 1 - \alpha$
 5: **Estimate tail parameters:** Compute coefficients a, b using tail samples $\{(X_i^*, Y_i^*)\}_{i=1}^m$
 6: **Compute residuals:** Set $Z_i = \frac{Y_i^* - a - X_i^*}{(X_i^*)^b}$ for $i = 1, \dots, n$
 7: **Return:** Preprocessed dataset $\{(X_i^*, Z_i)\}_{i=1}^n$

Algorithm 3 Diffusion Model Training

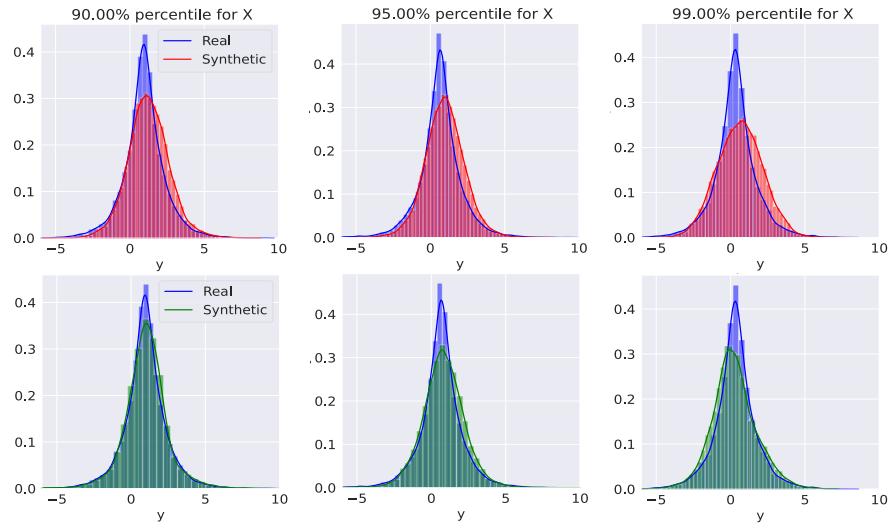
1: **Input:** Preprocessed dataset $\{(X_i^*, Z_i)\}_{i=1}^n$, learning rate η , epochs E , weighting function $\lambda(t)$
 2: **Initialize:** Network parameters θ , noise schedule parameters
 3: **for** epoch $e = 1, \dots, E$ **do**
 4: **for** batch $\{(X_j^*, Z_j)\}_{j \in \text{batch}}$ **do**
 5: **Sample timestep:** Sample t uniformly over time-horizon.
 6: **Generate noisy samples:** Sample $Z_t | Z_0 = Z_j$ according to forward process using
 Euler-Maruyama solver of Taylor-accelerated sampling in Algorithm 1.
 7: **Compute score matching loss:** Evaluate $\mathcal{L}(\theta)$ in (7) for each sample in the batch.
 8: **Backward pass:** Compute gradients $\nabla_\theta \mathcal{L}(\theta)$
 9: **Update parameters:** $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(\theta)$
 10: **end for**
 11: **end for**
 12: **Return:** Trained parameters θ

Algorithm 4 Diffusion Model Sampling

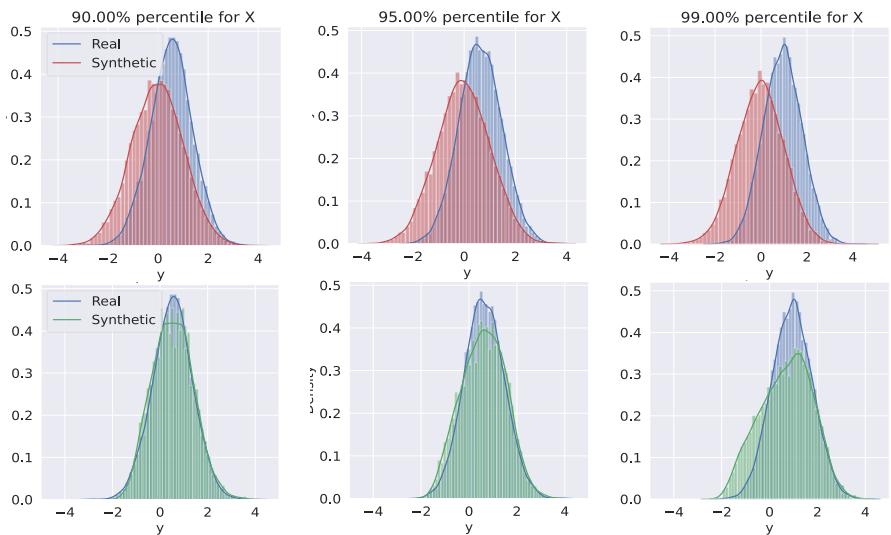
1: **Input:** Initial noise Z_T , conditioning X^* , trained score s_{θ_*} , time horizon T
 2: **Initialize:** Current state $Z_{curr} = Z_T$, current time $t_{curr} = T$
 3: **while** $t_{curr} > 0$ **do**
 4: **Determine step size:** Set $k = \min(K(t_{curr}), t_{curr})$
 5: **Compute score:** Evaluate $s_{\theta_*}(Z_{curr}; X^*, t_{curr})$
 6: **Reverse step:** Apply reverse SDE or Euler-Maruyama:

$$Z_{curr} = Z_{curr} + \eta \cdot s_{\theta_*}(Z_{curr}; X^*, t_{curr}) + \sqrt{2\eta} \epsilon$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 7: **Update time:** $t_{curr} \leftarrow t_{curr} - k$
 8: **end while**
 9: **Return:** Denoised residual $Z_0 = Z_{curr}$



(a) Top Row: Standard method targeting $P(Y|X)$ with linear diffusion. Bottom Row: New method. New method manages to capture the heavy Laplace tails, standard method struggles to do so.



(b) Top Row: Standard method targeting $P(Y|X)$ with linear diffusion. Bottom Row: New method.

Figure 9: (a) Synthetic Example 1 (b) Synthetic Example 2

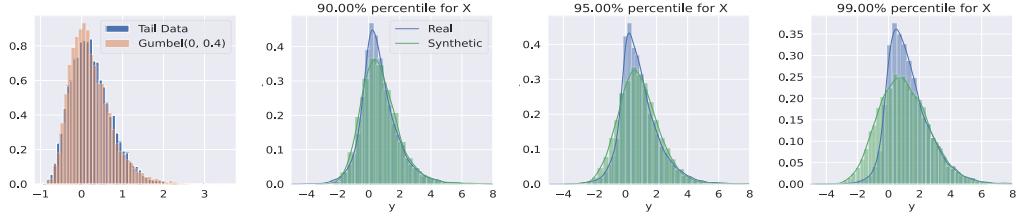


Figure 10: Left Plot: As discussed, we see for extreme (but not infinite) values in the tail, data seem Gumbel distributed. We visualize sampling in the CEVT based representation space ($P(Z|X^*)$) in the subsequent plots. We capture the one-sided tails.

445 D.2 Financial Returns Conditioned on VIX

446 We provide additional and more detailed experimental results for our evaluation on real data.

447 D.2.1 VIX Time Series

448 Here, we show a plot of the VIX time series in Figure 11, which serves as the conditional information
 449 supplied to the diffusion models for the stock return generation experiment. For both the GFC and
 450 COVID periods, the VIX level is relatively lower in the training data (plotted in blue) than the testing
 451 data (plotted in orange), indicating that the testing data covers a period of market stress.

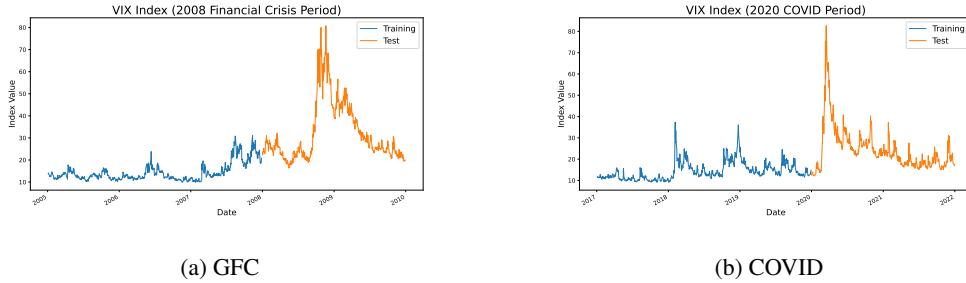


Figure 11: VIX level during the analyzed periods of market stress. VIX level in the training datasets (shown in blue) correspond to more stable market periods, while VIX levels in the testing dataset (shown in orange) correspond to a period of market stress.

452 D.2.2 Evaluation of Calibration via QQ plots (Unconditional Evaluation)

453 To evaluate the unconditional generative performance (where we marginalize out the conditions)
 454 of the proposed conditional diffusion model, we use QQ plots to check for the calibration of the
 455 predicted quantiles versus the true quantiles from the empirical dataset. Figure 12 and 13 show the
 456 QQ plots for each stock on the training and testing datasets for the GFC period, respectively. Figure
 457 14 and 15 show the QQ plots for each stock on the training and testing datasets for the GFC period,
 458 respectively. The results indicate that while the use of a Gaussian base distribution generally leads
 459 to better calibration in the training dataset and in the bulk of the distribution (10%-90% quantiles),
 460 the use of a Laplace distribution offers a significant advantage in the tail, specifically for the testing
 461 datasets, since the testing dataset considers VIX levels (conditions) much larger than what is seen in
 462 the training dataset. This showcases the advantages of considering alternative base distributions in
 463 the case of generative modeling for heavy-tailed targets.

464 D.2.3 Scatter Plots of Asset Returns vs. VIX Level (Conditional Evaluation)

465 The use of QQ plots makes sense for evaluation of the calibration of the marginal distribution of
 466 returns (where we generate samples considering all conditions in the ground truth training and testing
 467 datasets); however, it does not provide insight into the performance of the conditional, as we vary the

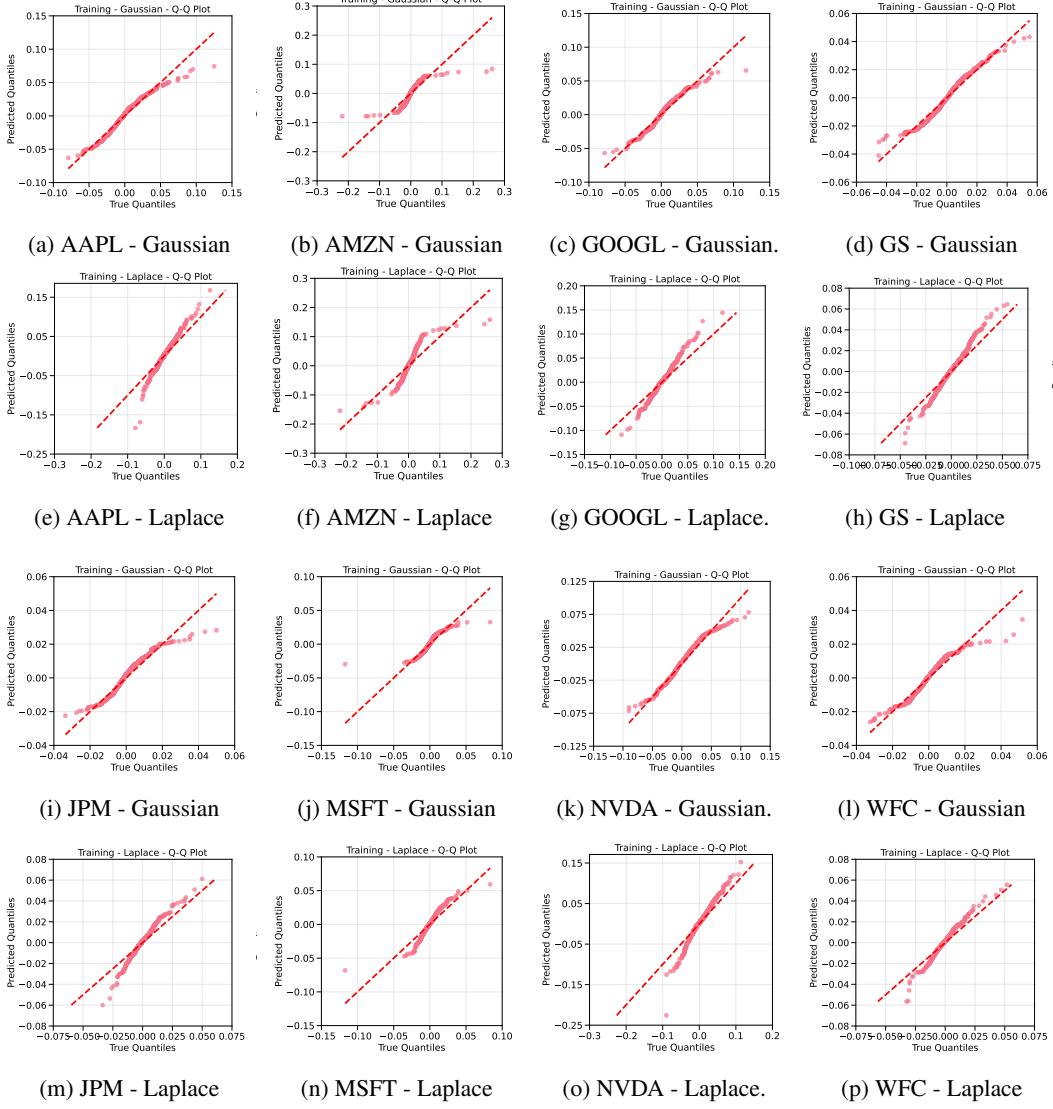


Figure 12: QQ plots on training datasets for the GFC period across all stocks. When comparing the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model exhibits superior calibration, particularly in the central mass of the distribution. We hypothesize that this improved fit in the bulk region is attributable to return distributions more closely approximating Gaussian behavior during this period, which coincides with generally lower VIX (volatility index) levels. Another notable observation is that the Laplace base distribution tends to produce overdispersion in the tails, while the Gaussian base leads to underdispersion. This pattern aligns with theoretical expectations, as the Laplace distribution inherently has heavier tails than the Gaussian distribution, making it prone to overestimating tail probabilities when the true data-generating process is closer to Gaussian in nature.

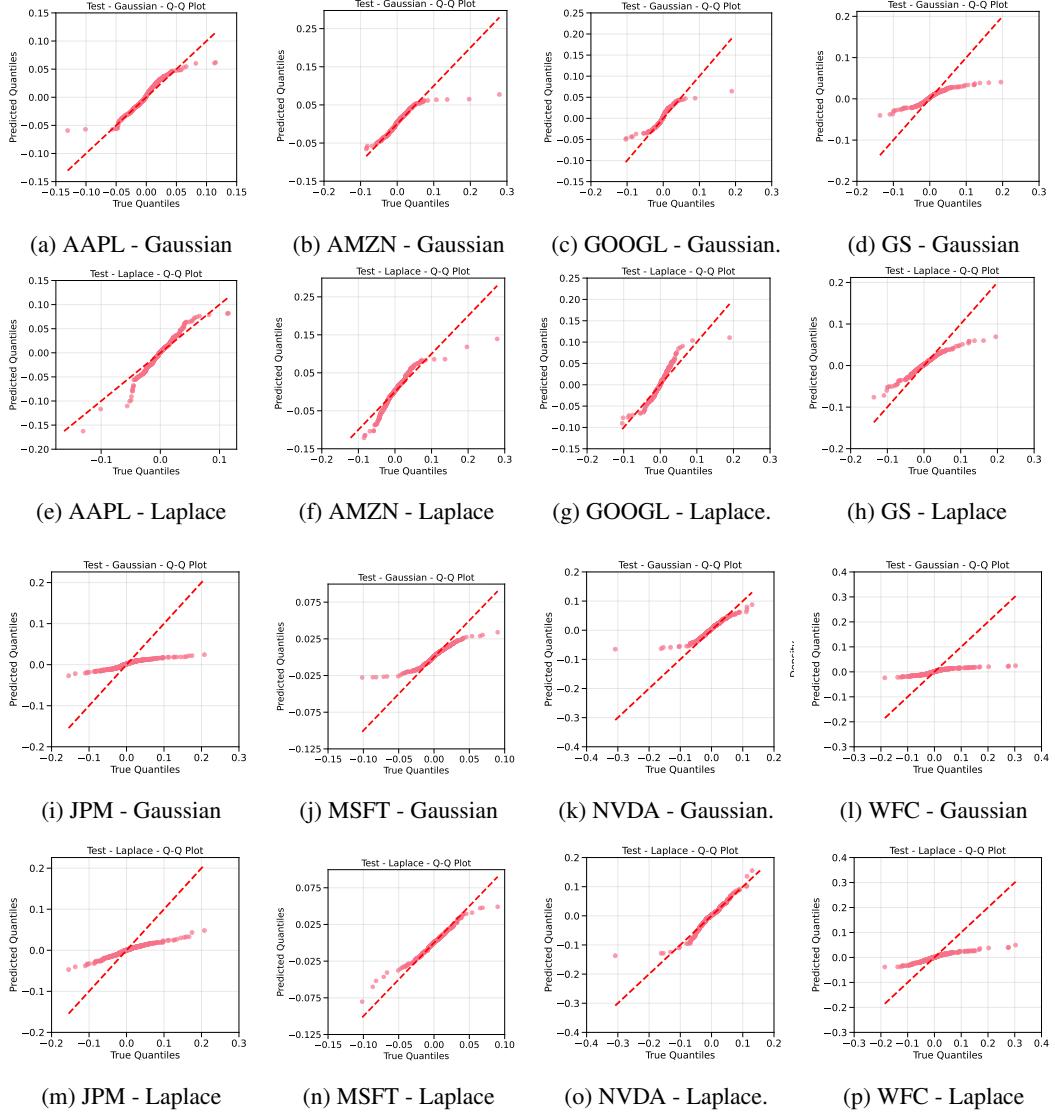


Figure 13: QQ plots on testing datasets for the GFC period across all stocks. When comparing the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model significantly underestimates the tail heaviness of the target distribution (showing extreme underdispersion), while the Laplace distribution provides a much closer approximation to the true tail behavior, particularly in the extreme regions. This pattern is especially pronounced for technology stocks (AAPL, AMZN, GOOGL, NVDA). For financial sector stocks, both distributional models perform inadequately. This can be attributed to the disproportionate impact of the GFC on the financial sector, representing a more comprehensive distribution shift from the training data beyond a covariate shift in market volatility indicators like VIX. Nevertheless, across all stocks, we observe that samples from both base distributions in the conditional generative model exhibit underdispersion relative to the empirical data.

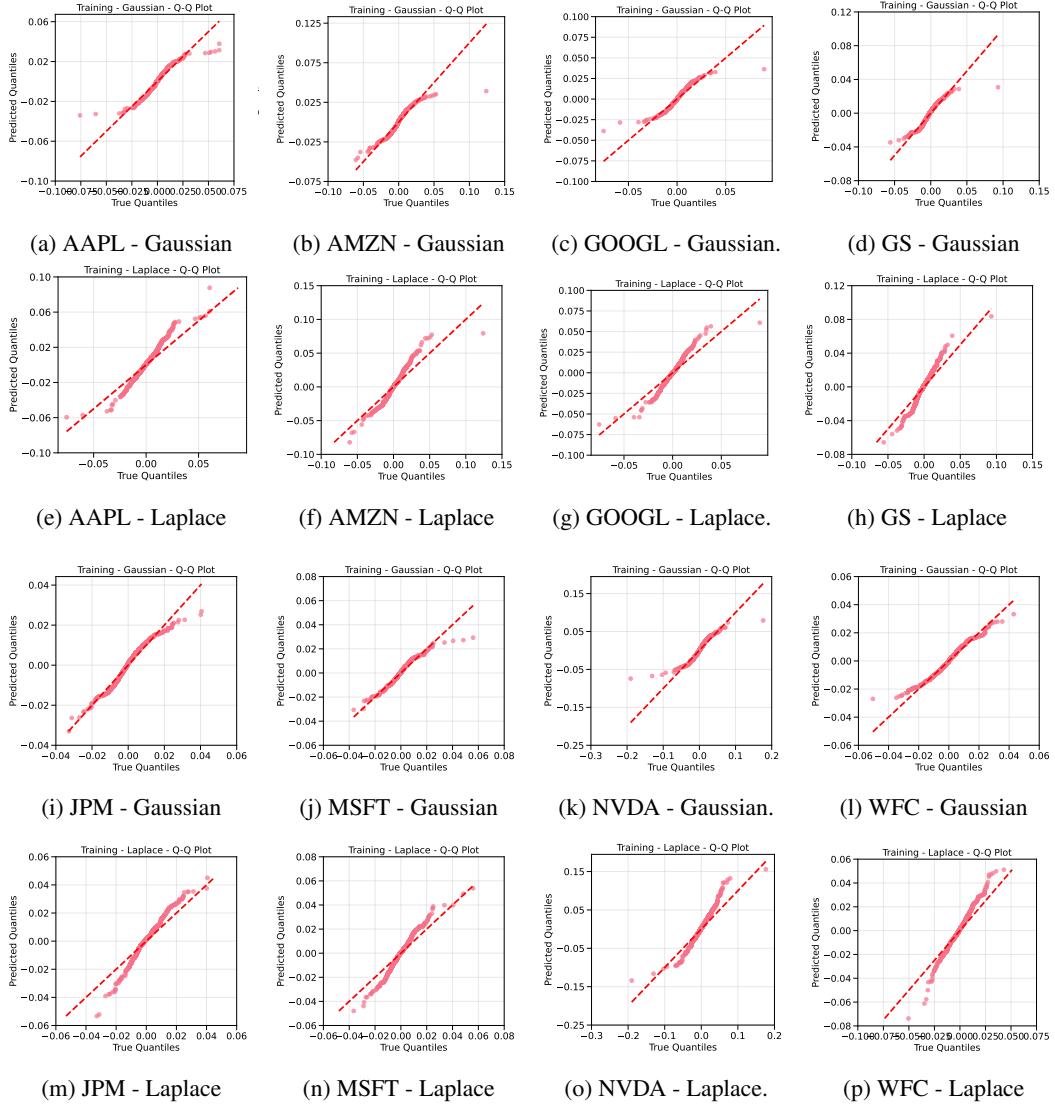


Figure 14: QQ plots on training datasets for the COVID period across all stocks. When comparing the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model exhibits better calibration in the bulk of the distribution for most stocks, though with notable deviations in the extremes. Another notable observation is that the Laplace base distribution consistently produces overdispersion in the tails across multiple stocks, while the Gaussian base leads to underdispersion at the extremes; similar to the observation made for the GFC period.

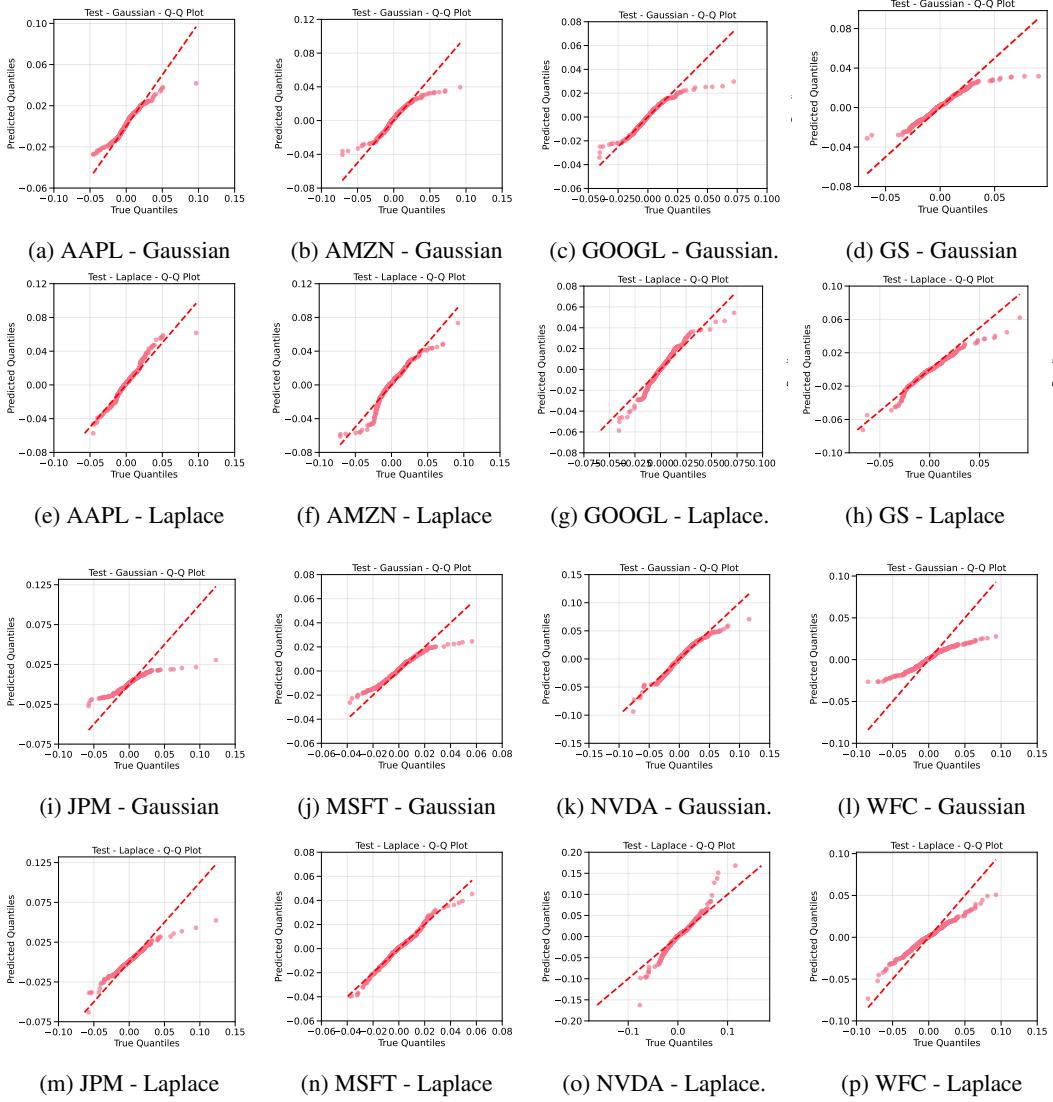


Figure 15: QQ plots on testing datasets for the COVID period across all stocks. When comparing the use of a Gaussian base distribution to a Laplace base distribution, we observe that the Gaussian model significantly underestimates the tail behavior, particularly evident in technology stocks like JPM (i), MSFT (j), and WFC (l) where predicted quantiles fall below the diagonal reference line at extremes. We hypothesize that this underdispersion reflects the Gaussian distribution's inability to capture the heightened market volatility characteristic of the COVID crisis period. Another notable observation is that the Laplace base distribution provides a markedly better fit to the tail behavior for most stocks, especially visible in AAPL (e), GOOGL (g), and JPM (m), though it still exhibits some deviations from perfect calibration. This pattern aligns with theoretical expectations, as the COVID period featured extreme market movements that are better approximated by distributions with heavier tails, making the Laplace distribution's inherent properties more suitable for modeling the fat-tailed nature of returns during this market stress periods.

468 condition to extreme values. In the case of VIX, we are interested in the right-tail of the condition;
 469 when the VIX level grows to large positive values (around 40-80). To evaluate the conditional
 470 performance, we use a scatter plot of the returns and the VIX level, and compare that the empirical
 471 percentiles of the conditional diffusion model for both the Gaussian and Laplace base distributions.
 472 We show these scatter plots for each ticker in Figure 16 and 17 for the GFC and COVID periods,
 473 respectively. For both periods, we can observe that the use of Gaussian base leads to underestimation
 474 of the tails across almost all conditions, while the use of a Laplace is much closer.

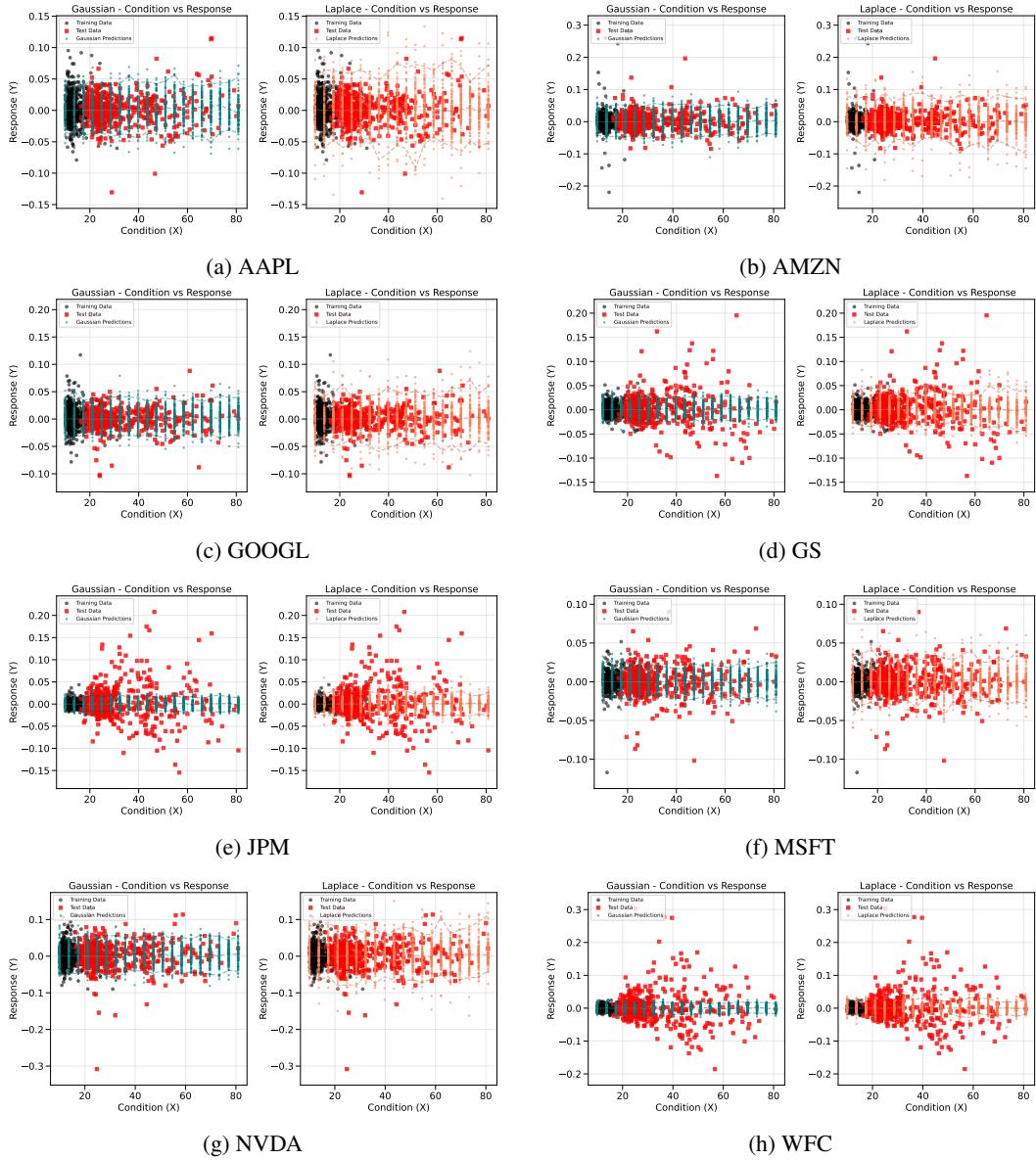


Figure 16: Scatter plots for visualization of conditional generation performance for GFC period.

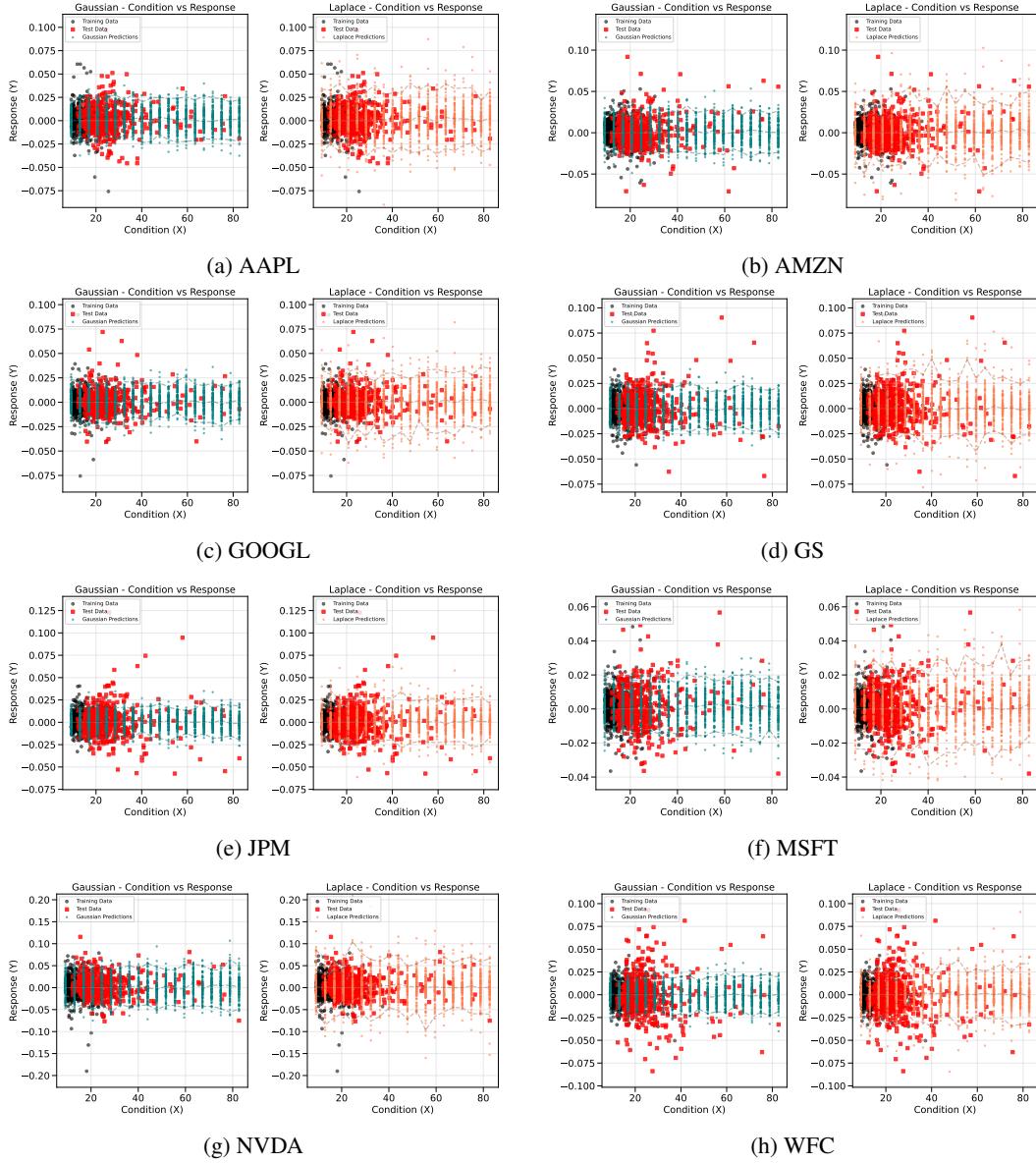


Figure 17: Scatter plots for visualization of conditional generation performance for COVID period.