

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POINNCARE: HYPERBOLIC MULTI-MODAL LEARNING FOR ENZYME CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Enzyme Commission (EC) number prediction is vital for elucidating enzyme functions and advancing biotechnology applications. However, current methods struggle to capture the hierarchical relationships among enzymes and often overlook critical structural and active site features. To bridge this gap, we introduce PoinnCARE, a novel framework that jointly encodes and aligns multi-modal data from enzyme sequences, structures, and active sites in hyperbolic space. By integrating graph diffusion and alignment techniques, PoinnCARE mitigates data sparsity and enriches functional representations, while hyperbolic embedding preserves the intrinsic hierarchy of the EC system with theoretical guarantees in low-dimensional spaces. Extensive experiments on four datasets from the CARE benchmark demonstrate that PoinnCARE consistently and significantly outperforms state-of-the-art methods in EC number prediction.

1 INTRODUCTION

Enzymes are fundamental biological catalysts that drive nearly all biochemical reactions essential for life (Berg, 2022; van Beilen and Li, 2002), and they underpin a wide range of industrial applications, including pharmaceutical synthesis (Karan et al., 2012; Nandanwar et al., 2020), food processing (Kumar et al., 2024; Kumari et al., 2021), and environmental cleaning (Gupta et al., 2002; Kumari et al., 2019). Central to understanding and harnessing enzyme function is the *Enzyme Commission (EC)* number system (Kraut, 1988; Copeland, 2023), which hierarchically classifies enzymes based on the chemical reactions they catalyze. Each EC number is a four-digit code, progressing from broad functional classes (1st digit) to highly specific activities (4th digit). For example, as illustrated in Fig. 1, the enzyme with EC number 3.1.21.1 catalyzes the hydrolysis of DNA, producing fragments with defined chemical groups at their termini. Accurate EC number prediction not only facilitates the annotation of newly discovered proteins but also enables the exploration of the vast and largely uncharacterized protein universe.

Despite recent advances (Yang et al., 2024a; Yu et al., 2023), existing computational approaches for EC number prediction face two major limitations. First, most methods either ignore or inadequately model the intrinsic hierarchical structure of the EC taxonomy, typically representing enzymes in Euclidean space (Li et al., 2018; Ryu et al., 2019; Sanderson et al., 2023). As shown in Fig. 2 (left), the EC system forms a tree-like hierarchy, which is theoretically difficult to embed in Euclidean space without significant distortion or high-dimensional overhead, limiting prediction accuracy. Second, current methods predominantly rely on sequence alignment (Stephen, 1990), overlooking critical structural and active site information that fundamentally determines enzymatic specificity and function. As depicted in Fig. 2 (right), enzyme catalysis depends on the precise three-dimensional arrangement of active site residues, which govern substrate binding and reaction specificity (Riziotis et al., 2025). Neglecting these modalities restricts the ability to capture the full complexity of enzyme function.

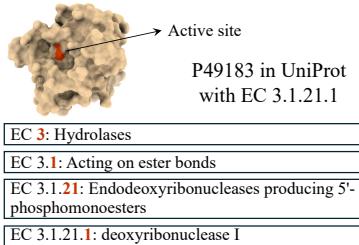


Figure 1: An example enzyme.

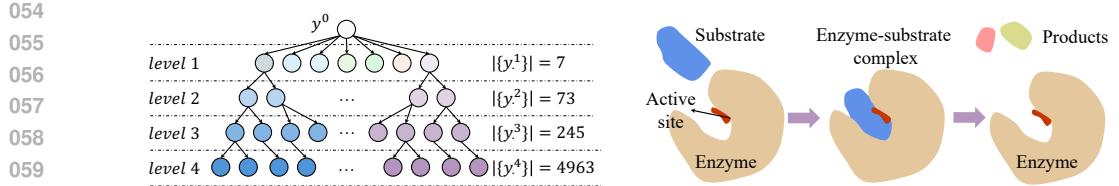


Figure 2: The tree structure of the EC system (left) and the catalytic mechanism of enzymes (right).

To address these challenges, we propose **PoinnCARE**¹, a framework that integrates multi-modal information from protein sequences, structures, and active sites, and projects them into hyperbolic space. We augment the CARE benchmark (Yang et al., 2024a) with comprehensive structural and active site annotations. While most enzymes can be assigned structures via experimental data or AlphaFold2/ESMFold predictions, experimentally validated active site annotations are available for only a small subset, leading to modality imbalance. To overcome this, PoinnCARE constructs pairwise similarity graphs for structure and active site modalities, leveraging intra-modality graph diffusion and inter-modality dual-graph alignment to alleviate annotation sparsity and bridge modality gaps. These graph representations are then projected into hyperbolic space to preserve the hierarchical relationships of the EC system. Our analysis shows that hyperbolic embeddings represent tree-like structures with lower distortion and in fewer dimensions than Euclidean approaches, while yielding better accuracy. Finally, comprehensive experiments on four test sets in the CARE benchmark (Yang et al., 2024a) show that PoinnCARE consistently outperforms state-of-the-art methods.

In summary, the main contributions of our work include:

- We augment the CARE benchmark with comprehensive structural and active site information, enabling richer multi-modal learning for enzyme function prediction.
- We construct similarity graphs and use graph diffusion to address annotation sparsity and enhance functional representation.
- We introduce a hyperbolic multi-modality encoding and alignment mechanism, which preserves the hierarchical relationships of the EC system with low distortion.
- We demonstrate, through extensive experiments, that PoinnCARE achieves state-of-the-art performance on four challenging EC number prediction benchmarks.

2 RELATED WORK

Enzyme function prediction. Historically, sequence similarity has been the foundation for protein function annotation (Finn et al., 2015), with BLAST (Stephen, 1990) serving as a primary tool for similarity searches. With the advancement of machine learning (ML), several methods have been proposed to leverage traditional ML technologies, such as SVM (Chang and Lin, 2011), CNN (Li et al., 2021), and ResNet (He et al., 2015), to enhance the accuracy of enzyme function annotation (Li et al., 2018; Ryu et al., 2019; Dalkiran et al., 2018; Sanderson et al., 2023). The contrastive framework was first utilized to enhance enzyme function prediction performance in CLEAN (Yu et al., 2023). Specifically, a triplet margin loss was employed to minimize distances between positive samples while maximizing distances between negative samples. Building on this simple yet powerful framework, CLEAN-Concat (Yang et al., 2024c) integrated structural information by using ResNet (He et al., 2015) to encode protein contact maps. Subsequently, several methods, including HiFi-NN (Ayres et al., 2023), FEDKEA (Zheng et al., 2024), EnzHier (Duan et al., 2024), and Yim et al.’s approach (Yim et al., 2024), were introduced to augment this contrastive paradigm, improving positive and negative sampling strategies based on the hierarchical characteristics of EC numbers. Recent approaches have expanded beyond protein sequences to improve the enzyme function classification results. To be specific, Top-EC (van der Weg et al., 2025) integrates enzyme structure information with a 3D graph neural network, learning from an interplay between biochemical features and local shape-dependent features. ProteinF3S (Yuan et al., 2025) consolidates sequence, structure, and surface information through a two-phase fusion strategy. Despite these advances, existing methods fail to comprehensively utilize critical information that directly determines the catalytic functions, such as

¹Multi-modal learning with Poincaré model-based hyperbolic graph neural networks for enzyme function prediction on CARE (Yang et al., 2024a) benchmark.

108 active sites. These limitations motivate us to explore a novel approach incorporating multi-modal
 109 information for enhanced EC number prediction.
 110

111 **Hyperbolic representation learning.** Hyperbolic geometry, characterized by negative curvature,
 112 exhibits exponential volume growth that naturally accommodates hierarchical structure and entailment
 113 relations, and thus has been successfully adopted across various domains, including computer
 114 vision Liu et al. (2020); Desai et al. (2023), natural language processing Xiong et al. (2022); Yang
 115 et al. (2024b), and graph-based tasks Sun et al. (2021); Bai et al. (2023).
 116

117 In terms of the biological domain, many studies have extensively validated the superiority of hyper-
 118 bolic geometry in capturing the latent hierarchical structures of biological data, successfully applying
 119 it to Gene Ontology representation Kim et al. (2021), cell lineage inference Tian et al. (2023), genomic
 120 sequence modeling Khan et al. (2025), taxonomic classification Gong et al. (2025), and protein-ligand
 121 binding Wang et al. (2025). These works collectively demonstrate that hyperbolic embeddings offer a
 122 more geometry-aware inductive bias than Euclidean approaches for modeling complex evolutionary
 123 and functional relationships. However, despite the evident hierarchical structure inherent in EC num-
 124 bers, existing computational approaches heavily rely on traditional Euclidean space representations
 125 for EC number prediction, highlighting a significant gap in the field and inspiring our effort to embed
 126 enzymes, along with the rich associated information, within hyperbolic space.
 127

128 3 PRELIMINARIES

129 3.1 PROBLEM FORMULATION

130 Let \mathcal{Y} denote the set of EC numbers, where each element $y_i^l \in \mathcal{Y}$ represents the i -th EC number at
 131 hierarchical level $l \in \{0, 1, 2, 3, 4\}$. Here, y^0 serves as a virtual root node, acting as the common
 132 ancestor of all EC numbers. To capture hierarchical relationships among EC numbers, we establish
 133 edges (y_i^l, y_j^{l+1}) between nodes that share the same prefix, representing parent-child relationships.
 134 The virtual root y^0 connects to all first-level EC numbers y_i^1 . With edge set $\mathcal{E}^{(t)}$, the hierarchical
 135 structure of the EC number system forms a tree $T = (\mathcal{Y}, \mathcal{E}^{(t)})$, as illustrated in Fig. 2 (left).
 136

137 For any enzyme $x \in \mathcal{X}$, we represent its multi-modal information as a tuple (q_x, s_x, a_x) , corre-
 138 sponding to sequence, structure, and active site features, respectively. EC number prediction aims to
 139 learn a classifier $f(\cdot) : \mathcal{X} \rightarrow \mathcal{Y}$ mapping enzymes to their corresponding EC numbers. Importantly,
 140 since individual enzymes can catalyze multiple reactions associated with different EC numbers, this
 141 prediction task is inherently a *multi-class, multi-label* classification problem.
 142

143 3.2 HYPERBOLIC SPACE

144 Hyperbolic space represents a class of Riemannian manifolds characterized by its constant negative
 145 sectional curvature (Grigor'yan and Noguchi, 1998). Following previous studies (Ganea et al.,
 146 2018; Yue et al., 2023; Zhang et al., 2021b), we elaborate on our method based on the Poincaré
 147 ball model. Specifically, an n -dimension Poincaré ball model with a constant negative curvature
 148 $\kappa (\kappa < 0)$ can be denoted as $(\mathcal{B}_\kappa^n, g_\kappa)$, where $\mathcal{B}_\kappa^n = \{x \in \mathbb{R}^d \mid \|x\|^2 < -1/\kappa\}$ represents an open
 149 ball, $g_\kappa = 4/(1 - \kappa \|x\|^2)^2 I$ is the Riemannian metric tensor, and $\|\cdot\|$ denotes the Euclidean
 150 norm. Equipped with this metric tensor, the induced distance between $u, v \in \mathcal{B}_\kappa^n$ is denoted as:
 151 $d(u, v) = \frac{1}{\sqrt{|\kappa|}} \text{arcosh}(1 - \frac{2\kappa \|u - v\|^2}{(1 + \kappa \|u\|^2)(1 + \kappa \|v\|^2)})$, which changes smoothly w.r.t. the positions of u
 152 and v . This locality property of the hyperbolic distance is key for embedding hierarchical topologies.
 153 More details are provided in Appendix A.1.
 154

155 3.3 TREE-LIKE RELATIONSHIPS AMONG ENZYMES

156 Unlike conventional flat classification with independent categories, the tree-structured EC system
 157 naturally endows enzymes with intrinsic hierarchical relationships. By connecting each enzyme to its
 158 corresponding EC number node $y_i^4 \in \mathcal{Y}$, these inherent hierarchical relationships can be quantitatively
 159 characterized through Gromov's δ -hyperbolicity (Bridson and Haefliger, 2013; Gromov, 1987), as
 160 shown in Table 1. The EC system topology exhibits strong hyperbolic characteristics with a δ value
 161

162 close to zero, in contrast to random topologies. The computation of δ -hyperbolicity is detailed in
 163 Appendix A.2.

164 Embedding this tree-like structure into Euclidean space poses
 165 fundamental challenges. In a tree structure, the number of
 166 nodes grows *exponentially* with depth, while the volume of
 167 an n -dimensional Euclidean ball only grows proportionally to
 168 the n -th power of its radius. This inherent mismatch between
 169 growth rates implies that accurate tree embedding in Euclidean
 170 space necessitates high dimensions, with limited dimensions
 171 resulting in significant distortion. In contrast, the volume of
 172 a ball in hyperbolic space grows *exponentially* with its radius,
 173 offering a natural geometric framework for embedding tree structures with faithful embeddings. An
 174 illustrative example is presented in Appendix A.3. The following theorem formally establishes this
 175 fundamental difference:

176 **Theorem 1** *Let T be a tree with n nodes and d_T be the associated tree distance. Then:*

- 178 • *(T, d_T) can be embedded in $O(\log n)$ -dimensional Euclidean space with $O(\log n)$ distortion (Bour-*
- 179 *gain, 1985).*
- 180 • *(T, d_T) can be embedded in hyperbolic space with dimension ≥ 2 with $1 + \epsilon$ distortion, where ϵ*
- 181 *can be arbitrarily small (Sarkar, 2011).*

184 4 METHOD: POINNCARE

186 In this section, we present PoinnCARE, a novel hyperbolic space-based multi-modal learning
 187 framework for EC number prediction. We first augment single-modality benchmarks with critical
 188 structural and active site information (Sec 4.1). Next, we propose a graph diffusion-enhanced topology
 189 modeling approach to capture intra-modality similarity relationships (Sec 4.2). Finally, we encode
 190 dual similarity graphs in hyperbolic space, preserving inherent hierarchical enzyme relationships
 191 while capturing cross-modal semantic correlations through inter-modality alignment (Sec 4.3).

193 4.1 MULTI-MODAL DATASET CURATION

195 As shown in Fig. 2 (right), the structure and active sites of enzymes are directly involved in catalytic
 196 specificity determination, and thus are crucial for understanding enzyme catalytic mechanisms (Rizi-
 197 otis et al., 2025). However, the existing benchmark CARE (Yang et al., 2024a) contains only
 198 sequence information, which is insufficient and indirect for enzyme function inference. Therefore,
 199 we supplement the benchmark with structure information and active site annotations, augmenting
 200 the single sequence modality to multiple modalities. Specifically, for each enzyme, we obtain the
 201 experimentally determined structures from PDB or structures predicted by AlphaFold2 (Jumper et al.,
 202 2021)/ESMFold (Lin et al., 2022). Active site annotations are obtained from UniProt (Consortium,
 203 2024), which specify the residues directly involved in catalysis. Detailed dataset statistics are pro-
 204 vided in Appendix C.1. Based on supplemented information, EC numbers for query enzymes can
 205 be inferred from sequence/structural/active site information through similarity search algorithms or
 206 ML/DL-based classifiers. However, the scarcity of reliable active site annotations in UniProt leads
 207 to incomplete modality information, introducing a notable gap between structural and active site
 208 modalities, which further intensifies the difficulty of multi-modal learning (Wang et al., 2024b). To
 209 address these challenges, we develop a dual similarity graph encoding framework that mitigates data
 210 sparsity from both intra-modality and inter-modality perspectives.

211 4.2 GRAPH-BASED INTRA-MODALITY RELATIONSHIP MODELING

213 In this section, we capture pairwise similarity under structural and active site modalities and construct
 214 two independent similarity graphs. We then employ graph diffusion operations to mitigate data
 215 sparsity by incorporating both direct and indirect connections within the graphs.

216 **Similarity graph under structure modality.** We employ Foldseek (Van Kempen et al., 2024) to

Table 1: δ -hyperbolicity.

	EC	Random
Training set	0.01	0.92
Test set	0.00	0.73

216 extract pairwise structural similarity. Specifically, Fold-
 217 seek discretizes structures in continuous space and re-
 218 duces 3D structure comparison to 1D sequence compari-
 219 son through a VQ-VAE (Van Den Oord et al., 2017). We
 220 denote the structural similarity returned by Foldseek as
 $simi_s(x_i, x_j) = f_{Foldseek}(s_{x_i}, s_{x_j})$, where $x_i, x_j \in \mathcal{D}$
 221 denoting the enzymes from the dataset, and s_x repre-
 222 sents the corresponding structure. Based on the score
 $simi_s(\cdot, \cdot)$, we construct a similarity graph under the struc-
 223 ture modality, denoted as $G^{(s)} = (\mathcal{D}, \mathcal{E}^{(s)})$. An edge
 224 (x_i, x_j) is included in the edge set $\mathcal{E}^{(s)}$ if $simi_s(x_i, x_j) >$
 225 δ^s , where δ^s is a predefined threshold. Graph construction details and statistics are provided in
 226 Appendix B.

227 **Similarity graph under active site modality.** We derive the enzyme similarity from the perspective
 228 of active sites using Folddisco (Kim et al., 2025), an inverted-index-based method for fast structural
 229 motif detection within databases. Given the geometry and amino acid types of the active sites of x_i ,
 230 Folddisco first identifies whether a similar motif exists in x_j . If a local structure in x_j is identified,
 231 Folddisco computes the similarity between the query active sites and the identified one, denoted as
 $simi_a(x_i, x_j) = f_{Folddisco}((q_{x_i}, s_{x_i}, a_{x_i}), (q_{x_j}, s_{x_j}))$. We denote the similarity graph under active
 232 site modality as $G^{(a)} = (\mathcal{D}, \mathcal{E}^{(a)})$, where edge set $\mathcal{E}^{(a)}$ includes (x_i, x_j) if there is a local motif in
 233 x_j sharing high similarity with the active sites of x_i , i.e., $simi_a(x_i, x_j) > \delta^a$.

234 Active site information provides complementary insights beyond sequence and structural features.
 235 As illustrated in Fig. 3, enzymes can share identical EC numbers and active sites while exhibiting
 236 distinct sequence and structural patterns. This phenomenon arises because active site residues are
 237 typically scattered and discontinuous in the sequence (Hu et al., 2024), and their local structural
 238 features may deviate from the global protein structure distribution (Riziotis et al., 2025).

239 **Remark.** When learning over these similarity graphs, we follow the inductive learning
 240 paradigm (Hamilton et al., 2017), strictly ensuring that *only* training enzymes and relationships
 241 among training enzymes are visible during the training phase, as further detailed in Appendix D.4.

242 **Graph diffusion.** Let $\mathbf{A}_s, \mathbf{A}_a$ be the adjacency matrices of the structural and active site similarity
 243 graphs, respectively. We augment the topology of these two graphs by aggregating information from
 244 multi-hop neighbors through a graph diffusion operation:

$$244 \quad \mathbf{A}'_s = \sum_{k=0}^{\infty} w_k^s \mathbf{P}_s^k, \quad \mathbf{A}'_a = \sum_{k=0}^{\infty} w_k^a \mathbf{P}_a^k. \quad (1)$$

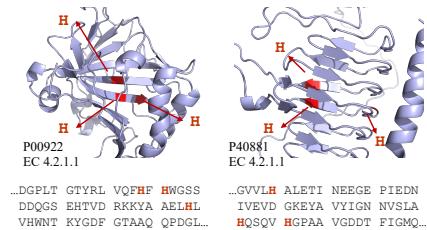
245 Specifically, \mathbf{P}_a is the transition matrix of the active site similarity graph and w_k^a is the weighting
 246 coefficient at k -th hop satisfying $\sum_{k=0}^{\infty} w_k^a = 1$. Graph diffusion can be instantiated into different
 247 formulations (Gasteiger et al., 2018; 2019; Kipf and Welling, 2016; Wu et al., 2019b). Let \mathbf{D}_a be the
 248 degree matrix of \mathbf{A}_a . In this work, we set $\mathbf{P}_a = \mathbf{D}_a^{-1} \mathbf{A}_a$, $w_k^a = \alpha_a (1 - \alpha_a)^k$, and restrict the sum
 249 to a finite number L_a , yielding the personalized PageRank distribution (Wang et al., 2017). Similar
 250 notations are adopted for the structure similarity graph.

251 The enhanced distributions \mathbf{A}'_s and \mathbf{A}'_a can be viewed as weighted and directed graphs, with edge
 252 weights reflecting the connection strength between node pairs, taking into account both their direct
 253 connections and indirect connections through multi-hop neighbors. Following (Gasteiger et al., 2019),
 254 we preserve these weights and use the resulting weighted graphs for subsequent hyperbolic encoding
 255 and alignment.

256 4.3 MULTI-MODAL LEARNING AND ALIGNING IN HYPERBOLIC SPACE

257 Subsequently, we encode the augmented similarity graphs with two independent GNNs in hyperbolic
 258 space to preserve the intrinsic hierarchical topologies, guided by cross-modality alignment loss to
 259 capture the inter-modality invariance.

260 Standard GNN layer updates node representations in three sequential stages: linear transformation,
 261 neighbor aggregation, and non-linear activation (Liu et al., 2023; Wu et al., 2019a). However, these



262 Figure 3: Active site illustration.

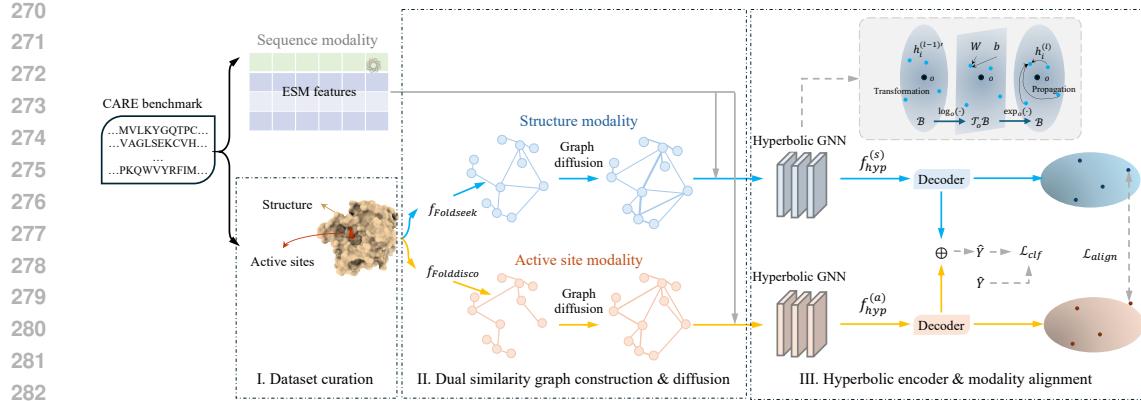


Figure 4: Overview of PoinnCARE framework: I. Curation of a multi-modal dataset by augmenting existing benchmarks with structure and active site information; II. Capturing intra-modality relationships with graph modeling and graph diffusion; III. Encoding enzyme similarity in hyperbolic space using dual hyperbolic GNNs to capture inter-modality relationships with modality alignment.

foundational operations are not readily applicable in hyperbolic space. To address this issue, a local Euclidean approximation within hyperbolic space is commonly adopted as a compromise (Ganea et al., 2018; Shimizu et al., 2020).

Definition 1 (Tangent Space) For a point $x \in \mathcal{B}_\kappa^n$ in hyperbolic space, its tangent space $\mathcal{T}_x \mathcal{B}_\kappa^n$ provides a first-order approximation of \mathcal{B}_κ^n at x and is isomorphic to Euclidean space.

The exponential map operation $\exp_x : \mathcal{T}_x \mathcal{B}_\kappa^n \rightarrow \mathcal{B}_\kappa^n$ projects vectors from the tangent space back to the hyperbolic space, while the logarithmic map $\log_x : \mathcal{B}_\kappa^n \rightarrow \mathcal{T}_x \mathcal{B}_\kappa^n$ performs the inverse operation. Furthermore, the parallel transport $\text{PT}_{x \rightarrow y} : \mathcal{T}_x \mathcal{B}_\kappa^n \rightarrow \mathcal{T}_y \mathcal{B}_\kappa^n$ defines a way of transporting the local geometry along smooth curves that preserve the metric tensors. The detailed mathematical formulations are provided in Appendix A.4.

Based on these definitions, we update node embeddings in hyperbolic space by first projecting them onto the tangent space, performing standard operations (linear transformation and neighbor aggregation), and finally mapping results back to hyperbolic space (Chami et al., 2019; Ganea et al., 2018; Shimizu et al., 2020; Zhang et al., 2021b). For simplicity, the tangent space of the origin node is selected to perform standard operations. Specifically, the matrix multiplication with \mathbf{W} and the bias translation with \mathbf{b} in hyperbolic space can be formulated as:

$$\mathbf{W} \otimes \mathbf{x} = \exp_o(\mathbf{W} \log_o(\mathbf{x})), \quad \mathbf{x} \oplus \mathbf{b} = \exp_x(\text{PT}_{o \rightarrow x}(\mathbf{b})). \quad (2)$$

Then, the message passing procedure at the l -th layer is:

$$\mathbf{h}_i^{(l)'} = f_{trans}(\mathbf{h}_i^{(l)}) = (\mathbf{W} \otimes \mathbf{h}_j^{(l)}) \oplus \mathbf{b}, \quad (3)$$

$$\mathbf{h}_i^{(l+1)} = \delta(f_{agg}(\mathbf{h}_i^{(l)})) = \delta\left(\exp_o\left(\sum_{j \in N(i)} a_{ij} \log_o(\mathbf{h}_j^{(l)})\right)\right), \quad (4)$$

where $N(i)$ denotes the neighbor set of node i , and $\delta(\cdot)$ is a non-linear activation function, such as ReLU. We set the weight a_{ij} according to the normalized Laplacian matrix (Kipf and Welling, 2016; Liu et al., 2019). The input features $\mathbf{h}_i^{(0)}$ are initialized using a Protein Language Model (PLM), such as ESM (Lin et al., 2022) used in (Yang et al., 2024c; Yu et al., 2023). Compared to Euclidean GNNs, the hyperbolic overhead introduces an additional computational cost of $O(nd)$, increasing the total computational complexity from $O(mnd)$ in a standard model to $O(mnd + nd)$ in the hyperbolic GNN, where n , m , and d denote the number of nodes, edges, and feature dimensions, respectively.

We separately encode structural and the active site information with two independent hyperbolic GNNs. Specifically, we feed the adjacency matrices augmented by graph diffusion, A'_s and A'_a , along with PLM embeddings $H^{(0)}$ into the dual hyperbolic GNNs:

$$\mathbf{H}_{(s)} = f_{hyp}^{(s)}(\mathbf{A}'_s, \mathbf{H}^{(0)}), \quad \mathbf{H}_{(a)} = f_{hyp}^{(a)}(\mathbf{A}'_a, \mathbf{H}^{(0)}). \quad (5)$$

We then align the representations under two modalities by minimizing the divergence between structural and active site embeddings of the same enzyme (Zhang et al., 2021a):

$$\mathcal{L}_{align} = \|\mathbf{H}_{(s)} - \mathbf{H}_{(a)}\|_F^2 + w_d(\|\mathbf{I} - \mathbf{H}_{(s)}^\top \mathbf{H}_{(s)}\|_F^2 + \|\mathbf{I} - \mathbf{H}_{(a)}^\top \mathbf{H}_{(a)}\|_F^2). \quad (6)$$

The first term of \mathcal{L}_{align} maximizes the correlation between representations from two modalities and captures the invariance between different views. The subsequent decorrelation terms prevent learning degenerated embeddings (Liu et al., 2023), with w_d controlling the weight of decorrelation.

Finally, we fuse representations from two modalities with a trade-off parameter β (He et al., 2023) to obtain the prediction results, setting the stage for deriving the classification loss:

$$\hat{Y} = \text{sigmoid}(f_{clf}(\beta_s \cdot \mathbf{H}_{(s)} + \beta_a \cdot \mathbf{H}_{(a)})), \quad \mathcal{L}_{clf} = L_{ce}(Y, \hat{Y}), \quad (7)$$

where L_{ce} is the cross-entropy loss function and Y is the ground-truth label indicator. The overall model is optimized to minimize the compound loss over the alignment loss and the classification loss:

$$\mathcal{L} = \mathcal{L}_{align} + \gamma \mathcal{L}_{clf}. \quad (8)$$

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate PoinnCARE on the standardized enzyme function benchmark CARE (Yang et al., 2024a) curated from Swiss-Prot (Consortium, 2024), comprising enzymes with validated four-digit EC number annotations. To rigorously assess the generalizability of a model to unseen proteins, CARE defines four distinct test sets, each presenting unique challenges:

- <30% *Identity* test set: All enzymes in the test set share less than 30% sequence identity with enzymes in the training set, ensuring stringent low-homology testing conditions (Rost, 1999).
- 30-50% *Identity* test set: Enzymes in this test set share sequence identity between 30% and 50% with those in the training set, representing an intermediate homology zone.
- *Previously Misclassified (Price)* test set: A collection of enzymes that were initially misannotated in established databases such as KEGG by automated annotation methods, but were subsequently experimentally validated and correctly reclassified by Price et al. (Price et al., 2018).
- *Promiscuous* test set: A collection of enzymes capable of catalyzing multiple distinct reactions that are classified under different EC numbers. In this dataset, a single enzyme can be associated with up to 9 different EC numbers.

All four test sets share a common training set. Statistics of training and test sets are presented in Table 5. Following the recommendation in the CARE benchmark, we use 50% sequence clustering of the training set to increase the diversity. We follow the **inductive setting** (Hamilton et al., 2017), ensuring that only training enzymes are accessible during training, while test enzymes are withheld until inference. Appendix D.4 provides more explanations and the performance comparison.

Baselines. We compare PoinnCARE with 12 SOTA competitors belonging to four categories:

- Similarity search algorithms: BLASTp (Stephen, 1990), Foldseek (Van Kempen et al., 2024), Folddisco (Kim et al., 2025);
- Contrastive learning methods: CLEAN (Yu et al., 2023), CLEAN-Concat (Yang et al., 2024c);
- PLMs for general proteins: ESM-2 (Lin et al., 2022), ESM-c (ESM Team, 2024), ProtT5 (Elnaggar et al., 2020), ProtBert (Elnaggar et al., 2020), S-PLM (Wang et al., 2024a);
- LLMs for general protein-related question answering: GPT-4o-mini (Hurst et al., 2024), Pika (Carrami and Sharifzadeh, 2024).

A brief introduction to the baseline methods is provided in Appendix C.2, with Table 6 summarizing the modalities employed by each baseline method. The results of LLMs and the random baseline are directly adopted from the CARE benchmark and marked with an asterisk *.

Metrics. For evaluation, we adopt two sets of metrics: the *accuracy* score as defined in the CARE benchmark (Yang et al., 2024a), and the *precision*, *recall*, and F_1 scores adopted in CLEAN (Yu et al., 2023). Following the evaluation protocol established in (Yang et al., 2024a; Yu et al., 2023;

378

379
380
Table 2: Performance regarding accuracy on <30% Identity and 30-50% Identity test sets. The best
and second-best results are shown in bold and underlined, respectively.

	<30% Identity				30-50% Identity				Avg. rank
	Level 1 (x.---)	Level 2 (x.x.---)	Level 3 (x.x.x.---)	Level 4 (x.x.x.x)	Level 1 (x.---)	Level 2 (x.x.---)	Level 3 (x.x.x.---)	Level 4 (x.x.x.x)	
Random*	0.194	0.032	0.012	0.000	0.225	0.036	0.007	0.000	13.38
BLASTp	0.697	0.590	0.569	0.475	0.923	0.879	0.850	0.773	7.00
Foldseek	<u>0.815</u>	0.722	0.667	<u>0.544</u>	0.932	0.880	0.841	0.755	4.13
Folddisco	<u>0.756</u>	0.600	0.511	0.378	0.798	0.755	0.723	0.564	9.88
CLEAN	0.806	<u>0.729</u>	0.678	0.535	0.946	<u>0.905</u>	<u>0.870</u>	0.798	2.50
CLEAN-Concat	0.810	0.704	<u>0.646</u>	0.507	<u>0.946</u>	0.893	0.859	<u>0.777</u>	3.63
ESM-2	0.783	0.695	0.643	0.518	0.944	0.895	0.856	0.781	4.13
ESM-c	0.691	0.574	0.527	0.436	0.911	0.848	0.808	0.745	9.25
ProtT5	0.755	0.649	0.604	0.492	0.929	0.873	0.833	0.765	6.38
ProtBert	0.672	0.546	0.502	0.410	0.874	0.804	0.767	0.709	10.38
S-PLM	0.751	0.637	0.582	0.470	0.921	0.861	0.823	0.752	7.75
ChatGPT*	0.278	0.016	0.000	0.000	0.336	0.030	0.014	0.000	13.38
Pika*	0.616	0.461	0.377	0.206	0.738	0.600	0.502	0.377	12.00
PoinnCARE	0.900	0.827	0.779	0.648	0.961	0.926	0.887	0.822	1.00

393

394

395

396

397
398
Table 3: Performance regarding accuracy on Price and Promiscuous test sets. The best and second-best
results are shown in bold and underlined, respectively.

	Previously Misclassified (Price)				Promiscuous				Avg. rank
	Level 1 (x.---)	Level 2 (x.x.---)	Level 3 (x.x.x.---)	Level 4 (x.x.x.x)	Level 1 (x.---)	Level 2 (x.x.---)	Level 3 (x.x.x.---)	Level 4 (x.x.x.x)	
Random*	0.223	0.047	0.007	0.000	0.411	0.090	0.041	0.005	12.88
BLASTp	0.824	0.811	0.710	0.341	0.843	0.784	0.733	0.682	5.63
Foldseek	<u>0.939</u>	0.878	<u>0.797</u>	0.314	0.769	0.689	0.638	0.561	6.38
Folddisco	0.000	0.000	0.000	0.000	0.656	0.526	0.484	0.318	12.25
CLEAN	0.858	0.797	0.696	0.280	0.873	<u>0.816</u>	0.768	<u>0.691</u>	5.00
CLEAN-Concat	0.905	0.872	0.770	0.348	<u>0.874</u>	<u>0.813</u>	<u>0.776</u>	<u>0.659</u>	3.13
ESM-2	0.918	0.849	0.762	<u>0.362</u>	0.861	0.780	0.724	0.629	4.00
ESM-c	0.791	0.726	0.666	0.343	0.818	0.730	0.672	0.579	8.13
ProtT5	0.895	0.827	0.761	0.380	0.843	0.754	0.694	0.596	5.38
ProtBert	0.678	0.554	0.515	0.200	0.814	0.707	0.636	0.549	10.00
S-PLM	0.872	0.789	0.719	0.238	0.848	0.761	0.709	0.606	6.50
ChatGPT*	0.365	0.169	0.088	0.000	0.196	0.055	0.036	0.002	13.00
Pika*	0.824	0.649	0.507	0.041	0.618	0.473	0.372	0.164	11.00
PoinnCARE	0.955	0.909	0.827	0.349	0.911	0.871	0.849	0.785	1.25

412

413

414

Yang et al., 2024c), we evaluate the classification performance at all four EC number levels. Level 1 evaluation solely examines the correctness of the first digit, while level 4 evaluation requires the accurate prediction of all four digits in the EC number. Further implementation details are provided in Appendix C.3

415

416

417

5.2 CLASSIFICATION RESULTS

418

419

420

421

Tables 2 and 3 present a comprehensive comparison between PoinnCARE and 12 state-of-the-art methods on the CARE benchmark in terms of accuracy. Across all four evaluation levels and test sets, PoinnCARE consistently achieves the highest accuracy in nearly all cases, demonstrating robust and superior performance. Compared to the strongest baseline CLEAN, PoinnCARE achieves substantial improvements of 10.4% and 2.4% in level 4 accuracy on <30% Identity and 30-50% Identity test sets, respectively, demonstrating its exceptional capability in EC number prediction under low sequence similarity conditions. On the challenging Price test set, PoinnCARE outperforms the second-best method, with accuracy improvements of 1.7%, 3.1%, and 3.0% at levels 1 through 3, respectively. Furthermore, for enzymes with promiscuous functions, PoinnCARE surpasses the second-best competitor CLEAN by a significant margin of 9.4% in level 4 accuracy. In terms of precision, recall, and F_1 score, PoinnCARE also demonstrates a similar outstanding performance, with detailed results presented in Appendix D.1. The standard deviation values are in Appendix D.2.

As illustrated in the left sub-figure of Fig 2, the classification space expands from 7 main classes at level 1 to over 4,900 distinct EC numbers at level 4, indicating a notable increase in classification complexity across levels. Nevertheless, PoinnCARE consistently outperforms existing methods across all four levels, demonstrating remarkable robustness. Among the 12 baseline methods, Foldseek, S-PLM, and CLEAN-Concat incorporate structural information of enzymes. Notably, Foldseek exhibits promising performance on the <30% Identity test set, highlighting the effectiveness of structural information, especially when sequence similarity is highly limited. We also report the performance of valid Folddisco predictions. While BLASTp utilizes full sequence information containing hundreds of residues, Folddisco achieves comparable performance by leveraging only several residues in local active site motifs. This comparison demonstrates the crucial role of active sites in determining enzyme function, particularly in cases of low sequence similarity.

5.3 CLASSIFICATION RESULTS IN A LIMITED-DIMENSIONAL SPACE

As shown in Theorem 1, compared with Euclidean space, hyperbolic space can achieve arbitrarily low distortion even in low dimensions. Following this theoretical analysis, we evaluate the dimensional efficiency of PoinnCARE against CLEAN, the strong baseline, by systematically reducing the embedding dimension from 512 to 32, and the results on the 30% Identity test set are presented in Figure 5. As the embedding dimension decreases from 512 to 32, CLEAN’s classification accuracy at level 4 drops significantly from 0.535 to 0.354, suffering an 18.1% performance degradation. In contrast, our PoinnCARE maintains robust performance across different dimensions. Notably, even with a compact 32-dimensional representation, PoinnCARE achieves a strong accuracy of 0.597 at level 4. Appendix D.3 provides detailed results on the <30% and 30-50% Identity test sets.

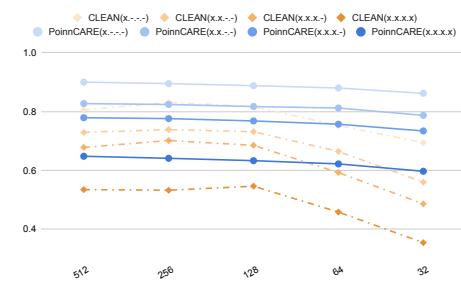


Figure 5: Varying dimensions.

5.4 POINNCARE AS A GENERAL FRAMEWORK

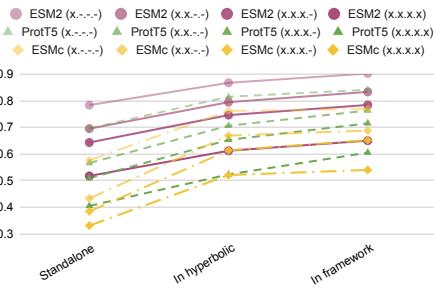


Figure 6: PoinnCARE as a framework.

the full PoinnCARE framework further boosts performance, achieving up to an additional 8.2% improvement in level-4 accuracy.

In this section, we explore the generalizability of PoinnCARE by treating it as a general framework that can be combined with different sequence encoders. For ESM2 (Lin et al., 2022), ESMc (ESM Team, 2024), and ProtT5 (Heinzinger et al., 2024), we present the standalone performance, the performance in hyperbolic space, and the performance when integrated into our PoinnCARE framework in Figure 6. Compared to the standalone performance, transforming into hyperbolic space yields notable improvements in level-4 accuracy: 10.6% for ESM2, 11.8% for ProtT5, and 19.0% for ESMc. Integrating with

5.5 ABLATION STUDY

In this section, we conduct ablation studies in a *bottom-up manner*. Starting from a naive MLP classifier, we progressively incorporate key components to demonstrate their individual contributions, culminating in the full PoinnCARE framework. Figure 7 shows how the accuracy evolves during this process on the <30% Identity test set. First, transforming the MLP into hyperbolic space yields a substantial improvement of 9.3% in level-4 accuracy. Subsequently, the independent incorporation of the active site and the structural similarity graph each further

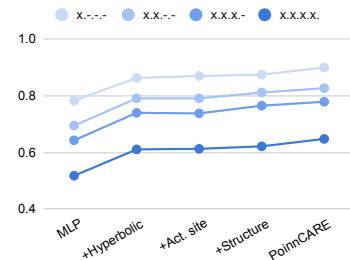


Figure 7: Ablation study.

486 enhances performance. Finally, integrating modality alignment
 487 to fuse both information notably boosts overall results, achiev-
 488 ing a 2.6% improvement over the variant with only structural information in level-4 accuracy. A
 489 case study illustrating the complementarity between the two modalities is presented in Appendix E.
 490 Furthermore, Appendix D.4 provides a comprehensive parameter analysis, including investigations
 491 into the inductive learning setting, the curvature of the underlying hyperbolic space, and the graph
 492 diffusion settings.

494 6 CONCLUSION

496 In this paper, we present PoinnCARE, a hyperbolic multi-modal learning framework for enzyme
 497 function prediction. By effectively incorporating both structural and active site information through
 498 graph-based modeling and diffusion, PoinnCARE captures comprehensive enzyme characteristics
 499 beyond sequence features. Motivated by the theoretical advantages when embedding trees, we adopt
 500 hyperbolic geometry instead of traditional Euclidean space for enzyme representation learning. Then
 501 we align and fuse information from these two complementary modalities, capturing comprehensive
 502 enzyme characteristics. Extensive experiments on the CARE benchmark demonstrate that PoinnCARE
 503 consistently outperforms existing methods across various challenging scenarios.

504 505 REPRODUCIBILITY STATEMENT

506 To enhance reproducibility, we have made several clarifications and provided necessary information
 507 throughout the paper. First, our dataset is constructed based on the publicly available benchmark, as
 508 described in Section 5.1. Building upon the CARE benchmark, we further augmented the dataset with
 509 additional multimodal information and developed two independent similarity graphs. The procedures
 510 for constructing these graphs are detailed in Section 4.1 and Section 4.2. The architecture of our model
 511 is described in detail in Section 4.3. Additionally, comprehensive experimental implementation details,
 512 including baseline evaluations, metrics, and hyperparameter settings, are provided in Section 5.1 and
 513 Appendix C.3. Finally, our code, including reproduction scripts and environment specifications, is
 514 accessible in the following anonymous repository: https://anonymous.4open.science/r/enzyme_classification-860D/

516 517 REFERENCES

518 Gavin Ayres, Gnanasekaran Munsamy, Michael Heinzinger, Natalia Ferruz, Kevin Yang, and Philipp Lorenz.
 519 Hifi-nn annotates the microbial dark matter with enzyme commission numbers. In *In Machine Learning for
 520 Structural Biology Workshop, NeurIPS 2023*, 2023.

521 Qijie Bai, Changli Nie, Haiwei Zhang, Dongming Zhao, and Xiaojie Yuan. HgwaveNet: A hyperbolic graph
 522 neural network for temporal link prediction. In *Proceedings of the ACM Web Conference 2023*, pages 523–532,
 523 2023.

524 Jeremy M Berg. Biochemistry, 2022.

525 Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. *Israel Journal of Mathematics*,
 526 52:46–52, 1985.

527 Martin R Bridson and André Haefliger. *Metric spaces of non-positive curvature*, volume 319. Springer Science
 528 & Business Media, 2013.

529 Eli M Carrami and Sahand Sharifzadeh. Pqa: Zero-shot protein question answering for free-form scientific
 530 enquiry with large language models. *arXiv preprint arXiv:2402.13653*, 2024.

531 Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural networks.
 532 *Advances in neural information processing systems*, 32, 2019.

533 Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. *ACM transactions on
 534 intelligent systems and technology (TIST)*, 2(3):1–27, 2011.

535 The UniProt Consortium. Uniprot: the universal protein knowledgebase in 2025. *Nucleic Acids Research*, 53
 536 (D1):D609–D617, 11 2024. ISSN 1362-4962. doi: 10.1093/nar/gkae1010. URL <https://doi.org/10.1093/nar/gkae1010>.

540 Robert A Copeland. *Enzymes: a practical introduction to structure, mechanism, and data analysis*. John Wiley
 541 & Sons, 2023.

542

543 Alperen Dalkiran, Ahmet Sureyya Rifaioglu, Maria Jesus Martin, Rengul Cetin-Atalay, Volkan Atalay, and
 544 Tunca Dogan. Ecpred: a tool for the prediction of the enzymatic functions of protein sequences based on the
 545 ec nomenclature. *BMC bioinformatics*, 19:1–13, 2018.

546

547 Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam.
 548 Hyperbolic image-text representations. In *International Conference on Machine Learning*, pages 7694–7731.
 549 PMLR, 2023.

549

550 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
 551 transformers for language understanding. In *Proceedings of the 2019 conference of the North American
 552 chapter of the association for computational linguistics: human language technologies, volume 1 (long and
 553 short papers)*, pages 4171–4186, 2019.

553

554 Hongyu Duan, Ziyan Li, Yixuan Wu, Wen Chen, and Li C Xia. Predicting enzyme functions using contrastive
 555 learning with hierarchical enzyme structure information. *bioRxiv*, 2024.

555

556 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs,
 557 Tamas Feher, Christoph Angerer, Martin Steinegger, DEBSINDHU BHOWMIK, and Burkhard Rost. Prottrans:
 558 Towards cracking the language of life’s code through self-supervised deep learning and high performance
 559 computing. *bioRxiv*, 2020. doi: 10.1101/2020.07.12.199554. URL <https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554>.

560

561 ESM Team. Esm cambrian: Revealing the mysteries of proteins with unsupervised learning, 2024. URL
 562 <https://evolutionaryscale.ai/blog/esm-cambrian>.

563

564 Robert D Finn, Jody Clements, William Arndt, Benjamin L Miller, Travis J Wheeler, Fabian Schreiber, Alex
 565 Bateman, and Sean R Eddy. Hmmer web server: 2015 update. *Nucleic acids research*, 43(W1):W30–W38,
 566 2015.

566

567 Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. *Advances in neural
 568 information processing systems*, 31, 2018.

568

569 Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
 570 networks meet personalized pagerank. *arXiv preprint arXiv:1810.05997*, 2018.

571

572 Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.
 573 *Advances in neural information processing systems*, 32, 2019.

573

574 ZeMing Gong, Chuanqi Tang, Xiaoliang Huo, Nicholas Pellegrino, Austin T Wang, Graham W Taylor, Angel X
 575 Chang, Scott C Lowe, and Joakim Bruslund Haurum. Hyperbolic multimodal representation learning for
 576 biological taxonomies. *arXiv preprint arXiv:2508.16744*, 2025.

577

578 Alexander Grigor’yan and Masakazu Noguchi. The heat kernel on hyperbolic space. *Bulletin of the London
 579 Mathematical Society*, 30(6):643–650, 1998.

580

581 Mikhael Gromov. Hyperbolic groups. In *Essays in group theory*, pages 75–263. Springer, 1987.

582

583 Rajesh Gupta, Q Beg, and Patrick Lorenz. Bacterial alkaline proteases: molecular approaches and industrial
 584 applications. *Applied microbiology and biotechnology*, 59:15–32, 2002.

585

586 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in
 587 neural information processing systems*, 30, 2017.

588

589 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. *CoRR*,
 590 [abs/1512.03385](https://arxiv.org/abs/1512.03385), 2015.

591

592 Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harnessing
 593 explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning. *arXiv preprint
 594 arXiv:2305.19523*, 2023.

595

596 Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez Sanchez, Adrian Henkel, Milot Mirdita, Martin
 597 Steinegger, and Burkhard Rost. Bilingual language model for protein sequence and structure. *NAR Genomics
 598 and Bioinformatics*, 6(4):lqae150, 11 2024. ISSN 2631-9268. doi: 10.1093/nargab/lqae150. URL <https://doi.org/10.1093/nargab/lqae150>.

594 Ruei-En Hu, Chi-Hua Yu, and I-Son Ng. Grace: Generative redesign in artificial computational enzymology.
 595 *ACS Synthetic Biology*, 13(12):4154–4164, 2024.

596

597 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
 598 Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

599

600 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
 601 Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
 602 A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishabh Jain,
 603 Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
 604 Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W
 605 Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
 606 prediction with AlphaFold. *Nature*, 596(7873):583–589, 2021. doi: 10.1038/s41586-021-03819-2.

607

608 Ram Karan, Melinda D Capes, and Shiladitya DasSarma. Function and biotechnology of extremophilic enzymes
 609 in low water activity. *Aquatic biosystems*, 8:1–15, 2012.

610

611 Raiyan R Khan, Philippe Chlenski, and Itsik Pe'er. Hyperbolic genome embeddings. *arXiv preprint arXiv:2507.21648*, 2025.

612

613 Hyunbin Kim, Rachel Seongeun Kim, Milot Mirdita, and Martin Steinegger. Structural motif search across the
 614 protein-universe with folddisco. *bioRxiv*, 2025. doi: 10.1101/2025.07.06.663357.

615

616 Jaesik Kim, Dokyoon Kim, and Kyung-Ah Sohn. Hig2vec: hierarchical representations of gene ontology and
 617 genes in the poincaré ball. *Bioinformatics*, 37(18):2971–2980, 2021.

618

619 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 620 2014.

621

622 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.

623

624 Kyle Kloster and David F Gleich. Heat kernel based community detection. In *SIGKDD*, pages 1386–1395, 2014.

625

626 Joseph Kraut. How do enzymes work? *Science*, 242(4878):533–540, 1988.

627

628 Anu Kumar, Sunny Dhiman, Bhanu Krishan, Mrinal Samtiya, Ankita Kumari, Nishit Pathak, Archana Kumari,
 629 Rotimi E Aluko, and Tejpal Dhewa. Microbial enzymes and major applications in the food industry: a concise
 630 review. *Food Production, Processing and Nutrition*, 6(1):85, 2024.

631

632 Megha Kumari, Srichandan Padhi, Swati Sharma, Loreni Chiring Phukon, Sudhir P Singh, and Amit Kumar Rai.
 633 Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food
 634 processing applications. *3 Biotech*, 11(11):479, 2021.

635

636 Uma Kumari, Rahul Singh, Tui Ray, Seema Rana, Prasenjit Saha, Karan Malhotra, and Henry Daniell. Validation
 637 of leaf enzymes in the detergent and textile industries: launching of a new platform technology. *Plant
 638 biotechnology journal*, 17(6):1167–1182, 2019.

639

640 Yu Li, Sheng Wang, Ramzan Umarov, Bingqing Xie, Ming Fan, Lihua Li, and Xin Gao. Deepre: sequence-based
 641 enzyme ec number prediction by deep learning. *Bioinformatics*, 34(5):760–769, 2018.

642

643 Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural networks:
 644 analysis, applications, and prospects. *IEEE transactions on neural networks and learning systems*, 33(12):
 645 6999–7019, 2021.

646

647 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam
 648 Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at the scale of evolution
 649 enable accurate structure prediction. *BioRxiv*, 2022.

650

651 Hua Liu, Haoyu Han, Wei Jin, Xiaorui Liu, and Hui Liu. Enhancing graph representations learning with
 652 decorrelated propagation. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
 653 and Data Mining*, pages 1466–1476, 2023.

654

655 Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. *Advances in neural information
 656 processing systems*, 32, 2019.

657

658 Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang Jiang. Hyperbolic
 659 visual embedding learning for zero-shot recognition. In *Proceedings of the IEEE/CVF conference on computer
 660 vision and pattern recognition*, pages 9273–9281, 2020.

648 Sondavid K Nandanwar, Shweta Bharat Borkar, Jun Hyuck Lee, and Hak Jun Kim. Taking advantage of
 649 promiscuity of cold-active enzymes. *Applied Sciences*, 10(22):8128, 2020.

650

651 Onuttom Narayan and Iraj Saniee. Large-scale curvature of networks. *Physical Review E—Statistical, Nonlinear,
 652 and Soft Matter Physics*, 84(6):066108, 2011.

653 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint
 654 arXiv:1912.01703*, 2019.

655 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
 656 V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
 657 Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

658

659 Morgan N Price, Kelly M Wetmore, R Jordan Waters, Mark Callaghan, Jayashree Ray, Hualan Liu, Jennifer V
 660 Kuehl, Ryan A Melnyk, Jacob S Lamson, Yumi Suh, et al. Mutant phenotypes for thousands of bacterial
 661 genes of unknown function. *Nature*, 557(7706):503–509, 2018.

662

663 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
 664 Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of
 665 machine learning research*, 21(140):1–67, 2020.

666

667 Ioannis G Riziotis, Jenny C Kafas, Gabriel Ong, Neera Borkakoti, António JM Ribeiro, and Janet M Thornton.
 668 Paradigms of convergent evolution in enzymes. *The FEBS Journal*, 292(3):537–555, 2025.

669

670 Burkhard Rost. Twilight zone of protein sequence alignments. *Protein engineering*, 12(2):85–94, 1999.

671

672 Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning enables high-quality and high-throughput
 673 prediction of enzyme commission numbers. *Proceedings of the National Academy of Sciences*, 116(28):
 674 13996–14001, 2019.

675

676 Theo Sanderson, Maxwell L Bileschi, David Belanger, and Lucy J Colwell. Proteininfer, deep neural networks for
 677 protein functional inference. *Elife*, 12:e80942, 2023.

678

679 Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In *International symposium on
 680 graph drawing*, pages 355–366. Springer, 2011.

681

682 Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. *arXiv preprint
 683 arXiv:2006.08210*, 2020.

684

685 F Altschul Stephen. Basic local alignment search tool. *J. mol. Biol.*, 215:403–410, 1990.

686

687 Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs. Hgcf: Hyperbolic graph
 688 convolution networks for collaborative filtering. In *Proceedings of the web conference 2021*, pages 593–601,
 689 2021.

690

691 Tian Tian, Cheng Zhong, Xiang Lin, Zhi Wei, and Hakon Hakonarson. Complex hierarchical structures in
 692 single-cell genomics data unveiled by deep hyperbolic manifold learning. *Genome Research*, 33(2):232–246,
 693 2023.

694

695 Abraham A Ungar. The hyperbolic square and mobius transformations. *Banach Journal of Mathematical
 696 Analysis*, 1(1):101–116, 2007.

697

698 Jan B van Beilen and Zhi Li. Enzyme technology: an overview. *Current opinion in biotechnology*, 13(4):
 699 338–344, 2002.

700

701 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural
 702 information processing systems*, 30, 2017.

703

704 Karel van der Weg, Erinc Merdivan, Marie Piraud, and Holger Gohlke. Topec: prediction of enzyme commission
 705 classes by 3d graph neural networks and localized 3d protein descriptor. *Nature Communications*, 16(1):2737,
 706 2025.

707

708 Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron LM
 709 Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search with foldseek.
 710 *Nature biotechnology*, 42(2):243–246, 2024.

711

712 Duolin Wang, Mahdi Pourmirzaei, Usman L Abbas, Shuai Zeng, Negin Manshour, Farzaneh Esmaili, Biplab
 713 Poudel, Yuexu Jiang, Qing Shao, Jin Chen, and Dong Xu. S-plm: Structure-aware protein language model
 714 via contrastive learning between sequence and structure. *bioRxiv*, 2024a. doi: 10.1101/2023.08.06.552203.

702 Hao Wang, Shengda Luo, Guosheng Hu, and Jianguo Zhang. Gradient-guided modality decoupling for missing-
 703 modality robustness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 15483–15491,
 704 2024b.

705 Jianhui Wang, Wenyu Zhu, Bowen Gao, Xin Hong, Ya-Qin Zhang, Wei-Ying Ma, and Yanyan Lan. Learning
 706 protein-ligand binding in hyperbolic space. *arXiv preprint arXiv:2508.15480*, 2025.

708 Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. Fora: simple and effective approximate
 709 single-source personalized pagerank. In *Proceedings of the 23rd ACM SIGKDD International Conference on
 710 Knowledge Discovery and Data Mining*, pages 505–514, 2017.

711 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
 712 convolutional networks. In *International conference on machine learning*, pages 6861–6871. Pmlr, 2019a.

714 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
 715 convolutional networks. In *International conference on machine learning*, pages 6861–6871. Pmlr, 2019b.

717 Bo Xiong, Michael Cochez, Mojtaba Nayyeri, and Steffen Staab. Hyperbolic embedding inference for structured
 718 multi-label prediction. *Advances in Neural Information Processing Systems*, 35:33016–33028, 2022.

719 Jason Yang, Ariane Mora, Shengchao Liu, Bruce Wittmann, Animashree Anandkumar, Frances Arnold, and
 720 Yisong Yue. Care: a benchmark suite for the classification and retrieval of enzymes. *Advances in Neural
 721 Information Processing Systems*, 37:3094–3121, 2024a.

723 Menglin Yang, Min Zhou, Rex Ying, Yankai Chen, and Irwin King. Hyperbolic representation learning:
 724 Revisiting and advancing. In *International Conference on Machine Learning*, pages 39639–39659. PMLR,
 725 2023.

726 Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. Hyperbolic fine-tuning for large
 727 language models. *arXiv preprint arXiv:2410.04010*, 2024b.

729 Yuxin Yang, Abby Jerger, Song Feng, Zixu Wang, Christina Brasfield, Margaret S Cheung, Jeremy Zucker, and
 730 Qiang Guan. Improved enzyme functional annotation prediction using contrastive learning with structural
 731 inference. *Communications Biology*, 7(1):1690, 2024c.

732 Soorin Yim, Doyeong Hwang, Kiyoung Kim, and Sehui Han. Hierarchical contrastive learning for enzyme
 733 function prediction. In *ICML Workshop ML for Life and Material Science: From Theory to Industry
 734 Applications*, 2024.

736 Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao. Enzyme function
 737 prediction using contrastive learning. *Science*, 379(6639):1358–1363, 2023.

739 Mingzhi Yuan, Ao Shen, Yingfan Ma, Jie Du, Bohan An, and Manning Wang. Proteinf3s: boosting enzyme
 740 function prediction by fusing protein sequence, structure, and surface. *Briefings in Bioinformatics*, 26(1):
 741 bbae695, 2025.

742 Yun Yue, Fangzhou Lin, Kazunori D Yamada, and Ziming Zhang. Hyperbolic contrastive learning. *arXiv
 743 preprint arXiv:2302.01409*, 2023.

745 Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation analysis
 746 to self-supervised graph neural networks. *Advances in Neural Information Processing Systems*, 34:76–89,
 747 2021a.

748 Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic graph attention network.
 749 *IEEE Transactions on Big Data*, 8(6):1690–1701, 2021b.

751 Lei Zheng, Bowen Li, Siqi Xu, Junnan Chen, and Guanxiang Liang. Fedkea: Enzyme function prediction with a
 752 large pretrained protein language model and distance-weighted k-nearest neighbor. *bioRxiv*, 2024.

753 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily in
 754 graph neural networks: Current limitations and effective designs. *Advances in neural information processing
 755 systems*, 33:7793–7804, 2020.

756 A HYPERBOLIC GEOMETRY
757758 A.1 POINCARÉ BALL MODEL
759

760 As we presented before, an n -dimension Poincaré ball model with a constant negative curvature
761 $\kappa (\kappa < 0)$ can be denoted as $(\mathcal{B}_\kappa^n, g_x^\kappa)$, where $\mathcal{B}_\kappa^n = \{x \in \mathbb{R}^d | \|x\|^2 < -1/\kappa\}$ is an open ball with
762 radius $(-1/\kappa)^{1/2}$, $g_x^\kappa = 4/(1 - \kappa\|x\|^2)^2 I$ is the Riemannian metric tensor, and $\|\cdot\|$ denotes the
763 Euclidean norm.

764 The metric tensor in Euclidean space is $g^E = I$. This implies that the metric tensor of Poincaré model
765 is conformal to that in Euclidean space, meaning that the angles defined in Poincaré ball model are
766 the same as those in Euclidean space. The conformal factor between them is $\lambda_x = 2/(1 - \kappa\|x\|^2)$,
767 and the Poncaré model's metric tensor can be rearranged as $g_x^\kappa = \lambda_x^2 I$.

768 The distance between $u, v \in \mathcal{B}_\kappa^b$ is denoted as:
769

$$770 d(u, v) = \frac{1}{\sqrt{|\kappa|}} \operatorname{arccosh}\left(1 - \frac{2\kappa\|u - v\|^2}{(1 + \kappa\|u\|^2)(1 + \kappa\|v\|^2)}\right). \\ 771$$

772 The hyperbolic distance is determined by both the relative positions of points u and v ($\|u - v\|^2$ in
773 the numerator) and their absolute positions ($\|u\|^2$ and $\|v\|^2$ in the denominator). Notably, for points
774 approaching the boundary of the Poincaré ball (where their norms approach $-1/\kappa$), the hyperbolic
775 distance grows significantly faster than the corresponding Euclidean distance. This fast growth of
776 space near the boundary is particularly advantageous for embedding tree-like hierarchical structures.
777 Leaf nodes belonging to different subtrees can be placed far apart in this near-boundary space, while
778 maintaining their relative distances within the same subtree, thus accurately preserving the structure
779 of the hierarchy.

780 A.2 GROMOV HYPERBOLICITY
781

782 Gromov's δ -hyperbolicity (Bridson and Haefliger, 2013; Gromov, 1987; Narayan and Saniee, 2011)
783 is a notion from group theory, measuring how tree-like a graph is. Specifically, let (G, d_G) denote the
784 input graph with its associated distance function. Let a, b, c, d be four vertices of the input graph, and
785 define S_1, S_2, S_3 as:

$$786 S_1 = d_G(a, b) + d_G(d, c), \quad S_2 = d_G(a, c) + d_G(b, d), \quad S_3 = d_G(a, d) + d_G(b, c). \\ 787$$

788 Then we can calculate $\delta(a, b, c, d)$ as the difference between largest and the second largest largest $S_.$,
789 denoted as M_1 and M_2 , respectively:

$$790 \delta(a, b, c, d) = M_1 - M_2.$$

791 We analyze the hyperbolic characteristics of graph G using the mean of sampled $\delta(a, b, c, d)$ values,
792 where a, b, c, d are randomly selected nodes in G , to provide a statistical view of the graph's geometric
793 properties. While the classical δ -hyperbolicity is defined as the supremum of all $\delta(a, b, c, d)$, we use
794 this mean-based metric to capture the average hyperbolic behavior of the topology.

795 For tree topologies, we have $\delta = 0$. A δ value that is close to zero indicates that the input structure of
796 the graph more closely resembles a tree-like hierarchical organization. The closer the δ to zero, the
797 more tree-like (or more hyperbolic) the given topology is.

798 A.3 EMBEDDING A REGULAR TREE IN TWO-DIMENSIONAL SPACES
799

800 To demonstrate how Euclidean and hyperbolic spaces fundamentally differ in their capacity for
801 embedding hierarchical structures, we analyze a concrete example: embedding a regular tree in
802 two-dimensional spaces.

803 Consider a regular tree with branching factor b , where each node has exactly b child nodes. The total
804 number of nodes in an l -layer tree is $\sum_{i=0}^l b^i$, exhibiting exponential growth with respect to the depth
805 l . When embedding such a tree into a geometric space, we can place the root node at the origin with
806 leaf nodes extending outward. In Euclidean space, however, the available area grows insufficiently: a
807 disc of radius l has area $2\pi l^2$, scaling only quadratically with l . In contrast, the area of a disc with
808 radius l in hyperbolic space (with curvature -1) is $2\pi(e^l/2 + e^{-l}/2 - 1)$, providing exponential
809 growth that matches the tree's expansion rate.

810 A.4 TANGENT SPACE RELATED OPERATIONS
811

812 In this section, we provide a brief introduction to the tangent-space related operations, starting from a
813 basic concept, Möbius addition (Ungar, 2007), that is utilized in deriving the closed-form expression
814 of other operations.

815 **Möbius addition.** For $x, y \in \mathcal{B}_\kappa^n$, the Möbius addition is defined as:
816

$$817 \quad x \oplus_\kappa y = \frac{(1 - 2\kappa \langle x, y \rangle_2 - \kappa \|y\|^2)x + (1 + \kappa \|x\|^2)y}{1 - 2\kappa \langle x, y \rangle_2 + \kappa^2 \|x\|^2 \|y\|^2}. \quad (9)$$

818 Note that when $\kappa = 0$, the Möbius addition degenerates to the Euclidean addition. Based on
819 the Möbius addition, we can define the Möbius subtraction $x \ominus_\kappa y = x \oplus_\kappa (-y)$. Next, we
820 present the detailed mathematical formulation of the exponential map, logarithmic map, and parallel
821 transport (Ganea et al., 2018; Yang et al., 2023).
822

823 **Exponential map.** For $x \in \mathcal{B}_\kappa^n$ and $v \in T_x \mathcal{B}_\kappa^n$, $v \neq 0$, the exponential map $\exp_x : T_x \mathcal{B}_\kappa^n \rightarrow \mathcal{B}_\kappa^n$ is
824 defined as:
825

$$826 \quad \exp_x(v) = x \oplus_\kappa \left(\tanh\left(\sqrt{|\kappa|} \frac{\lambda_x \|v\|}{2}\right) \frac{v}{\sqrt{|\kappa| \|v\|}} \right), \quad (10)$$

827 where $\lambda_x = 2/(1 - \kappa \|x\|^2)$ is the conformal factor.
828

829 **Logarithmic map.** For $x, y \in \mathcal{B}_\kappa^n$, $x \neq y$, the logarithmic map $\log_x : \mathcal{B}_\kappa^n \rightarrow T_x \mathcal{B}_\kappa^n$ is defined as
830

$$831 \quad \log_x(y) = \frac{2}{\sqrt{|\kappa|} \lambda_x} \tanh^{-1} \left(\sqrt{|\kappa|} \| -x \oplus_\kappa y \| \right) \frac{-x \oplus_\kappa y}{\| -x \oplus_\kappa y \|}. \quad (11)$$

832 **Parallel transport.** Here we present the parallel transport $PT_{0 \rightarrow x} : T_0 \mathcal{B}_\kappa^n \rightarrow T_x \mathcal{B}_\kappa^n$ that transports a
833 vector $v \in T_0 \mathcal{B}_\kappa^n$ to another tangent space $T_x \mathcal{B}_\kappa^n$:
834

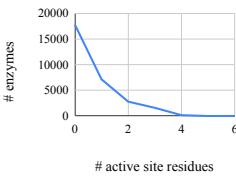
$$835 \quad PT_{0 \rightarrow x}(v) = \log_x(x \oplus_\kappa \exp_0(v)) = \frac{\lambda_0}{\lambda_x} v. \quad (12)$$

836 B SIMILARITY GRAPH CONSTRUCTION DETAILS
837838 B.1 STRUCTURE MODALITY
839

840 For the structure modality, we employ Foldseek (Van Kempen et al., 2024) to compute pairwise
841 similarities. For enzymes $x_i, x_j \in \mathcal{D}$ with their corresponding structures s_{x_i} and s_{x_j} , the similarity
842 is measured by the normalized bit score:
843

$$844 \quad simi_s(x_i, x_j) = f_{Foldseek}(s_{x_i}, s_{x_j}) = \frac{\text{bits}(s_{x_i}, s_{x_j})}{\text{bits}(s_{x_i}, s_{x_i})}$$

845 where $\text{bits}(s_{x_i}, s_{x_j})$ is Foldseek’s default scoring metric measuring the structural alignment be-
846 tween s_{x_i} and s_{x_j} . The normalization by self-alignment score ensures the similarity measure is
847 bounded between 0 and 1. The edge set $\mathcal{E}^{(s)}$ includes an edge between enzymes x_i and x_j when
848 $simi_s(x_i, x_j) > \delta^s$, where $\delta^s = 0.3$.
849

850 B.2 ACTIVE SITE MODALITY
851

852 Figure 8: Distribution.
853

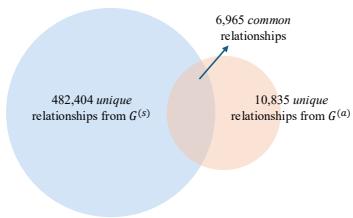
854 Fig. 8 illustrates the distribution of active site annotations from UniProt
855 across our enzyme dataset, where more than half of the enzymes have
856 no annotated active site residues. Based on the available annotations,
857 we construct the active site modality graph using Folddisco (Kim et al.,
858 2025) to identify similar local motifs. For enzyme x_i with sequence
859 q_{x_i} , structure s_{x_i} , and active site annotation a_{x_i} , Folddisco first identifies
860 whether a similar motif exists in enzyme x_j . If a match is found, Folddisco
861 returns two metrics: RMSD (Root Mean Square Deviation), measuring the
862 geometric similarity, and IDF (Inverse Document Frequency), quantifying
863

864 the rarity of the identified local structural patterns. We filter out matches with $\text{IDF} \leq 0.7$ to focus on
 865 meaningful structural patterns, then define the similarity between enzymes using the RMSD score:
 866

$$867 \quad \text{simi}_a(x_i, x_j) = f_{\text{Folddisco}}((q_{x_i}, s_{x_i}, a_{x_i}), (q_{x_j}, s_{x_j})) = \text{RMSD}(x_i, x_j)$$

868 The edge set $\mathcal{E}^{(a)}$ includes an edge between enzymes x_i and x_j when $\text{simi}_a(x_i, x_j) > \delta^a$, where
 869 $\delta^a = 0.05$.
 870

871 B.3 GRAPH STATISTICS



872 Figure 9: Edge distribution.

873
 874
 875
 876
 877
 878
 879
 880
 881
 882 a modest number of shared relationships, indicating that each modality captures distinct and unique
 883 information.

884 Table 4 presents the key statistics of both similarity graphs. The
 885 homophily ratio, defined as the proportion of edges connecting
 886 enzymes with identical EC numbers (Zhu et al., 2020), indicates
 887 that the structure modality graph $G^{(s)}$ exhibits stronger
 888 homophily than the active site modality graph $G^{(a)}$. The node
 889 set contains enzymes in both the training and test sets. Following
 890 the recommendation in the CARE benchmark, we use
 891 50% sequence clustering of the training set to increase the set
 892 diversity. We also analyze the distribution of structural and
 893 active site similarity graphs, as shown in Fig. 9, which reveals
 894

895 Table 4: Statistics of similarity graphs $G^{(s)}$ and $G^{(a)}$.

	# nodes	# edges	Homophily Ratio
$G^{(s)}$	29,531	489,369	0.808
$G^{(a)}$	29,531	17,800	0.514

896 C ADDITIONAL EXPERIMENTAL SETTINGS

897 C.1 DATA STATISTICS

898 Table 5 shows the detailed statistics of the utilized benchmark CARE.
 899

900 C.2 BASELINES

901 We include the following SOTA methods as baselines:

902 • BLASTp (Stephen, 1990) is a fast sequence alignment algorithm that can search for database
 903 sequences similar to a given query sequence.
 904 • Foldseek (Van Kempen et al., 2024) is a fast structure alignment algorithm. By reducing 3D
 905 structural information to 1D sequence information, Foldseek can search for database structures
 906 similar to a given query structure.
 907 • Folddisco (Kim et al., 2025) is a fast local motif detection algorithm that can search and identify
 908 local structures from the database that are similar to a given motif.

910 Table 5: Dataset statistics.

	# enzymes	# unique EC numbers
Training set	184,529	4936
<30% Identity test set	432	333
30-50% Identity test set	560	389
Previously Misclassified (Price) test set	148	56
Promiscuous test set	209	384

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Table 6: Summarization on the modality used in baselines.

Category	Methods	Sequence	Modality Structure	Active site
Similarity search	BLASTp	✓	✓	✓
	Foldseek			
	Folddisco			
Contrastive learning	CLEAN	✓	✓	
	CLEAN-Concat	✓		
PLM	ESM-2	✓		
	ESM-c	✓		
	ProtT5	✓		
	ProtBert	✓		
	S-PLM	✓	✓	
LLM	Pika	✓		

- CLEAN (Yu et al., 2023) initializes enzyme embeddings with ESM-2 (Lin et al., 2022), and then optimizes embeddings with a triplet margin loss, where the distance between pairs with the same EC class is minimized and the distance between pairs with different EC classes is maximized.
- CLEAN-Concat (Yang et al., 2024c) improves the CLEAN method by utilizing both sequence information in ESM-2 embedding and the structure information encoded by ResNet (He et al., 2015).
- ESM-2 (Lin et al., 2022) is a protein language model trained on sequences of natural proteins with the aim of designing protein structures.
- ESM-c (ESM Team, 2024) scales up data and training compute, achieving performance improvements over ESM-2.
- ProfT5 (Elnaggar et al., 2020) trains T5 (Raffel et al., 2020), an auto-encoder language model, on UniRef and BFD data to capture biophysical features from protein sequences.
- ProtBert (Elnaggar et al., 2020) trains BERT (Devlin et al., 2019) on the UniRef and BFD data.
- S-PLM (Wang et al., 2024a) is a 3D structure-aware protein language model (PLM) that enables the sequence-based embedding to carry the structural information through multi-view contrastive learning.
- GPT-4o-mini (Hurst et al., 2024) is a large language model that demonstrates promising capabilities in understanding and generating human-like text.
- Pika (Carrami and Sharifzadeh, 2024) finetunes LLMs on a curated, debiased dataset tailored for protein question answering and a biochemically relevant benchmarking strategy. Protein embeddings by ESM-2 (Lin et al., 2022) are utilized to provide a comprehensive understanding of the target protein in the given question.

For similarity search algorithms, we first establish a reference database comprising enzymes from the training set. Test enzymes are then queried against this database, and the EC numbers of top-retrieved enzymes serve as predictions. For PLM baselines, we freeze the pre-trained weights while training a task-specific classification head based on the training set. The reported results for PLMs and PoinnCARE are averaged over five independent runs. We implement all baselines using their official code repositories as documented in Table 7, except for LLMs, which directly predict EC numbers through prompting.

C.3 IMPLEMENTATION DETAILS

Accuracy is computed using the original code from CARE benchmark (Yang et al., 2024a), whereas precision, recall, and F_1 scores are calculated using the scikit-learn library (Pedregosa et al., 2011). Our PoinnCARE is implemented in Python using the PyTorch framework (Paszke, 2019). The model is optimized using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.01. The hidden dimension is set to 512, consistent with the baseline implementations. The hyperbolic

972
973 Table 7: The links to the baseline repositories.
974

Category	Method	Github link
Similarity search	BLASTp	https://github.com/bbuchfink/diamond
	Foldseek	https://github.com/steineggerlab/foldseek
	Folddisco	https://github.com/steineggerlab/folddisco
Contrastive learning	CLEAN	https://github.com/ttianhao/CLEAN/tree/main
	CLEAN-Concat	https://github.com/PNNL-Predictive-Phenomics/clean-contact
PLM	ESM-2	https://github.com/facebookresearch/esm
	ESM-c	https://github.com/evolutionaryscale/esm/tree/main
	ProtT5	https://github.com/agemagician/ProtTrans
	ProtBert	https://github.com/agemagician/ProtTrans
	S-PLM	https://github.com/duolinwang/S-PLM/tree/main

981
982
983
984
985
986
987 Table 8: Hyperparameters details.
988

	β_s	β_a	γ	W_d
<30% Identity test set	0.8	0.2	0.001	0
30-50% Identity test set	0.8	0.2	0.001	0
Previously Misclassified (Price) test set	0.2	0.8	0.0001	1
Promiscuous test set	0.5	0.5	0.0001	0

996 encoders are implemented based on the Poincaré model with a fixed curvature of $\kappa = 1$. The graph
997 diffusion operation over the active site similarity graph $G^{(a)}$ is instantiated as a two-layer personalized
998 PageRank algorithm with $\alpha = 0.8$. The values of other hyperparameters on four test sets are listed in
999 Table 8, including:
1000

- 1001 • β_s and β_a : trade-off parameters of modality fusion: $\mathbf{H} = \beta_s \cdot \mathbf{H}_{(s)} + \beta_a \cdot \mathbf{H}_{(a)}$.
- 1002 • γ : trade-off parameters in the compound loss: $\mathcal{L} = \mathcal{L}_{clf} + \gamma \mathcal{L}_{align}$.
- 1003 • w_d : weight of de-correlation terms in alignment loss 6.

1005 D ADDITIONAL EXPERIMENTAL RESULTS

1008 D.1 PERFORMANCE REGARDING PRECISION, RECALL, AND F_1 SCORES

1009 In this section, we provide additionally comprehensive evaluation results on other standard metrics:
1010 precision scores in Tables 9 and 10, recall scores in Tables 11 and 12, and F_1 scores in Tables 13
1011 and 14.

1012 The performance distributions across these metrics align with our previous accuracy analysis: our
1013 PoInnCARE demonstrates superior performance under most cases and maintains the highest average
1014 rank across all test sets, further validating the effectiveness of our hyperbolic multi-modal learning
1015 framework. Notably, on the Promiscuous set, BLASTp achieves marginally higher precision than our
1016 method, which can be attributed to the high sequence similarity between this test set and the training
1017 data (with nearly 50% of enzymes sharing >90% sequence identity). Nevertheless, PoInnCARE still
1018 surpasses BLASTp in both recall and F_1 metrics, achieving a substantial 4.4% improvement in level
1019 4 F_1 score on the Promiscuous set.

1021 D.2 PERFORMANCE STABILITY

1023 In this section, we provide the standard deviation results for the top three end-to-end prediction
1024 methods, PoInnCARE, ESM-2, and ProtT5, on the <30% Identity test set regarding accuracy. For the
1025 similarity search and contrastive learning baselines, the standard deviation is not applicable because
these methods are deterministic and do not exhibit variability across different runs. As shown in

1026

1027

Table 9: Performance in terms of precision score on <30% Identity and 30-50% Identity test sets. The best and second-best results are shown in bold and underlined, respectively.

1028

1029

	<30% Identity				30-50% Identity				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.176	0.038	0.005	0.000	0.146	0.018	0.002	0.000	13.25
BLASTp	0.706	0.629	0.582	0.503	0.915	0.897	0.854	0.789	5.38
Foldseek	0.794	0.665	0.642	<u>0.524</u>	0.924	0.892	0.832	0.743	4.50
Folddisco	0.662	0.418	0.455	0.368	0.662	0.718	0.694	0.505	11.25
CLEAN	0.793	0.716	<u>0.680</u>	0.517	0.931	<u>0.911</u>	<u>0.861</u>	0.804	2.75
CLEAN-Concat	<u>0.810</u>	<u>0.720</u>	<u>0.637</u>	0.490	0.937	<u>0.904</u>	<u>0.851</u>	0.784	3.38
ESM-2	0.785	<u>0.675</u>	0.620	0.486	<u>0.943</u>	0.883	0.819	0.770	4.88
ESM-c	0.690	0.548	0.527	0.402	<u>0.902</u>	0.854	0.778	0.738	9.00
ProtT5	0.755	0.661	0.597	0.458	0.929	0.874	0.799	0.751	6.50
ProtBert	0.676	0.521	0.503	0.378	0.872	0.806	0.728	0.691	10.00
S-PLM	0.738	0.604	0.563	0.428	0.907	0.875	0.799	0.742	7.63
ChatGPT*	0.091	0.001	0.000	0.000	0.123	0.022	0.011	0.000	13.50
Pika*	0.587	0.483	0.357	0.196	0.714	0.588	0.498	0.354	11.75
PoinnCARE	0.885	0.826	0.778	0.616	0.951	0.924	0.875	0.818	1.00

1042

1043

1044

1045

1046

Table 10: Performance in terms of precision score on Price and Promiscuous test sets. The best and second-best results are shown in bold and underlined, respectively.

1047

	Previously Misclassified (Price)				Promiscuous				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.220	0.051	0.007	0.000	0.363	0.081	0.036	0.005	13.13
BLASTp	0.818	0.784	0.696	0.341	0.968	0.960	0.951	0.874	4.25
Foldseek	<u>0.939</u>	<u>0.878</u>	<u>0.797</u>	0.318	0.846	0.808	0.799	0.704	4.25
Folddisco	0.000	0.000	0.000	0.000	0.813	0.740	0.693	0.458	12.13
CLEAN	0.858	0.794	0.686	0.307	0.909	0.873	0.848	0.691	5.38
CLEAN-Concat	0.905	0.868	0.767	0.348	0.917	0.860	0.834	0.659	3.75
ESM-2	0.916	0.847	0.760	<u>0.362</u>	0.861	0.796	0.769	0.629	4.63
ESM-c	0.787	0.720	0.661	<u>0.343</u>	0.822	0.737	0.712	0.579	9.13
ProtT5	0.891	0.824	0.757	<u>0.380</u>	0.846	0.766	0.734	0.596	6.38
ProtBert	0.674	0.551	0.512	0.200	0.794	0.691	0.658	0.549	11.00
S-PLM	0.867	0.788	0.718	0.238	0.851	0.780	0.756	0.606	7.13
ChatGPT*	0.372	0.176	0.095	0.000	0.292	0.086	0.067	0.005	12.63
Pika*	0.824	0.649	0.507	0.041	0.890	0.794	0.742	0.354	9.00
PoinnCARE	0.953	0.906	0.824	0.349	<u>0.943</u>	<u>0.925</u>	<u>0.917</u>	<u>0.785</u>	1.75

1061

1062

1063

1064

Table 11: Performance in terms of recall score on <30% Identity and 30-50% Identity test sets. The best and second-best results are shown in bold and underlined, respectively.

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

	<30% Identity				30-50% Identity				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.151	0.024	0.014	0.000	0.152	0.022	0.007	0.000	13.13
BLASTp	0.660	0.545	0.546	0.478	0.931	0.877	0.841	0.779	5.88
Foldseek	<u>0.783</u>	<u>0.660</u>	0.634	<u>0.533</u>	0.939	0.875	0.823	0.740	3.88
Folddisco	0.611	0.466	0.473	0.346	0.648	0.670	0.676	0.497	11.13
CLEAN	0.782	0.653	<u>0.659</u>	0.523	<u>0.955</u>	<u>0.885</u>	<u>0.854</u>	<u>0.797</u>	2.50
CLEAN-Concat	0.768	0.658	<u>0.610</u>	0.481	<u>0.954</u>	0.868	0.840	<u>0.773</u>	4.25
ESM-2	0.745	0.632	0.618	0.494	0.955	0.868	0.828	0.771	4.63
ESM-c	0.650	0.507	0.505	0.413	0.925	0.839	0.782	0.737	9.00
ProtT5	0.723	0.609	0.581	0.468	0.939	0.857	0.805	0.752	6.38
ProtBert	0.636	0.488	0.480	0.383	0.895	0.788	0.729	0.693	10.00
S-PLM	0.708	0.573	0.557	0.443	0.933	0.847	0.801	0.738	7.50
ChatGPT*	0.135	0.008	0.000	0.000	0.148	0.018	0.013	0.000	13.63
Pika*	0.581	0.402	0.355	0.187	0.763	0.562	0.477	0.350	11.88
PoinnCARE	0.885	0.787	0.761	0.632	0.969	0.909	0.870	0.825	1.00

1080

1081

1082 Table 12: Performance in terms of recall score on Price and Promiscuous test sets. The best and
1083 second-best results are shown in bold and underlined, respectively.

	Previously Misclassified (Price)				Promiscuous				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.223	0.054	0.007	0.000	0.405	0.085	0.037	0.005	12.88
BLASTp	0.818	0.784	0.696	0.341	0.834	0.780	0.730	0.682	6.00
Foldseek	<u>0.939</u>	<u>0.878</u>	<u>0.797</u>	<u>0.314</u>	0.762	0.675	0.632	0.561	6.38
Folddisco	0.000	0.000	0.000	0.000	0.641	0.510	0.464	0.318	12.25
CLEAN	0.858	0.797	<u>0.689</u>	0.307	<u>0.868</u>	<u>0.810</u>	<u>0.763</u>	0.691	4.88
CLEAN-Concat	0.905	0.872	<u>0.770</u>	0.348	<u>0.868</u>	<u>0.805</u>	<u>0.770</u>	<u>0.659</u>	3.13
ESM-2	0.918	0.849	0.762	<u>0.362</u>	0.857	0.771	<u>0.716</u>	0.629	4.00
ESM-c	0.791	0.726	0.666	<u>0.343</u>	0.813	0.722	0.665	0.579	8.13
ProtT5	0.895	0.827	0.761	0.380	0.837	0.745	0.686	0.596	5.38
ProtBert	0.678	0.554	0.515	0.200	0.810	0.699	0.630	0.549	10.00
S-PLM	0.872	0.789	0.719	0.238	0.844	0.754	0.702	0.606	6.38
ChatGPT*	0.372	0.176	0.095	0.000	0.192	0.052	0.033	0.002	13.00
Pika*	0.824	0.649	0.507	0.041	0.611	0.465	0.362	0.164	11.00
PoinnCARE	0.955	0.909	0.827	0.349	0.908	0.866	0.844	0.785	1.25

1096

1097

1098

1099

1100 Table 13: Performance in terms of F_1 score on <30% Identity and 30-50% Identity test sets. The best
1101 and second-best results are shown in bold and underlined, respectively.

	<30% Identity				30-50% Identity				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.150	0.023	0.007	0.000	0.143	0.018	0.003	0.000	13.13
BLASTp	0.673	0.551	0.528	0.484	0.921	0.872	0.830	0.778	5.63
Foldseek	<u>0.785</u>	0.638	0.610	<u>0.520</u>	0.930	0.871	0.810	0.736	4.25
Folddisco	0.604	0.430	0.448	<u>0.354</u>	0.648	0.673	0.665	0.498	11.13
CLEAN	0.783	0.661	<u>0.641</u>	0.511	0.942	<u>0.885</u>	<u>0.842</u>	<u>0.795</u>	2.63
CLEAN-Concat	0.782	<u>0.662</u>	0.592	0.480	0.944	0.873	0.830	0.772	3.63
ESM-2	0.752	0.629	0.589	0.483	<u>0.948</u>	0.865	0.809	0.766	4.88
ESM-c	0.659	0.500	0.479	0.398	0.912	0.834	0.762	0.732	9.00
ProtT5	0.730	0.604	0.555	0.455	0.932	0.854	0.785	0.745	6.25
ProtBert	0.642	0.478	0.456	0.373	0.880	0.779	0.703	0.685	10.00
S-PLM	0.714	0.559	0.525	0.427	0.917	0.846	0.783	0.735	7.75
ChatGPT*	0.085	0.002	0.000	0.000	0.100	0.013	0.008	0.000	13.63
Pika*	0.570	0.382	0.318	0.184	0.726	0.540	0.447	0.340	11.88
PoinnCARE	0.883	0.787	0.742	0.617	<u>0.959</u>	0.910	0.859	0.816	1.00

1115

1116

1117

1118 Table 14: Performance in terms of F_1 score on Price and Promiscuous test sets. The best and
1119 second-best results are shown in bold and underlined, respectively.

	Previously Misclassified (Price)				Promiscuous				Avg. rank
	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	Level 1 (x.-.-.-)	Level 2 (x.x.-.-)	Level 3 (x.x.x.-)	Level 4 (x.x.x.x)	
Random*	0.221	0.052	0.007	0.000	0.364	0.080	0.036	0.005	13.00
BLASTp	0.818	0.784	0.696	0.341	<u>0.879</u>	<u>0.840</u>	<u>0.804</u>	<u>0.746</u>	4.75
Foldseek	<u>0.939</u>	<u>0.878</u>	<u>0.797</u>	0.315	<u>0.783</u>	<u>0.717</u>	<u>0.686</u>	<u>0.609</u>	5.50
Folddisco	0.000	0.000	0.000	0.000	0.688	0.582	0.541	0.366	12.38
CLEAN	0.858	0.795	0.687	0.307	0.871	0.823	0.789	0.691	5.25
CLEAN-Concat	0.905	0.869	0.768	0.348	0.877	0.817	0.789	0.659	3.63
ESM-2	0.917	0.847	0.761	<u>0.362</u>	0.839	0.766	0.730	0.629	4.13
ESM-c	0.788	0.722	0.663	<u>0.343</u>	0.798	0.713	0.676	0.579	8.50
ProtT5	0.892	0.825	0.759	0.380	0.820	0.736	0.698	0.596	5.63
ProtBert	0.676	0.552	0.513	0.200	0.778	0.679	0.634	0.549	10.25
S-PLM	0.869	0.788	0.719	0.238	0.826	0.749	0.716	0.606	6.63
ChatGPT*	0.372	0.176	0.095	0.000	0.224	0.063	0.044	0.002	12.88
Pika*	0.824	0.649	0.507	0.041	0.703	0.573	0.486	0.223	10.88
PoinnCARE	0.954	0.907	0.825	0.349	0.912	0.880	0.867	0.785	1.25

1133

1134

1135

Table 15: The standard deviation values of the top three end-to-end prediction methods.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

Table 16: Performance under varying dimensions.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

Table 15, our PoinnCARE demonstrates superior and also stable performance with low standard deviation values.

1159

1160

D.3 PERFORMANCE UNDER VARYING DIMENSIONS

1161

1162

1163

The accuracy performance of PoinnCARE and the strongest baseline, CLEAN, on the <30% and 30–50% test sets under varying dimensions, ranging from 512 down to 32, is presented in Table 16.

1164

1165

D.4 PARAMETER ANALYSIS

1166

1167

Inductive vs. transductive settings. Our main experiments adhere to the inductive learning paradigm (Hamilton et al., 2017), enforcing strict information constraints whereby only training samples and their inter-relationships are accessible during the training phase. The learned model subsequently generalizes to previously unseen test instances during inference. We further investigate performance under the transductive setting (Kipf and Welling, 2016), wherein test samples are made available during training while their labels remain concealed. *The main distinction between these two paradigms lies in the exploitation of train-test similarity relationships in the training stage.* Table 17 presents accuracy comparisons across four test sets under both settings. Our PoinnCARE demonstrates robust generalizability even under the strict inductive learning paradigm.

1175

1176

1177

1178

Table 17: PoinnCARE performance under inductive and transductive settings regarding accuracy.

1179

1180

1181

1182

1183

1184

1185

1186

1187

	<30% Identity				30-50% Identity			
	X.-.-.-	X.X.-.-	X.X.X.-	X.X.X.X.	X.-.-.-	X.X.-.-	X.X.X.-	X.X.X.X.
Inductive	0.900	0.827	0.779	0.648	0.961	0.926	0.887	0.822
Transductive	0.902	0.833	0.784	0.650	0.961	0.929	0.888	0.828
Previously Misclassified (Price)								
	X.-.-.-	X.X.-.-	X.X.X.-	X.X.X.X.	X.-.-.-	X.X.-.-	X.X.X.-	X.X.X.X.
	0.955	0.909	0.827	0.349	0.911	0.871	0.849	0.785
Inductive	0.962	0.917	0.829	0.359	0.915	0.876	0.852	0.790

1188

1189

Table 18: Performance under different hyperbolic space curvatures.

1190

1191

	Leanable c	$c = -0.5$	$c = -1$	$c = -5$
x.-.-.-	0.896	0.894	0.902	0.900
x.x.-.-	0.826	0.832	0.833	0.825
x.x.x.-	0.781	0.780	0.784	0.777
x.x.x.x.	0.649	0.648	0.650	0.637

1192

1193

1194

1195

1196

1197

1198

1199

Table 19: Performance with various graph diffusion settings.

1200

1201

		PPR			HKPR		
		$\alpha = 0.8$	$\alpha = 0.5$	$\alpha = 0.2$	$t = 2$	$t = 5$	$t = 8$
<30% Identity	x.-.-.-	0.902	0.894	0.897	0.890	0.892	0.896
	x.x.-.-	0.833	0.834	0.837	0.832	0.833	0.836
	x.x.x.-	0.784	0.791	0.788	0.789	0.787	0.789
	x.x.x.x.	0.650	0.656	0.652	0.656	0.655	0.652
30-50 Identity	x.-.-.-	0.961	0.966	0.964	0.967	0.965	0.965
	x.x.-.-	0.929	0.932	0.929	0.933	0.931	0.929
	x.x.x.-	0.888	0.891	0.889	0.890	0.889	0.889
	x.x.x.x.	0.828	0.832	0.831	0.830	0.830	0.830

1210

1211

1212

Curvature of the hyperbolic space. In our main experiments, we fix the curvature of the underlying hyperbolic space to $c = -1$. The larger the absolute value of curvature, the more strongly curved the hyperbolic space becomes. The traditional Euclidean space corresponds to zero curvature ($c = 0$). We investigate performance sensitivity to different curvature values by setting c to -0.5 , -5 , and a learnable parameter optimized jointly with the model. Table 18 presents accuracy results on the $<30\%$ Identity test set. Our findings indicate that curvatures closer to zero yield comparable performance, while $c = -5$ creates a strongly curved space that leads to slightly decreased accuracy.

1213

1214

1215

1216

1217

1218

Graph diffusion. To address the sparsity of enzyme active site annotations, we apply graph diffusion over the active site similarity graph $G^{(a)}$. Our main experiments employ a two-layer personalized PageRank (Wang et al., 2017) with $\alpha = 0.8$ as the graph diffusion mechanism. We further investigate alternative parameter configurations and diffusion instantiations, such as Heat Kernel PageRank (Kloster and Gleich, 2014), to evaluate the impact of different diffusion strategies. As presented in Table 19, PoinnCARE maintains superior performance across various graph diffusion settings, demonstrating the stability and effectiveness of our approach.

1219

1220

1221

1222

1223

1224

1225

E CASE STUDY

1226

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

In this section, we present a case, D4APQ6, from the $<30\%$ Identity test set, to demonstrate how active site information helps complement structural information. D4APQ6 is from the $<30\%$ Identity test set, where its sequence identity with all training samples is deliberately restricted to less than 30%. The structural similarity with training samples returned by Foldseek also falls below the pre-defined threshold, preventing the formation of effective edges in the structural similarity graph. When relying solely on the structural graph, the enzyme D4APQ6 is *misclassified* as EC 3.2.1.67. However, Folddisco successfully identifies that D4APQ6 shares a similar local motif with the active sites (Cys-454 and Cys-457) of O22229 from the training set, as illustrated in Figure 10. This similarity results in the formation of homophilic edges in the active site similarity graph $G^{(a)}$, which facilitates information aggregation between test

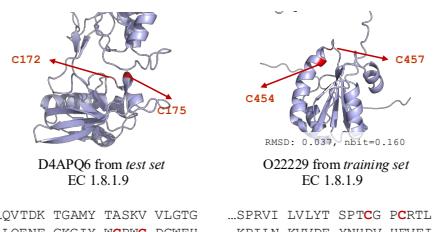
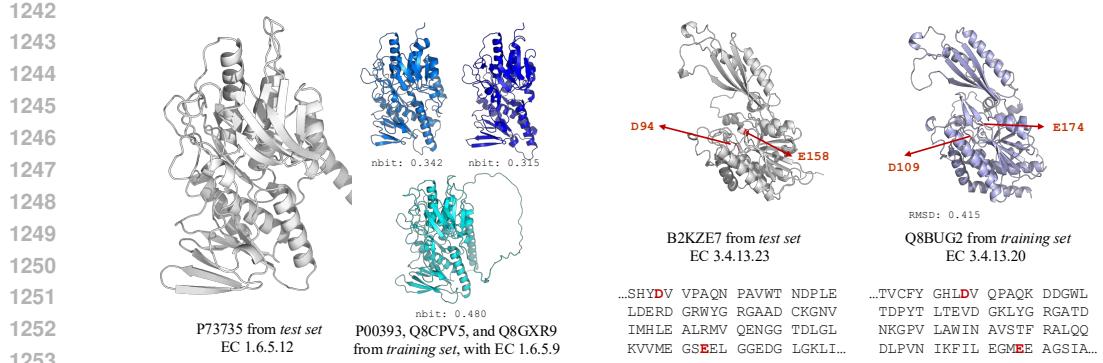


Figure 10: A correctly classified case.



1254
 1255 Figure 11: Examples of heterophilic structure (left) and active site (right) similarities, with the
 1256 normalized bit score (nbit) and the motif RMSD provided.
 1257
 1258

1259 samples and known training samples, thereby enabling accurate classification of D4APQ6. Conse-
 1260 quently, by integrating both structural and active site modalities, D4APQ6 is correctly classified as
 1261 EC 1.8.1.9 by PoinnCARE.

F LIMITATION AND FUTURE WORK

1266 In order to identify potential directions for future work, we first explore the reasons behind enzyme
 1267 misclassification. Specifically, we collected enzymes from the <30% Identity test set that are
 1268 misclassified by PoinnCARE. In this test set, sequence identity scores with training samples are
 1269 strictly limited to below 30%. We further analyzed the structure and active site similarities associated
 1270 with these misclassified enzymes and derived the following observations. First, we found that
 1271 53.3% (81 out of 152) of these misclassified enzymes lack both structural and active site similarity.
 1272 Second, 45.3% (54 out of 152) of misclassified enzymes possess either structural similarity or active
 1273 site similarity. However, the majority of these edges are heterophilic, meaning they connect to
 1274 enzymes with different EC numbers. The homophily ratio among these edges is only 0.078, which
 1275 is significantly lower than the overall homophily ratios. The absence of effective information and
 1276 the presence of misleading, heterophilic relationships make the classification of these enzymes
 1277 particularly challenging.

1278 We further examined those enzymes that are misclassified at the deepest EC level, and present the
 1279 examples where our model can be misled by heterophilic edges. Specifically, enzyme P73735, whose
 1280 true EC number is 1.6.5.12, was misclassified as EC 1.6.5.9, as three out of four edges in the structural
 1281 similarity graph connect to enzymes with EC 1.6.5.9 (Q8CPV5, Q8GXR9, and P00393), as shown in
 1282 the left part of Fig. 11. Similarly, enzyme B2KZE7, with true EC number 3.4.13.23, was incorrectly
 1283 assigned EC 3.4.13.20. In this case, the only edge for B2KZE7 in the active site similarity graph
 1284 links to Q8BUG2 from the training set, which also has an EC number of 3.4.13.20. The right part of
 1285 Fig. 11 demonstrates the identified similar local motifs. Based on the above observations, we believe
 1286 that improving both the quantity and quality of similarity relationships—especially through more
 1287 precise structural and active site information—will enhance performance in these difficult cases.

G BROADER IMPACTS

1289 Our method contributes to more effective enzyme function prediction, which could facilitate the
 1290 understanding of enzyme roles in various biological processes. The improved prediction accuracy
 1291 has potential implications for both fundamental research in biotechnology and downstream industrial
 1292 applications.
 1293

1296 **H LLM USAGE**
1297

1298 Per author guidelines, we disclose the use of Large Language Models for writing polish.
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349