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ABSTRACT

Enzyme Commission (EC) number prediction is vital for elucidating enzyme func-
tions and advancing biotechnology applications. However, current methods struggle
to capture the hierarchical relationships among enzymes and often overlook critical
structural and active site features. To bridge this gap, we introduce PoinnCARE, a
novel framework that jointly encodes and aligns multi-modal data from enzyme
sequences, structures, and active sites in hyperbolic space. By integrating graph dif-
fusion and alignment techniques, PoinnCARE mitigates data sparsity and enriches
functional representations, while hyperbolic embedding preserves the intrinsic
hierarchy of the EC system with theoretical guarantees in low-dimensional spaces.
Extensive experiments on four datasets from the CARE benchmark demonstrate
that PoinnCARE consistently and significantly outperforms state-of-the-art meth-
ods in EC number prediction.

1 INTRODUCTION

Enzymes are fundamental biological catalysts that drive nearly all biochemical reactions essential for
life (Bergl 2022; |van Beilen and Li, [2002), and they underpin a wide range of industrial applications,
including pharmaceutical synthesis (Karan et al.| 2012 Nandanwar et al., 2020), food processing (Ku-
mar et al.}2024; [Kumari et al.| 2021), and environmental cleaning (Gupta et al.|, {2002} [Kumari et al.,
2019). Central to understanding and harnessing enzyme function is the Enzyme Commission (EC)
number system (Kraut, |1988} |Copeland, [2023)), which hierarchically classifies enzymes based on
the chemical reactions they catalyze. Each EC number is a four-digit code, progressing from broad
functional classes (1st digit) to highly specific activities (4th digit). For example, as illustrated in
Fig.[T] the enzyme with EC number 3.1.21.1 catalyzes the hydrolysis of DNA, producing fragments
with defined chemical groups at their termini. Accurate EC number prediction not only facilitates
the annotation of newly discovered proteins but also enables the exploration of the vast and largely
uncharacterized protein universe.

Despite recent advances (Yang et al., [2024a; Yu et al., [2023)), & o
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existing computational approaches for EC number prediction (W

face two major limitations. First, most methods either ignore  ~ ; oy 4 P49183 in UniProt
or inadequately model the intrinsic hierarchical structure of e with EC3.121.1
the EC taxonomy, typically representing enzymes in Euclidean [EC3: Hydrolases ]
space (Li et al.| [2018; Ryu et al.,|2019; |Sanderson et al., [ 2023]). [EC3.1: Acting on ester bonds |
As shown in Fig. 2| (left), the EC system forms a tree-like hi-
erarchy, which is theoretically difficult to embed in Euclidean
space without significant distortion or high-dimensional over-
head, limiting prediction accuracy. Second, current methods  Figure 1: An example enzyme.
predominantly rely on sequence alignment (Stephen) [1990),

overlooking critical structural and active site information that fundamentally determines enzymatic
specificity and function. As depicted in Fig. [2| (right), enzyme catalysis depends on the precise
three-dimensional arrangement of active site residues, which govern substrate binding and reaction
specificity (Riziotis et al.,[2025). Neglecting these modalities restricts the ability to capture the full
complexity of enzyme function.

EC 3.1.21: Endodeoxyribonucleases producing 5'-
phosphomonoesters

[EC 3.1.21.1: deoxyribonuclease I |
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Figure 2: The tree structure of the EC system (left) and the catalytic mechanism of enzymes (right).

To address these challenges, we propose PoinnCAR a framework that integrates multi-modal
information from protein sequences, structures, and active sites, and projects them into hyperbolic
space. We augment the CARE benchmark (Yang et al.,[2024a) with comprehensive structural and
active site annotations. While most enzymes can be assigned structures via experimental data or
AlphaFold2/ESMFold predictions, experimentally validated active site annotations are available
for only a small subset, leading to modality imbalance. To overcome this, PoinnCARE constructs
pairwise similarity graphs for structure and active site modalities, leveraging intra-modality graph
diffusion and inter-modality dual-graph alignment to alleviate annotation sparsity and bridge modality
gaps. These graph representations are then projected into hyperbolic space to preserve the hierarchical
relationships of the EC system. Our analysis shows that hyperbolic embeddings represent tree-like
structures with lower distortion and in fewer dimensions than Euclidean approaches, while yielding
better accuracy. Finally, comprehensive experiments on four test sets in the CARE benchmark (Yang
et al.| 2024a) show that PoinnCARE consistently outperforms state-of-the-art methods.

In summary, the main contributions of our work include:

* We augment the CARE benchmark with comprehensive structural and active site information,
enabling richer multi-modal learning for enzyme function prediction.

* We construct similarity graphs and use graph diffusion to address annotation sparsity and enhance
functional representation.

* We introduce a hyperbolic multi-modality encoding and alignment mechanism, which preserves
the hierarchical relationships of the EC system with low distortion.

* We demonstrate, through extensive experiments, that PoinnCARE achieves state-of-the-art perfor-
mance on four challenging EC number prediction benchmarks.

2 RELATED WORK

Enzyme function prediction. Historically, sequence similarity has been the foundation for protein
function annotation (Finn et al., 2015), with BLAST (Stephen, |1990) serving as a primary tool for
similarity searches. With the advancement of machine learning (ML), several methods have been
proposed to leverage traditional ML technologies, such as SVM (Chang and Lin} 2011)), CNN (L1
et al.L[2021), and ResNet (He et al.,|2015), to enhance the accuracy of enzyme function annotation (L1
et al.,[2018}; Ryu et al.l 2019} Dalkiran et al.,|2018;Sanderson et al.,2023). The contrastive framework
was first utilized to enhance enzyme function prediction performance in CLEAN (Yu et al., [2023)).
Specifically, a triplet margin loss was employed to minimize distances between positive samples while
maximizing distances between negative samples. Building on this simple yet powerful framework,
CLEAN-Concat (Yang et al.||2024c)) integrated structural information by using ResNet (He et al.|
2015)) to encode protein contact maps. Subsequently, several methods, including HiFi-NN (Ayres et al.,
2023)), FEDKEA (Zheng et al., 2024}, EnzHier (Duan et al.||2024), and Yim et al.’s approach (Yim
et al.| [2024), were introduced to augment this contrastive paradigm, improving positive and negative
sampling strategies based on the hierarchical characteristics of EC numbers. Recent approaches
have expanded beyond protein sequences to improve the enzyme function classification results. To
be specific, Top-EC (van der Weg et al., [2025)) integrates enzyme structure information with a 3D
graph neural network, learning from an interplay between biochemical features and local shape-
dependent features. ProteinF3S (Yuan et al., 2025) consolidates sequence, structure, and surface
information through a two-phase fusion strategy. Despite these advances, existing methods fail to
comprehensively utilize critical information that directly determines the catalytic functions, such as

"Multi-modal learning with Poincaré model-based hyperbolic graph neural networks for enzyme function
prediction on CARE (Yang et al.,|2024a) benchmark.
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active sites. These limitations motivate us to explore a novel approach incorporating multi-modal
information for enhanced EC number prediction.

Hyperbolic representation learning. Hyperbolic geometry, characterized by negative curvature,
exhibits exponential volume growth that naturally accommodates hierarchical structure and entailment
relations, and thus has been successfully adopted across various domains, including computer
vision [Liu et al.| (2020)); Desai et al.|(2023)), natural language processing Xiong et al.[(2022); Yang
et al.|(2024b)), and graph-based tasks|Sun et al.|(2021)); Bai et al.|(2023)).

In terms of the biological domain, many studies have extensively validated the superiority of hyper-
bolic geometry in capturing the latent hierarchical structures of biological data, successfully applying
it to Gene Ontology representation |[Kim et al.|(2021)), cell lineage inference Tian et al.|(2023), genomic
sequence modeling Khan et al.|(2025)), taxonomic classification|Gong et al.| (2025), and protein-ligand
binding |Wang et al.|(2025)). These works collectively demonstrate that hyperbolic embeddings offer a
more geometry-aware inductive bias than Euclidean approaches for modeling complex evolutionary
and functional relationships. However, despite the evident hierarchical structure inherent in EC num-
bers, existing computational approaches heavily rely on traditional Euclidean space representations
for EC number prediction, highlighting a significant gap in the field and inspiring our effort to embed
enzymes, along with the rich associated information, within hyperbolic space.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Let Y denote the set of EC numbers, where each element yi € Y represents the i-th EC number at
hierarchical level I € {0,1,2,3,4}. Here, y° serves as a virtual root node, acting as the common
ancestor of all EC numbers. To capture hierarchical relationships among EC numbers, we establish

edges (v, yé.“) between nodes that share the same prefix, representing parent-child relationships.

The virtual root 3° connects to all first-level EC numbers y}. With edge set £ (1), the hierarchical
structure of the EC number system forms a tree T = (), € (t)), as illustrated in Fig. [2f (left).

For any enzyme = € X, we represent its multi-modal information as a tuple (g, S, a,), corre-
sponding to sequence, structure, and active site features, respectively. EC number prediction aims to
learn a classifier f(-) : X — ) mapping enzymes to their corresponding EC numbers. Importantly,
since individual enzymes can catalyze multiple reactions associated with different EC numbers, this
prediction task is inherently a multi-class, multi-label classification problem.

3.2 HYPERBOLIC SPACE

Hyperbolic space represents a class of Riemannian manifolds characterized by its constant negative
sectional curvature (Grigor’yan and Noguchi, [1998). Following previous studies (Ganea et al.,
2018 [Yue et al., |2023; Zhang et al.| [2021b), we elaborate on our method based on the Poincaré
ball model. Specifically, an n-dimension Poincaré ball model with a constant negative curvature
k(k < 0) can be denoted as (B7, g%), where B? = {z € R?|||z||> < —1/k} represents an open
ball, g% = 4/(1 — k||z||*)?I is the Riemannian metric tensor, and || - || denotes the Euclidean
norm. Equipped with this metric tensor, the induced distance between u,v € BY is denoted as:

d(u,v) = \/ﬁarcosh(l — (1+N\|QIZ}|21;FIUJI?||W\|2) ), which changes smoothly w.r.t. the positions of u

and v. This locality property of the hyperbolic distance is key for embedding hierarchical topologies.
More details are provided in Appendix [A.1]

3.3 TREE-LIKE RELATIONSHIPS AMONG ENZYMES

Unlike conventional flat classification with independent categories, the tree-structured EC system
naturally endows enzymes with intrinsic hierarchical relationships. By connecting each enzyme to its
corresponding EC number node y € ), these inherent hierarchical relationships can be quantitatively
characterized through Gromov’s §-hyperbolicity (Bridson and Haefliger, 2013} |Gromov, |1987), as
shown in Table[T} The EC system topology exhibits strong hyperbolic characteristics with a § value
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close to zero, in contrast to random topologies. The computation of J-hyperbolicity is detailed in
Appendix [A.7]

Embedding this tree-like structure into Euclidean space poses
fundamental challenges. In a tree structure, the number of

nodes grows exponentially with depth, while the volume of Table 1: §-hyperbolicity.
an n-dimensional Euclidean ball only grows proportionally to EC  Random
the n-th power of its radius. This inherent mismatch between

growth rates implies that accurate tree embedding in Euclidean Training set  0.01 0.92
space necessitates high dimensions, with limited dimensions Test set 0.00 0.73

resulting in significant distortion. In contrast, the volume of
a ball in hyperbolic space grows exponentially with its radius,
offering a natural geometric framework for embedding tree structures with faithful embeddings. An
illustrative example is presented in Appendix [A.3] The following theorem formally establishes this
fundamental difference:

Theorem 1 Let T be a tree with n nodes and dr be the associated tree distance. Then:

* (T, dr) can be embedded in O(log n)-dimensional Euclidean space with O(log n) distortion (Bour
gain| [1985)).

* (T,dr) can be embedded in hyperbolic space with dimension > 2 with 1 + € distortion, where €
can be arbitrarily small (Sarkan, |2011).

4 METHOD: POINNCARE

In this section, we present PoinnCARE, a novel hyperbolic space-based multi-modal learning
framework for EC number prediction. We first augment single-modality benchmarks with critical
structural and active site information (Sec4.T). Next, we propose a graph diffusion-enhanced topology
modeling approach to capture intra-modality similarity relationships (Sec.2). Finally, we encode
dual similarity graphs in hyperbolic space, preserving inherent hierarchical enzyme relationships
while capturing cross-modal semantic correlations through inter-modality alignment (Sec[4.3)).

4.1 MULTI-MODAL DATASET CURATION

As shown in Fig. [2] (right), the structure and active sites of enzymes are directly involved in catalytic
specificity determination, and thus are crucial for understanding enzyme catalytic mechanisms (Rizi{
otis et al.| [2025). However, the existing benchmark CARE (Yang et al.| [2024a) contains only
sequence information, which is insufficient and indirect for enzyme function inference. Therefore,
we supplement the benchmark with structure information and active site annotations, augmenting
the single sequence modality to multiple modalities. Specifically, for each enzyme, we obtain the
experimentally determined structures from PDB or structures predicted by AlphaFold2 (Jumper et al.|
2021)/ESMFold (Lin et al.,2022). Active site annotations are obtained from UniProt (Consortiuml),
2024), which specify the residues directly involved in catalysis. Detailed dataset statistics are pro-
vided in Appendix [C.I] Based on supplemented information, EC numbers for query enzymes can
be inferred from sequence/structural/active site information through similarity search algorithms or
ML/DL-based classifiers. However, the scarcity of reliable active site annotations in UniProt leads
to incomplete modality information, introducing a notable gap between structural and active site
modalities, which further intensifies the difficulty of multi-modal learning (Wang et al.,|2024b)). To
address these challenges, we develop a dual similarity graph encoding framework that mitigates data
sparsity from both intra-modality and inter-modality perspectives.

4.2 GRAPH-BASED INTRA-MODALITY RELATIONSHIP MODELING

In this section, we capture pairwise similarity under structural and active site modalities and construct
two independent similarity graphs. We then employ graph diffusion operations to mitigate data
sparsity by incorporating both direct and indirect connections within the graphs.

Similarity graph under structure modality. We employ Foldseek (Van Kempen et al.l 2024)) to

4
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extract pairwise structural similarity. Specifically, Fold- 225 A e sy .
seek discretizes structures in continuous space and re- & 2 Yo oD €
. . 47\ L HA_ 4
duces 3D structure comparison to 1D sequence compari- 4 AREELENSY T\ ‘f\\; oo £
O Vs | ey
son through a VQ-VAE (\./an.Den Oord et al., 2017)). We <) Kﬂ.“;& > J%{»\,\\ “3
denote the structural similarity returned by Foldseek as HAONE ;' H 1 NS0
P00922 )' J‘//' P40881 :‘E\L ) HQ

simis(xi,05) = fFoldscek (52, 5z,;), Where x4, x; € D
denoting the enzymes from the dataset, and s, repre-
sents the corresponding structure. Based on the score

EC4.2.1.1

..DGPLT GTYRL VQFHF HWGSS

DDQGS EHTVD RKKYA AELHL
VHWNT KYGDF GTAAQ QPDGL...

EC4.2.1.1

..GVVLH ALETI NEEGE PIEDN
IVEVD GKEYA VYIGN NVSLA
HQSQV HGPAA VGDDT FIGMQ..

simis(+, +), we construct a similarity graph under the struc-
ture modality, denoted as G(*) = (D,£()). An edge
(z;,2;) is included in the edge set £) if simig(z;, z;) >
0°, where 0° is a predefined threshold. Graph construction details and statistics are provided in
Appendix [B]

Similarity graph under active site modality. We derive the enzyme similarity from the perspective
of active sites using Folddisco (Kim et al.,2025), an inverted-index-based method for fast structural
motif detection within databases. Given the geometry and amino acid types of the active sites of z;,
Folddisco first identifies whether a similar motif exists in ;. If a local structure in x; is identified,
Folddisco computes the similarity between the query active sites and the identified one, denoted as
simia (2, ;) = froddisco ((qm s 8255 0z, )y (Quy s Sa; )) We denote the similarity graph under active
site modality as G(@) = (D, £(4)), where edge set £(*) includes (;, ;) if there is a local motif in
x; sharing high similarity with the active sites of x;, i.e., simi, (x;, x;) > 6%

Figure 3: Active site illustration.

Active site information provides complementary insights beyond sequence and structural features.
As illustrated in Fig. 3] enzymes can share identical EC numbers and active sites while exhibiting
distinct sequence and structural patterns. This phenomenon arises because active site residues are
typically scattered and discontinuous in the sequence (Hu et al.l [2024)), and their local structural
features may deviate from the global protein structure distribution (Riziotis et al., [2025]).

Remark.  When learning over these similarity graphs, we follow the inductive learning
paradigm (Hamilton et al., |2017), strictly ensuring that only training enzymes and relationships
among training enzymes are visible during the training phase, as further detailed in Appendix

Graph diffusion. Let A, A, be the adjacency matrices of the structural and active site similarity
graphs, respectively. We augment the topology of these two graphs by aggregating information from
multi-hop neighbors through a graph diffusion operation:

AL =Y wiPF, A, =) wiPF. (1)
k=0 k=0

Specifically, P, is the transition matrix of the active site similarity graph and wj} is the weighting
coefficient at k-th hop satisfying >, , w{: = 1. Graph diffusion can be instantiated into different
formulations (Gasteiger et al.,|2018; 2019} |[Kipf and Welling, 2016; |Wu et al., | 2019b)). Let D,, be the
degree matrix of A,. In this work, we set P, = D TA,, wy; = aq(l — oza)’“, and restrict the sum
to a finite number L,, yielding the personalized PageRank distribution (Wang et al.,[2017). Similar
notations are adopted for the structure similarity graph.

The enhanced distributions A/, and A/, can be viewed as weighted and directed graphs, with edge
weights reflecting the connection strength between node pairs, taking into account both their direct
connections and indirect connections through multi-hop neighbors. Following (Gasteiger et al., 2019),
we preserve these weights and use the resulting weighted graphs for subsequent hyperbolic encoding
and alignment.

4.3 MULTI-MODAL LEARNING AND ALIGNING IN HYPERBOLIC SPACE

Subsequently, we encode the augmented similarity graphs with two independent GNNS in hyperbolic
space to preserve the intrinsic hierarchical topologies, guided by cross-modality alignment loss to
capture the inter-modality invariance.

Standard GNN layer updates node representations in three sequential stages: linear transformation,
neighbor aggregation, and non-linear activation (Liu et al.,[2023; Wu et al.,|2019a)). However, these
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Figure 4: Overview of PoinnCARE framework: 1. Curation of a multi-modal dataset by augmenting
existing benchmarks with structure and active site information; II. Capturing intra-modality relation-
ships with graph modeling and graph diffusion; III. Encoding enzyme similarity in hyperbolic space
using dual hyperbolic GNNs to capture inter-modality relationships with modality alignment.

foundational operations are not readily applicable in hyperbolic space. To address this issue, a local
Euclidean approximation within hyperbolic space is commonly adopted as a compromise (Ganea
et al.l 2018 [Shimizu et al., [2020).

Definition 1 (Tangent Space) For a point x € B} in hyperbolic space, its tangent space T, B}
provides a first-order approximation of B;! at x and is isomorphic to Euclidean space.

The exponential map operation exp,, : 7. B} — B} projects vectors from the tangent space back to
the hyperbolic space, while the logarithmic map log,, : B} — 7,5} performs the inverse operation.
Furthermore, the parallel transport PT,_,, : 7,8 — 7T,B; defines a way of transporting the
local geometry along smooth curves that preserve the metric tensors. The detailed mathematical
formulations are provided in Appendix

Based on these definitions, we update node embeddings in hyperbolic space by first projecting
them onto the tangent space, performing standard operations (linear transformation and neighbor
aggregation), and finally mapping results back to hyperbolic space (Chami et al.| [2019; (Ganea et al.,
2018}, [Shimizu et al., 2020; [Zhang et al.l |2021b)). For simplicity, the tangent space of the origin node
is selected to perform standard operations. Specifically, the matrix multiplication with W and the
bias translation with b in hyperbolic space can be formulated as:

W ® x = exp, (Wlog,(x)), x®b=exp, (PTo—(b)). 2)
Then, the message passing procedure at the {-th layer is:
B = firans (B7) = (W) @b, 3)
hz(‘lJrl) =9 (fagg(hz('l)/)) =0 | exp, Z aijlog, (h‘;‘l)/) ) 4)
JEN(3)

where N (¢) denotes the neighbor set of node ¢, and d(+) is a non-linear activation function, such as
ReLU. We set the weight a;; according to the normalized Laplacian matrix (Kipf and Welling, [2016;

Liu et al., 2019). The input features hgo) are initialized using a Protein Language Model (PLM), such
as ESM (Lin et al.l |2022)) used in (Yang et al.|, [2024c; [Yu et al.| 2023)). Compared to Euclidean GNNss,
the hyperbolic overhead introduces an additional computational cost of O(nd), increasing the total
computational complexity from O(mnd) in a standard model to O(mnd + nd) in the hyperbolic
GNN, where n, m, and d denote the number of nodes, edges, and feature dimensions, respectively.

We separately encode structural and the active site information with two independent hyperbolic
GNNG. Specifically, we feed the adjacency matrices augmented by graph diffusion, A, and A/, along
with PLM embeddings H (%) into the dual hyperbolic GNNs:

H(a) :f(é) (AlsvH(O))a H(a) :f(a) (A;HH(O)) (5)

hyp hyp
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We then align the representations under two modalities by minimizing the divergence between
structural and active site embeddings of the same enzyme (Zhang et al., [2021al):

Latign = [ H(s) = Ho) |l + wa(lT = HLHg |} + |1 = Hig Hg) 7). (6)

The first term of L,;;4, maximizes the correlation between representations from two modalities and
captures the invariance between different views. The subsequent decorrelation terms prevent learning
degenerated embeddings (Liu et al. 2023)), with w4 controlling the weight of decorrelation.

Finally, we fuse representations from two modalities with a trade-off parameter 5 (He et al.| [2023) to
obtain the prediction results, setting the stage for deriving the classification loss:

Y = sigmoid(fus(Bs - His) + Ba - Hia)))s Loty = Lee(Y,Y), (7
where L. is the cross-entropy loss function and Y is the ground-truth label indicator. The overall
model is optimized to minimize the compound loss over the alignment loss and the classification loss:

L= »Calign + 7£clf~ (8)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate PoinnCARE on the standardized enzyme function benchmark CARE (Yang
et al.| [2024a) curated from Swiss-Prot (Consortiuml 2024), comprising enzymes with validated
four-digit EC number annotations. To rigorously assess the generalizability of a model to unseen
proteins, CARE defines four distinct test sets, each presenting unique challenges:

* <30% Identity test set: All enzymes in the test set share less than 30% sequence identity with
enzymes in the training set, ensuring stringent low-homology testing conditions (Rost, [1999).

* 30-50% Identity test set: Enzymes in this test set share sequence identity between 30% and 50%
with those in the training set, representing an intermediate homology zone.

* Previously Misclassified (Price) test set: A collection of enzymes that were initially misannotated
in established databases such as KEGG by automated annotation methods, but were subsequently
experimentally validated and correctly reclassified by Price et al. (Price et al., 2018)).

* Promiscuous test set: A collection of enzymes capable of catalyzing multiple distinct reactions
that are classified under different EC numbers. In this dataset, a single enzyme can be associated
with up to 9 different EC numbers.

All four test sets share a common training set. Statistics of training and test sets are presented in
Table[5] Following the recommendation in the CARE benchmark, we use 50% sequence clustering
of the training set to increase the diversity. We follow the inductive setting (Hamilton et al., 2017,
ensuring that only training enzymes are accessible during training, while test enzymes are withheld
until inference. Appendix [D.4]provides more explanations and the performance comparison.

Baselines. We compare PoinnCARE with 12 SOTA competitors belonging to four categories:

 Similarity search algorithms: BLASTp (Stephen, [1990), Foldseek (Van Kempen et al., [2024),
Folddisco (Kim et al., [2025);

* Contrastive learning methods: CLEAN (Yu et al.,[2023)), CLEAN-Concat (Yang et al.,[2024c);
* PLMs for general proteins: ESM-2 (Lin et al.| [2022)), ESM-c (ESM Team| |2024]), ProtT5 (Elnaggar
et al.;,|2020), ProtBert (Elnaggar et al.,2020), S-PLM (Wang et al.| 2024a);

* LLMs for general protein-related question answering: GPT-40-mini (Hurst et al.| [2024), Pika (Cary
rami and Sharifzadeh, 2024]).

A brief introduction to the baseline methods is provided in Appendix [C.2] with Table[6] summarizing
the modalities employed by each baseline method. The results of LLMs and the random baseline are
directly adopted from the CARE benchmark and marked with an asterisk *.

Metrics. For evaluation, we adopt two sets of metrics: the accuracy score as defined in the CARE
benchmark (Yang et al., [20244)), and the precision, recall, and F; scores adopted in CLEAN (Yu
et al., 2023)). Following the evaluation protocol established in (Yang et al., [2024a; |Yu et al., 2023}
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Table 2: Performance regarding accuracy on <30% Identity and 30-50% Identity test sets. The best
and second-best results are shown in bold and underlined, respectively.

<30% Identity 30-50% Identity

Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level4 AV%('

Xemmm)  (XXemm) (XXXm) (XXXX) (Kememm) (XXemm) (XXWX-) (XUXWXWX) ran
Random* 0.194 0.032 0.012 0.000 0.225 0.036 0.007 0.000 13.38
BLASTp 0.697 0.590 0.569 0.475 0.923 0.879 0.850 0.773 7.00
Foldseek 0.815 0.722 0.667 0.544 0.932 0.880 0.841 0.755 4.13
Folddisco 0.756 0.600 0.511 0.378 0.798 0.755 0.723 0.564  9.88
CLEAN 0.806 0.729 0.678 0.535 0.946 0.905 0.870 0.798  2.50
CLEAN-Concat 0.810 0.704 0.646 0.507 0.946 0.893 0.859 0.777  3.63
ESM-2 0.783 0.695 0.643 0.518 0.944 0.895 0.856 0.781 4.13
ESM-c 0.691 0.574 0.527 0.436 0.911 0.848 0.808 0.745 9.25
ProtT5 0.755 0.649 0.604 0.492 0.929 0.873 0.833 0.765 6.38
ProtBert 0.672 0.546 0.502 0.410 0.874 0.804 0.767 0.709 10.38
S-PLM 0.751 0.637 0.582 0.470 0.921 0.861 0.823 0.752  7.75
ChatGPT* 0.278 0.016 0.000 0.000 0.336 0.030 0.014 0.000 13.38
Pika* 0.616 0.461 0.377 0.206 0.738 0.600 0.502 0.377 12.00
PoinnCARE 0.900 0.827 0.779 0.648 0.961 0.926 0.887 0.822 1.00

Table 3: Performance regarding accuracy on Price and Promiscuous test sets. The best and second-best
results are shown in bold and underlined, respectively.

Previously Misclassidied (Price) Promiscuous Av
Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level4 . %(

Xemmm) (XXem) (XXXem)  (XxXXX) (Xemmm) (XXem)  (XXXes) o (XGXWXWX) ran
Random* 0.223 0.047 0.007 0.000 0.411 0.090 0.041 0.005 12.88
BLASTp 0.824 0.811 0.710 0.341 0.843 0.784 0.733 0.682  5.63
Foldseek 0.939 0.878 0.797 0.314 0.769 0.689 0.638 0.561  6.38
Folddisco 0.000 0.000 0.000 0.000 0.656 0.526 0.484 0318 12.25
CLEAN 0.858 0.797 0.696 0.280 0.873 0.816 0.768 0.691  5.00
CLEAN-Concat 0.905 0.872 0.770 0.348 0.874 0.813 0.776 0.659  3.13
ESM-2 0.918 0.849 0.762 0.362 0.861 0.780 0.724 0.629  4.00
ESM-c 0.791 0.726 0.666 0.343 0.818 0.730 0.672 0.579  8.13
ProtT5 0.895 0.827 0.761 0.380 0.843 0.754 0.694 0.596 538
ProtBert 0.678 0.554 0.515 0.200 0.814 0.707 0.636 0.549  10.00
S-PLM 0.872 0.789 0.719 0.238 0.848 0.761 0.709 0.606  6.50
ChatGPT* 0.365 0.169 0.088 0.000 0.196 0.055 0.036 0.002 13.00
Pika* 0.824 0.649 0.507 0.041 0.618 0.473 0.372 0.164 11.00
PoinnCARE 0.955 0.909 0.827 0.349 0.911 0.871 0.849 0.785 1.25

Yang et al., [2024c), we evaluate the classification performance at all four EC number levels. Level
1 evaluation solely examines the correctness of the first digit, while level 4 evaluation requires the
accurate prediction of all four digits in the EC number. Further implementation details are provided

in Appendix [C.3]

5.2 CLASSIFICATION RESULTS

Tables [2] and [3| present a comprehensive comparison between PoinnCARE and 12 state-of-the-art
methods on the CARE benchmark in terms of accuracy. Across all four evaluation levels and test
sets, PoinnCARE consistently achieves the highest accuracy in nearly all cases, demonstrating
robust and superior performance. Compared to the strongest baseline CLEAN, PoinnCARE achieves
substantial improvements of 10.4% and 2.4% in level 4 accuracy on <30% Identity and 30-50%
Identity test sets, respectively, demonstrating its exceptional capability in EC number prediction
under low sequence similarity conditions. On the challenging Price test set, PoinnCARE outperforms
the second-best method, with accuracy improvements of 1.7%, 3.1%, and 3.0% at levels 1 through
3, respectively. Furthermore, for enzymes with promiscuous functions, PoinnCARE surpasses the
second-best competitor CLEAN by a significant margin of 9.4% in level 4 accuracy. In terms of
precision, recall, and F score, PoinnCARE also demonstrates a similar outstanding performance,
with detailed results presented in Appendix The standard deviation values are in Appendix
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As illustrated in the left sub-figure of Fig[2] the classification space expands from 7 main classes at
level 1 to over 4,900 distinct EC numbers at level 4, indicating a notable increase in classification
complexity across levels. Nevertheless, PoinnCARE consistently outperforms existing methods across
all four levels, demonstrating remarkable robustness. Among the 12 baseline methods, Foldseek, S-
PLM, and CLEAN-Concat incorporate structural information of enzymes. Notably, Foldseek exhibits
promising performance on the <30% Identity test set, highlighting the effectiveness of structural
information, especially when sequence similarity is highly limited. We also report the performance of
valid Folddisco predictions. While BLASTp utilizes full sequence information containing hundreds
of residues, Folddisco achieves comparable performance by leveraging only several residues in local
active site motifs. This comparison demonstrates the crucial role of active sites in determining enzyme
function, particularly in cases of low sequence similarity.

5.3 CLASSIFICATION RESULTS IN A LIMITED-DIMENSIONAL SPACE

As shown in Theorem [T} compared with Euclidean space, hyperbolic space can achieve arbitrarily low
distortion even in low dimensions. Following this theoretical analysis, we evaluate the dimensional
efficiency of PoinnCARE against CLEAN, the strong baseline. bv svstematicallv reducing the
embedding dimension from 512 to 32, and the results o ) @ ) @ ) @ Qs
on the 30% Identity test set are presented in Figure[5} 1

As the embedding dimension decreases from 512

to 32, CLEAN’s classification accuracy at level 4 o

drops significantly from 0.535 to 0.354, suffering

an 18.1% performance degradation. In contrast, our o =~ ° e
PoinnCARE maintains robust performance across
different dimensions. Notably, even with a compact .
32-dimensional representation, PoinnCARE achieves

a strong accuracy of 0.597 at level 4. Appendix [D.3]
provides detailed results on the <30% and 30-50% Figure 5: Varylng dimensions.
Identity test sets.
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5.4 POINNCARE AS A GENERAL FRAMEWORK

ESM2(x---) ® ESM2(xx--) @ ESM2(xxx-) @ ESM2(xxxx) In this section, we explore the generalizability of
P ) L ra ) & B b PoinnCARE by treating it as a general framework
09 . that can be combined with different sequence en-
08 - — == coders. For ESM2 (Lin et al., 2022), ESMc (ESM
07 — ——--% ="=% Team,|2024), and ProtT5 (Heinzinger et al.,[2024), we
0o [ oot present the standalone performance, the performance

o8 ST a in hyperbolic space, and the performance when inte-

Z: C grated into our PoinnCARE framework in Figure [§]
' o e S Compared to the standalone performance, transform-
o o wa ing into hyperbolic space yields notable improve-

ments in level-4 accuracy: 10.6% for ESM2, 11.8%
for ProtT5, and 19.0% for ESMc. Integrating with
the full PoinnCARE framework further boosts performance, achieving up to an additional 8.2%
improvement in level-4 accuracy.

Figure 6: PoinnCARE as a framework.

5.5 ABLATION STUDY

In this section, we conduct ablation studies in a bottom-up man- Xemr O xXer @ XXX- @ XXXX.
ner. Starting from a naive MLP classifier, we progressively — '°

incorporate key components to demonstrate their individual
contributions, culminating in the full PoinnCARE framework.
Figure[/|shows how the accuracy evolves during this process

on the <30% Identity test set. First, transforming the MLP into ~ °° ./._.__*/—‘
hyperbolic space yields a substantial improvement of 9.3% in

°

level-4 accuracy. Subsequently, the independent incorporation © © © ¢
;i . SR WO 9 ES -
of the active site and the structural similarity graph each further o ST e

0.8

0.4

Figure 7: Ablation study.
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enhances performance. Finally, integrating modality alignment

to fuse both information notably boosts overall results, achiev-

ing a 2.6% improvement over the variant with only structural information in level-4 accuracy. A
case study illustrating the complementarity between the two modalities is presented in Appendix [E]
Furthermore, Appendix [D.4] provides a comprehensive parameter analysis, including investigations
into the inductive learning setting, the curvature of the underlying hyperbolic space, and the graph
diffusion settings.

6 CONCLUSION

In this paper, we present PoinnCARE, a hyperbolic multi-modal learning framework for enzyme
function prediction. By effectively incorporating both structural and active site information through
graph-based modeling and diffusion, PoinnCARE captures comprehensive enzyme characteristics
beyond sequence features. Motivated by the theoretical advantages when embedding trees, we adopt
hyperbolic geometry instead of traditional Euclidean space for enzyme representation learning. Then
we align and fuse information from these two complementary modalities, capturing comprehensive en-
zyme characteristics. Extensive experiments on the CARE benchmark demonstrate that PoinnCARE
consistently outperforms existing methods across various challenging scenarios.

REPRODUCIBILITY STATEMENT

To enhance reproducibility, we have made several clarifications and provided necessary information
throughout the paper. First, our dataset is constructed based on the publicly available benchmark, as
described in Section[5.1] Building upon the CARE benchmark, we further augmented the dataset with
additional multimodal information and developed two independent similarity graphs. The procedures
for constructing these graphs are detailed in Section[4.T|and Section[d.2] The architecture of our model
is described in detail in Sectiond.3] Additionally, comprehensive experimental implementation details,
including baseline evaluations, metrics, and hyperparameter settings, are provided in Section[5.1]and
Appendix [C.3] Finally, our code, including reproduction scripts and environment specifications, is
accessible in the following anonymous repository: https://anonymous.4open.science/
r/enzyme_classification—-860D/
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A  HYPERBOLIC GEOMETRY

A.1 POINCARE BALL MODEL

As we presented before, an n-dimension Poincaré ball model with a constant negative curvature
k(k < 0) can be denoted as (B?, g%), where B = {z € R?|||z||> < —1/k} is an open ball with
radius (—1/k)%/2, g% = 4/(1 — k||z||?)?I is the Riemannian metric tensor, and || - || denotes the
Euclidean norm.

The metric tensor in Euclidean space is ¥ = I. This implies that the metric tensor of Poincaré model
is conformal to that in Euclidean space, meaning that the angles defined in Poincaré ball model are
the same as those in Euclidean space. The conformal factor between them is A\, = 2/(1 — x||z||?),
and the Poncaré model’s metric tensor can be rearranged as g% = A\21.

The distance between u, v € BY is denoted as:
1 2klu — vl|?
v (14 wful?) (1 + lv]?)

The hyperbolic distance is determined by both the relative positions of points u and v (||u — v||? in
the numerator) and their absolute positions (||| and ||v||? in the denominator). Notably, for points
approaching the boundary of the Poincaré ball (where their norms approach —1/x), the hyperbolic
distance grows significantly faster than the corresponding Euclidean distance. This fast growth of
space near the boundary is particularly advantageous for embedding tree-like hierarchical structures.
Leaf nodes belonging to different subtrees can be placed far apart in this near-boundary space, while
maintaining their relative distances within the same subtree, thus accurately preserving the structure
of the hierarchy.

d(u,v) =

arcosh(1 —

).

A.2 GROMOV HYPERBOLICITY

Gromov’s d-hyperbolicity (Bridson and Haefliger, [2013} |Gromov] [1987; [Narayan and Sanieel 2011
is a notion from group theory, measuring how tree-like a graph is. Specifically, let (G, d¢) denote the
input graph with its associated distance function. Let a, b, ¢, d be four vertices of the input graph, and
define S, So, S5 as:

S| = dg(a, b) + dG(d, C), Sy = dg(a,c) + dG(b, d), S3 = dg(a,d) + dg(b, C).

Then we can calculate 6(a, b, ¢, d) as the difference between largest and the second largest largest S.,
denoted as M; and Mo, respectively:

5(&, b, C, d) = M1 — MQ.

We analyze the hyperbolic characteristics of graph G using the mean of sampled J(a, b, ¢, d) values,
where a, b, ¢, d are randomly selected nodes in G, to provide a statistical view of the graph’s geometric
properties. While the classical d-hyperbolicity is defined as the supremum of all §(a, b, ¢, d), we use
this mean-based metric to capture the average hyperbolic behavior of the topology.

For tree topologies, we have § = 0. A ¢ value that is close to zero indicates that the input structure of
the graph more closely resembles a tree-like hierarchical organization. The closer the J to zero, the
more tree-like (or more hyperbolic) the given topology is.

A.3 EMBEDDING A REGULAR TREE IN TWO-DIMENSIONAL SPACES

To demonstrate how Euclidean and hyperbolic spaces fundamentally differ in their capacity for
embedding hierarchical structures, we analyze a concrete example: embedding a regular tree in
two-dimensional spaces.

Consider a regular tree with branching factor b, where each node has exactly b child nodes. The total

number of nodes in an [-layer tree is Zi‘:o b, exhibiting exponential growth with respect to the depth
. When embedding such a tree into a geometric space, we can place the root node at the origin with
leaf nodes extending outward. In Euclidean space, however, the available area grows insufficiently: a
disc of radius [ has area 27l?, scaling only quadratically with [. In contrast, the area of a disc with
radius / in hyperbolic space (with curvature —1) is 27 (e! /2 + e~!/2 — 1), providing exponential
growth that matches the tree’s expansion rate.
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A.4 TANGENT SPACE RELATED OPERATIONS

In this section, we provide a brief introduction to the tangent-space related operations, starting from a
basic concept, Mobius addition (Ungar} 2007), that is utilized in deriving the closed-form expression
of other operations.

Mébius addition. For x,y € B}, the Mbius addition is defined as:

(1 = 26(z, y)> — klly[*)z + A + &]z])y
1= 26(z,y)2 + £2[lz[I*[ly]]?

T Y = ©))
Note that when x = 0, the Mdbius addition degenerates to the Euclidean addition. Based on
the Mobius addition, we can define the Mdbius subtraction z 6, y = = @, (—y). Next, we
present the detailed mathematical formulation of the exponential map, logarithmic map, and parallel
transport (Ganea et al.l 2018} |Yang et al.| 2023).

Exponential map. For x € B} and v € T3]}, v # 0, the exponential map exp,, : T, B — B} is
defined as: Mol

|| v
— ) =), (10)
2 &[]l

exp,, (v) = x ®, (tanh(r/|K]|

where A\, = 2/(1 — kl|z||?) is the conformal factor.

Logarithmic map. For =,y € B}, z # vy, the logarithmic map log,, : B} — 7,B} is defined as

— —Z @kay
tanh™ (v/]~l]| — 2 @, yl))

LR (11)
| —z @yl

2
log,.(y) = W

Parallel transport. Here we present the parallel transport PTy_,,, : ToBBjy — T3] that transports a
vector v € ToBB}} to a another tangent space 7, B}:

A
PTou(v) = log,(x 4 expo(v) = T7v. (12)

B SIMILARITY GRAPH CONSTRUCTION DETAILS

B.1 STRUCTURE MODALITY

For the structure modality, we employ Foldseek (Van Kempen et al., 2024) to compute pairwise
similarities. For enzymes x;, x; € D with their corresponding structures s, and s, the similarity
is measured by the normalized bit score:

_ bits(sz,, 52;)

simis(xi,xj) = fFoldseek(Sccivsa:j) - m
Ty Oy

where bits(s, , s,) is Foldseek’s default scoring metric measuring the structural alignment be-
tween s, and s;;. The normalization by self-alignment score ensures the similarity measure is
bounded between 0 and 1. The edge set £(*) includes an edge between enzymes x; and x; when
simis(z;, ;) > 6°, where 6° = 0.3.

B.2 ACTIVE SITE MODALITY

Fig. [§]illustrates the distribution of active site annotations from UniProt
across our enzyme dataset, where more than half of the enzymes have

20000

L s no annotated active site residues. Based on the available annotations,
E oo we construct the active site modality graph using Folddisco (Kim et al.,
S s 2025) to identify similar local motifs. For enzyme x; with sequence

T, . g, structure s,,, and active site annotation a,, Folddisco first identifies

whether a similar motif exists in enzyme x;. If a match is found, Folddisco
returns two metrics: RMSD (Root Mean Square Deviation), measuring the
Figure 8: Distribution. ~ geometric similarity, and IDF (Inverse Document Frequency), quantifying

# active site residues
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the rarity of the identified local structural patterns. We filter out matches with IDF < 0.7 to focus on
meaningful structural patterns, then define the similarity between enzymes using the RMSD score:

SZmZCL (:C% :Cj) - fFOlddisCO((Q$i bl S:Ci bl af)fj,)? (Qar] bl Szj )) = RMSD(IU I])
The edge set £(®) includes an edge between enzymes ; and x; when simi,(x;,x;) > d%, where
0% = 0.05.

B.3 GRAPH STATISTICS

Table[] presents the key statistics of both similarity graphs. The

6,965 common

relationships homophily ratio, defined as the proportion of edges connecting
enzymes with identical EC numbers (Zhu et al., 2020)), indi-
482,404 unigue 10,835 unique cates that the structure modality graph G(*) exhibits stronger

relationships from G relationships from G (@

homophily than the active site modality graph G(*). The node
set contains enzymes in both the training and test sets. Fol-
lowing the recommendation in the CARE benchmark, we use
50% sequence clustering of the training set to increase the set
diversity. We also analyze the distribution of structural and
active site similarity graphs, as shown in Fig.[9] which reveals
a modest number of shared relationships, indicating that each modality captures distinct and unique
information.

Figure 9: Edge distribution.

Table 4: Statistics of similarity graphs G(*) and G(%).

#nodes #edges Homophily Ratio

G 29531 489,369 0.808
G@ 29531 17,800 0.514

C ADDITIONAL EXPERIMENTAL SETTINGS

C.1 DATA STATISTICS

Table |5l shows the detailed statistics of the utilized benchmark CARE.

C.2 BASELINES

We include the following SOTA methods as baselines:

* BLASTDp (Stephenl [1990) is a fast sequence alignment algorithm that can search for database
sequences similar to a given query sequence.

* Foldseek (Van Kempen et al.| [2024)) is a fast structure alignment algorithm. By reducing 3D
structural information to 1D sequence information, Foldseek can search for database structures
similar to a given query structure.

* Folddisco (Kim et al.,|2025)) is a fast local motif detection algorithm that can search and identify
local structures from the database that are similar to a given motif.

Table 5: Dataset statistics.

#enzymes # unique EC numbers

Training set 184,529 4936
<30% Identity test set 432 333
30-50% Identity test set 560 389
Previously Misclassified (Price) test set 148 56
Promiscuous test set 209 384
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Table 6: Summarization on the modality used in baselines.

Modality
Sequence Structure Active site

BLASTp v
Similarity search Foldseek v
Folddisco v

CLEAN
CLEAN-Concat

ESM-2
ESM-c
PLM ProtT5
ProtBert
S-PLM

LLM Pika

Category Methods

Contrastive learning

AN ENEN

* CLEAN (Yu et al.}[2023) initializes enzyme embeddings with ESM-2 (Lin et al., 2022), and then
optimizes embeddings with a triplet margin loss, where the distance between pairs with the same
EC class is minimized and the distance between pairs with different EC classes is maximized.

* CLEAN-Concat (Yang et al., |2024c)) improves the CLEAN method by utilizing both sequence
information in ESM-2 embedding and the structure information encoded by ResNet (He et al.,
2015).

e ESM-2 (Lin et al.| 2022)) is a protein language model trained on sequences of natural proteins with
the aim of designing protein structures.

* ESM-c (ESM Team| |[2024)) scales up data and training compute, achieving performance improve-
ments over ESM-2.

* ProtT5 (Elnaggar et al.| 2020) trains TS (Raffel et al.,2020), an auto-encoder language model, on
UniRef and BFD data to capture biophysical features from protein sequences.

¢ ProtBert (Elnaggar et al.,2020) trains BERT (Devlin et al., 2019) on the UniRef and BFD data.

* S-PLM (Wang et al., [20244) is a 3D structure-aware protein language model (PLM) that enables
the sequence-based embedding to carry the structural information through multi-view contrastive
learning.

* GPT-40-mini (Hurst et al., 2024) is a large language model that demonstrates promising capabilities
in understanding and generating human-like text.

¢ Pika (Carrami and Sharifzadeh, [2024) finetunes LLMs on a curated, debiased dataset tailored
for protein question answering and a biochemically relevant benchmarking strategy. Protein
embeddings by ESM-2 (Lin et al.| 2022) are utilized to provide a comprehensive understanding of
the target protein in the given question.

For similarity search algorithms, we first establish a reference database comprising enzymes from the
training set. Test enzymes are then queried against this database, and the EC numbers of top-retrieved
enzymes serve as predictions. For PLM baselines, we freeze the pre-trained weights while training
a task-specific classification head based on the training set. The reported results for PLMs and
PoinnCARE are averaged over five independent runs. We implement all baselines using their official
code repositories as documented in Table[7} except for LLMs, which directly predict EC numbers
through prompting.

C.3 IMPLEMENTATION DETAILS

Accuracy is computed using the original code from CARE benchmark (Yang et al.,[2024a)), whereas
precision, recall, and F} scores are calculated using the scikit-learn library (Pedregosa et al., 2011)).
Our PoinnCARE is implemented in Python using the PyTorch framework (Paszke, 2019). The
model is optimized using the Adam optimizer (Kingma and Ba| [2014)) with a learning rate of 0.01.
The hidden dimension is set to 512, consistent with the baseline implementations. The hyperbolic
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Table 7: The links to the baseline repositories.

Category Method Github link

BLASTp https://github.com/bbuchfink/diamond
Similarity search Foldseek https://github.com/steineggerlab/foldseek

Folddisco https://github.com/steineggerlab/folddisco
Contrastive learnin CLEAN https://github.com/tttianhao/CLEAN/tree/main

€ CLEAN-Concat https://github.com/PNNL-Predictive-Phenomics/clean-contact

ESM-2 https://github.com/facebookresearch/esm

ESM-c https://github.com/evolutionaryscale/esm/tree/main
PLM ProtT5 https://github.com/agemagician/ProtTrans

ProtBert https://github.com/agemagician/ProtTrans

S-PLM https://github.com/duolinwang/S-PLM/tree/main

Table 8: Hyperparameters details.

ﬁs ﬂa 0 Wd
<30% Identity test set 0.8 02 0.001 0
30-50% Identity test set 0.8 0.2 0.001 0
Previously Misclassified (Price) testset 0.2 0.8 0.0001 1
Promiscuous test set 0.5 0.5 0.0001 0

encoders are implemented based on the Poincaré model with a fixed curvature of k = 1. The graph
diffusion operation over the active site similarity graph G(@) is instantiated as a two-layer personalized
PageRank algorithm with o = 0.8. The values of other hyperparameters on four test sets are listed in
Table 8] including:

* (s and 3,: trade-off parameters of modality fusion: H = 3 - H ) + B4 - H(4).
* ~: trade-off parameters in the compound loss: £ = L.;5 + vLatign-
* wq: weight of de-correlation terms in alignment loss [6]

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE REGARDING PRECISION, RECALL, AND F} SCORES

In this section, we provide additionally comprehensive evaluation results on other standard metrics:
precision scores in Tables[9]and [I0] recall scores in Tables [IT|and[I2] and F scores in Tables [I3]
and 141

The performance distributions across these metrics align with our previous accuracy analysis: our
PoinnCARE demonstrates superior performance under most cases and maintains the highest average
rank across all test sets, further validating the effectiveness of our hyperbolic multi-modal learning
framework. Notably, on the Promiscuous set, BLASTp achieves marginally higher precision than our
method, which can be attributed to the high sequence similarity between this test set and the training
data (with nearly 50% of enzymes sharing >90% sequence identity). Nevertheless, PoinnCARE still
surpasses BLASTp in both recall and F; metrics, achieving a substantial 4.4% improvement in level
4 F score on the Promiscuous set.

D.2 PERFORMANCE STABILITY

In this section, we provide the standard deviation results for the top three end-to-end prediction
methods, PoinnCARE, ESM-2, and ProtT5, on the <30% Identity test set regarding accuracy. For the
similarity search and contrastive learning baselines, the standard deviation is not applicable because
these methods are deterministic and do not exhibit variability across different runs. As shown in
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Table 9: Performance in terms of precision score on <30% Identity and 30-50% Identity test sets.
The best and second-best results are shown in bold and underlined, respectively.

<30% Identity 30-50% Identity

Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level 4 Av%{'

Xemmm)  (XXemm) (XXXm) (XXXX) (Kemmm) (XXemm) (XXGX0) (XXGXGX) ran
Random* 0.176 0.038 0.005 0.000 0.146 0.018 0.002 0.000 13.25
BLASTp 0.706 0.629 0.582 0.503 0.915 0.897 0.854 0.789 5.38
Foldseek 0.794 0.665 0.642 0.524 0.924 0.892 0.832 0.743 4.50
Folddisco 0.662 0.418 0.455 0.368 0.662 0.718 0.694 0.505 11.25
CLEAN 0.793 0.716 0.680 0.517 0.931 0.911 0.861 0.804 2.75
CLEAN-Concat 0.810 0.720 0.637 0.490 0.937 0.904 0.851 0.784 3.38
ESM-2 0.785 0.675 0.620 0.486 0.943 0.883 0.819 0.770 4.88
ESM-c 0.690 0.548 0.527 0.402 0.902 0.854 0.778 0.738 9.00
ProtT5 0.755 0.661 0.597 0.458 0.929 0.874 0.799 0.751 6.50
ProtBert 0.676 0.521 0.503 0.378 0.872 0.806 0.728 0.691  10.00
S-PLM 0.738 0.604 0.563 0.428 0.907 0.875 0.799 0.742 7.63
ChatGPT* 0.091 0.001 0.000 0.000 0.123 0.022 0.011 0.000 13.50
Pika* 0.587 0.483 0.357 0.196 0.714 0.588 0.498 0.354 1175
PoinnCARE 0.885 0.826 0.778 0.616 0.951 0.924 0.875 0.818 1.00

Table 10: Performance in terms of precision score on Price and Promiscuous test sets. The best and
second-best results are shown in bold and underlined, respectively.

Previously Misclassidied (Price) Promiscuous Av
Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level 4 %{

Xemmm) (XXmm) (XXXm) (XXXX) (Kemmm) (XXemm) (XXWX0) (XXUXX) ran
Random* 0.220 0.051 0.007 0.000 0.363 0.081 0.036 0.005 13.13
BLASTp 0.818 0.784 0.696 0.341 0.968 0.960 0.951 0.874 4.25
Foldseek 0.939 0.878 0.797 0.318 0.846 0.808 0.799 0.704 4.25
Folddisco 0.000 0.000 0.000 0.000 0.813 0.740 0.693 0.458 12.13
CLEAN 0.858 0.794 0.686 0.307 0.909 0.873 0.848 0.691 5.38
CLEAN-Concat 0.905 0.868 0.767 0.348 0.917 0.860 0.834 0.659 3.75
ESM-2 0.916 0.847 0.760 0.362 0.861 0.796 0.769 0.629 4.63
ESM-c 0.787 0.720 0.661 0.343 0.822 0.737 0.712 0.579 9.13
ProtT5 0.891 0.824 0.757 0.380 0.846 0.766 0.734 0.596 6.38
ProtBert 0.674 0.551 0.512 0.200 0.794 0.691 0.658 0.549 11.00
S-PLM 0.867 0.788 0.718 0.238 0.851 0.780 0.756 0.606 7.13
ChatGPT* 0.372 0.176 0.095 0.000 0.292 0.086 0.067 0.005 12.63
Pika* 0.824 0.649 0.507 0.041 0.890 0.794 0.742 0.354 9.00
PoinnCARE 0.953 0.906 0.824 0.349 0.943 0.925 0.917 0.785 1.75

Table 11: Performance in terms of recall score on <30% Identity and 30-50% Identity test sets. The
best and second-best results are shown in bold and underlined, respectively.

<30% Identity 30-50% Identity

Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level 4 AV%('

Xmmm)  (XXmm) (XXX) (XXXX) (Kememm) (XXemm) (XXX0) (XXUXUX) ran
Random* 0.151 0.024 0.014 0.000 0.152 0.022 0.007 0.000 13.13
BLASTp 0.660 0.545 0.546 0.478 0.931 0.877 0.841 0.779 5.88
Foldseek 0.783 0.660 0.634 0.533 0.939 0.875 0.823 0.740 3.88
Folddisco 0.611 0.466 0.473 0.346 0.648 0.670 0.676 0497 11.13
CLEAN 0.782 0.653 0.659 0.523 0.955 0.885 0.854 0.797 2.50
CLEAN-Concat 0.768 0.658 0.610 0.481 0.954 0.868 0.840 0.773 4.25
ESM-2 0.745 0.632 0.618 0.494 0.955 0.868 0.828 0.771 4.63
ESM-c 0.650 0.507 0.505 0.413 0.925 0.839 0.782 0.737 9.00
ProtT5 0.723 0.609 0.581 0.468 0.939 0.857 0.805 0.752 6.38
ProtBert 0.636 0.488 0.480 0.383 0.895 0.788 0.729 0.693  10.00
S-PLM 0.708 0.573 0.557 0.443 0.933 0.847 0.801 0.738 7.50
ChatGPT* 0.135 0.008 0.000 0.000 0.148 0.018 0.013 0.000 13.63
Pika* 0.581 0.402 0.355 0.187 0.763 0.562 0.477 0.350 11.88
PoinnCARE 0.885 0.787 0.761 0.632 0.969 0.909 0.870 0.825 1.00
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Table 12: Performance in terms of recall score on Price and Promiscuous test sets. The best and
second-best results are shown in bold and underlined, respectively.

Previously Misclassidied (Price) Promiscuous

Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level 4 Av%(.

Xemmm)  (XXemm) (XXXm) (XXXX) (Xemmm) (XXemm) (XXGX0) (XXGXGX) ran
Random* 0.223 0.054 0.007 0.000 0.405 0.085 0.037 0.005 12.88
BLASTp 0.818 0.784 0.696 0.341 0.834 0.780 0.730 0.682 6.00
Foldseek 0.939 0.878 0.797 0.314 0.762 0.675 0.632 0.561 6.38
Folddisco 0.000 0.000 0.000 0.000 0.641 0.510 0.464 0.318 12.25
CLEAN 0.858 0.797 0.689 0.307 0.868 0.810 0.763 0.691 4.88
CLEAN-Concat 0.905 0.872 0.770 0.348 0.868 0.805 0.770 0.659 3.13
ESM-2 0.918 0.849 0.762 0.362 0.857 0.771 0.716 0.629 4.00
ESM-c 0.791 0.726 0.666 0.343 0.813 0.722 0.665 0.579 8.13
ProtT5 0.895 0.827 0.761 0.380 0.837 0.745 0.686 0.596 5.38
ProtBert 0.678 0.554 0.515 0.200 0.810 0.699 0.630 0.549  10.00
S-PLM 0.872 0.789 0.719 0.238 0.844 0.754 0.702 0.606 6.38
ChatGPT* 0.372 0.176 0.095 0.000 0.192 0.052 0.033 0.002  13.00
Pika* 0.824 0.649 0.507 0.041 0.611 0.465 0.362 0.164 11.00
PoinnCARE 0.955 0.909 0.827 0.349 0.908 0.866 0.844 0.785 1.25

Table 13: Performance in terms of F} score on <30% Identity and 30-50% Identity test sets. The best
and second-best results are shown in bold and underlined, respectively.

<30% Identity 30-50% Identity Av
Level 1 Level2 Level3 Level4 Levell Level2 Level3 Level 4 %{

Xemmm) (XXmm) (XXXm) (XXXX) (Kemmm) (XXemm) (XXWX0) (XXUXX) ran
Random* 0.150 0.023 0.007 0.000 0.143 0.018 0.003 0.000 13.13
BLASTp 0.673 0.551 0.528 0.484 0.921 0.872 0.830 0.778 5.63
Foldseek 0.785 0.638 0.610 0.520 0.930 0.871 0.810 0.736 4.25
Folddisco 0.604 0.430 0.448 0.354 0.648 0.673 0.665 0498 11.13
CLEAN 0.783 0.661 0.641 0.511 0.942 0.885 0.842 0.795 2.63
CLEAN-Concat 0.782 0.662 0.592 0.480 0.944 0.873 0.830 0.772 3.63
ESM-2 0.752 0.629 0.589 0.483 0.948 0.865 0.809 0.766 4.88
ESM-c 0.659 0.500 0.479 0.398 0.912 0.834 0.762 0.732 9.00
ProtT5 0.730 0.604 0.555 0.455 0.932 0.854 0.785 0.745 6.25
ProtBert 0.642 0.478 0.456 0.373 0.880 0.779 0.703 0.685 10.00
S-PLM 0.714 0.559 0.525 0.427 0.917 0.846 0.783 0.735 7.75
ChatGPT* 0.085 0.002 0.000 0.000 0.100 0.013 0.008 0.000 13.63
Pika* 0.570 0.382 0.318 0.184 0.726 0.540 0.447 0.340 11.88
PoinnCARE 0.883 0.787 0.742 0.617 0.959 0.910 0.859 0.816 1.00

Table 14: Performance in terms of F; score on Price and Promiscuous test sets. The best and
second-best results are shown in bold and underlined, respectively.

Previously Misclassidied (Price) Promiscuous Av
Level 1 Level2 Level 3 Level4 Levell Level2 Level3 Level 4 gi(

Xmmm) (XXmm) (XXX) (XXXX) (Kemem) (XXemm) (XXX-) (XXUXUX) ran
Random* 0.221 0.052 0.007 0.000 0.364 0.080 0.036 0.005 13.00
BLASTp 0.818 0.784 0.696 0.341 0.879 0.840 0.804 0.746 4.75
Foldseek 0.939 0.878 0.797 0.315 0.783 0.717 0.686 0.609 5.50
Folddisco 0.000 0.000 0.000 0.000 0.688 0.582 0.541 0.366 12.38
CLEAN 0.858 0.795 0.687 0.307 0.871 0.823 0.789 0.691 5.25
CLEAN-Concat 0.905 0.869 0.768 0.348 0.877 0.817 0.789 0.659 3.63
ESM-2 0.917 0.847 0.761 0.362 0.839 0.766 0.730 0.629 4.13
ESM-c 0.788 0.722 0.663 0.343 0.798 0.713 0.676 0.579 8.50
ProtT5 0.892 0.825 0.759 0.380 0.820 0.736 0.698 0.596 5.63
ProtBert 0.676 0.552 0.513 0.200 0.778 0.679 0.634 0.549 10.25
S-PLM 0.869 0.788 0.719 0.238 0.826 0.749 0.716 0.606 6.63
ChatGPT* 0.372 0.176 0.095 0.000 0.224 0.063 0.044 0.002 12.88
Pika* 0.824 0.649 0.507 0.041 0.703 0.573 0.486 0.223  10.88
PoinnCARE 0.954 0.907 0.825 0.349 0.912 0.880 0.867 0.785 1.25

21



Under review as a conference paper at ICLR 2026

Table 15: The standard deviation values of the top three ene-to-end prediction methods.

PoinnCARE ESM2 ProtT5
Mean Std Mean Std Mean Std
X.-mam 0900 0.003 0.783 0.014 0.755 0.009
X.X.-.- 0.827 0.006 0.695 0.014 0.649 0.015

xxx.- 0779 0.010 0.643 0.013 0.604 0.012
x.x.xx. 0648 0.006 0.518 0.015 0492 0.018

Table 16: Performance under varying dimensions.

Test set <30% Identity 30-50% Identity
Dimension 512 256 128 64 32 512 256 128 64 32
Xx.--- 0.806 0.831 0817 0.752 0.694 0.946 0948 0.948 0.941 0.902

xXx-- 0729 0.738 0.731 0.664 0.560 0905 0911 0.909 0.889 0.836

CLEAN xxx- 0678 0701 0685 0593 048 0870 0.877 0870 0.848 0.788
xxxx 0535 0532 0546 0458 0354 0798 0804 0780 0755 0.673
x--- 0900 0895 0888 0880 0862 0961 0963 096 0959 0951
PomnCARE M- 0827 0824 0817 0812 0787 0926 0924 0925 0921 0.909

xxx.- 0779 0776 0.768 0.757 0.734 0.887 0.888 0.885 0.880 0.865
xx.x.x 0.648 0.641 0.633 0.622 0.597 0822 0.816 0.818 0.811 0.792

Table [T5] our PoinnCARE demonstrates superior and also stable performance with low standard
deviation values.

D.3 PERFORMANCE UNDER VARYING DIMENSIONS

The accuracy performance of PoinnCARE and the strongest baseline, CLEAN, on the <30% and
30-50% test sets under varying dimensions, ranging from 512 down to 32, is presented in Table[16]

D.4 PARAMETER ANALYSIS

Inductive vs. transductive settings. Our main experiments adhere to the inductive learning
paradigm (Hamilton et al.l [2017)), enforcing strict information constraints whereby only training
samples and their inter-relationships are accessible during the training phase. The learned model
subsequently generalizes to previously unseen test instances during inference. We further investigate
performance under the transductive setting (Kipf and Welling| [2016), wherein test samples are made
available during training while their labels remain concealed. The main distinction between these
two paradigms lies in the exploitation of train-test similarity relationships in the training stage.
Table[I7] presents accuracy comparisons across four test sets under both settings. Our PoinnCARE
demonstrates robust generalizability even under the strict inductive learning paradigm.

Table 17: PoinnCARE performance under inductive and transductive settings regarding accuracy.

<30% Identity 30-50% Identity

X.-.-.- X.X.-.- X.X.X.- X. XXX X.-.-.- X.X.-.- X.X.X.- X XXX

Inductive 0900 0.827 0.779 0.648 0961 0926 0.887  0.822
Transductive 0902 0.833 0.784  0.650 0961 0929 0.888  0.828

Previously Misclassidied (Price) Promiscuous
Xemmm o XXemm X XXem XXXX XKemmm o XXemm XX Xem XXGXGX

Inductive 0955 0909 0.827 0349 0911 0.871 0.849 0.785
Transductive 0.962 0917 0.829 0359 0915 0.876 0.852  0.790
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Table 18: Performance under different hyperbolic space cuvatures.

Leanablec ¢=-05 c¢c=-1 c¢=-5

X.mmom 0.896 0.894 0.902 0.900
X.X.m.m 0.826 0.832 0.833 0.825
X.X.X.- 0.781 0.780 0.784 0.777
X.X.X.X. 0.649 0.648 0.650 0.637

Table 19: Performance with variour graph diffusion settings.

PPR HKPR

a=08 a=05 a=02 t=2 t=5 t=8

<30% Identity  X.-.-.- 0.902 0.894 0.897 0.890 0.892 0.896
X.X.m. 0.833 0.834 0.837 0.832 0.833 0.836

X.X.X.- 0.784 0.791 0.788 0.789 0.787 0.789

X.X.X.X. 0.650 0.656 0.652 0.656 0.655 0.652

30-50 Identity — X.-.-.- 0.961 0.966 0964 0967 0.965 0.965
X.X.-.- 0.929 0.932 0929 0933 0931 0.929

X.X.X.- 0.888 0.891 0.889 0.890 0.889 0.889

X.X.X.X. 0.828 0.832 0.831 0.830 0.830 0.830

Curvature of the hyperbolic space. In our main experiments, we fix the curvature of the underlying
hyperbolic space to ¢ = —1. The larger the absolute value of curvature, the more strongly curved the
hyperbolic space becomes. The traditional Euclidean space corresponds to zero curvature (c = 0).
We investigate performance sensitivity to different curvature values by setting c to —0.5, —5, and a
learnable parameter optimized jointly with the model. Table[T8]presents accuracy results on the <30%
Identity test set. Our findings indicate that curvatures closer to zero yield comparable performance,
while ¢ = —5 creates a strongly curved space that leads to slightly decreased accuracy.

Graph diffusion. To address the sparsity of enzyme active site annotations, we apply graph diffusion
over the active site similarity graph G(*). Our main experiments employ a two-layer personal-
ized PageRank (Wang et al.| [2017) with o = 0.8 as the graph diffusion mechanism. We further
investigate alternative parameter configurations and diffusion instantiations, such as Heat Kernel
PageRank (Kloster and Gleich, [2014), to evaluate the impact of different diffusion strategies. As
presented in Table [I9] PoinnCARE maintains superior performance across various graph diffusion
settings, demonstrating the stability and effectiveness of our approach.

E CASE STUDY

In this section, we present a case, D4AAPQ6, from the
<30% Identity test set, to demonstrate how active site
information helps complement structural information.
D4APQ6 is from the <30% Identity test set, where
its sequence identity with all training samples is de-
liberately restricted to less than 30%. The structural DAAPQS from fet et 022229 from raining set
similarity with training samples returned by Foldseek

also falls below the pre-defined threshold, preventing — “Tocur crory wemme noner.  sorin wvoe sunoy never.
the formation of effective edges in the structural sim-
ilarity graph. When relying solely on the structural
graph, the enzyme D4APQ6 is misclassified as EC 3.2.1.67. However, Folddisco successfully identi-
fies that D4AAPQG6 shares a similar local motif with the active sites (Cys-454 and Cys-457) of 022229
from the training set, as illustrated in Figure This similarity results in the formation of homophilic
edges in the active site similarity graph G(*), which facilitates information aggregation between test

J
g
- )(\,\/\‘1\(\\’ C457
= A %
S by
casa [y /\/2?‘,\ o~
W

RMSD: 0.037,” nbit=0.160

Figure 10: A correctly classified case.
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Figure 11: Examples of heterophilic structure (left) and active site (right) similarities, with the
normalized bit score (nbit) and the motif RMSD provided.

samples and known training samples, thereby enabling accurate classification of D4APQG6. Conse-
quently, by integrating both structural and active site modalities, D4APQ6 is correctly classified as
EC 1.8.1.9 by PoinnCARE.

F LIMITATION AND FUTURE WORK

In order to identify potential directions for future work, we first explore the reasons behind enzyme
misclassification. Specifically, we collected enzymes from the <30% Identity test set that are
misclassified by PoinnCARE. In this test set, sequence identity scores with training samples are
strictly limited to below 30%. We further analyzed the structure and active site similarities associated
with these misclassified enzymes and derived the following observations. First, we found that
53.3% (81 out of 152) of these misclassified enzymes lack both structural and active site similarity.
Second, 45.3% (54 out of 152) of misclassified enzymes possess either structural similarity or active
site similarity. However, the majority of these edges are heterophilic, meaning they connect to
enzymes with different EC numbers. The homophily ratio among these edges is only 0.078, which
is significantly lower than the overall homophily ratios. The absence of effective information and
the presence of misleading, heterophilic relationships make the classification of these enzymes
particularly challenging.

We further examined those enzymes that are misclassified at the deepest EC level, and present the
examples where our model can be misled by heterophilic edges. Specifically, enzyme P73735, whose
true EC number is 1.6.5.12, was misclassified as EC 1.6.5.9, as three out of four edges in the structural
similarity graph connect to enzymes with EC 1.6.5.9 (Q8CPV5, Q8GXR9, and P00393), as shown in
the left part of Fig. [TT} Similarly, enzyme B2KZE7, with true EC number 3.4.13.23, was incorrectly
assigned EC 3.4.13.20. In this case, the only edge for B2KZE?7 in the active site similarity graph
links to Q8BUG?2 from the training set, which also has an EC number of 3.4.13.20. The right part of
Fig.[TT]demonstrates the identified similar local motifs. Based on the above observations, we believe
that improving both the quantity and quality of similarity relationships—especially through more
precise structural and active site information—will enhance performance in these difficult cases.

G BROADER IMPACTS

Our method contributes to more effective enzyme function prediction, which could facilitate the
understanding of enzyme roles in various biological processes. The improved prediction accuracy
has potential implications for both fundamental research in biotechnology and downstream industrial
applications.
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Per author guidelines, we disclose the use of Large Language Models for writing polish.
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