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Abstract

Network interference has attracted significant attention in the field of causal infer-
ence, encapsulating various sociological behaviors in which the treatment assigned
to one individual within a network may affect the outcomes of others, such as their
neighbors. A key challenge in this setting is that standard causal inference methods
often assume independent treatment effects among individuals, which may not hold
in networked environments. To estimate interference-aware causal effects, a tradi-
tional approach is to inherit the independent settings, where practitioners randomly
assign experimental participants to different groups and compare their outcomes.
Although effective in offline settings, this strategy becomes problematic in sequen-
tial experiments, where suboptimal decisions persist, leading to substantial regret.
To address this issue, we introduce a unified interference-aware framework for
online experimental design. Compared to existing studies, we extend the definition
of arm space using the statistical concept of exposure mapping, which allows for
a more flexible and context-aware representation of treatment effects in network
settings. Crucially, we establish a Pareto-optimal trade-off between estimation
accuracy and regret under the network concerning both time period and arm space,
which remains superior to baseline models even without network interference. Fur-
thermore, we propose an algorithmic implementation and discuss its generalization
in different learning settings and network topology.

1 Introduction

Network interference has attracted significant attention in the fields of causal inference [Leung,
2022a,b, 2023] and online statistical learning theory [Agarwal et al., 2024, Jia et al., 2024], due to
its capability to capture more complex real-world interactions. Unlike the Stable Unit Treatment
Value Assumption (SUTVA) assumption [Imbens, 2024], which posits that the treatment assignment
and outcomes are isolated to individuals, network interference acknowledges the influences that
treatments received by one individual may have on the outcomes of others within a network. This
model has found extensive application in economics [Arpino and Mattei, 2016, Munro et al., 2021]
and social sciences [Bandiera et al., 2009, Bond et al., 2012, Paluck et al., 2016, Imbens, 2024],
where understanding such interconnected dynamics is crucial.

To successfully identify causal effect under network interference, one straightforward way is to
conduct randomized experiments and use the difference in means type estimators to estimate causal
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effect based on the experimental data [Leung, 2022a,b, 2023, Gao and Ding, 2023]. Such design is
related to many applications [Ciotti et al., 2020, Cai et al., 2015]. For instance, Ciotti et al. [2020]
suggested the randomized experiment on a group of volunteering patients to investigate the therapeutic
average treatment effects of various drugs for influenza, e.g., COVID-19, where each individual’s
status of cure is influenced by the treatment assignment of their neighboring individuals. In practice,
an experiment may consist of multiple rounds, and researchers may wish to use the experimental
data from the previous rounds to enhance the social welfare of the experimental participants by
minimizing the regret of the future rounds [Mok et al., 2021]. This requires us to consider the trade-
off between the estimation accuracy of the causal effect and the cumulative regret of the experiment.
Apparently, such an online experiment represents a more complex design than offline. For example, if
experimental designers directly borrow the Bernoulli sampling in offline design [Leung, 2022a], they
would empirically result in a regret linear to round time due to the lack of optimal strategy exploration.
This motivates us to design a sequential policy that theoretically guarantees the optimal trade-off
between the two objectives under interference. Besides, such sequential policy is also relevant to
multi-armed bandits with network interference literature [Jia et al., 2024, Agarwal et al., 2024], which
focuses primarily on minimizing regret rather than improving estimation accuracy.

To reiterate, it is crucial to recognize that estimation efficiency and regret might not be optimized
simultaneously, necessitating a careful consideration of the trade-off between these two objectives.
Optimal estimation efficiency, such as the Bernoulli design above, generally requires that the sampling
probability of each arm remains strictly greater than zero, where the sub-optimal decision persists,
leading to substantial regret. Conversely, optimal algorithms, such as the Upper Confidence Bound
(UCB) [Auer et al., 2002] and its variants, employ probability-vanishing exploration strategies for
sub-optimal arms, potentially violating the overlap assumption in causal inference [D’Amour et al.,
2021]. This violation limits the estimator’s precision, as the overlap assumption is critical for ensuring
valid causal inferences by maintaining sufficient data across all arms Sekhon [2009].

Existing works that explore the estimation-regret trade-off often overlook the presence of network
interference, effectively assuming a scenario where only a single individual is considered throughout
the experiment. Perspectives include empirical algorithm design [Liang and Bojinov, 2023], theoreti-
cal bi-objective optimization [Simchi-Levi and Wang, 2024], and analyses of the interaction between
trade-offs and exogenous model assumptions [Duan et al., 2024]. In comparison, our work extends
such a trade-off in the context of network interference. Integrating the aforementioned perspectives
requires an elevated viewpoint to construct a challenging yet more universally applicable framework.
Specifically, we introduce a unified online network interference-based experimental design setting,
referred to as MAB-N. This setting extends the definition of arm space in the multi-armed bandit
(MAB) literature by employing the statistical concept of exposure mapping [Leung, 2022a, Aronow
and Samii, 2017]. We derive the theoretical optimal estimation-regret trade-off within it and provide
an algorithmic implementation capable of achieving this optimal balance. Our contributions are
summarized as follows: 1) We establish a unified setting for online experimental design with network
interference, referred to as MAB-N, which leverages the statistical concept of exposure mapping. 2) We
bridge the multi-objective minimax trade-off, achieving Pareto-optimality between treatment effect
estimation and regret efficiency under network interference. Additionally, we propose criteria for a
MAB algorithm to achieve Pareto-optimality. 3) We propose the UCB-TSN algorithm to achieve the
aforementioned Pareto trade-off by constructing an upper bound for both the Average treatment effect
(ATE) estimation error and regret, which is also validated by experiments. Our UCB-TSN algorithm
outperforms the elegant preliminary work in (i) the degenerated single-unit case without interference
and (ii) the extended adversarial bandit setting. The simulation results are provided in the Appendix
E to validate its effectiveness.

Our paper is organized as follows: Section 2 provides a brief literature review. Section 3 introduces
our general MAB-N setting and discusses Pareto-optimality to illustrate the estimation-regret trade-off.
Section 4 provides a general lower bound for the joint performance of regret and estimation, followed
by the criteria for any algorithm to achieve Pareto optimality. Section 5 proposes the Pareto-optimal
algorithmic implementation and includes a comparison with the baseline. Section 6 extends MAB-N to
adversarial cases. Finally, Section 7 concludes the paper with further discussion.
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2 Related Work

Our results primarily bridge two lines of research: (i) extending bandit modeling scenarios by
integrating interference settings from the statistical community [Agarwal et al., 2024, Jia et al.,
2024], and (ii) exploring the trade-off between estimation and regret in online learning without
network interference [Simchi-Levi and Wang, 2024, Duan et al., 2024], as detailed in Table 2 in
Appendix C. In the first line of research, the insightful work of Agarwal et al. [2024] creatively utilizes
Fourier analysis to reformulate interference-aware bandits as sparse linear stochastic bandits. This
innovative approach, however, focuses on interference among first-order neighbors and incorporates
a sparsity assumption to limit the number of neighbors each node can have. Complementing this,
the meticulous study by Jia et al. [2024] advances the understanding of bandits under interference
by forgoing such assumptions, though their methodology requires a switchback design. This design
insists that all nodes adopt the same arm synchronously, potentially overlooking scenarios where the
optimal arm varies across nodes or subgroups. Turning to the second line of research, we commend
Simchi-Levi and Wang [2024] for pioneering a rigorous trade-off between regret and estimation
error. Additionally, Duan et al. [2024] contribute significantly by proposing enhancements to this
Pareto-optimality, suggesting that both regret and estimation error might simultaneously reach their
optimal levels under the thoughtful assumption of covariate diversity. We invite readers to explore
further details on these related works in Appendix C.

3 Framework

Classic MAB under network interference. We introduce our setting following Agarwal et al.
[2024], which generalizes Auer et al. [2002], Simchi-Levi and Wang [2024] to the network inter-
ference. We focus on the stochastic bandit problem involving a K-armed set K = {k}K−1

k=0 , an
N -unit set U = {i}Ni=1, and the time horizon t ∈ [T ]. The relationship between units is encoded
in the adjacency matrix H := {hij}i,j∈U ∈ {0, 1}N×N 3, where hi,j = 1 signifies that units i
and j are neighbors, whereas hi,j = 0 otherwise. K,N,H are predefined. At each round, unit
interactions induce interference effects. The original super arm is represented by an N -dimension
vector At := (a1,t, ..., aN,t) ∈ KU . To bridge this formulation to causal inference, we start by
notating the so-called potential outcome in statistics [Rubin, 2005] (expected reward in the bandit
community [Auer et al., 2002]) as {Yi(At)}i∈U = {Yi(a1,t, a2,t, ...aN,t)}i∈U for unit i in time t4.
Without loss of generality, we set ∀i ∈ U , A ∈ KU , Yi(A) ∈ [0, 1]. In this sense, the single-unit
reward of unit i upon time t is given by ri,t(At) = Yi(At) + ηi,t, where ri,t(.) represents the reward
function of unit i ∈ U , and ηi,t is zero-mean i.i.d. 1-sub Gaussian noise for each unit. Finally, we
define instance ν as any legitimate choice of {D(Yi(A))}i∈U,A∈KU , where D(Yi(A)) denotes the
reward distribution of unit i if super arm A is pulled; and then denote E0 as the set of all feasible
ν. Our primary interest is designing a learning policy π := (π1, ..., πT ). In round t, the agent
observes the history Ht−1 =

{
A1, {ri,1(A1)}i∈U , ..., At−1, {ri,t−1(At−1)}i∈U

}
, where each term

is an N -dimensional vector. The policy πt is a probabilistic map from Ht−1 to the next action At.
We denote πt(A) = Pπ(At = A | Ht−1) indicating the probability that a super arm A is selected in
round t.

Additional notation. We define ei as the standard basis vector whose i-th element is 1 and all
other elements are 0. For any Q ∈ N+, we use the shorthand notation [Q] := {1, 2, . . . , Q}. We
define the operations: a∨ b := max{a, b}, a∧ b := min{a, b}. For sequences of positive numbers
{an}n∈N+ and {bn}n∈N+ , we adopt the following asymptotic notations: an = O(bn) if there exists
a constant C > 0 such that for all sufficiently large n, an ≤ Cbn.; an = Ω(bn) if there exists a
constant C > 0 such that for all sufficiently large n, an ≥ Cbn.; an = Θ(bn) if both an = O(bn)

and an = Ω(bn) hold. Finally, an = Õ(bn) if there exist constants C > 0 and k ∈ N+ ∪ {0} such
that an ≤ Cbn(log bn)

k.

3It does not mean we must get all information about H; instead, it depends on our detailed design.
4Unit i’s potential outcome is only related to the treatments of the total population via a fixed function, as is

standard in interference-based causality [Leung, 2022a,b, 2023]. This setting relaxes the traditional “Stable Unit
Treatment Value Assumption” (SUTVA) [Rubin, 1980], which assumes that one unit’s outcome is unaffected by
others’ treatments.
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3.1 Motivation: the hardness of classic MAB under interference

In this framework, referring to the concept of cumulative regret in traditional MAB problems [Latti-
more and Szepesvári, 2020b], the performance metric of policy π could be identified as

Rnaive(T, π) :=
T

N

∑
i∈U

Yi(A
∗)− Eπ

[
1

N

∑
t∈[T ]

∑
i∈U

ri,t(At)

]
, A∗ := arg max

A∈KU

1

N

∑
i∈U

Yi(A).

(1)
Foreseeably, a fundamental challenge in this setting is that the original super arm suffers from an
exponentially large action space (|KU | = KN ), making direct optimization infeasible. Given this
computational burden, we first establish a negative result to illustrate that directly pursuing the policy
π using the original super arm is computational impractical.

Proposition 1 Given a priori N,K,H. For any policy π, there exists a hard instance ν ∈ E0 such
that Rnaive

ν (T, π) = Ω
(

1√
N
(T ∧

√
KNT )

)
.

Proposition 1 reveals that the regret convergence rate is influenced by the relative size of the time
period compared to the arm space, resulting in a two-piece function. Specifically, when T ≤ KN

under interference, the regret Rnaive
ν (T, π) increases linearly with T . Conversely, otherwise, although

the rate degenerates to a square root relative to T , it is adversely affected by an exponentially large
parameter (

√
KN/N). This negative result, from a counter perspective, substantiates why Agarwal

et al. [2024] and Jia et al. [2024] respectively relaxed the model from the network topology and action
space: Agarwal et al. [2024] prudently considers interference only from first-order neighbors and
incorporates sparsity assumptions, while Jia et al. [2024] restrict the action space to the all one and
all zero N -dimensional vector. Without such considerations, obtaining meaningful regret bounds
would be unfeasible.

Further, it manifests more insights upon the triple of concepts (i) time, (ii) regret, and (iii) arm
space, than lower bound analysis in classic MAB [Lattimore and Szepesvári, 2020b]. It is because
researchers tend to preemptively judge that “time period ≫ arm numbers”, e.g., force N = 1 in the
single-unit setting and then T ≫ K holds by default. However, this oversimplification consideration
of arm space can be detrimental under the interference scenario. For instance, even if we just choose
K = 2, N = 30, any algorithm under interference-based MAB setting would potentially be cursed
by an impractical regret. In sum, these insights motivate us to develop a general statistical framework
to allow for a more reasonable reduction in the action space dimension without imposing excessive
assumptions on the network topology, which is the so-called MAB-N, illustrated as follows.

3.2 Setting: MAB-N

We introduce the concept of exposure mapping developed by Leung [2022a], Aronow and Samii
[2017]. We define the pre-specified function mapping from the original super arm space (KN ) to a
ds-cardinality discrete values (ds ≪ KN ) taking advantage of the network structure. For clarity, we
consider the discrete function case:

si := S(i, A,H), where S : U × KU × {0, 1}N×N → Us, |Us| = ds. (2)

Here Us is called as exposure arm set. We set S = {S(i, A,H)}i∈U ≡ (s1, . . . , sN ) as the exposure
super arm, and then we can decompose the policy πt(·) and define the exposure-based reward:

πt(A) := P(At = A | Ht−1) = P(At = A | St)P(St | Ht−1),

[Ỹi(St), r̃i,t(St)]
⊤ :=

∑
A∈KU

[Yi(A), ri,t(A)]
⊤P(At = A | St), (3)

The second line of Eq (3) generalizes the framework of Leung [2022a] by incorporating a broader
class of exposure mappings. Specifically, while the original formulation assumes a fixed exposure
structure, our approach allows for a more flexible characterization of treatment assignments under
network interference. Detailed derivations are deferred to Appendix F. To formalize in practice,
we could define P(At = A | S) as a predefined, time-invariant sampling rule, which the learner
specifies before the learning process begins. For example, in the case of uniform sampling (by
default), we have: Pπ(At = A | S) =

∑
A∈KU δ{A}/|A|, where δ(·) is an indicator function, and
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A := {A : {S(i, A,H)}i∈U = S} denotes the set of all assignments that result in the observed
exposure state St. This formulation ensures that if S does not match the set {S(i, A,H)}i∈U , the
probability of selecting At = A given S is zero. Conversely, if S corresponds to this set, then A
is chosen with strictly positive probability, i.e., P(At = A | S) > 0. Under this framework, the
observed outcome Ỹi(St) in Eq (3) depends solely on the network topology H and the exposure
state St, independent of the specific arm assignment At. This highlights a key property of exposure
mapping: it abstracts away individual-level treatment assignments while preserving the structural
dependencies induced by network interference. To further quantify decision-making performance
under network interference, we introduce the exposure reward r̃i,t(St), which serves as a proxy for
the expected reward in the exposure space5. Building on this exposure-based representation, we now
define the regret function, which quantifies the performance gap between the optimal and chosen
policies under exposure mapping.

Regret based on exposure mapping. According to the action space reduction in Eq (3), we provide
a more general and realistic regret compared to Jia et al. [2024], Simchi-Levi and Wang [2024],
Agarwal et al. [2024] (refer to Example 1-4). We define the clustering set C := {Cq}q∈[C], C = |C|
where ∀i ̸= j, i, j ∈ [C], Ci ∩ Cj = ∅,∪{Cq}q∈[C] = U . For brevity, we denote C−1(i) as the cluster
of node i. We define the exposure-based regret:

Rν(T, π) =
T

N

∑
i∈U

Ỹi(S
∗)− 1

N
Eπ

[ ∑
t∈[T ]

∑
i∈U

r̃i,t(St)

]
, S∗ = argmax

S∈UE

∑
i∈U

Ỹi(S), (4)

where exposure arm space UE := UC ∩ UO with UC :=
{
S : ∀i, j ∈ U , C−1(i) =

C−1(j) implies Sei = Sej
}

and UO :=
{
{S(i, A,H)}i∈U : A ∈ KU}. Here, UC denotes all

kinds of ideally cluster-wise switchback exposure super arm. For instance, if Us ∈ {0, 1}, N =
4, C1 = {1, 2}, C2 = {3, 4}, then UC = {(k1, k1, k2, k2) : k1, k2 ∈ {0, 1}}. Moreover, UO includes
all exposure arm sets compatible with the original arm set. It induces that |UE | ≤ |ds|C . Essentially,
during the exposure mapping process, we efficiently reduce the action space by condensing the
original arm information in a structured manner, thereby achieving a controlled enhancement of regret
efficiency. According to Proposition 1, this balance between sacrifice and gain emerges naturally and
inevitably. Such cluster-wise exposure mapping structures have appeared in multiple prior works.
We illustrate how our framework can surrogate previous settings as special cases. By assigning
specific parameter values, we can (i) flexibly transition between these cases (the following examples),
(ii) allow for an adaptive balance in different scenarios (Table 1 in Appendix C), and (iii) even
characterize new and more general real-world scenarios (experiments in Appendix E) where existing
methods would fundamentally fail.

Comparison with previous literature. For the comparison of regret, Example (i) Classic MAB
[Auer et al., 2002, Simchi-Levi and Wang, 2024] considered the case N = 1, i.e., single unit
without network, and S(1, A,H) := A, A ∈ K. Example (ii) Agarwal et al. [2024] chooses
S(i, A,H) := Aei and C = N (each unit is assigned to a separate cluster). Example (iii) On the
other hand, Jia et al. [2024] chooses S(i, A,H) := Aei and C = 1 (all units are in one cluster),
which denotes the global proportion of treatment in each time t. Additionally, the exposure mapping
and clustering technique could also be traced back to the offline setting. Example (iv) Suppose
∀j ∈ U ,

∑
j hij > 0. We can choose S(i, A,H) := 1{

∑
j∈U hijaj/

∑
j∈U hij ∈ [0, 12 )} inherited

from the literature of offline causality [Leung, 2022a, Gao and Ding, 2023]. They require approximate
neighborhood interference and their objective is to explore the influence of the treatment assignment
proportion among all neighborhoods of each unit, which is still under-explored in the online learning
scenario (we refer readers to experiments in Appendix E). Example (v) For a supplement, we point
out that the clustering strategy could also be traced back to the offline setting, which is also our
special case: Viviano et al. [2023], Zhang and Imai [2023] considered the clustering-based setting
S(i, A,H) := Aei, in which only considers the set of the exposure arm {0, 1}C . Specifically, Viviano
et al. [2023] focuses on the Bernoulli design in clusters, while Zhang and Imai [2023] further assumes
that interference occurs only within clusters rather than across clusters.

5Notably, the difference between Ỹi(St) and the empirically observed reward ri,t(At) arises from two
distinct noise components: (i) sampling noise, where practitioners approximate r̃i,t(St) using samples of
ri,t(At), and (ii) endogenous noise, inherited from the original variability ηi,t in the observed reward. A detailed
discussion on noise rescaling is provided in Appendix F.
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In these examples, they all satisfy UE = UC ∩ UO ̸= ∅. We provide more justification for it in the
next section and Appendix N.

3.3 Goal: estimation-regret trade-off

We introduce the trade-off between regret efficiency and statistical power of reward gap estimation.
ATE between exposure super arm Si and Sj is defined as the reward gap [Simchi-Levi and Wang,
2024]: ∆(i,j) := 1

N

∑
i′∈U

(
Ỹi′(Si) − Ỹi′(Sj)

)
,where Si, Sj ∈ UE . It is a generalized definition

compared with the most relevant literature [Jia et al., 2024, Agarwal et al., 2024, Simchi-Levi
and Wang, 2024] when considering ATE (specifying the exposure mapping function as in Table 1
of Appendix C). We use ∆̂(i,j) := {∆̂(i,j)

t }t≥1, ∆̂ := {∆̂(i,j)}Si,Sj∈UE to identify a sequence of
adaptive admissible estimates of ∆(i,j). The total design of an MAB experiment could be represented
by the vector {π, ∆̂}. Our final goal is to portray the mini-max trade-off:

min
{π,∆̂}

max
ν∈E0

(
Rν(T, π), eν(T, ∆̂)

)
, where eν(T, ∆̂) := max

Si,Sj∈UE
E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣]. (5)

Given any feasible ν, Rν(T, π) is associated with π, while eν(T, ∆̂) is associated with ∆̂. Due to
the complicated relation between π and ∆̂ w.r.t. the history Ht, t ∈ [T ], especially in the network
interference setting, this multi-objective optimization is quite challenging. For preparation, we define
what is the “best” pair of {π, ∆̂} via the following definition of front:

Definition 1 (Front and Pareto-dominate) For a given pair of {π, ∆̂}, we call a set of pairs (R, e)
as a front of {π, ∆̂}, denoted by F(π, ∆̂), if and only if (i) [Feasible instances exists] V0 :={
ν0 ∈ E0 :

(√
Rν0(T, π), eν0(T, ∆̂)

)
= (R, e)

}
̸= ∅, and (ii)[instances in V0 are the best] ∄ν ∈

E/V0, s.t.∃⊗ ∈ {K,T}, (R, e) ≼⊗
(√

Rν(T, π), eν(T, ∆̂)
)
. We claim {π, ∆̂} Pareto-dominate

another solution {π′, ∆̂′} if ∀(R, e) ∈ F(π, ∆̂), ∃(R′, e′) ∈ F(π′, ∆̂′), such that ∀⊗ ∈ {K,T},
either (i) R ≼⊗ R′, e ≺⊗ e′ or (ii) R ≺⊗ R′, e ≼⊗ e′6.

We formalize the definition of front in the symbol of order ≼⊗,≺⊗. e.g., (a, b) ≼⊗ (c, d), e ≺⊗
f, g ≼⊗ h denotes (a ≤ c, b ≤ d), e < f, g ≤ h when we only consider the parameter with respect to
⊗ ∈ {K,T} sufficiently large and omit any other parameter. Finally, Pareto-optimality is identified
according to the Pareto-dominance in Definition 1 as follows.

Definition 2 (Pareto-optimal and Pareto Frontier) A feasible pair (π∗, ∆̂∗) is claimed to be
Pareto-optimal when it is not Pareto-dominated by any other feasible solution. Pareto Frontier
P is denoted as the envelope of fronts of all Pareto-optimal solutions.

For example, according to Definition 2, {πi, ∆̂i}i∈[3] is not dominated by each other in Figure 1. For
more intuitive comprehension for practitioners, we provide the closed-form mathematical formulation
in the following section.

4 Pareto-optimality

In the above section, we introduce the motivation and establishment of our MAB-N and then construct
the mini-max trade-off problem along with the Pareto-optimality property. In this section, we
explore in detail the lower bound of such trade-off and the geometric structure of Pareto optimality.
According to the Definition 1-2, in the following text, our analysis upon optimality mainly focuses on
the individual arm space K and the time horizon T . Here K is included in the exposure arm space
UE . Other parameters, such as N , are seen as a pre-fixed constant. We first introduce the following
condition to restrict the fairly broad relationship between parameters.

Condition 1 Exposure mapping S and clusters C should satisfy 2 ≤ |UE | ≤ T .

6Intuitively speaking, if we denote the region formed by F(π, ∆̂),F(π′, ∆̂′), X-axis and Y-axis in the
first quadrant as Region(π, ∆̂), Region(π′, ∆̂′), respectively. Then {π, ∆̂} Pareto-dominate {π′, ∆̂′} means
Region(π, ∆̂) ⊆ Region(π′, ∆̂′).
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Pareto Frontier

Pareto-optimal

(a) Our general result under interference.

BaselineOur Pareto Frontier

Pareto-optimal

(b) The comparison with the baseline without inter-
ference.

Figure 1: Pareto-optimality. (a) We use three blue fronts (first quadrant) to show three different MAB
algorithms {πi, ∆̂i}i∈[3], e.g., the blue regions represent the regrets and estimation errors that can be
realistically achieved in all kinds of instances given {π1, ∆̂1}. MAB algorithm is Pareto-optimal if
and only if its blue front is tangent to the Pareto Frontier (red) (otherwise, it is intersecting with the
grey region). (b) The green line represents the baseline in Simchi-Levi and Wang [2024], which loses
the Pareo-optimality concerning arm space.

Condition 1 restricts to the case where T is relatively large with pre-specified non-empty UE , which
is inherently verifiable, adjustable and relevant. Regardless of any pre-fixed H, we could manually
design legitimate (2) and clusters to fit Condition 1. It is the weakest condition to date, without
additional restriction upon network topology, compared to the previous literature mentioned in the
above section. Additional justification on exposure mapping and feasibility of model conditions are
in Appendix D and Appendix N. Under such conditions, we establish a general lower bound when
simultaneously considering the regret and estimation error.

Theorem 1 Given any S and C that satisfies Condition 1. Given any online decision-making policy
π, the trade-off between the regret and the estimation exhibits

inf
∆̂T

max
ν∈E0

(√
Rν(T, π)eν(T, ∆̂)

)
= ΩK,T

(√
|UE |

)
. (6)

We use the subscript {K,T} to emphasize that the order just corresponds to these two parameters
and omit the subscript in the following text.

The challenge of the proof. The core idea involves constructing two carefully designed multi-
armed bandit instances, ν1 and ν2, such that any estimator ∆̂T faces challenges in simultaneously
achieving low regret and high estimation accuracy across both instances. This difficulty is divided
into three parts: (i) Regarding the goal, unlike the regret lower bound analysis in classic multi-armed
bandit problems [Lattimore and Szepesvári, 2020a], we employ statistical hypothesis testing to
bridge these two goals, rather than analyzing worst-case regret in isolation. (ii) Concerning instance
construction, compared to Simchi-Levi and Wang [2024], constructing two distinct instances is
challenging due to the interference affecting the entire system, making it difficult for an algorithm’s
regret or estimation behavior to differ significantly. (iii) From an information-theoretic perspective,
the correlated structure complicates the issue. The networked nature of exposure rewards necessitates
a refined divergence measure that accounts for shifts in probability mass across dependent actions,
such as when applying the Kullback-Leibler inequality.

The sketch of the proof. We defer the detailed proof in Appendix H. To tackle these challenges,
we carefully construct a pair of instances via slighting perturbing the reward of Y (At) compatible
with specific exposure arms: we let Yi(A) := fi(A) ∈ (ε0, 1− ε0), ε0 ∈ (0, 1), ri,t(A) ∈ {−1, 1}.
It means ri,t(A) = Rad( 1−fi(A)

2 , 1+fi(A)
2 ). Moreover, We establish :

r′i,t(A) :=

{
ri,t(A) ∀A satisfying P(At = A | S) = 0.

Rad( 1−fi(A)+α
2 , 1+fi(A)−α

2 ) ∀A satisfying P(At = A | S) > 0.
(7)
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with α > 0 sufficiently small, and S is specifically selected. Conducting the information-theoretic
argument, we prove

inf
∆̂T

max
ν∈E0

Pν
(

max
i,j∈UE

|∆̂(i,j)
T −∆(i,j)

ν | ≥ α

2

)
≥ 1

2

[
1−

√
1

2
q′Nα2

Rν1(T, π)

|UE |

]
.

Here q′ is a constant. Such inequality bridges the relationship between the statistical power and regret
efficiency under these two instances and thus induces the final lower bound in Theorem 1.

Theorem 1 states that for any given policy π, there always exists at least one hard MAB in-
stance ν, in which no matter what legitimate S, C, and estimator ∆̂T we choose, the lower
bound Ω(

√
|UE |) always holds. In other words, there are always challenging instance ν such

that eν(T, ∆̂) = ΩK,T (
√
|UE |/

√
Rν(T, π)). We take examples considering the worst case of ν:

according to the fact Rν(T, π) = O(T ), Theorem 1 states that the worst estimation error is at least
Ω((|UE |/T )

1
2 ) and could not be further decreased; stepping forwards, as we will show in Section 5

that our proposed MAB-N algorithm’s regret is upper bounded by O(
√
|UE |T ), then Theorem 1 ad-

ditionally states that the worst estimation error of our algorithm will be ideally at least (|UE |/T )
1
4

without need of further implementation. In sum, Theorem 1 serves as a free lunch, enabling practi-
tioners to perform interactive inference and prediction regarding the trade-off between the algorithm’s
regret efficiency and statistical power. A natural question is what is the relationship between the
lower bound and the Pareto-optimality? We provide the following closed-form for Pareto Frontier
following the lower bound in Theorem 1.

Theorem 2 Following the condition in Theorem 1, a feasible pair {π, ∆̂} is Pareto-optimal if the
pair satisfies maxν∈E0

(√
Rν(T, π)eν(T, ∆̂)

)
= Õ

(√
|UE |

)
. The Pareto Frontier is represented as

P =
{
(Rν(T, π), eν(T, ∆̂)) :

√
Rν(T, π)eν(T, ∆̂) = Õ(

√
|UE |)

}
.

Theorem 2 establishes the sufficiency condition for the Pareto-optimal property. We also analyze the
necessity conditions in Appendix I. For a visual representation, readers are referred to Figure 1, which
illustrates the Pareto-optimal pairs π, ∆̂ (blue region) and the Pareto Frontier (red line). Theorems 1
and 2 are applicable to any complex network topology H under mild conditions on exposure mapping
(Condition 1). These results not only generalize non-trivial trade-offs under network interference
but also enhance the degenerated results without interference. Specifically, when compared to the
setting of Simchi-Levi and Wang [2024], (i) we advance the Pareto-optimality trade-off concerning
arm space, and (ii) we eliminate their additional assumption on ATE, specifically that ∆̂i,j = Θ(1).
Furthermore, our reward rt is not constrained to the interval [−1, 1], allowing for unbounded values.

5 Algorithm

In Section 5, we introduce the Upper Confidence Bound algorithm with Two Stages under Network
interference (UCB-TSN). Our UCB-TSN operates in two phases: (i) uniformly explore the exposure
super arm space using a round-robin approach to estimate the ATE within T1 rounds. and (ii) applying
the UCB exploration strategy to minimize regret. The pseudo code is provided in the appendix due to
the space limitation. Initially, we demonstrate that phase (i) effectively reduces the estimation error,
as detailed below.

Theorem 3 (ATE estimation upper bound) Following the condition in Theorem 1. If T1 ≥ |UE |,
for any Si ̸= Sj ∈ UE , the ATE estimation error of UCB-TSN can be upper bounded as E

[
|∆̂(i,j)

T −
∆(i,j)|

]
= Õ

(√
|UE |/T1

)
.

Theorem 3 asserts that uniform exploration in phase (i) aids in estimating the ATE. This is intuitive,
as UCB-TSN explores the exposure action space using a round-robin approach. Provided that the
practitioner selects T1 = Ω(Tα) for α ∈ (0, 1), the ATE estimation is consistent. Following the
uniform exploration in phase (i), phase (ii) focuses on identifying the optimal arm, leading to the
convergence of the overall regret.

Theorem 4 (Regret upper bound) Following the condition in Theorem 1. With δ = 1/T 2 and
T1 ≥ |UE |, the regret of UCB-TSN can be upper bounded as R(T, π) = Õ

(√
|UE |T + T1

)
.
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Theorem 4 claims the regret could converge as o(T ), accommodating with well-selected T1, such
as T1 =

√
|UE |T . Theorem 4 is consistent with Proposition 1 when we omit phase (i), i.e., T1 = 0

and reserve phase (ii). By the combination of Theorem 3-4, we claim the Pareto-optimality as stated
in Section 4 in our UCB-TSN as follows.

Corollary 1 (Trade-off result) Following the condition in Theorem 1. Set T1 ≥
√
|UE |T , for all

ν ∈ E0, UCB-TSN can guarantee eν(T, ∆̂)
√

Rν(T, π) = Õ(
√

|UE |).

Corollary 1 states that under a stricter but still mild condition upon the uniform exploration process
T1 (since

√
|UE |T ≥ |UE | under Condition 1), UCB-TSN could achieve the Pareto-optimal property

according to Theorem 1.

Comparison with the baseline algorithm. To facilitate the fair comparison, we consider the
degenerated case as in Simchi-Levi and Wang [2024], where we choose N = 1, |UE | = K ≥
2 in our UCB-TSN. Here K corresponds to UE . We compare the regret in (i) and estimation in
(ii). (i) For the regret, they proposed their EXP3EG which guarantees the regret upper bound as
Rν(T, π) = Õ(K5 + T 1−α), where α ∈ [0, 1]7. Such result is build upon their assumption
1
N

∑
i′∈U

(
Ỹi′(S

∗) − Ỹi′(Si)
)
= Θ(1) for all Si ̸= S∗. In this single-agent setting with such

assumption, it should be pointed out that our regret upper bound in Theorem 4 could be naturally
strengthened to Õ

(
K + T1

)
(refer to our instance dependent regret upper bound in Lemma 1 in the

Appendix). Thus our regret upper bound is strictly stronger than theirs if we force T1 = O(T 1−α). (ii)
For the estimation error, they state that ATE could be upper bounded by eν(T, π) = Õ(K2T− 1−α

2 ).
Therefore our estimation error in Theorem 3, i.e., Õ(

√
|UE |/T1) = Õ(

√
K/T1) is strictly stronger

than theirs since it is legitimate to force T1 = T 1−α ∨ |UE |. Such strict improvement (i)-(ii) is
illustrated in Figure 1. It validates the statements under Theorem 2 that we achieve the Pareto
optimality with respect to time period T and additionally, the exposure super arm space |UE |.

6 Extension to adversarial setting

The adversarial setting. We cover Simchi-Levi and Wang [2024]’s adversarial setting when
considering trade-offs. We consider ri,t(At) = Yi(At) + ft + ηi,t, where ηi,t is i.i.d. zero means
noise. In addition to the standard setting in the preliminaries, there is an ft, a pre-specified function
w.r.t. period t, which is an adversarial noise. We suppose ri,t(A) ∈ [0, 1] for all i ∈ U , A ∈ KU

and t ∈ [T ]. It is also easy to verify that r̃i,t(S) ∈ [0, 1] for all t ∈ [T ], Si ∈ UE , i ∈ U and
E[r̃i,t(S)] = Ỹi(S) + ft. Motivated by the fact that the UCB algorithm discussed in the previous
section cannot be applied directly in this context, we provide the advanced EXP3-TSN algorithm for
substitution. The pseudo-code and details of the EXP3-TSN are provided in the Appendix.

Theorem 5 (Pareto-optimality trade-off in the adversarial setting) Following the condition in
Theorem 1, let T (t) ≡ (2|UE |+ 1)2 log(t|UE |2)/2(e− 2)|UE |, then (i)[ATE estimation] Sup-
pose T ≥ T (T ) and T1 ≥ T (T1). For any Si ̸= Sj , the ATE estimation error of the EXP3-TSN can
be upper bounded as in Theorem 3. (ii)[Regret] Stepping back, if we only suppose T ≥ T (T ),
then the regret of EXP3-TSN could be upper bounded as in Theorem 4. (iii)[Pareto-optimality]
Stepping forward, additionally set T1 ≥ T (T1) ∨

√
|UE |T . then EXP3-TSN can also guarantee the

Pareto-optimality trade-off, i.e., eν(T, ∆̂)
√
R(T, π) = Õ(

√
|UE |).

Theorem 5 states that under additional mild conditions, i.e., T ≥ T (T ) and T1 ≥ T (T1)
8, the

regret, ATE estimation error and the Pareto-Optimality trade-off could still keep their original form in
Theorem 3-4. In such an adversarial setting, our result can also outperforms Simchi-Levi and Wang
[2024] with the same argument as in Section 5, and the discussion concerning the order of the node
number N aligns analogously.

7In their paper, Rν(T, π) = O
(∑

A∈K/{A∗} K
4log(T ) + T 1−αlog(T )

)
= Õ(K5 + T 1−α). Here A∗

denotes the best arm.
8Since T (t) = O(|UE |log(|UE |t)), such conditions are natural to satisfy given that T is sufficiently large.
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7 Conclusion and future work

We establish a unified online learning framework under network interference via statistical exposure
mapping, balancing learning efficiency and statistical power through a Pareto-optimal trade-off
between regret and estimation error. We also introduce UCB-TSN, an algorithm achieving this balance
with provable guarantees. In the future, we aim to investigate the estimation-regret trade-off in fully
adversarial networked bandit, and extend it to more general and complex topics such as multi-agent
reinforcement learning, online learning in causal inference and bandit in large language models.
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A Technical Appendices and Supplementary Material

Appendix B summarizes key symbols in the main text for reference.

Appendix C provides a detailed literature review for better comprehension of the background.

Appendix D and N provide the justification for exposure mapping and model conditions.

Appendix E illustrates the experiments.

Appendix F further analyzes the structure of the exposure mapping and the re-scaled noise.

Appendix G provides the proof the Proposition 1.

Appendix H-I contain the proof of Theorem 1 and Theorem 2, respectively.

Appendix K presents the proofs of Theorem 3-1 in Section 5.

Appendix L provides an algorithm for Non-stochastic Settings.

Appendix M delivers the proof of Theorem 5. Finally, Appendix O includes the auxiliary lemmas.

B Notations

K Real arm set
K Number of arms
U Unit set
N Number of units
C Cluster set
C Number of clusters
ν Instance
E0 Set of the legitimate instance
π Learning policy
R(T, π) Cumulative regret of policy π
T Time horizon
T1 Length of the first exploration phase
Yi(·) Potential outcome of unit i
Ỹi(·) Exposure potential outcome of unit i
S(·) Exposure mapping
H Adjacency matrix
ai,t Action of unit i
si,t Exposure action of unit i
At Supper arm played t
St Exposure super arm played t
S∗ Optimal exposure super arm
ds Number of the exposure arm
Us Exposure arm set
UC Cluster-wise switchback exposure super arm set
UO Set of exposure supper arm that can be triggered by real supper arm
UE Legitimate exposure super arm set
r̃i,t(S) Reward feedback of unit i in round t if exposure super arm S is pulled
∆(i,j) ATE between Si and Sj
∆i ATE between S∗ and Si
∆̂

(i,j)
T Estimated ATE between Si and Sj

R̂t(S) Reward estimator of exposure super arm S

eν(T, ∆̂) Largest ATE estimation error
N t
S Observation number of exposure super arm S until round t

C Literature Review

In this section, we present a literature review on network interference within the causality and bandit
communities. Additionally, we discuss relevant variants of bandit problems. Finally, we provide a
brief summary of recent advancements in the estimation-regret trade-off within the context of MAB.

Offline causality estimation under network interference. In the current causality literature,
interference is a well-known concept. It is a violation of the conventional “SUTVA” setting, repre-
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Interference-based MAB Exposure mapping (S(i, A,H)) Action space (|UE |) Clusters (C) Estimation goal (∆(i,j))

Simchi-Levi and Wang [2024] A K 1 Y (Ai)− Y (Aj)
Jia et al. [2024] Aei K 1 1

N

∑
i′∈U (Yi′(i ∗ 1N )− Yi′(j ∗ 1N ))

Agarwal et al. [2024] Aei KN N 1
N

∑
i′∈U (Yi′(Ai)− Yi′(Aj))

MAB-N (Ours) General S(i, A,H) O
(
|ds|C

)
C 1

N

∑
i′∈U

(
Ỹi′(Si)− Ỹi′(Sj)

)
Table 1: MAB-N surrogates the previous bandit under interference as special cases. Here Ai, Aj ∈ KU ,
and Si, Sj ∈ UE . We omit the subscript in Simchi-Levi and Wang [2024] since it only considers sole
individual.

senting that one individual’s treatment would potentially affect another individual’s outcome, which
is relevant in practice. Current literature resort to clustering Zhang and Imai [2023], Viviano et al.
[2023] or exposure mapping Leung [2022a,b, 2023].

Bandit under network interference. Previous attempts are being made to consider the multi-armed
bandit problem upon network interference. Agarwal et al. [2024] conduct the Fourier analysis to
transform the traditional stochastic multi-armed bandit into a sparse linear bandit. However, in
order to reduce the exponential action space, they made a strong assumption of sparsity for network
structures, i.e., the number of neighbors of each node is manually upper limited. On the other hand, Jia
et al. [2024] analyzes the action space at the other extreme that considers an adversarial bandit setting
and thus forces each node to a simultaneous equal arm. It does not consider that the optimal arm
could differ for each node or subgroup. Moreover, Xu et al. [2024] further considers the contextual
setting under the specific linear structure between the potential outcome and the interference intensity.

Trade-off between inference (estimation) and regret. A significant body of research has been
dedicated to developing statistical methods for inference in MABs. Numerous studies focus on
deriving statistical tests or central limit theorems for MABs while ensuring that the bandit algorithm
remains largely unaltered [Hadad et al., 2021, Luedtke and Van Der Laan, 2016, Deshpande et al.,
2023, Zhang et al., 2020a, 2021, Han et al., 2022, Dimakopoulou et al., 2017, 2019, 2021], thereby
facilitating aggressive regret minimization. However, these works all rely on the SUTVA assumption
and fail to account for potential interference between units.

Previous literature upon adaptive inference in multi-armed bandits include Dimakopoulou et al.
[2021], Liang and Bojinov [2023] whereas without strict trade-off analysis. To our best knowledge,
the only state-of-the-art trade-off result is primarily constructed by Simchi-Levi and Wang [2024]
whereas also be cursed by the SUTVA assumption without a network connection. Moreover, Duan
et al. [2024] argue that such Pareto-optimality could be further improved, i.e., the regret and estimation
error could simultaneously achieve their optimality, if additionally assuming the “covariate diversity”
of each node without network interference. Stepping forward, when we shift our attention to the
network setting, Jia et al. [2024] is also intuitively aware of the potential “incompatibility” of decision-
making and statistical inference: specifically, Jia et al. [2024] emphasizes that the truncated HT
estimator directly into the policy learning system is no longer robust because policy learning gives
different propensity probabilities to different arms, making the propensity score more extreme.

Relevant bandit variants: multiple-play bandits, multi-agent bandits, combinatorial bandits,
and multi-tasking bandits. In bandit literature, the problem where a bandit algorithm plays
multiple arms in each time period has been a subject of study for a long time. Our work is related to
the multi-play bandit problem, where the algorithm selects multiple arms in each round and observes
their corresponding reward feedback [Anantharam et al., 1987, Uchiya et al., 2010, Komiyama et al.,
2015, 2017, Louëdec et al., 2015, Lagrée et al., 2016, Zhou and Tomlin, 2018, Besson and Kaufmann,
2018, Jia et al., 2023, Wang et al., 2023b]. Additionally, this is related to the multi-agent bandit
problem (including distributed and federated bandits), where multiple agents each pull an arm in
every time period. By exchanging observation histories through communication, these agents can
collaboratively accelerate the learning process. [Hillel et al., 2013, Szörényi et al., 2013, Wu et al.,
2016, Wang et al., 2019, Li and Wang, 2022, He et al., 2022, Wang et al., 2023b]. Furthermore,
our work is also connected to the combinatorial bandit problem, where the action set consists of a
subset of the vertices of a binary hypercube [Cesa-Bianchi and Lugosi, 2012, Chen et al., 2013, 2014,
Combes et al., 2015, Qin et al., 2014, Kveton et al., 2015, Li et al., 2016, Saha and Gopalan, 2019,
Wang et al., 2023a]. Some of these works account for interference between units, but they typically
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Estimation (offline) Regret (online) Trade-off between Estimation&Regret

Without interference SUTVA causality Auer et al. [2002]
Burtini et al. [2015]

Simchi-Levi and Wang [2024]
Duan et al. [2024]

With interference
Leung [2022a,b, 2023]

Hudgens and Halloran [2008]
Sävje [2024]

Agarwal et al. [2024]
Jia et al. [2024]
Xu et al. [2024]

Our paper

Table 2: Most related and representative works in causality estimation and regret analysis with
(without) network interference.

assume that the interference is either explicitly known to the learning algorithm, or the interference
follows a specific pattern. In contrast, our setting makes no such assumptions about the nature or
structure of interference between units. Our paper also closely related to the field of multitasking
bandits, where the learning algorithm is designed to achieve multiple objectives simultaneously
during the learning process. Yang et al. [2017] explore the regulation of the false discovery rate
while identifying the best arm. Yao et al. [2021] focus on ensuring the ability to detect whether
an intervention has an effect, while also leveraging contextual bandits to tailor consumer actions.
Jamieson et al. [2013], Cho et al. [2024] aim to minimize cumulative regret while identifying the best
arm with minimal sample complexity.

D Justification, discussion and future work

Justification on exposure mapping. It is a well-known concept in causality. From a statistical
perspective, it serves as a functional tool for mapping a high-dimensional action space to a low-
dimensional manifold; from a machine learning standpoint, it can be interpreted as a specialized
input representation layer. However, its utility has not been fully explored in interference-based
online learning settings like Bandits. Interference-based bandit referred to as exposure mapping
has recently been explored in Jia et al. [2024] to our knowledge. This additionally assumes the
intensity of interference decays with distance. Still, the low-dimensional vectors from their exposure
mapping are not involved in the computation of the target regret. In contrast, their regret, directly
uses the adversarial setting that “the original super arm must be a vector of the form a ∗ 1N , a ∈ K”,
which is limited in realistic compared to our settings, e.g. when the optimal arm takes place when
the individuals in the network are assigned to different treatments; to tackle this problem, although
Agarwal et al. [2024] can identify the best arm beyond a ∗ 1N , a ∈ K, their approach relies on
a stronger assumption: the rewards of each node are influenced solely by its limited first-order
neighbors, and the number of these neighbors is significantly smaller than N . In sum, our paper first
presents an integration of exposure mapping with bandit regret frameworks and demonstrates its
generality and applicability.

Justification on Condition 1. Condition 1 states that UE ≥ 2 is not empty. It is already weaker
than the previous interference-based bandit setting [Jia et al., 2024, Agarwal et al., 2024] whereas
it could be further relaxed. We consider the generalized metric to describe the distance between
UO and St ∈ UC: D(UO, St) := minS′∈UO ||S′ − St||1 via Manhattan distance. When the number
of clusters grows, the action space |UC | exponentially expands and their compatibility D(UC ,UO)
also decreases. These previous literature and Condition 1 all satisfy D(UC ,UO) = 0, and the former
literature together with additional network structure [Agrawal and Goyal, 2012] or interference
intensity [Jia et al., 2024] assumption as above. In Appendix N we claim that under the weakened
assumption D(UC ,UO) ≤ ϵ, where ϵ > 0 is a prior constant, our model remains capable of reasonable
modeling by appropriately adjusting the definition of exposure-based rewards accordingly. The
interplay between this assumption and other well-known assumptions, such as the neighbor sparsity
assumption Agarwal et al. [2024], the decaying interference assumption Jia et al. [2024], and the
approximate interference assumption Leung [2022a], is left as an avenue for future work.

Moreover, a natural next step is to deepen the theoretical and methodological connections between
networked bandit design [Wang et al., 2025] and causal inference. In particular, our analysis of
Pareto-optimal trade-offs provides a foundation for extending the notion of learnability in adaptive
designs toward formal identifiability in causal models. Future research may incorporate the theory of
partial identification [Zhang and Su, 2024, Zhang, 2024] to characterize the minimal information
required for interference-aware effect estimation, thereby turning online exploration into a process of
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progressively tightening causal bounds. Another promising direction is to embed robust and proxy-
based causal adjustments [Zhang et al., 2023] into the online decision loop, allowing adaptive designs
to remain valid in the presence of latent or noisy confounders. Extending our results to dynamic and
time-varying network structures would further connect to recent advances in dynamic Granger-type
causal analysis [Zhang et al., 2020b], while bridging to active treatment-effect estimation with limited
sampling budgets [Zhang et al., 2025]. Finally, structural and geometric constraints arising from
network topology or combinatorial design feasibility [Su et al., 2023, Zhang, 2022] suggest that future
online experiments could jointly optimize over both exploration–regret trade-offs and the attainable
identification sets of causal effects, forming a unified theory of inference-aware sequential design
under complex interference.
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Figure 2: Network structure.
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Figure 3: Experimental results.

E Experiments

Setup. We consider a network consisting of 101 units. Specifically, there is a central cluster
C1 = {1} that contains a single unit, which is connected to every unit in the five peripheral
clusters C2, . . . , C6 (namely, C2 = {2, . . . , 21}, C3 = {22, . . . , 41}, C4 = {42, . . . , 61}, C5 =
{62, . . . , 81}, and C6 = {82, . . . , 101}, with each outer cluster containing 20 units, as shown in Fig.
2). We set the action set as K = {0, 1}. Inspired by [Leung, 2022a, Gao and Ding, 2023], we define

the exposure mapping as S(i, A,H) = 1
{∑

j hijaj∑
j hij

∈
[
0, 12

)}
, which explores the influence of the

proportion of neighbors taking action 1 on each unit; this exposure mapping implies that ds = 2. For
every S ∈ UE , we define P(At = A | S) as uniform sampling. Moreover, for each selected super
arm corresponding to an exposure S, the reward is sampled from a Bernoulli distribution.

We evaluate the performance of UCB-TSN (T1 =
√
|UE |T ) against two baseline methods: Standard

(i.e., UCB-TSN with T1 = 0) and Uniform (i.e., UCB-TSN with T1 = T ). Each algorithm is executed
1000 times, and we report the averaged results.

Results. The simulation results are shown in Fig. 3(a) and Fig. 3(b). As seen in Fig. 3(a), both
the Standard method and UCB-TSN achieve the lowest cumulative regret, while Uniform exhibits
the highest cumulative regret. Fig. 3(b) presents a box plot of the maximum ATE estimation
error, eν(T, ∆̂), where the green line represents the median. The results indicate that UCB-TSN
and Uniform yield lower ATE estimation errors with compact interquartile ranges and few outliers,
whereas the Standard method shows a wider spread of errors and multiple outliers. This relatively
poorer performance of the Standard method in statistical estimation is due to its lower frequency of
exploring sub-optimal arms compared to Uniform and UCB-TSN. Our code is available at: https:
//github.com/ZHzhang01/NeurIPS2025-Online-ABtest.

F The Discussion of Exposure Mapping and Noise Rescaling

We denote the policy and exposure reward inheriting from Leung [2022a] as PLeung and Ỹi,Leung(·),
respectively. Considering Eq (3), we take the exposure mapping function’s output as ds cardinality
without loss of generality. We choose P(At = A | St) := PLeung(At = A | Stei) then ∀Stei =
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s, Ỹi,Leung(s) =
∑
A∈KU PLeung(At = A | s)Yi(A) =

∑
A∈KU P(At = A | St)Yi(A) = Ỹi(St).

Hence our exposure-based reward notation is generalized from Leung [2022a].

Moreover, we discuss the re-scaling of noise. When ∀S ∈ UE , |{A : {S(i, A,H)}i∈U = S}| = 1,
it naturally leads to the variance proxy σ2 = 1

N of the Sub-Gaussian variables
∑
i∈U r̃i,t(S)/N .

Hence, we mainly consider other cases. Notice that Eq (3) defines

[Ỹi(St), r̃i,t(St)]
⊤ :=

∑
A∈KU

[Yi(A), ri,t(A)]
⊤P(At = A | St),

namely, for each St, practitioners select random legitimate ri,t(At) to approximate r̃i,t(St), each
with probability P(At = A | St). The randomness includes the sub-Gaussian noise and sampling
noise. It follows that for all m ∈ R,

E

[
exp
(
m

N

∑
i∈U

(
r̃i,t(St)− Ỹi(St)

))
| At = A

]

=E

[
exp
(
m

N

∑
i∈U

(
ri,t(A)− Yi(A) + Yi(A)− Ỹi(St)

))]

=exp
(
m

N

∑
i∈U

(
Yi(A)− Ỹi(St)

))
E

[
exp
(
m

N

∑
i∈U

(
ri,t(A)− Yi(A)

))]

≤exp
(
m

N

∑
i∈U

(
Yi(A)− Ỹi(St)

))
exp
(m2

2N

)
.

(8)

Taking expectation upon both sides of Eq (8), it leads to

E

[
E

[
exp
(
m

N

∑
i∈U

(
r̃i,t(St)− Ỹi(St)

))
| At = A

]]
≤ exp

(m2

2N

)
E

[
exp
(
m

N

∑
i∈U

(
Yi(A)− Ỹi(St)

))]
.

(9)
According to the boundary 1

N

∑
i∈U (Yi(A)− Ỹi(St)) ∈ [−1, 1], it is natural to derive

E

[
exp
(
m

N

∑
i∈U

(
Yi(A)− Ỹi(St)

))]
≤ cosh(m/2) ≤ exp(m2/8).

Then Eq (9) achieves that

(9) ≤ exp
(m2

2N

)
exp(m2/8) = exp

(
m2

2

( 1

N
+

1

4

))
. (10)

Therefore the Sub-Gaussian variables
∑
i∈U r̃i,t(S)/N could achieve the variance proxy at most

1/N + 1/4. In the following part, we set the variance proxy as σ2 = 2 without loss of generality.

Comment on the order of node number N . For a supplement, in Theorem/Corollary 3-1, we
additionally consider the order of node number N . (i) In Theorem 3, we emphasize that if ∀S′ ∈
UE , |{A : {S(i, A,H)}i∈U = S′}| = 1, namely, there is only one legitimate A which is compatible
with each exposure arm S′, then Theorem 3 could be strengthened as E

[
|∆̂(i,j)

T − ∆(i,j)|
]
=

Õ
(√

|UE |/T1N
)
. Take the cluster-wise switchback experiment (S(i, A,H) = ai,t) for instance,

which is the generalized case of Jia et al. [2024]. In this case, since |UE | = KC ≪ N via manually
selecting ds, C, then we can claim the estimation is consistent when N → +∞9. Moreover, in the
setting of Agarwal et al. [2024], it is equivalent to the case C = N and thus the result in Theorem 3
is transformed as Õ

(√
KN/T1N

)
. It serves as a supplement of Proposition 1, claiming that not only

9Essentially, it is due to the re-scaling of noise. Under the one-to-one mapping in this paragraph, the
result is intuitive since

∑
i∈U r̃i,t(S)/N exhibits a re-scaled Sub-Gaussian noise with variance proxy 1/N . It

degenerates to the offline setting when N → +∞. Otherwise, we could only ensure
∑

i∈U r̃i,t(S)/N is a
Sub-Gaussian noise with variance proxy (1/N + 1/4). We defer the details to Appendix F.
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the regret but also the estimation error is hard to control without exposure mapping. (ii) Analogously,
in Theorem 4, the result is transformed to Rν(T, π) = Õ

(√
|UE |T/N + T1

)
under the above one-to-

one mapping. (iii) Finally, in Corollary 1, the trade-off is transferred to be Õ(
√
|UE |/N) when we

slightly modify the condition of T1 as T1 ≥
√
|UE |T/N ∨ |UE |. This result is also aligned with the

proof of Theorem 1.

G Proof of Proposition 1

Proof 1 (Proof of Proposition 1) We here define KU := {Ak}K
N

k=1 as the set of the super arm. Define
a MAB instance ν1 ∈ E0 that Yi(A) = ∆1{A = A1} for all i ∈ U and A ∈ KU , where ∆ ∈ [0, 1/2]
will be defined later. We suppose that the noise of all unit ηi,t follows a N (0, 1) Gaussian distribution,
and therefore the normalized noise of the super arm (1/N)

∑
i∈U ηi,t follows a N (0, 1/N) Gaussian

distribution. Hence, we have 1/N
∑
i∈U Yi(A1) = ∆ and 1/N

∑
i∈U Yi(Ak) = 0 for all k ∈

[KN ]/{1}. This implies in ν1, A1 = A∗ is the best arm with potential outcome ∆ and A ̸= A1 is
the sub-optimal arm with potential outcome 0. Due to

Rν1(T, π) =

KN∑
k=2

∆kEν1,π[N T
Ak

], (11)

where N T
Ak

:=
∑
t∈[T ] 1{At = Ak} denotes the number that supper arm Ak is trigger till T and ∆k

denotes the reward gap between super arm A1 and Ak (i.e., ∆k = (1/N)(
∑
i∈U Yi(A1)− Yi(Ak))).

Suppose the super arm Aj , j = argminj∈[KN ]/{1} Eν1,π[N T
Aj

], then

Eν1,π[N T
Aj

] ≤ T

KN − 1
. (12)

Besides, we define another N (0, 1) Gaussian MAB instance ν2 ∈ E0, where Y ′
i (A) = Yi(A) +

2∆1{A = Aj} for all i ∈ U and A ∈ KU . In ν2, Aj is the best arm with potential outcome 2∆.
Based on the decomposition of the regret Eq (11), we have

Rν1(T, π) ≥ Pν1,π
(
N T
A1

≤ T/2
)∆T

2
, and Rν2(T, π) ≥ Pν2,π

(
N T
A1

≥ T/2
)∆T

2
. (13)

Let Pν1,π and Pν2,π denote the probability measures on the canonical bandit model induced by the
T -round interaction between π and ν1, and π and ν2, respectively. Finally, we have

Rν1(T, π) +Rν2(T, π)

≥
(
Pν1,π

(
N T
A1

≥ T/2
)
+ Pν2,π

(
N T
A1

< T/2
))∆T

2

≥exp
(
− KL(Pν1,π,Pν2,π)

)∆T
4

≥exp
(
− Eν1,π[N T

Aj
]KL
(
N (0, 1/N),N (2∆, 1/N)

))∆T

4

≥exp
(
− Eν1,π[N T

Aj
]2N∆2

)
∆T

4

≥exp
(
− 2TN∆2

KN − 1

)
∆T

4
,

(14)

where KL denotes the KL divergence, the second inequality is owing to the Bretagnolle–Huber
inequality, the third inequality is due to the Lemma 15.1 in Lattimore and Szepesvári [2020b], the
fourth inequality is due to the definition of the noise distribution (i.e., N (0, 1/N)) of the super arm.

Finally, select ∆ =
√

KN−1
4TN ∧ 1

2 , based on the above result, we have (i = 1 or 2)

Rνi(T, π) ≥

{
e−1/2 T

8
√
N
, when T ≤ KN

e−1/2

4

√
(KN−1)T

N , when T ≥ KN .
(15)
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H Proof of Theorem 1

Proof 2 (Proof of Theorem 1) In this section, to simplify the notations in Section G, we abbreviate
Pν,π as Pν and Eν,π as Eν . We consider two kinds of instances for a fixed policy π and a fixed strategy
of constructing an ATE estimator ∆̂T . For the first one (i.e., ν1), we denote it as ri,t(A) = fi(A)+ηi,t.
Here we let Yi(A) := fi(A) ∈ [0, 1], ri,t(A) ∈ {−1, 1}. It means ri,t(A) = Rad( 1−fi(A)

2 , 1+fi(A)
2 ).

For each feasible cluster-wise exposure super arm S ∈ UE , recall that

Ỹi(S) =
∑
A∈KU

fi(A)P(At = A | S). (16)

The difference of expected reward of S, S′ could be represented by ∆1(S, S
′) := 1

N

∑
i∈U (Ỹi(S)−

Ỹi(S
′)), which is

∆1(S, S
′) =

1

N

∑
i∈U

∑
A∈KU

fi(A)
(
P(At = A | S)− P(At = A | S′)

)
. (17)

Without loss of generality, we select the feasible super arm to set ∆1(S, S
′) < 0. For brevity, we

omit the expression of the parentheses in the following text. Namely, we choose S′ as the best arm,
and S as a sub-optimal arm in UE . We choose S = argminSi∈UE ,Si ̸=S′ ∆1(Si, S

′)Eν1 [N T
Si
]. In

this process, we use ∆̂(i,j) := {∆̂(i,j)
t }t≥1, ∆̂ := {∆̂(i,j)}Si,Sj∈UE . We then construct a new MAB

instance ν2 and hope to get a different ATE value. We define it as r′i,t(A). We establish :

r′i,t(A) :=

{
ri,t(A) ∀A satisfying P(At = A | S) = 0.

Rad( 1−fi(A)+α
2 , 1+fi(A)−α

2 ) ∀A satisfying P(At = A | S) > 0.
(18)

Here α > 0 should be chosen sufficiently small. Remind that following Eq (17), the ATE between
super arm S, S′ is

∆2 : = ∆2,1 +∆2,2, where

∆2,1 :=
1

N

∑
i∈U

∑
A∈KU

(fi(A)− α)
(
P(At = A | S)− P(At = A | S′)

)
1{P(At = A | S) > 0},

∆2,2 :=
1

N

∑
i∈U

∑
A∈KU

fi(A)
(
P(At = A | S)− P(At = A | S′)

)
1{P(At = A | S) = 0}.

Hence, it implies that the ATEs in these two MAB instances, respectively, contain a difference

∆2 −∆1

=
1

N

∑
i∈U

∑
A∈KU

−α
(
P(At = A | S)− P(At = A | S′)

)
1{P(At = A | S) > 0}

=
1

N

∑
i∈U

∑
A∈KU

−αP(At = A | S)1{P(At = A | S) > 0}

=
1

N

∑
i∈U

∑
A∈KU

−αP(At = A | S) = −α < 0.

(19)

Naturally, our setting leads to 0 > ∆1 > ∆2. The second equality is because P(At = A | S)P(At =
A | S′) = 0 when S ̸= S′. In this sense, we consider a given estimate strategy, which is summarized
by {∆̂t′}t′∈[t]. We define a minimum test ψ(∆̂t) = argmini={1,2} |∆̂t −∆i|. Naturally, it implies
that ψ(∆̂t) ̸= i, i ∈ {1, 2} is a sufficient condition of |∆̂t −∆i| ≥ α

2 . As a consequence,

inf
∆̂t

max
ν∈E0

Pν
(
|∆̂t −∆ν | ≥

α

2

)
≥ inf

∆̂t

max
i∈{1,2}

Pνi
(
|∆̂t −∆i| ≥

α

2

)
≥ inf

∆̂t

max
i∈{1,2}

Pνi
(
ψ(∆̂t) ̸= i

)
≥ inf

ψ
max
i∈{1,2}

Pνi(ψ ̸= i).

(20)
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Here, the probability space is constructed on the exposure arm {S(i, A,H)}i∈U in each time period t,
and the observed exposure reward. We use the technique in min-max bound. Notice that the original
feasible region of MAB instances as E0; we get

RHS of (20) ≥1

2
inf
ψ
(Pν1(ψ = 2) + Pν2(ψ = 1))

=
1

2
(1− TV(Pν1 ,Pν2))

≥1

2

[
1−

√
1

2
KL(Pν1 ,Pν2)

]
.

(21)

We aim to provide an upper bound of KL divergence KL(Pν1 ,Pν2), inspired by the divergence
decomposition:

KL(Pν1 ,Pν2) = Eν2
[
log

(
dPν1
dPν2

)]
. (22)

For any instance ν ∈ {ν1, ν2}, the density function of the series is denoted as (we denote Xt as the
observed exposure reward {r̃i,t(S)}i∈U )

Pν (S1, X1, . . . , St, Xt) =

t∏
t′=1

πt (St | S1, X1, . . . , St′−1, Xt′−1)Pν,St (Xt) . (23)

Here Pν,S(·) denotes the reward density distribution conditioning on arm S in ν. Hence Eq (22) can
be transformed as

KL(Pν1 ,Pν2) =
∑
t′∈[t]

Eν1 log
(Pν1,St′ (Xt′)

Pν2,St′ (Xt′)

)
=
∑
t′∈[t]

Eν1
[
Eν1 log

(Pν1,St′ (Xt′)

Pν2,St′ (Xt′)

)
| St′

]
=
∑
t′∈[t]

Eν1
[
KL(Pν1,St′ (·),Pν2,St′ (·))

]
=Eν1 [N t

S ]KL(Pν1,S(·),Pν2,S(·)).

(24)

The last equation is derived from the construction in Eq (18). We aim to compute
KL(Pν1,S(·),Pν2,S(·)):

KL(Pν1,S(·),Pν2,S(·)) =
∫
X

Pν1,S(X)log

(
Pν1,S(X)

Pν2,S(X)

)
dX ≤ qNα2. (25)

Here q is a constant via second-order Taylor expansion.

As a consequence, it implies that

KL(Pν1 ,Pν2) ≤ qNα2Eν1 [N t
S ] ≤ qNα2Rν1(t, π)

|UE ||∆1|
. (26)

The last inequality is due to S := argminSi∈UE ,Si ̸=S′ ∆1(Si, S
′)Eν1 [N t

Si
]. Combined with

Eq (20), (21), (26):

inf
∆̂t

max
ν∈E0

Pν
(

max
i,j∈UE

|∆̂(i,j)
t −∆(i,j)

ν | ≥ α

2

)
≥ 1

2

[
1−

√
1

2
qNα2

Rν1(t, π)

|UE ||∆1|

]
. (27)

On this basis, we derive the final trade-off as follows:

inf
∆̂t

max
ν∈E0

Eν
(

max
i,j∈UE

|∆̂(i,j)
t −∆(i,j)

ν |
)

≥α
2
inf
∆̂t

max
ν∈E0

Pν
(

max
i,j∈UE

|∆̂(i,j)
t −∆(i,j)

ν | ≥ α

2

)

≥α
4

[
1− α

√
1

2
qN

Rν1(t, π)

|UE ||∆1|

]
.

(28)
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As a consequence, when t = T ,

inf
∆̂T

max
ν∈E0

Eν
(

max
i,j∈UE

|∆̂(i,j)
T −∆(i,j)

ν |
)√

Rν(T, π)

≥α
4

[
1−

√
1

2
qα2N

Rν1(T, π)

|UE ||∆1|

]√
Rν1(T, π).

(29)

Due to the sqrt-term spans [0,+∞] with α ∈ [0, 1], hence we could set qα2N
Rν1

(T,π)

|UE ||∆1| = 1
2 , then,

when T ≥ |UE |, it leads to

(29) ≥α
8

√
|UE ||∆1|
2Nqα2

= ΩT,N,K(

√
|UE |
N

) = ΩT,K(
√

|UE |). (30)

Theorem 2 also follows. Q.E.D.

I Proof of Theorem 2

Proof 3 (Proof of Theorem 2) We prove such sufficiency via contradiction. On the one hand,
suppose that the MAB pair {π, ∆̂} satisfies maxν∈E0

(√
Rν(T, π)eν(T, ∆̂)

)
= Õ(

√
|UE |). If

it is not Pareto-optimal, it is equivalent to claim that there is another pair {π′, ∆̂′} to dom-
inate {π, ∆̂}. In this sense, according to Theorem 1, there exists an instance ν′ such that√
Rν′(T, π′)eν′(T, ∆̂

′
) = Ω(

√
|UE |). Moreover, according to the definition of Pareto-dominance,

there further exists another instance ν′′, such that ∀⊗ ∈ {K,T},
√
|UE | ≺⊗

√
Rν′′(T, π)eν′′(T, ∆̂).

It is a contradiction.

Remark 1 On the other hand, we additionally consider the proof of necessity part, also by contradic-
tion. It is a rigorous refinement of Theorem.5 in Simchi-Levi and Wang [2024] with the extension
to the network interference case. We additionally condition that Rν(T, π) and eν(T, ∆̂) could both
be lower bounded by a polynomial form of T , i.e., the Pareto-dominance is only considered in the
region of Vlower := {ν : Rν(T, π) = Ω(Tα), eν(T, ∆̂) = Ω(

√
|UE |T β)}, where α > 0, β < 0 are

constants. Recalling our goal is to prove any Pareto-optimal pair {π, ∆̂} satisfies

max
ν∈Vlower

(√
Rν(T, π)eν(T, ∆̂)

)
= Õ

(√
|UE |

)
.

Suppose that for a Pareto-optimal pair, there exist hard instances ν∗ ∈ Vhard ⊆ Vfront∩Vlower ⊆ E0
such that (here Vfront := {ν : (

√
Rν(T, π), eν(T, ∆̂)) ∈ F(π, ∆̂)}):

∀ν∗ ∈ Vhard,
√

Rν∗(T, π)eν∗(T, ∆̂) > C
√
|UE |,when T is sufficiently large.

Here, C is a constant. According to our condition, it induces that Rν(T, π) ≻T C1T
2α1 ,

eν(T, ∆̂) ≻T C2|UE |1/2Tα2 , where C1, C2 ≥ 0, C1C2 = C,α1 + α2 > 0, α2 ≤ 0, α1 ∈ [0, 1/2]
since the regret is bounded as O(T ). It indicates that α2 ≥ −1/2. On this basis, we could
construct feasible pair {πalg, ∆̂alg} via selecting suitable T1 := T−2α2 in Algorithm 1 to satisfy
eν(T, ∆̂) ≃T eν(T, ∆̂)10. According to Theorem 1, it follows that the pair {πalg, ∆̂alg} would
Pareto-dominate the original {π, ∆̂}. Contradiction.

J Algorithm UCB-Two Stage-Network

The UCB-TSN algorithm operates in two phases: an initial round-robin exploration phase over all
exposure super arms to obtain empirical estimates of their rewards, followed by a UCB-based
selection phase where, at each time step, the super arm with the highest upper confidence bound is
chosen for sampling.

10Here ≃ is the combination of ≻ and ≺.
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Algorithm 1 UCB-Two Stage-Network (UCB-TSN)
Input: arm set A, time {T1, T}, unit number N , exposure super arm set UE , estimator set
{R̂0(S) = 0}S∈UE , {N S

0 = 0}S∈UE , {UCB0,S = 0}S∈UE , counter k = 1
for t = 1 : T1 do

Select exposure super arm St = Sk and implement Sampling(St)
Set k = k + 1 if k + 1 ≤ |UE |, else set k = 1

end for
For all Si, Sj ∈ UE , Si ̸= Sj , output ∆̂(i,j)

T = R̂T1
(Si)− R̂T1

(Sj)
for t = T1 + 1 : T do

Select St = argmaxS∈UE UCBt−1,S and implement Sampling(St)
end for
# Parameter 1: N t

S =
∑t
t′=1 1{St′ = S}

# Parameter 2: R̂t(S) =
(
R̂t−1(S)N t−1

S + 1{St = S} 1
N

∑
i∈U r̃i,t(S)

)
/N t

S

# Parameter 3: UCBt,S = R̂t(S) +
√

18 log(1/δ)/N t
S

Algorithm 2 Sampling
Input: St
Derive the set {Zl′}l′∈[l] such that {S(i, Zl′ ,H)}i∈U = St, ∀l′ ∈ [l]; sampleAt from set {Zl′}l∈[l′]

based on P(At = A | St), pull At, and observe reward {r̃i,t(St) = ri,t(At)}i∈U

K Proof of Theorems in Section 5

K.1 Proof of Theorem 3

Proof 4 (Proof of Theorem 3) Based on the design of the Algorithm 1, in the first phase, we have

N T1

S ≥ ⌊ T1

|UE |⌋ ≥ 1 for all S ∈ UE . Define the good event as ET1
:=

{
R̂T1

(S)− 1
N

∑
i∈U Ỹi(S) ≤√

4 log(T1|UE |)/N T1

S , ∀S ∈ UE

}
and its complement as EcT1

. Based on the previous discussion, the

sub-Gaussian proxy of any exposure super arm’s reward distribution is at most 2, then based on the
Hoffeding inequality (Lemma 4), we have for a exposure super arm S ∈ UE :

P

(
R̂t(S)−

1

N

∑
i∈U

Ỹi(S) > a

)
≤ e−

Nt
Sa2

4 , (31)

substituting t = T1 and a =

√
4 log(T1|UE |)

NT1
S

into Eq (31) and we can derive

P

(
R̂T1(S)−

1

N

∑
i∈U

Ỹi(S) >

√
4 log

(
T1|UE |

)
N T1

S

)
≤ 1

T1|UE |
. (32)

Utilize the union bound, there is

P
(
EcT1

)
≤
∑
S∈UE

P

({
R̂T1

(S)− 1

N

∑
i∈U

Ỹi(S) >

√
4 log

(
T1|UE |

)
N t
S

})

≤
∑
S∈UE

1

T1|UE |

≤ 1

T1
,

(33)
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and P(ET1) ≥ 1− 1
T1

. Therefore, for all Si, Sj ∈ UE , we have:

E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣]
≤P(ET1

)E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣ | ET1

]
+ P(EcT1

)E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣ | EcT1

]
≤P(ET1

)E

[∣∣∣∣R̂t(S)− 1

N

∑
i′∈U

Ỹi′(Si)

∣∣∣∣+ ∣∣∣∣R̂t(S)− 1

N

∑
i′∈U

Ỹi′(Sj)

∣∣∣∣ | ET1

]
+

1

T1

≤2

√√√√4 log
(
T1|UE |

)
⌊ T1

|UE |⌋
+

1

T1

=Õ

(√
|UE |
T1

)
,

(34)

where the second inequality is owing to the triangle inequality and ∆(i,j) and ∆̂
(i,j)
T ∈ [0, 1], and the

last inequality is owing to N T1

S ≥ ⌊ T1

|UE |⌋. Here we finish the proof of Theorem 3.

K.2 Proof of Theorem 4

In this section, we will first provide an instance-dependent regret upper bound (in the following
Lemma 1), and then, we will provide an instance-independent regret upper bound based on the
instance-dependent one.

Lemma 1 (Instance-dependent regret) Given any instance that satisfies Condition 1. The regret of
the UCB-TSN can be upper bounded as follows

R(T, π) = O

( ∑
Si ̸=S∗,∆i>0

log
(
T
)

∆i
+ T1

)
. (35)

Proof 5 (Proof of Lemma 1) Define N (t,T )
S =

∑T
t′=t 1{St′ = S}. Besides, define the good event

for Si as:

Ei =

{
1

N

∑
i′∈U

Ỹi′(S
∗) ≤ UCBt,S∗ , ∀t ∈ [T1 + 1, T ]

}
∩

{
R̂Ti,Si

+

√
18 log

(
1
δ

)
Ti

≤ 1

N

∑
i′∈U

Ỹi′(S
∗)

}
,

where Ti = 72 log(1/δ)
(∆i)2 and we utilize R̂Ti,Si to represent R̂t(Si) when N t

Si
= Ti. Based on Lemma

2, we have P(Ei) ≥ 1− (T − T1 + 1)δ and its complement has P(Eci ) ≤ (T − T1 + 1)δ.

We can decompose and bound the regret as

R(T, π) =
T

N

∑
i∈U

Ỹi(S
∗)− Eπ

[ ∑
t∈[T ]

∑
i∈U

r̃i,t(St)

]
,

≤
∑

Si ̸=S∗,∆i>0

∆iEπ
[
N (T1+1,T )
Si

]
︸ ︷︷ ︸

regret in second phase

+ ⌈ T1
UE

⌉
∑
Si ̸=S∗

∆i

︸ ︷︷ ︸
regret in first phase

=
∑

Si ̸=S∗,∆i>0

(
∆iEπ

[
N (T1+1,T )
Si

| Ei
]
+∆iEπ

[
N (T1+1,T )
Si

| Eci
])

+ ⌈ T1
UE

⌉
∑
Si ̸=S∗

∆i

≤
∑

Si ̸=S∗,∆i>0

∆iEπ
[
N (T1+1,T )
Si

| Ei
]
+ T 2δ + ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i.

(36)
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Besides, we want to show that under the event Ei, we have N (T1+1,T )
Si

≤ Ti. If T1 = T , then

this inequality trivially holds. If T1 < T , suppose N (T1+1,T )
Si

> Ti, then, there exists a time

ti ∈ [T1 + 1, T ], such that Sti = Si (Si is pulled in round ti), and N (ti,T )
Si

= Ti + 1. Based on the
exploration strategy in Algorithm 1, we have UCBti−1,Si

≥ UCBti−1,S∗ . However, based on the
definition of the event Ei, we have

UCBti−1,S∗ ≥ 1

N

∑
i′∈U

Ỹi′(S
∗)

> R̂Ti,Si +

√
18 log(1/δ)

Ti

= R̂ti−1(Si) +

√
18 log(1/δ)

N ti−1
Si

= UCBti−1,Si ,

which contradicts the previous assumption. Therefore, under the event Ei, we have N T
Sk

≤ Tk.
Substituting this result and δ = 1/T 2 into Eq (36), we have

R(T, π) ≤
∑

Si ̸=S∗,∆i>0

∆iEπ
[
N (T1+1,T )
Si

| Ei
]
+ T 2δ + ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i

≤
∑

Si ̸=S∗,∆i>0

∆iTi + 1 + ⌈ T1
UE

⌉
∑
Si ̸=S∗

∆i

≤
∑

Si ̸=S∗,∆i>0

144 log
(
T
)

∆i
+ 1 + ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i

=O

( ∑
Si ̸=S∗,∆i>0

log
(
T
)

∆i
+ ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i

)
.

(37)

Here we finish the proof of Lemma 1.

The proof of Lemma 1 relies on the following Lemma 2.

Lemma 2 We have P(Ei) ≥ 1− (T − T1 + 1)δ for all Si satisfies Si ̸= S∗ and ∆i > 0.

Proof 6 (Proof of Lemma 2) Define the complement of Ei as

Eci =

{
1

N

∑
i′∈U

Ỹi′(S
∗) > UCB∗

t , ∃t ∈ [T1 + 1, T ]

}
∪

{
R̂Ti,Si +

√
18 log

(
1
δ

)
Ti

>
1

N

∑
i′∈U

Ỹi′(S
∗)

}
.

Based on the union bound, we have

P
(
Eci
)
≤P

({
1

N

∑
i′∈U

Ỹi′(S
∗) ≥ UCBt,S∗ , ∃t ∈ [T1 + 1, T ]

})

+ P

({
R̂Ti,Si +

√
18 log

(
1
δ

)
Ti

≥ 1

N

∑
i′∈U

Ỹi′(S
∗)

})

≤
T∑

t=T1+1

P

({
1

N

∑
i′∈U

Ỹi′(S
∗) ≥ UCBt,S∗

})

+ P

({
R̂Ti,Si +

√
18 log

(
1
δ

)
Ti

≥ 1

N

∑
i′∈U

Ỹi′(S
∗)

})
.

(38)
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Based on Hoeffding’s inequality, we can bound the first term in Eq (38) by:
T∑

t=T1+1

P

({
1

N

∑
i′∈U

Ỹi′(S
∗) ≥ UCBt,S∗

})
≤ (T − T1)δ. (39)

Besides, we can bound the second term in Eq (38) by:

P

({
R̂Ti,Si +

√
18 log

(
1
δ

)
Ti

≥ 1

N

∑
i′∈U

Ỹi′(S
∗)

})

=P

({
R̂Ti,Si −

1

N

∑
i′∈U

Ỹi′(Si) ≥ ∆i −

√
18 log

(
1
δ

)
Ti

})

≤P

({
R̂Ti,Si

− 1

N

∑
i′∈U

Ỹi′(Si) ≥
1

2
∆i

})

≤exp
(
− Ti(∆i)2

16

)
≤δ,

(40)

where the first and last inequality is owing to the definition of Ti, and the second inequality is owing
to Hoeffding’s inequality. Based on Eq (39) and Eq (40), we have P(Ei) ≥ 1− (T − T1 + 1)δ for all
Si satisfies Si ̸= S∗ and ∆i > 0. Here we finish the proof of Lemma 2.

Now we can prove Theorem 4.

Proof 7 (Proof of Theorem 4) In the Proof of Lemma 1, we shows that for all Si ̸= S∗, ∆i > 0,
we have

Eπ
[
N (T1+1,T )
Si

]
≤ 144 log(T )

(∆i)
2 + 1. (41)

Define Λ = 6
√

|UE | log(T )
T , we can decompose the regret as

R(T, π) ≤
∑

Si ̸=S∗,∆i<Λ

∆iEπ
[
N (T1+1,T )
Si

]
+

∑
Si ̸=S∗,∆i≥Λ

∆iEπ
[
N (T1+1,T )
Si

]
+ ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i

≤ TΛ +
∑

Si ̸=S∗,∆i≥Λ

(
144 log(T )

∆i
+∆i

)
+ ⌈ T1

UE
⌉
∑
Si ̸=S∗

∆i,

≤ TΛ +
144|UE | log(T )

Λ
+

(
1 + ⌈ T1

UE
⌉
) ∑
Si ̸=S∗

∆i

≤ 30
√
|UE |T log(T ) +

(
1 + ⌈ T1

UE
⌉
) ∑
Si ̸=S∗

∆i

= Õ

(√
|UE |T +

T1
|UE |

∑
Si ̸=S∗

∆i

)
.

(42)

Here we finish the proof of Theorem 4.

L Algorithm for Adversarial Setting in Simchi-Levi and Wang [2024]

This section introduces our algorithm, EXP3-TSN, which operates in two distinct phases. In the first
phase, the algorithm uniformly samples exposure super arms from the set UE . Upon receiving reward
feedback, it leverages this data to build unbiased inverse probability weighting (IPW) estimators to
estimate the potential outcomes for the super arms. In the second phase, the algorithm applies the
EXP3 strategy to minimize regret effectively.
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Algorithm 3 EXP3-Two Stage Network (EXP3-TSN)

Input: arm set A, unit number N , exposure super arm set UE , estimator set {R̂0(S) = 0}S∈UC ,

active super exposure arm set A0 = UE , T1, α = (e− 2)(1 + 2|UE |)e2 log(2/δ), ϵ =
√

log(|UE |)
|UE |T

for t = 1 : T1 do
∀S ∈ UE : πt(S) =

1
|UE | and sample St based on πt

Sample St based on πt, implement Sampling(St)
end for
Output ∆̂(i,j) = 1

T1
R̂T1(Si)− 1

T1
R̂T1(Sj) for any Si, Sj ∈ UE , Si ̸= Sj

∀S ∈ UE : set R̂T1
(S) = 0

for t = T1 + 1 : T do
∀S ∈ UE : πt(S) =

exp(ϵR̂t−1(S))∑
S∈St

exp(ϵR̂t−1(S))

Sample St based on πt, implement Sampling(St)

∀ S ∈ UE : set R̂t(S) = R̂t−1(S) + 1− 1{St=S}
(
1− 1

N

∑
i∈U r̃i,t(S)

)
πt(S)

end for

Unbiased estimators for exposure mapping We construct unbiased inverse probability weighting
(IPW) estimators to estimate the potential outcome of each exposure super arm, i.e.,

R̂t(S) = R̂t−1(S) + 1−
1{St = S}

(
1− 1

N

∑
i∈U r̃i,t(S)

)
πt(S)

. (43)

It is easy to verify that for all S ∈ UE , for all t ∈ [1, T ]:

E

[
1−

1{St = S}
(
1− 1

N

∑
i∈U r̃i,t(S)

)
πt(S)

| Ht−1

]
=

1

N

∑
i∈U

Ỹi(S) + ft. (44)

Using our unbiased estimator R̂t(S), we can accurately estimate the ATE (which is demonstrated in
Theorem 6). We define the martingale sequence as

(
{M (i,j)

t′ }Si ̸=Sj

)t
t′=1

, where M (i,j)
t = R̂t(Si)−

R̂t(Sj)−∆(i,j), and it is easy to verify that E
[
M

(i,j)
t | Ht−1

]
= 0.

M Proof of Theorem 5

Theorem 5 could be equivalently separated as the following Theorem 6 and Theorem 7.

M.1 Proof of Theorem 6

Theorem 6 (Bounding the ATE estimation) Given any instance that satisfy T ≥ T (T ) and |UE | ≥
2. Set T ≥ T1 ≥ T (T1). For any Si ̸= Sj , the ATE estimation error of the EXP3-TS can be upper

bounded as follows: E
[
|∆̂(i,j)

T −∆(i,j)|
]
= Õ

(√
|UE |
T1

)
.

Proof 8 (Proof of Theorem 6) The proof of this lemma is based on the Bernstein Inequality. To
utilize it, we first need to upper bound |M (i,j)

t −M
(i,j)
t−1 |, ∀t ∈ [T1]. It can be expressed as:∣∣M (i,j)

t −M
(i,j)
t−1

∣∣
=

∣∣∣∣∣1{St = Si}
(
1− 1

N

∑
i′∈U r̃i′,t(Si)

)
πt(Si)

−
1{St = Sj}

(
1− 1

N

∑
i′∈U r̃i′,t(Sj)

)
πt(Sj)

−∆(j,i)

∣∣∣∣∣
≤ 1

πt(Si)
+

1

πt(Sj)
+ 1

=2|UE |+ 1,
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where the first inequality is owing to the r̃i,t(·) ∈ [0, 1] and ∆(j,i) ∈ [−1, 1], and the second equality
is due to the definition of πt(S) in the first phase. We also need to upper bound the variance of the
martingale in the first phase, denoted as V (i,j)

t , i.e.,

V
(i,j)
t

=
∑
t∈[T1]

E

[(
1{St = Si}

(
1− 1

N

∑
i′∈U r̃i′,t(Si)

)
πt(Si)

−
1{St = Sj}

(
1− 1

N

∑
i′∈U r̃i′,t(Sj)

)
πt(Sj)

−∆(i,j)

)2

| Ht−1

]

≤
∑
t∈[T1]

(
1

πt(Si)
+

1

πt(Sj)

)
≤2T1|UE |.

Based on this fact that T1 ≥ (2|UE |+1)2 log(2T1|UE |2)
2(e−2)|UE | , we have√
log(2T1|UE |2)
2(e− 2)|UE |T1

≤ 1

2|UE |+ 1
,

which implies we can utilize the Bernstein Inequality (Lemma 5). By the Bernstein inequality, we
have: ∀t ∈ [T1], with probability at least 1− 1

T1|UE |2 , there is∣∣M (i,j)
t

∣∣ ≤ 2
√

2(e− 2)|UE |T1 log(2T1|UE |2).

Dividing both sides by T1, based on the definition of the martingale M (i,j)
t and the ATE estimator

∆̂(i,j), we have: ∣∣∆(i,j) − ∆̂
(i,j)
T

∣∣ ≤ 2

√
4(e− 2)|UE | log

(
2T1|UE |

)
T1

. (45)

Define the good event as ET1
:=

{∣∣∆(i,j) − ∆̂
(i,j)
T

∣∣ ≤ 2
√

4(e−2)|UE | log(2T1|UE |)
T1

, ∀Si ̸= Sj

}
. By

applying the union bound, it is easy to know that

P
(
ET1

)
≥ 1− 1

T1
. (46)

Based on the above result, for any Si ̸= Sj , we have

E
[
|∆̂(i,j)

T −∆(i,j)|
]
≤P(ET1

)E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣ | ET1

]
+ P(EcT1

)E
[∣∣∆(i,j) − ∆̂

(i,j)
T

∣∣ | EcT1

]
≤2

√
4(e− 2)|UE | log

(
2T1|UE |

)
T1

+
1

T1

=Õ

(√
|UE |
T1

)
.

(47)

Here we finish the proof of Theorem 6.

Theorem 7 (Regret upper bound) Given any instance that satisfy T ≥ T (T ) and |UE | ≥ 2. The
regret of EXP3-TS can be upper bounded by R(T, π) = Õ

(√
|UE |T + T1

)
.

M.2 Proof of Theorem 7

Proof 9 (Proof of Theorem 7) Define R(t, j) = 1
N

∑
i′∈U

(
Ỹi′(Sj)

)
+ ft as the potential outcome

of exposure super arm Sj ∈ UE in round t. For all Si ∈ UE , we define

R(T, π, i) =
∑
t∈[T ]

R(t, i)− Eπ

[
1

N

∑
t∈[T ]

∑
i′∈U

r̃i′,t(St)

]
(48)
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as the expected "regret" if the exposure super arm Si is the best arm. If we can upper bound R(T, π, i)
for all Si ∈ UE , then we can upper bound R(T, π). Based on the unbiased property of the IPW
estimator, for all t ∈ {T1 + 1, . . . , T}, we have

Eπ
[
R̂T (S

′
i)
]
=

T∑
t=T1+1

R(t, i′) and

Eπ

[
1

N

∑
t∈[T ]

∑
i′∈U

r̃i′,t(St) | Ht−1

]
=
∑
t∈[T ]

∑
Si′∈UE

πt(Si′)R(t, i
′) =

∑
t∈[T ]

∑
Si′∈UE

πt(Si′)Eπ
[
R̂t(Si′)− R̂t−1(Si′) | Ht−1

]
.

(49)

Based on Eq (49), Eq (48) can be rewritten as

R(T, π, i) ≤ Eπ[R̂T (Si)]− Eπ

[
1

N

T∑
t=T1+1

∑
i′∈U

r̃i′,t(St)

]
+ T1

= Eπ[R̂T (Si)]− Eπ

[
Eπ

[
1

N

T∑
t=T1+1

∑
i′∈U

r̃i′,t(St) | Ht−1

]]
+ T1

= Eπ[R̂T (Si)]− Eπ

[
T∑

t=T1+1

∑
Si′∈UE

πt(Si′)Eπ
[(
R̂t(Si′)− R̂t−1(Si′)

)
| Ht−1

]]
+ T1

= Eπ

[
R̂T (Si)−

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)]
+ T1

= Eπ
[
R̂T (Si)− R̂T

]
+ T1,

(50)

where the first and third equality is owing to the tower rule, and the last equality is owing to we define
R̂T =

∑T
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)
.
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Define WT =
∑
Si′∈UE

exp
(
ϵR̂T (Si′)

)
, we have

WT =WT1

WT1+1

WT1

· · · WT

WT−1

= |UE |
T∏

t=T1+1

Wt

Wt−1

= |UE |
T∏

t=T1+1

( ∑
Si′∈UE

exp
(
ϵR̂t−1(Si′)

)
Wt−1

exp
(
ϵ
(
R̂t(Si′)− R̂t−1(Si′)

)))

= |UE |
T∏

t=T1+1

( ∑
Si′∈UE

πt(Si′)exp
(
ϵ
(
R̂t(Si′)− R̂t−1(Si′)

)))

≤ |UE |
T∏

t=T1+1

(
1 + ϵ

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)

+ ϵ2
∑

Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2)

≤ |UE |
T∏

t=T1+1

exp

(
ϵ
∑

Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)

+ ϵ2
∑

Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2)

= |UE |exp
(
ϵR̂T + ϵ2

T∑
t′=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2)
,

(51)

where the fourth equality is owing to the definition of πt(S), the first inequality is owing to exp(x) ≤
1+ x+ x2 for all x ≤ 1 and R̂t(S)− R̂t−1(S) ≤ 1 for all exposure super arm S, the last inequality
is owing to 1 + x ≤ exp(x) for all x, and the last equality is owing to the definition of R̂T . Based on
the last term of Eq (51), we can derive

R̂T (Si)− R̂T ≤ log(|UE |)
ϵ

+ ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2
, (52)

and R(T, π, i) can be bounded by

R(T, π, i) ≤ Eπ
[
R̂T (Si)− R̂T

]
+ T1

≤ log(|UE |)
ϵ

+ Eπ

[
ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2]
+ T1.

(53)
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We then try to bound Eπ
[
ϵ
∑T
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′) − R̂t−1(Si′)

)2]
, define R̃(t, j) =

1− 1
N

∑
i′∈U r̃i′,t(Sj), there is

Eπ

[
ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)
(
R̂t(Si′)− R̂t−1(Si′)

)2]

=Eπ

[
ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)

(
1− 1{St = Si′}R̃(t, i′)

πt(Si′)

)2
]

=Eπ

[
ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)

(
1− 2× 1{St = Si′}R̃(t, i′)

πt(Si′)
+

1{St = Si′}
(
R̃(t, i′)

)2
πt(Si′)2

)]

=Eπ

[
ϵ

T∑
t=T1+1

(
2

N

∑
i′∈U

r̃i′,t(St)− 1

)
+ Eπ

[
ϵ

T∑
t=T1+1

∑
Si′∈UE

πt(Si′)

(
1{St = Si′}

(
R̃t,i′

)2
πt(Si′)2

)
| Ht−1

]]

=Eπ

[
ϵ

T∑
t=T1+1

(
2

N

∑
i′∈U

r̃i′,t(St)− 1

)
+ ϵ

T∑
t=T1+1

∑
Si′∈UE

(
R̃t,i′

)2]
≤|UE |Tϵ.

Based on the definition of ϵ, we can finally bound R(T, π, i) by
√

|UE |T log(|UE |) + T1. Here we
finish the proof of Theorem 7.

N Optimization perspective

We provide more justification upon Condition 1. Notice that we search the best arm within UE =
UC ∩ UO, then a natural question arises that how to search elements of the intersection of these two
sets? What if it is an empty set? The optimization problem is formalized as follows:

C∑
i=1

ciei

s.t. ∀i ∈ U , ci ∈ Us,

∃A ∈ KU , dM

((
S(i, A,H)

)
i∈U ,

C∑
i=1

ciei
)
= 0.

(54)

Here ei is a binary indicator (ei)j =
{
1, if j ∈ Ci
0, if j /∈ Ci

. Moreover, dM denotes the Manhattan Distance.

Searching efficiency It would be an NP-hard problem with a high computation load without
additional assumptions. However, we argue that when we select many common exposure mapping
structures, the optimization problem may degenerate into a simpler case, such as an integer pro-
gramming problem. Consider the mapping S(i, A,H) := S(i, A,H) := 1{

∑
j∈U hijaj > 0}. Then

Eq (54) could be transformed to

C∑
i=1

1{
∑
j∈U

hijaj > 0}ei

s.t. ∃A ∈ KU ,∀p, q satisfying C−1(p) = C−1(q),

1
(∑
j∈U

hpjaj > 0
)
= 1

(∑
j∈U

hqjaj > 0
)
.

(55)

To solve it, we recommend practitioners adopt the off-the-shelf optimization techniques in Mixed-
Integer Nonlinear Programming Belotti et al. [2013].
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Practical issue Another question arises: what if Condition 1 fails, even if it is easy to satisfy via
adjusting legitimate exposure mapping function and clustering strategy? We formalize it as a relaxed
optimization problem and claim its impact on previous modeling is negligible under mild assumptions
upon interference effect:

∀{ci}i∈[C], min
A∈KU

dM

((
S(i, A,H)

)
i∈U ,

C∑
i=1

ciei
)
. (56)

Apparently, when Condition 1 is violated, then max{ci}i∈[C]
minA∈KU dM

((
S(i, A,H)

)
i∈U ,

∑C
i=1 ciei

)
>

0. We recommend practitioners to collect the most similar exposure arm compared to the form∑C
i=1 ciei as above to substitute the original intersection set UE . Specifically, ∀{ci}i∈[C], we collect

{S(i,A′,H)}i∈U , where A′ := argminA∈KU dM

((
S(i, A,H)

)
i∈U ,

∑C
i=1 ciei

)
as a substitute of

the original corresponding cluster-wise super exposure arm. We call the substituted exposure arm set
as U ′

E .

In this sense, we recommend practitioners to re-define the arm as (modified from (3))

[Ỹ ideal
i (St), r̃

ideal
i,t (St)]

⊤ :=
∑

A∈argminA′∈KU dM

(
(S(i,A′,H))i∈U ,St

)[Yi(A), ri,t(A)]⊤P(At = A | St).

(57)

We denote the newly collected similar arm of the ideally best arm S∗ as S∗
real, where the former is

constructed via cluster-wise exposure arm (might not be compatible with the original arm), and the
latter is defined as

S∗
real := S(i, A∗

real,H), where A∗
real ∈ arg min

A′∈KU
dM
(
(S(i, A′,H))i∈U , S

∗). (58)

It could be verified that under legitimate policy π (such as uniform sampling), it leads to Ỹ ideal
i (S∗) =

Ỹi(S
∗
real). Furthermore, the remaining part of the regret analysis could be replicated from the main

text, paying attention to the new selection set U ′
E .

O Auxiliary Lemmas

Lemma 3 (Sub-Gaussian) A random variableX is said to be sub-Gaussian if there exists a constant
σ > 0 such that for all m ∈ R, the moment generating function of X satisfies:

E
[
emX

]
≤ e

σ2m2

2 .

The smallest such σ2 is known as the sub-Gaussian proxy of X .

Lemma 4 (Hoeffding’s Inequality) Let X1, X2, · · · , Xn i.i.d. drawn from a σ-sub-Gaussian dis-
tribution, X = 1

n

∑n
i=1Xi and E[X] be the mean, then we have

P
(
X − E[X] ≥ a

)
≤ e−na

2/2σ2

and P
(
X − E[X] ≤ −a

)
≤ e−na

2/2σ2

.

Lemma 5 (Bernstein’s Inequality) Let X1, X2, . . . , Xn be a martingale difference sequence,
where each Xt satisfies |Xt| ≤ α almost surely for a non-decreasing deterministic sequence
α1, α2, . . . , αn. Define Mt :=

∑t
t′=1Xτ as the cumulative sum up to time t, forming

a martingale. Let V 1, V 2, . . . , V̄n be deterministic upper bounds on the variance Vt :=∑t
t′=1 E[X2

τ |X1, . . . , Xt′−1] of the martingale Mt, and suppose V t satisfies the condition√
ln
(
2
δ

)
(e− 2)V t

≤ 1

α
.

Then, with probability at least 1− δ for all t:

|Mt| ≤ 2

√
(e− 2)V t ln

2

δ
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See our statement in the introduction and abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We surrogate it in the Conclusion and the Algorithm section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the rigorous proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See our experiments in the Appendix; we also provide an anonymous link
containing our code to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See our experiments in the Appendix; we also provide an anonymous link
containing our code to ensure reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See our experiments in the Appendix, where we provide detailed descriptions
of the experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See our experiments in the Appendix; we provide experiments in details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments are safe and without these concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: It does not have these potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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