
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

READ-SQL: REASONING PATH DECOMPOSER FOR
TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-SQL is a longstanding task aimed at automatically converting natural lan-
guage questions into SQL queries for database retrieval. Despite impressive ad-
vancements, particularly with Large Language Models (LLMs), existing methods
still struggle with issues such as misinterpreted, omitted, or unwanted constraints.
To address these challenges, we propose READ-SQL, a novel framework em-
ploying a reasoning path dcomposer, READER, for text-to-SQL tasks. READER
decomposes SQLs into clauses, sub-SQLs, and reasoning paths, supporting data
preparation and confidence level determination in post-processing. READ-SQL
comprises two main models: a Generator and a Corrector, both trained via LoRA
for parameter efficiency. Based on READER’s decomposition, READ-SQL gen-
erates two types of augmented data using an LLM: question/SQL pairs and ques-
tion/reason pairs. The Generator is trained on both original and augmented data
to identify constraint changes and enhance reasoning. The Corrector is trained
on data from READER’s post-processing, improving self-correction by refining
high-confidence SQLs and addressing low-confidence elements. Extensive exper-
iments show that READ-SQL significantly outperforms leading baselines, with
READ-SQL-3B achieving 57.37% execution accuracy on BIRD’s Dev set, sur-
passing several 7B-parameter models and setting a new state-of-the-art with fewer
parameters. Additionally, READER and the Corrector show broad applicability
when integrated with LLMs or other base models.

1 INTRODUCTION

Text-to-SQL, a longstanding and pivotal task in natural language processing, focuses on transform-
ing natural language questions into executable SQLs 1, streamlining database interactions for non-
experts and significantly enhancing information retrieval efficiency (Deng et al., 2022; Katsogiannis-
Meimarakis & Koutrika, 2023; Liu et al., 2024a). Recent advances in task decomposition, intermedi-
ate representations, and post-processing strategies have significantly pushed the field forward (Wang
et al., 2023; Guo et al., 2019; Pourreza & Rafiei, 2023). Additionally, the integration of Large Lan-
guage Models (LLMs) has greatly enhanced natural language understanding and SQL generation
through broader context and carefully crafted prompts (Wang et al., 2023; Li et al., 2024a; Talaei
et al., 2024b). However, challenges remain in applying these advancements to real-world scenarios,
particularly when handling vague questions in large, complex database schemas (Zhang et al., 2024;
Liu et al., 2024b; Li et al., 2024a; Liu et al., 2024a).

Figure 1 illustrates three typical categories of errors in text-to-SQL, with JOIN-related errors clas-
sified accordingly. We attribute these errors to the inherent disparity between natural language and
the (semi-)structured syntax of SQL (Liu et al., 2024a):

– Misinterpreted constraints: These occur when the model incorrectly parses the natural language
query, resulting in erroneous SQL clause (Li et al., 2023c; Talaei et al., 2024b).

– Omitted constraints: These arise when the model overlooks essential elements, leading to in-
complete SQLs (Pourreza & Rafiei, 2023; Talaei et al., 2024b; Wang et al., 2023).

– Unwanted constraints: These involve superfluous clauses that exceed the requirements of the
natural language input (Talaei et al., 2024b; Wang et al., 2023).

1For brevity, we use “SQLs” to refer to SQL queries and “sub-SQLs” to refer to sub-SQL queries.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(A) Misinterpreted constraint (B) Omitted constraint (C) Unwanted constraint

What is the telephone number for the
school with the lowest average score
in reading in Fresno Unified ?

Name the top 3 drivers and the points
they scored in the 2017 Chinese
Grand Prix.

Was the patient a man or a women
whose ALT glutamic pylvic transami-
nase status got 9 on 1992-6-12?

SELECT T2.school,T2.phone FROM
satscore AS T1 INNER JOIN schools
AS T2 ON T1.cds = T2.CDSCode
WHERE T2.district = ’Fresno’ OR-
DER BY T1.avgscrread LIMIT 1

�

SELECT name, T2.point FROM races
AS T1 JOIN drives AS T2 ON T2.rId
= T1.rId WHERE name = ’Chinese
Grand Prix’ AND T1.year = 2017
ORDER BY T2.points LIMIT 3

�

SELECT patient.sex FROM patient
INNER JOIN laboratory ON pa-
tient.id = laboratory.id WHERE labo-
ratory.date = ’1992-06-12’ AND labo-
ratory.gpt = 9 AND patient.sex = ’M’

�

The where condition is incor-
rect, change it to: T2.district =

’Fresno Unified’

Select the three drivers with the
top scores, in descending order:
ORDER BY points DESC LIMIT 3

Patient can be a man or a woman,
without any gender restriction,
delete patient.sex = ’M’

Figure 1: Typical errors in text-to-SQL: Texts with yellow shading highlight constraints in the
questions, while red shading marks incorrect SQL clauses, and blue shading suggests constraint
modifications. The error proportions in CodeS (Li et al., 2024c) are detailed in Appendix A.5.2.

Existing methods address these challenges from two main perspectives: (1) SQL-like grammar
languages: These approaches reduce the complexity of SQL generation by employing intermediate
SQL-like grammar representations (Gan et al., 2021c; Yu et al., 2018a; Eyal et al., 2023). They
can be easily integrated with pre-trained models and large language models (LLMs) to produce
effective results (Gan et al., 2021c; Pourreza & Rafiei, 2023; Li et al., 2023a; Rai et al., 2023). (2)
Direct output of SQL structure: These methods generate the structure of SQL directly, leveraging
grammar information as an intermediate representation and focusing on the syntactic structure of
SQL (Gu et al., 2023b;a; Yu et al., 2018a). However, existing methods primarily focus on optimizing
SQL generation without improving the model’s understanding of the question or establishing strong
relationships between questions and SQL clauses. Additionally, since these methods do not employ
an end-to-end architecture, there is potential for information loss during the process (Liu et al.,
2024a).

To address these shortcomings, we propose READ-SQL, a novel framework comprising two key
models, a Generator and a Corrector, both supported by a reasoning path decomposer, READER,
specifically designed for text-to-SQL tasks. READER can parse an executable SQL into an Abstract
Syntax Tree (AST) (Wang et al., 1997) and decompose it into clauses, forming sub-SQLs and rea-
soning paths. READ-SQL generates two types of augmented data via an LLM: question/SQL pairs
and question/reason pairs, embedding information about subtle constraint changes and the connec-
tion between questions and reasoning paths. The Generator is trained on a multi-task fine-tuning
framework via LoRA (Hu et al., 2022), leveraging both the original and augmented data, and out-
puts either SQLs or reasons (describing sub-SQLs generation) based on prefix tokens. We aim to
enhance the model’s understanding of questions by incorporating additional question/SQL pairs and
bridging the gap between questions and SQL through question/reason pairs. For post-processing,
READ-SQL employs a Corrector, also trained via LoRA, on the Generator’s processed output SQLs,
which are categorized by READER into two types: high-confidence clauses for basic SQLs and low-
confidence clauses for retrieving similar items from table schema. The Corrector is trained on these
two types of data to produce the final SQLs, enabling precise self-correction.

We summarize our main contributions as follows:

• We propose READ-SQL, featuring two key models: a Generator and a Corrector. The Generator
captures subtle differences between questions and SQLs and enhances the connection between
questions and reasoning paths, improving constraint recognition and reasoning abilities. The Cor-
rector refines the Generator’s processed SQL outputs for precise self-correction.

• Both the Generator and Corrector rely on READER, which decomposes SQLs into clauses to
form sub-SQLs and reasoning paths. This aids in data generation for the Generator and refines its
outputs for the Corrector.

• Extensive experiments show that READ-SQL outperforms leading baselines, with READ-SQL-
3B achieving 57.37% execution accuracy on the BIRD Dev, surpassing several 7B-parameter
models. Additionally, READER and the Corrector are highly versatile, making them suitable
for integration with LLMs or other base models. Furthermore, READ-SQL significantly reduces
three common types of text-to-SQL errors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Generating accurate SQLs from natural language questions, commonly known as text-to-SQL, is an
active area of research within both the natural language processing and database communities (Liu
et al., 2024a; Zhang et al., 2024). In the following, we review two mainstreams of related work.

2.1 TEXT-TO-SQL WITH PRE-TRAINED LANGUAGE MODELS

The development of text-to-SQL has progressed from early neural network-based methods, such as
IRNet (Guo et al., 2019) and Bridge (Lin et al., 2020), to pre-trained model approaches like RESD-
SQL (Li et al., 2023a), and now to the current era of large models, including DIN-SQL (Pourreza
& Rafiei, 2023) and CHESS (Talaei et al., 2024b). Throughout this evolution, task decomposi-
tion has remained a fundamental process in text-to-SQL, typically involving schema linking, SQL
generation, and post-processing. Various methods have been proposed to handle these sub-tasks:

• Schema linking is a critical task that involves identifying the relevant database table columns and
values referenced in natural language questions. Pre-trained models (Li et al., 2023a; 2024c) and
LLMs have significantly improved schema linking performance (Talaei et al., 2024b; Pourreza
& Rafiei, 2023). Even when irrelevant table schema is present, LLMs can accurately generate
SQLs (Maamari et al., 2024). Schema linking can help models alleviate the gap between question
and SQL, but even state-of-the-art methods (Li et al., 2023a; 2024c) suffer from type three errors
in text-to-SQL. In this paper, we adopt the schema linking solution from (Li et al., 2024c) and
focus on the remaining two steps, exploring potential ways to better understand the intent behind
questions during SQL generation and post-correction.

• SQL generation involves the challenge of bridging the gap between the flexibility of natural
language and the rigid structure of SQLs. This discrepancy introduces two key issues: the model
may misinterpret the query’s intent or generate incorrectly formatted SQL. Current approaches of-
ten rely on LLMs or fine-tuned pre-trained models for end-to-end solutions (Talaei et al., 2024b;
Li et al., 2024c). Some researchers explore intermediate representations, like Natural SQL, to
simplify generation (Pourreza & Rafiei, 2023), but these methods have limited practical appli-
cation and do not significantly improve query comprehension. Other approaches, such as (Ye
et al., 2023), decompose the task into sub-problems, generating sub-SQLs before forming the
final SQLs. While they offer a multi-step reasoning solution, they carry the risk of error propa-
gation. The limitations of existing methods motivate us to design an end-to-end framework that
eliminates error propagation, enhancing multi-step reasoning and question comprehension.

• Post-processing aims to refine generated SQLs to improve both user satisfaction and query accu-
racy. DIN-SQL (Pourreza & Rafiei, 2023) introduces a self-correction module to detect potential
syntax errors, while MAC-SQL (Wang et al., 2023) employs a multi-agent approach for error
identification and correction. In contrast, C3 (Dong et al., 2023) and DAIL-SQL (Gao et al.,
2024) apply self-consistency by sampling multiple results and selecting the most consistent one.
CodeS (Li et al., 2024c) selects the first executable SQL as the result. Bertrand-DR (Kelkar et al.,
2020) reorders sampled results to align with user preferences. However, these methods often
struggle to accurately identify where corrections are needed or focus solely on selecting outputs
without modifying the SQL itself. These limitations motivate us to develop a more effective ap-
proach for identifying potential error clauses and systematically generating the final SQL.

2.2 TEXT-TO-SQL WITH ABSTRACT SYNTAX TREES

The Abstract Syntax Tree (AST) (Wang et al., 1997) is a tree-like data structure that represents
the syntactic structure of source code, enabling compilers and other tools to efficiently parse and
analyze code. Each node in an AST corresponds to a structural element, such as an operator or
function call. Decoders like RAT-SQL (Wang et al., 2020) and IRNet (Guo et al., 2019) utilize a
tree-structured approach to generate the AST for a SQL query and then convert it back into SQL,
ensuring grammatical accuracy. ASTormer (Cao et al., 2023) builds on this by utilzing an AST-aware
transformer decoder that incorporates grammatical structure with both absolute and relative position
encoding. These methods fall under the category of grammar-based decoders (Zhang et al., 2024).
However, with the rise of LLMs (Wei et al., 2022a), the focus has shifted away from this approach.
We revisit the use of ASTs to ensure their relevance in the LLM era. By decomposing ASTs, we can
derive sub-SQLs and trace their evolution, facilitating the model’s step-by-step reasoning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sub-SQLs

origin-SQLsub-SQL 3sub-SQL 2sub-SQL 1

resaoning paths

path 1 : sub-SQL 1 sub-SQL 2 origin-SQL

path 2: sub-SQL 1 sub-SQL 3 origin-SQL

LLMs

generate questions for

sub-SQLs

generate reasons for

reasoning paths

 Step 1: Augmented Data Preparation and Generation Step 1: Augmented Data Preparation and Generation

GeneratorGenerator

 SQL 1

 SQL 2

 SQL n

...
...

high-confidence

same constraints

low-confidence

different constraints
columns and values

CorrectorCorrector

final SQL

 (question, reason) pairs

training set

ques�on SQL

database prompt

schema

linking

Step 2 : Generator Data ConstructionStep 2 : Generator Data Construction

reason

[REASON]

database prompt

question

Input:

Output:Output: SQL

database prompt

question

Input: [SQL]

Step 3 : Corrector for Self-CorrectionStep 3 : Corrector for Self-Correction

augmented (question, SQL)
pairs

(question, reason) pairs

[SQL] questiondatabase prompt

augmented (question, SQL) pairs

constraints

similar items basic SQL

question

Figure 2: The three main steps in READ-SQL: READER serves as the core module, with Genera-
tor and Corrector as two models to generate SQLs. Further details are provided in the main text.

3 METHODOLOGY

Problem Definition Formally, given a natural language question Q and a database D with schema
S, the text-to-SQL task aims to translate Q into a SQL query y that can be executed on D to answer
the question Q. The database D contains the schema S = (T , C,R) of three components: a set of
N tables T = {t1, t2, ..., tN}; a set of columns C = {c11, ..., c1n1

, ..., cN1 , ..., cNnN
} associated with the

tables, where ni is the number of columns in the i-th table; and a set of foreign key relations R =

{(cik, c
j
h) | cik, c

j
h ∈ C}, where (cik, c

j
h) indicates a foreign key relationship between two columns.

We use M =
∑N

i=1 ni to denote the total number of columns in D.

Architecture. Figure 2 illustrates the three main steps in READ-SQL: (1) Preparing and generat-
ing the augmented data, (2) constructing the training data for the Generator, and (3) constructing
the training data for the Corrector. At the core of READ-SQL is the READER module. We will
elaborate on them one-by-one in the following.

3.1 READER: A REASONING PATH DECOMPOSER

READER parses executable SQL into constraints, generating sub-SQLs and reasoning paths. This
forms the foundation for enhanced data generation and refined self-correction. Figure 3 illustrates
the four main steps of READER: (1) parsing an SQL into AST; (2) identifying all constraints from
the AST; (3) get sub-SQLs by removing constraints on AST and (4) construct reasoning paths for
the sub-SQLs. Further details can be found in Appendix A.1. It is noted that

• Step 2: Identify constraints. A constraint is defined as a sub-tree in the AST where the root
node is an operation type and all its child nodes are non-operation types (see Appendix A.1.2 for
a detailed explanation). For instance, the “SELECT” node represents an operation, while its child,
“name”, is a non-operation node. Similarly, the “WHERE” node and its corresponding child are
recognized by READER as a constraint, indicated by their background color in Figure 3.

• Step 3 : Sequentially delete constraints. READER gets sub-SQLs by removing constraints.
READER initializes a binary tree to store results, with the root node storing the AST parsed
from the original SQL. At each level, READER removes one constraint from the root, storing
the remaining sub-tree as the right leaf node, while replicating the root in the left leaf node. For
example, the circle labeled 3 in Figure 3 is obtained by removing the “WHERE age=18” constraint

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Step 1: Parse SQL to ASTStep 1: Parse SQL to AST
[question]

What is the name of a

person who is 18 years old?

[SQL]

SELECT name FROM

person WHERE age=18

SELECT name FROM person WHERE age = 18

Step 2 : Identify constraintsStep 2 : Identify constraints Step 3 : Sequentially delete constraintsStep 3 : Sequentially delete constraints

WHERE age = 18SELECT name

personname Equal

age 18

WHEREFROMSELECT

SQL

Step 4 : Bottom-up traversal to obtain the reasoning pathsStep 4 : Bottom-up traversal to obtain the reasoning paths

SELECT name FROM person WHERE age = 18

SELECT * FROM person where age = 18

After delete

After delete

 create a binary tree to save intermediate results

Decomposition path

 Reasoning path

No changes

No changes

After delete

No changes

1

2

3

4

sub-SQLs:

SELECT * FROM person 4:

SELECT * FROM person

where age = 18

2:

3: SELECT name FROM person

1:
WHERE age = 18

SELECT name FROM person

reasoning paths:

Outputs

Path 1 :
Path 2 :

Constraints:

SELECT name

SELECT * FROM person

WHERE age = 18

Figure 3: Illustration of READER for parsing an SQL into AST, forming sub-SQLs and reasoning
paths; see details in the main text.

from the original AST and is stored in the right leaf of the root node. This process continues until
all constraints are enumerated, and the sub-SQLs are stored in the leaves of the binary tree.

• Step 4 : Obtain the reasoning paths. READER starts from the rightmost leaf node, which
represents the minimal sub-SQL with all constraints removed (e.g., “SELECT * FROM person”
in Figure 3). READER then conducts a breadth-first search upward, identifying nodes that add
one additional constraint compared to the current node, and incorporating them as the next points
in the reasoning path. This process continues until reaching the root node. For example, Figure 3
outputs two reasoning paths, 4 → 2 → 1 and 4 → 3 → 1, where each node introduces one
additional constraint compared to the previous node in the path.

• After processing the SQL, READER produces three outputs: a set of SQL clauses indicating the
constraints from the SQL, the corresponding sub-SQLs, and the reasoning paths.

It is noted that READER shares similarities with DeSQL (Haroon et al., 2024) in its approach. How-
ever, READER extends beyond DeSQL by accommodating a wider range of SQL structures, deriv-
ing reasoning paths, and applying these processes to text-to-SQL tasks. We demonstrate READER’s
superiority over similar tools in the Appendix A.1.4.

3.2 AUGMENTED DATA GENERATION

After obtaining results from READER, we utilize an LLM to generate two types of augmented data:

• Augmented (question, SQL) pairs: A question is generated from a sub-SQL using a prompt
template, as shown in Figure 9. These augmented data enrich the model’s sensitivity to constraints,
helping it better detect implicit constraints in natural language.

• (question, reason) pairs: A reason is generated from a reasoning path using a prompt template,
as shown in Figure 11, to describe the chain-of-thought (CoT) (Wei et al., 2022b) process involved
in constructing sub-SQLs step-by-step. These (question, reason) pairs help the model understand
the SQL construction process to enhance reasoning abilities.

3.3 GENERATOR FOR INITIAL SQLS GENERATION

The Generator is the first model to generate SQLs in READ-SQL. Given a table, we first construct
the database prompt following Li et al. (2024c). Next, we format the input as:

• Original and augmented (question, SQL) pairs: xSQL is to concatenate the following tokens:
xSQL = [SQL] + database prompt + question (1)

• (question, reason) pairs: xR is to concatenate the following tokens:
xR = [REASON] + database prompt + question (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Basic SQL :

SELECT * FROM account JOIN

trans ON account.id = trans.id

JOIN district ON account.id =

district.id WHERE trans.bank = 'AB'

Identical constraints :

From: "FROM account",

Join: "JOIN trans" ;

 "JOIN district"

Where: "trans.bank = 'AB'"

Different constraints :

Where: "district.a3 = 'North Bohemia'",

 "district.a3 = 'north Bohemia'",

Select: 'COUNT(account.id)',

 'COUNT(DISTINCT account.id)'

SELECT COUNT(account.id) FROM ... WHERE district.a3 = 'North Bohemia' ...

SELECT COUNT(account.id) FROM ... WHERE district.a3 = 'north Bohemia' ...

SELECT COUNT(DISTINCT account.account_id) FROM WHERE

Involved table.columns :

account.id; district.a3

Involved values :

'North Bohemia';

'north Bohemia'

CorrectorCorrector

Final SQL

SELECT

count(DISTINCT

account.id) FROM ...

... WHERE district.a3

= 'north Bohemia'

Final input

Table schema: (table.column | type | column

description | value discription)

(district.a2 | text | district_name);

(district.a3 | text | region);

Foreign keys: (table1.key = table2.key)

(district.id = account.id);

Value match: table.column (retrieval value)

district.a3 (north Bohemia);

Different constraints: {different constraints}

Basic SQL: {basic SQL}

Question : {origin question}

Figure 4: An example of self-correction inference by the Corrector. In the final input, the yellow
background color indicates the data organization format for better visualization and understanding.

It is noted that the input of xSQL and xR differs only on the prefix token.

READ-SQL then employs a multi-task framework for supervised fine-tuning (Hsieh et al., 2023)
on top of LoRA (Hu et al., 2022) to train the Generator using the above two kinds of data, by
minimizing the following loss (representing the loss on a single instance):

L = −
|ySQL|∑
i=1

log(PG(y
SQL
i |ySQL

< i, xSQL)− λ

|yR|∑
i=1

log(PG(y
R
i |yR

< i, xR), (3)

where PG represents the conditional probability of the Generator, λ is a hyperparameter balanceing
the loss on the (question, SQL) pairs and (question, reason) pairs.
It is worth emphasizing that the purpose of adding (question, reason) pairs during training is to
help the Generator understand the reasoning process behind SQL and assist in its generation. In
the inference stage, we only need the Generator to produce SQLs. We compare other fine-tuning
methods in the appendix A.5.6, which are not as effective as the multi-tasking framework.

3.4 CORRECTOR FOR SELF-CORRECTION

Corrector uses READER to re-evaluate the low-confidence constraints in the results generated by
the Generator, producing the final SQL, as illustrated in the Figure 2. To begin, we will explain the
reasoning process of Corrector. This process primarily consists of two parts: constructing the input
for Corrector, and generating the final SQL. The entire process is illustrated in Figure 4. Corrector’s
input relies on READER, which parses the SQL to extract two types of constraints:

• High-confidence constraints appear consistently in all generated SQLs. For example, READER
identifies four identical constraints and combines them to form a basic AST, which is parsed to a
basic SQL, as shown in Figure 4. Basic SQL retains the consistent part of the Generator’s result,
allowing Corrector to generate SQL based on it, which helps reduce errors.

• Low-confidence constraints are those that differ in other SQLs or appear in only some SQLs.
Corrector requires additional information to generate accurate SQL from low-confidence clauses.
First, it extracts the table names, column names, and values from the low-confidence clauses.
Then, READ-SQL uses search engines, such as Elasticsearch, to retrieve related information,
including table schema, foreign keys, and value matches.

Finally, READ-SQL organize basic SQL and the retrieved table schema, foreign keys and value
matches into the final input, as shown in Figure 4, allowing Corrector to output the final SQL.

Similar to the Generator, the Corrector model is also fine-tuned using LoRA. However, since the
Corrector requires the Generator’s output, we perform cross-validation on the text-to-SQL training
set to obtain the Generator’s outputs for each fold. Following the previously described process, we
construct the input data and combine the data from all folds to create the final training dataset for
the Corrector. Detailed steps are provided in the appendix A.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines For supervised fine-tuning, nearly all baselines are derived from the state-of-the-art
(SOTA) text-to-SQL approaches listed on the official leaderboards of the BIRD and Spider bench-
marks (Li et al., 2023a; 2024c; Yang et al., 2024; Li et al., 2023b; Scholak et al., 2021). We select
SFT CodeS as our primary competitive baseline (Li et al., 2024c). Additionally, we compare READ-
SQL with LLM-based methods (Pourreza & Rafiei, 2023; Gao et al., 2024).

Datasets We conduct experiments on two English text-to-SQL benchmarks: BIRD (Li et al.,
2023c) and Spider (Yu et al., 2018b). To evaluate the model’s robustness, we also evaluate READ-
SQL on three Spider variants: Spider-DK (Gan et al., 2021b), Spider-Syn (Gan et al., 2021a), and
Spider-Realistic (Deng et al., 2021). BIRD includes 9,428 training samples and 1,534 development
samples, while Spider has 8,659 training samples and 1,034 development samples, both featuring
hidden test sets. Details of the datasets are provided in Appendix A.5.1.

Metrics To evaluate the performance of the Text-to-SQL parser, following Li et al. (2024c); Talaei
et al. (2024b); Pourreza & Rafiei (2023); Li et al. (2024a), we apply the following metrics: (1) For
the BIRD benchmark, we employ execution accuracy (EX), which measures whether the generated
SQL retrieves the correct results from the database, and the Valid Efficiency Score (VES), which
is determined by dividing the execution time of the ground truth SQL query by the execution time
of the predicted SQL query, to quantify the accuracy and performance efficiency of the generated
SQLs. Since VES relies on the environment, we rerun the results of CodeS for a fair comparison. (2)
For Spider and its variants, we adopt the test-suite accuracy (TS) score (Zhong et al., 2020), which
measures whether generated SQLs consistently pass the EX evaluation across multiple database in-
stances, thereby reducing false positives—instances where a prediction that is semantically different
from the correct answer coincidentally matches the same denotation in a specific database.

Implementation Details We provide a detailed explanation of READ-SQL’s Generator and Cor-
rector separately.

– Generator: We use GLM-4-0520 (Zeng et al., 2024) as the base LLM to generate questions and
reasoning paths. For schema linking, we adopt the same method as CodeS (Li et al., 2024c) to
obtain the database prompt. During training, we fine-tune the model using the LoRA (Hu et al.,
2022) technique, with CodeS-1B and CodeS-3B as base models. The learning rate is set to 1e-4,
the training runs for 6 epochs, and we use a batch size of 8 with a λ value of 8. For inference, the
beam size is set to 4, and greedy decoding is applied.

– Corrector: We utilize Elasticsearch as a retrieval tool to select the top 4 columns and the top 2
cell values based on approximate matching. When constructing the dataset, we employ four-fold
cross-validation, training the Generator on three folds with the above parameters while evaluating
on the remaining fold. This process is repeated across all four folds. The Corrector is also fine-
tuned using LoRA (Hu et al., 2022) in CodeS-1B and CodeS-3B, with a learning rate of 1e-4,
6 epochs, and a batch size of 8. During inference, we set the beam size to 4 and select the first
executable SQL as the final output.

Environments All the experiments are run on a server with 8 NVIDIA RTX 3090 GPUs of 24 GB
memory for the models and an AMD EPYC 7742 CPU of 128 GB memory for testing VSE. More
information is detailed in Appendix A.5.3.

4.2 MAIN RESULTS

Table 1 reports the results of compared methods on the benchmarks, highlighting the following: (1)
For the BIRD dataset (Dev set), READ-SQL achieves the best performance across all methods in
both EX and VES. Notably, READ-SQL-3B improves upon SFT CodeS-3B in EX by 2.35% and
even outperforms SFT CodeS-7B by 0.37%. It also significantly outperforms strong baselines like
DIN-SQL and DAIL-SQL, which utilize GPT-4. Regarding VES, we observe that it is influenced
by the computation environment, so we rerun SFT CodeS for a fair comparison. This results in
higher VES values than those reported in (Li et al., 2024c). Nonetheless, READ-SQL consistently

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on BIRD and Spider benchmarks: “-/-” in the VES column indi-
cates that the results are copied from the original paper and reproduced by us. Values in parentheses
record READ-SQL improvement over SFT CodeS with the same model size.

Methods BIRD Dev Spider Dev Spider Test

EX (%) VES (%) EX (%) TS (%) EX (%)

Prompting Methods w/ Closed-Source LLMs

CHESS + GPT-4 (Talaei et al., 2024a) 65.00 - - - 87.2
PURPLE + GPT-4 (Ren et al., 2024) - - 87.8 83.3 -
PTD-SQL + GPT-4 (Luo et al., 2024) 57.0 57.7/- 85.7 - -
SuperSQL + GPT4 (Li et al., 2024b) 58.5 61.99/- 87.0 - -
DIN-SQL+GPT-4 (Pourreza & Rafiei, 2023) 50.72 58.79 / - 82.8 74.2 85.3
DAIL-SQL + GPT-4 (Gao et al., 2024) 54.76 56.08 / - 83.1 76.6 86.6

Fine-tuning Models w/ Open-Source LLMs

RESDSQL-3B + NatSQL (Li et al., 2023a) 43.9 45.64 / - 84.1 73.5 79.9
Graphix-T5-3B + PICARD (Li et al., 2023b) - - 81.0 75.0 77.6
T5-3B + PICARD (Scholak et al., 2021) - - 79.3 69.4 75.1
SFT Llama2-7B (Li et al., 2024c) 45.37 46.98 / - 77.8 73.0 -
SENSE-7B (Yang et al., 2024) 51.8 - 83.2 81.7 83.5
SFT CodeS-1B (Li et al., 2024c) 49.54 51.07 / 62.49 77.8 71.2 77.5
SFT CodeS-3B (Li et al., 2024c) 55.02 56.54 / 70.96 82.2 76.3 81.9
SFT CodeS-7B (Li et al., 2024c) 57.00 58.80 / 72.54 84.7 79.4 83.3

Generator-1B 51.76 (+2.22) 67.96 (+5.47) 80.2 (+2.4) 73.7 (+2.5) 77.0 (-0.5)
READ-SQL-1B 52.87 (+3.33) 69.04 (+6.55) 80.7 (+2.9) 74.3 (+3.1) 78.8 (+1.3)
Generator-3B 56.98 (+1.96) 72.43 (+1.80) 83.8 (+1.6) 77.7 (+1.4) 80.9 (-1.0)
READ-SQL-3B 57.37 (+2.35) 72.76 (+1.80) 84.2 (+2.0) 78.2 (+1.9) 81.2 (-0.7)

outperforms SFT CodeS with the same model size, even showing a 0.22% improvement in VES
with READ-SQL-3B over SFT CodeS-7B. Overall, READ-SQL sets a new state-of-the-art (SOTA)
performance for models of the same size. (2) On the Spider benchmark, READ-SQL also consis-
tently surpasses SFT CodeS with the same model size, though the improvement is less significant,
and READ-SQL-3B does not outperform SFT CodeS-7B. We hypothesize that this is due to the data
distribution in Spider, which limits the impact of our data augmentation. A detailed analysis of the
augmented data is provided in Appendix A.3. Moreover, further analysis can be found in Sec. 4.3.

Table 2: Evaluation of READ-SQL on Spider variants: Values in parentheses record READ-SQL
improvement over SFT CodeS with the same model size.

Methods Spider-Syn Spider-Realistic Spider-DK

EX (%) TS (%) EX (%) TS (%) EX (%)

SQL-PaLM+PaLM 2 (Sun et al., 2024) 74.6 - 77.6 - 66.5
FastRAText+GPT-4 (Shen et al., 2024) 74.4 - 80.9 - 72.3
TA-SQL+GPT-4 (Qu et al., 2024) - - 79.5 - 72.9
DART-SQL+GPT-3.5 (Mao et al., 2024) - - 79.3 - 71.4
ChatGPT (Li et al., 2023c) 58.6 48.5 63.4 49.2 62.6
RESDSQL-3B + NatSQL (Li et al., 2023a) 76.9 66.8 81.9 70.1 66.0
T5-3B + PICARD (Scholak et al., 2021) 69.8 61.8 71.4 61.7 62.5
SENSE-7B (Yang et al., 2024) 72.6 64.9 82.7 75.6 77.9
SFT CodeS-1B (Li et al., 2024c) 64.7 56.9 70.1 62.0 63.2
SFT CodeS-3B (Li et al., 2024c) 73.1 65.4 78.9 72.8 70.3
SFT CodeS-7B (Li et al., 2024c) 74.8 67.4 82.3 76.8 72.9

Generator-1B 65.1 (+0.4) 57.3 (+0.4) 72.2 (+2.1) 62.8 (+0.8) 65.8 (+2.6)
READ-SQL-1B 65.0 (+0.3) 57.1 (+0.2) 71.5 (+1.6) 60.8 (-1.0) 65.6 (+2.4)
Generator-3B 73.9 (+0.8) 66.6 (+1.2) 81.1 (+2.1) 72.8 (+0.0) 69.9 (-0.4)
READ-SQL-3B 74.0 (+0.9) 66.4 (+1.0) 80.3 (+1.4) 73.2 (+0.4) 71.6 (+1.3)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 EVALUATION ON ROBUSTNESS BENCHMARKS

Table 2 reports the robustness of READ-SQL across three Spider variants: Spider-Syn, Spider-
Realistic, and Spider-DK, highlighting the following: (1) In three Spider variants, READ-SQL out-
performs SFT CodeS of the same model size, demonstrating the advantage of READ-SQL, but in the
TS indicator in Spider-Realistic, READ-SQL lags slightly behind. (2) In Spider-DK, READ-SQL
shows better performance at 1B than SFT CodeS, but the performance improvement is smaller in
3B. (3) After adding Corrector, the overall level will be slightly lowered. Upon analyzing the data,
we observe that Spider contains less information for rows and columns than BIRD, which provides
less benefit, or even harm, for the self-correction in READ-SQL’s Corrector. We compared the
performance of Generator and SFT CodeS at different difficulties, as shown in the Appendix A.5.9.

4.4 ABLATION STUDIES

Table 3: Ablation studies in READ-SQL

EX (%) VES (%)

READ-SQL-3B 57.37 72.76
-w/o new pairs 56.84 (-0.53) 72.41 (-0.35)
-w/o reason pairs 56.19 (-1.18) 71.29 (-1.47)
-w/o Corrector 56.98 (-0.39) 72.46 (-0.30)

Effect of Key Components Table 3 reports the ab-
lation studies of READ-SQL-3B on BIRD’s Dev,
highlighting the following: (1) Removing “new
pairs” (i.e., augmented (question, SQL) pairs) dur-
ing Generator training results in a 0.53% drop in EX;
(2) Removing “reason pairs” (,i.e., (question, rea-
son) pairs) causes a more significant drop in EX by
1.18%; (3) Removing the Corrector yields a slight
drop in EX by 0.39%. These ablation studies demon-
strate the critical roles of all three components in
READ-SQL, with reason being especially important in offering reasoning information for gener-
ating SQLs while bridging the gap between questions and SQLs.

Table 4: Extensibility studies of READ-SQL’s Corrector

EX (%) VES (%) API tokens (avg)

DeepSeek-Coder-1.3B 48.57 63.39 -
DeepSeek-Coder-1.3B + Corrector-3B 50.52 (+1.95) 65.49 (+2.1) -
Granite-3B-Code 52.93 68.33 -
Granite-3B-Code + Corrector 53.39 (+0.46) 68.47 (+0.08) -
SFT CodeS-3B (Li et al., 2024c) 55.02 70.96 -
SFT CodeS-3B + Corrector-3B 55.48 (+0.46) 71.08 (+0.14) -

READ-SQL-3B w/o Corrector 56.98 72.46 -
READ-SQL-3B 57.37 (+0.39) 72.76 (+0.3) -
Generator-3B + DIN-SQL’s Self-Correction (GPT-4o) 55.93 (-1.05) 71.28 (-1.18) 4501 (only input)
Generator + Standard Self-Correction (GPT-4o) 60.69 (+3.71) 77.64 (+5.18) 2039
Generator + Corrector (GPT-4o) 61.21 (+4.23) 78.01 (+5.56) 2619

Extensibility Studies of Corrector Table 4 reports the results of deploying READ-SQL’s Cor-
rector in various base models, tested on BIRD Dev set, with both the Generator and the Corrector
in READ-SQL having a model size of 3B. We use the same training method and training data as
Generator to fine-tune DeepSeek-Coder-1.3B (Guo et al., 2024) and Granite-3B-Code (Mishra et al.,
2024). The results highlight: (1) When integrating READ-SQL’s Corrector into the base models,
performance improves accordingly. Notably, READ-SQL without the Corrector still outperforms
SFT CodeS-3B, even after SFT CodeS-3B deploys the Corrector. (2) The last two rows show that
the prepared data for the Corrector can be utilized with an LLM, such as GPT-4o, to boost perfor-
mance by adding only a relatively small number of tokens (around 580). The prompts for standard
self-correction and for using our Corrector’s data with GPT-4o are provided in Appendix A.2.

Impact of Beam Size and Training Methods Figure 5 shows the impact of the beam size in
READ-SQL’s Generator’s outputs and various training methods on BIRD Dev. Usually, larger beam
sizes yield more low-confidence clauses and result in retrieving more supplemental items. Figure 5a
shows that READ-SQL yields the best performance when the size is 4 and 6 for READ-SQL-1B
and READ-SQL-3B, respectively. Figure 5b shows that: (1) Employing the same training data as

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 3 4 6 8 10
Beam size

46

48

50

52

54

56

58

EX
(%

)

51.76
52.87

57.56

57.69

READ-SQL-1B w/o Corrector
READ-SQL-1B w/ Corrector
READ-SQL-3B w/o Corrector
READ-SQL-3B w/ Corrector

(a) Beam Size

CodeS-1B CodeS-3B
Base Model

48

50

52

54

56

58

EX
(%

)

50.46

55.02

50.33

54.69

51.76

56.98

52.87

57.37Full Parameter SFT
LoRA SFT
READ-SQL (Genrator)
READ-SQL

(b) Training Methods

Figure 5: The impact of beam size and training methods

Table 5: Comparison of READ-SQL-3B and SFT CodeS-3B on three types of errors

unwanted constraints misinterpreted constraints omitted constraints

SFT CodeS-3B × , READ-SQL-3B✓ 25 52 41

READ-SQL-3B × , SFT CodeS-3B✓ 18(↓ 28%) 43(↓ 17.3%) 21(↓ 48.7%)

SFT CodeS (Li et al., 2024c), LoRA-supervised fine-tuning (SFT) performs slightly worse than
full-parameter SFT; (2) The Generator in READ-SQL, trained via the multi-task framework on
top of LoRA, achieves better performance than full-parameter SFT while also improving training
efficiency; (3) Additionally, the Corrector in READ-SQL further enhances performance, achieving
the best results in both tests. Finally, we show the running analysis comparison of READ-SQL and
SFT CodeS in the Appendix A.5.5.

Performance of READ-SQL in three typical types of errors To evaluate the effectiveness of
READ-SQL in addressing the three types of errors shown in Figure 1, we compared READ-SQL-
3B with SFT CodeS-3B using the BIRD Dev. We present the frequency of these error types in
two scenarios in Table 5: cases where READ-SQL was correct but SFT CodeS-3B was wrong, and
vice versa. The results show that READ-SQL significantly reduced the occurrence of all three error
types, particularly omission errors, which decreased by 48.7%. Additionally, we provide examples
in the Appendix A.5.9 where READ-SQL is correct and SFT CodeS is incorrect across the three
error types.

5 CONCLUSION

We propose READ-SQL, a novel framework that leverages READER, a key module to parse SQLs
into clauses, sub-SQLs, and reasoning paths to enhance text-to-SQL tasks. READ-SQL consists
of two main models: the Generator and the Corrector. The Generator is trained on both original
and augmented data to recognize subtle differences between questions and SQLs while improving
reasoning capabilities. Additionally, the Corrector applies READER in post-processing to ensure
precise self-correction. Experimental results demonstrate that READ-SQL significantly improves
strong baselines of the same model size, setting a new SOTA. Furthermore, the Corrector can be
deployed on any base model, and the post-processed SQL generated by the Generator can be fed
into an LLM to enhance text-to-SQL performance, underscoring its wide applicability.

Several future directions are promising: (1) While READER effectively parses SQLs, this work
only utilizes partial information. Further exploration of READER’s parsed information could im-
prove performance. (2) The Corrector’s effectiveness may be limited when supplemental items are
unreliable due to insufficient schema information, suggesting the need for more robust methods to
identify those low-confidence items. (3) Due to computational constraints, we conduct experiments
on a model up to 3B. Scaling up both the model and data presents an interesting opportunity to
unlock the full potential of READ-SQL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ruisheng Cao, Hanchong Zhang, Hongshen Xu, Jieyu Li, Da Ma, Lu Chen, and Kai Yu. As-
tormer: An AST structure-aware transformer decoder for text-to-sql. CoRR, abs/2310.18662,
2023. doi: 10.48550/ARXIV.2310.18662. URL https://doi.org/10.48550/arXiv.
2310.18662.

Naihao Deng, Yulong Chen, and Yue Zhang. Recent advances in text-to-sql: A survey of what we
have and what we expect. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Puste-
jovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji,
Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He,
Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), Proceedings of the
29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Repub-
lic of Korea, October 12-17, 2022, pp. 2166–2187. International Committee on Computational
Linguistics, 2022. URL https://aclanthology.org/2022.coling-1.190.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. Structure-grounded pretraining for text-to-sql. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pp. 1337–1350. Associa-
tion for Computational Linguistics, 2021. doi: 10.18653/V1/2021.NAACL-MAIN.105. URL
https://doi.org/10.18653/v1/2021.naacl-main.105.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu Lin, and Dong-
fang Lou. C3: zero-shot text-to-sql with chatgpt. CoRR, abs/2307.07306, 2023. doi: 10.48550/
ARXIV.2307.07306. URL https://doi.org/10.48550/arXiv.2307.07306.

Ben Eyal, Moran Mahabi, Ophir Haroche, Amir Bachar, and Michael Elhadad. Semantic de-
composition of question and SQL for text-to-sql parsing. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pp. 13629–13645. Association for Computational Linguis-
tics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.910. URL https://doi.org/10.
18653/v1/2023.findings-emnlp.910.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward, Jinxia Xie, and
Pengsheng Huang. Towards robustness of text-to-sql models against synonym substitution. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pp. 2505–2515. Association for Computational Linguistics,
2021a. doi: 10.18653/V1/2021.ACL-LONG.195. URL https://doi.org/10.18653/
v1/2021.acl-long.195.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-
domain text-to-sql generalization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, pp. 8926–8931. Association for Computational Linguistics, 2021b. doi:
10.18653/V1/2021.EMNLP-MAIN.702. URL https://doi.org/10.18653/v1/2021.
emnlp-main.702.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John H. Drake,
and Qiaofu Zhang. Natural SQL: making SQL easier to infer from natural language speci-
fications. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 16-20 November, 2021, pp. 2030–2042. Association for
Computational Linguistics, 2021c. doi: 10.18653/V1/2021.FINDINGS-EMNLP.174. URL
https://doi.org/10.18653/v1/2021.findings-emnlp.174.

11

https://doi.org/10.48550/arXiv.2310.18662
https://doi.org/10.48550/arXiv.2310.18662
https://aclanthology.org/2022.coling-1.190
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.48550/arXiv.2307.07306
https://doi.org/10.18653/v1/2023.findings-emnlp.910
https://doi.org/10.18653/v1/2023.findings-emnlp.910
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, 2024. URL https://www.vldb.org/pvldb/vol17/p1132-gao.
pdf.

Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Sam Madden, and Xiaoyong Du. Few-shot text-to-
sql translation using structure and content prompt learning. Proc. ACM Manag. Data, 1(2):147:1–
147:28, 2023a. doi: 10.1145/3589292. URL https://doi.org/10.1145/3589292.

Zihui Gu, Ju Fan, Nan Tang, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Sam
Madden, and Xiaoyong Du. Interleaving pre-trained language models and large language models
for zero-shot NL2SQL generation. CoRR, abs/2306.08891, 2023b. doi: 10.48550/ARXIV.2306.
08891. URL https://doi.org/10.48550/arXiv.2306.08891.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196,
2024. doi: 10.48550/ARXIV.2401.14196. URL https://doi.org/10.48550/arXiv.
2401.14196.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-sql in cross-domain database with intermediate representation. In Anna
Korhonen, David R. Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, pp. 4524–4535. Association for Computational Linguistics, 2019. doi:
10.18653/V1/P19-1444. URL https://doi.org/10.18653/v1/p19-1444.

Sabaat Haroon, Chris Brown, and Muhammad Ali Gulzar. Desql: Interactive debugging of SQL in
data-intensive scalable computing. Proc. ACM Softw. Eng., 1(FSE):767–788, 2024. doi: 10.1145/
3643761. URL https://doi.org/10.1145/3643761.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 8003–8017. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.507. URL https://doi.org/
10.18653/v1/2023.findings-acl.507.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. VLDB J., 32(4):905–936, 2023. doi: 10.1007/S00778-022-00776-8. URL https:
//doi.org/10.1007/s00778-022-00776-8.

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh Vaichal, and Peter Relan. Bertrand-dr:
Improving text-to-sql using a discriminative re-ranker. CoRR, abs/2002.00557, 2020. URL
https://arxiv.org/abs/2002.00557.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to SQL: are we fully ready? CoRR, abs/2406.01265, 2024a. doi: 10.48550/ARXIV.2406.01265.
URL https://doi.org/10.48550/arXiv.2406.01265.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to SQL: are we fully ready? [experiment, analysis \u0026 benchmark]. Proc. VLDB Endow., 17
(11):3318–3331, 2024b.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. RESDSQL: decoupling schema linking and
skeleton parsing for text-to-sql. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),

12

https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://doi.org/10.1145/3589292
https://doi.org/10.48550/arXiv.2306.08891
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.18653/v1/p19-1444
https://doi.org/10.1145/3643761
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://arxiv.org/abs/2002.00557
https://doi.org/10.48550/arXiv.2406.01265

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-
14, 2023, pp. 13067–13075. AAAI Press, 2023a. doi: 10.1609/AAAI.V37I11.26535. URL
https://doi.org/10.1609/aaai.v37i11.26535.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proc. ACM Manag. Data, 2(3):127, 2024c. doi: 10.1145/3654930. URL https:
//doi.org/10.1145/3654930.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu
Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained transformers with graph-aware
layers for text-to-sql parsing. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-
14, 2023, pp. 13076–13084. AAAI Press, 2023b. doi: 10.1609/AAAI.V37I11.26536. URL
https://doi.org/10.1609/aaai.v37i11.26536.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen
Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as A
database interface? A big bench for large-scale database grounded text-to-sqls. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023c. URL http://papers.nips.cc/paper_files/paper/2023/
hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_
Benchmarks.html.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November
2020, volume EMNLP 2020 of Findings of ACL, pp. 4870–4888. Association for Computational
Linguistics, 2020. doi: 10.18653/V1/2020.FINDINGS-EMNLP.438. URL https://doi.
org/10.18653/v1/2020.findings-emnlp.438.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan,
Guoliang Li, and Nan Tang. A survey of NL2SQL with large language models: Where are we,
and where are we going? CoRR, abs/2408.05109, 2024a. doi: 10.48550/ARXIV.2408.05109.
URL https://doi.org/10.48550/arXiv.2408.05109.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang Li,
Yuyu Luo, and Nan Tang. A survey of nl2sql with large language models: Where are we, and
where are we going? CoRR, abs/2408.05109, 2024b. doi: 10.48550/arXiv.2408.05109. URL
https://doi.org/10.48550/arXiv.2408.05109.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin, and Yujiu Yang. PTD-SQL: partitioning and
targeted drilling with llms in text-to-sql. In EMNLP, pp. 3767–3799. Association for Computa-
tional Linguistics, 2024.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
linking? text-to-sql in the age of well-reasoned language models. CoRR, abs/2408.07702, 2024.
doi: 10.48550/ARXIV.2408.07702. URL https://doi.org/10.48550/arXiv.2408.
07702.

Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng, Cuiyun Gao, Peiyi Han, and Chuanyi Liu.
Enhancing text-to-sql parsing through question rewriting and execution-guided refinement. In
ACL (Findings), pp. 2009–2024. Association for Computational Linguistics, 2024.

13

https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1609/aaai.v37i11.26536
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.48550/arXiv.2408.05109
https://doi.org/10.48550/arXiv.2408.05109
https://doi.org/10.48550/arXiv.2408.07702
https://doi.org/10.48550/arXiv.2408.07702

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi,
Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White,
Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Ab-
delaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel,
S. Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapani-
pathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos A.
Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda. Granite
code models: A family of open foundation models for code intelligence. CoRR, abs/2405.04324,
2024. doi: 10.48550/ARXIV.2405.04324. URL https://doi.org/10.48550/arXiv.
2405.04324.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: decomposed in-context learn-
ing of text-to-sql with self-correction. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! A novel and effective strategy for mitigating hallucinations in text-to-sql
generation. In ACL (Findings), pp. 5456–5471. Association for Computational Linguistics, 2024.

Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu Yao. Improving generalization in language model-
based text-to-sql semantic parsing: Two simple semantic boundary-based techniques. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 150–160. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-SHORT.15. URL https://doi.org/10.18653/v1/
2023.acl-short.15.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang, Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang,
Yifan Yang, and X. Sean Wang. PURPLE: making a large language model a better SQL writer.
In ICDE, pp. 15–28. IEEE, 2024.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: parsing incrementally for
constrained auto-regressive decoding from language models. In Marie-Francine Moens, Xu-
anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 9895–9901. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.779. URL https:
//doi.org/10.18653/v1/2021.emnlp-main.779.

Zhili Shen, Pavlos Vougiouklis, Chenxin Diao, Kaustubh Vyas, Yuanyi Ji, and Jeff Z. Pan. Improv-
ing retrieval-augmented text-to-sql with ast-based ranking and schema pruning. In EMNLP, pp.
7865–7879. Association for Computational Linguistics, 2024.

Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. Sql-palm: Improved large language model adaptation for text-to-sql. CoRR,
abs/2306.00739, 2024.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: contextual harnessing for efficient SQL synthesis. CoRR, abs/2405.16755, 2024a.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: contextual harnessing for efficient SQL synthesis. CoRR, abs/2405.16755, 2024b.
doi: 10.48550/ARXIV.2405.16755. URL https://doi.org/10.48550/arXiv.2405.
16755.

Yuan Tian, Zheng Zhang, Zheng Ning, Toby Jia-Jun Li, Jonathan K. Kummerfeld, and Tianyi Zhang.
Interactive text-to-sql generation via editable step-by-step explanations. In EMNLP, pp. 16149–
16166. Association for Computational Linguistics, 2023.

14

https://doi.org/10.48550/arXiv.2405.04324
https://doi.org/10.48550/arXiv.2405.04324
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.acl-short.15
https://doi.org/10.18653/v1/2023.acl-short.15
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.48550/arXiv.2405.16755
https://doi.org/10.48550/arXiv.2405.16755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: relation-aware schema encoding and linking for text-to-sql parsers. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 7567–7578.
Association for Computational Linguistics, 2020. doi: 10.18653/V1/2020.ACL-MAIN.677. URL
https://doi.org/10.18653/v1/2020.acl-main.677.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan,
and Zhoujun Li. MAC-SQL: A multi-agent collaborative framework for text-to-sql. CoRR,
abs/2312.11242, 2023. doi: 10.48550/ARXIV.2312.11242. URL https://doi.org/10.
48550/arXiv.2312.11242.

Daniel C. Wang, Andrew W. Appel, Jeffrey L. Korn, and Christopher S. Serra. The zephyr ab-
stract syntax description language. In Chris Ramming (ed.), Proceedings of the Conference on
Domain-Specific Languages, DSL’97, Santa Barbara, California, USA, October 15-17, 1997, pp.
213–228. USENIX, 1997. URL http://www.usenix.org/publications/library/
proceedings/dsl97/wang.html.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language mod-
els. Trans. Mach. Learn. Res., 2022, 2022a. URL https://openreview.net/forum?
id=yzkSU5zdwD.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 7864–7875.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.425. URL
https://doi.org/10.18653/v1/2024.acl-long.425.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language
models are versatile decomposers: Decomposing evidence and questions for table-based rea-
soning. In Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane
Mothe, and Barbara Poblete (eds.), Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan,
July 23-27, 2023, pp. 174–184. ACM, 2023. doi: 10.1145/3539618.3591708. URL https:
//doi.org/10.1145/3539618.3591708.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R.
Radev. Syntaxsqlnet: Syntax tree networks for complex and cross-domain text-to-sql task. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pp. 1653–1663. Association for Computational Linguistics, 2018a. doi:
10.18653/V1/D18-1193. URL https://doi.org/10.18653/v1/d18-1193.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pp. 3911–3921. Association for Computational Linguistics, 2018b. doi:
10.18653/V1/D18-1425. URL https://doi.org/10.18653/v1/d18-1425.

15

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.48550/arXiv.2312.11242
https://doi.org/10.48550/arXiv.2312.11242
http://www.usenix.org/publications/library/proceedings/dsl97/wang.html
http://www.usenix.org/publications/library/proceedings/dsl97/wang.html
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.18653/v1/d18-1193
https://doi.org/10.18653/v1/d18-1425

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui,
Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie
Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun
Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv,
Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin
Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang,
Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models
from GLM-130B to GLM-4 all tools. CoRR, abs/2406.12793, 2024. doi: 10.48550/ARXIV.2406.
12793. URL https://doi.org/10.48550/arXiv.2406.12793.

Weixu Zhang, Yifei Wang, Yuanfeng Song, Victor Junqiu Wei, Yuxing Tian, Yiyan Qi, Jonathan H.
Chan, Raymond Chi-Wing Wong, and Haiqin Yang. Natural language interfaces for tabular data
querying and visualization: A survey. IEEE Trans. Knowl. Data Eng., 2024.

Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites. In
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020, pp. 396–411. Association for Computational Linguistics, 2020. doi: 10.18653/V1/2020.
EMNLP-MAIN.29. URL https://doi.org/10.18653/v1/2020.emnlp-main.29.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017. URL http://
arxiv.org/abs/1709.00103.

16

https://doi.org/10.48550/arXiv.2406.12793
https://doi.org/10.18653/v1/2020.emnlp-main.29
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS OF READER

Algorithm 1: READER
Input: SQL
Output: ConstraintIds, sub− SQLs,ReasoningPaths

1 sub− SQLs← set() , ReasoningPaths← [] ;
2 ast← ParserToAst (SQL) ▷ Parse SQL into its AST
3 ConstraintIds←GetConstraints (ast) ▷ Get all constraints into a list
4 BinaryAst← AstNode (ast) ▷ Encapsulate as binary tree
5 for id in ConstraintIds do
6 TravrseAST(BinaryAst, id, sub− SQLs) ▷ Traverse each constraint to construct a new ast

7 Function TravrseAST(node, id, sub-SQLs):
8 sub− SQLs.add(node.ast.tosql()) ▷ Parse the current node’s AST into SQL
9 if not node.left and not node.right then

10 ast = DeleteConstraint(node.ast, id) ▷ Delete the current constraint from the AST
11 node.left← AstNode (ast) ▷ Set the new AST as the left child of the current node
12 node.right← AstNode (node.ast) ▷ Keep the original AST as the right child
13 return 0

14 TravrseAST(node.left, id, sub− SQLs) ▷ Pre-order traversal, visit child nodes after root
15 TravrseAST(node.right, id, sub− SQLs);
16 return 0

17 Leaves← GetAllLeaves(BinaryAst) ▷ Obtain all the leaf nodes of the perfect binary tree
18 ReasoningPaths← CombinePath(Leaves) ▷ Construct inference paths between the leaf nodes
19 return ConstraintIds, sub− SQLs,ReasoningPaths

A.1.1 EXPLANATION OF ALGO. 1

Algorithm 1 outlines the procedure of READER:

• Line 2 runs a parser to parse the SQL into an AST.
• Line 3 gets the set of constraints in the AST based on pre-defined rules. Detailed information

about these rules is provided in the Appendix A.1.2.
• Line 4 initializes a binary tree to store intermediate results, with the AST placed in the root node.
• Lines 5-6 deletes each constraint and save the result in a binary tree.
• Lines 7-16 defines a method to remove constraint in the AST from the leaf nodes of the binary

tree, assigning the resulting new AST and a backup of the original AST as the child nodes.
• Lines 17 extract all possible sub-SQLs from the leaf nodes of the binary tree.
• Lines 18 employ a bottom-up breadth-first approach to identify the inclusion relationships of

constraints in sub-SQLs and retrieve all existing reasoning paths.

Hence, given a question, “What is the name of a person who is 18 years old?” and its ground-truth
SQL, “SELECT name FROM person WHERE age = 18”, we can obtain the corresponding results
as follows:

• In line 3 of Algorithm. 1 or Step (2) in Figure 3, identify three clauses: “SELECT name”, “FROM
person”, and “WHERE age = 18”.

• In 4-16 of Algorithm. 1 or Step (3) in Figure 3: remove constraints to obtain sub-SQLs. First,
the method deletes “SELECT name” to obtain “SELECT * FROM person WHERE age = 18”,
along with a backup of the original SQL. Next, the method removes “WHERE age = 18” from
both results, yielding “SELECT * FROM person” and “SELECT name FROM person”, thereby
generating all sub-SQLs.

• In 17-18 of Algorithm. 1 or Step (4) in Figure 3: using “SELECT * FROM person” as the starting
point of the reasoning path, the next points can be “SELECT name FROM person” and “SELECT
* FROM person WHERE age = 18”. The endpoints of both reasoning paths represent the ground-
truth SQL.

It is important to note that this case can be extended to more complicated examples, as illustrated
in Figure 16. In the related example, “How many movies directed by Francis Ford Coppola have a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Operational type and non-operational type nodes

Non-operational type nodes Column, Table, Identifier, Literal, Null, Datatype, TableAlias

Operational type nodes

Main body types:
SELECT , FROM , WHERE , EXISTS , IIF , CASE , CASE WHEN ,
JOIN , INNER JOIN , BETWEEN , LIKE , LIMIT , ORDER BY ,
GROUP BY , DESC , ASC , HAVING , SUBQUERY , WINDOW , OVER
Arithmetic operation types:
AND , OR , ADD (+), SUB (-) , MUL (*) , DIV (/) , GT (>) , GTE (>=) ,
LT (<) , LTE (<=), EQ (=), NEQ (!=) , UNION , INTERSECT
Built-in function types:
AVG , COUNT , MAX , MIN , ROUND , SUM , ABS , NOW , CAST

popularity of more than 1,000? Indicate the highest number of likes that each critic has received per
movie, if applicable”, four additional clauses will be included in line 3 of Algorithm. 1 or Step (2) in
Figure 3: “SELECT count(movies.movie_title)”, “SELECT ratings.critic”, “INNER JOIN movies
ON ratings.movie_id = movies.movie_id”, “WHERE movies.director_name = ’Francis Ford Cop-
pola”’ and “WHERE movies.movie_popularity > 1000”. We can further derive the corresponding
sub-SQLs and the reasoning paths accordingly.

A.1.2 NODE TYPES

For each node in AST, they can be categorized into the following types (see details in Table 6):

• Non-operational type nodes include columns, tables, identifiers, Literals, etc.
• Operational types nodes are defined as nodes whose operation objects are non-operational nodes.

In simple terms, an operation node can be defined as a constraint.

Generally speaking, the subquery node in SQL represents a distinct SQL query. We treat it as a sep-
arate constraint and perform constraint decomposition on the subquery independently. A subquery
(also known as an inner query or nested query) is a query that is embedded within another SQL
query, as shown in Figure 8, Sub-query 1 is a subsquery node in sub-query 2.

For each sub-SQL, we can determine the constraints based on the following criteria:

• Dependencies exist between constraints, necessitating careful judgment before deletion. For ex-
ample, the constraint "WHERE movies.movie_popularity > 1000" relies on the JOIN constraint
"INNER JOIN movies ON ratings.movie_id = movies.movie_id." This indicates that the column
referenced in the WHERE clause belongs to the movies table. Consequently, when deleting the
JOIN constraint, the corresponding WHERE constraint must also be removed; otherwise, the
JOIN constraint cannot be deleted. Nodes with dependencies include: GROUP BY and HAVING;
and JOIN nodes along with all constraints involving the tables in the JOIN.

• Constraints can be merged to reduce the number of generated sub-SQLs. For instance, the con-
straints "SELECT name" and "SELECT year" can be combined because both columns belong to
the person table. However, if the columns originate from different tables, they cannot be merged.
The only node types that can be merged are non-operation column node types.

A.1.3 READER RESULTS

We apply this READER to BIRD and Spider datasets. For the training set, we limit the number of
sub-SQLs to 256, and do not perform data enhancement on samples that are too complex. We count
the corresponding results in each dataset, as shown in the Table 7. It can be found that each sample
in the BIRD dataset can be decomposed into 14.4 sub-SQLs, the average number of reasoning paths
is 199.7, and the number of sub-SQLs involved in each reasoning path is 4.8. For the Spider dataset,
the structure of SQL is simpler, so the sub-SQLs and reasoning paths generated by the algorithm are
less than those of the BIRD dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Results Statistics after READER Processing of the BIRD and Spider Datasets

Dataset Number of Sub-SQLs Number of Reasoning Paths Length of Reasoning Path

Avg Max Min Avg Max Min Avg Max Min

BIRD Train Set 14.4 256 1 199.7 130,704 0 4.8 11 2
BIRD Dev Set 13.7 192 2 97.6 20,160 1 4.8 11 2

Spider Train Set 8.2 240 2 42.4 99,360 1 3.9 11 2
Spider dev Set 8.0 50 2 12.3 560 1 3.9 8 2

Table 8: Comparison of READER and existing SQL decomposers

Split Clause Synthetic sub-SQL multiple paths Support for complex syntax

READER ✓(Refinement) ✓ ✓ ✓
STEPS ✓ × × ✓
DeSQL ✓(Refinement) ✓ × ×

A.1.4 COMPARISON OF READER AND EXISTING SQL DECOMPOSERS

READER is a self-developed method based on SQLglot. Compared with the existing SQL decom-
position, it can divide SQL clauses more finely, split all possible executable sub-SQLs, and obtain
multiple reasoning paths. We compared it with two recently published works, such as STEPS (Tian
et al., 2023) and DeSQL (Haroon et al., 2024).

• Neither STEPS nor DeSQL can support outputting multiple reasoning paths.
• STEPS cannot fine-grain SQL, resulting in clauses not being independent units.
• DeSQL has limited SQL structures involved, cannot handle nested queries, etc., and can only

decompose simple SQL.

We show examples of the three methods in Table 9 and Table 10.

A.2 PROMPT TEMPLATES

In our work, there are totally four kinds of prompts:

• Sub-question generation prompt: This prompt is designed to generate augmented (sub-question,
sub-SQL) pairs based on the provided sub-SQLs; refer to the prompt in Fig. 9 and an example of
a (sub-question, sub-SQL) pair in Figure 10.

• Reason generation prompt: This prompt generates the reason or description of a chain of thought
(CoT) based on the given reasoning path; see the prompt in Fig. 11 and an example of a (question,
reason) pair in Figure 12.

• Self-Correction prompt: This prompt replaces the Corrector in READ-SQL with a large lan-
guage model (LLM), such as GPT-4; see the prompt in Figure 14. The goal is to enable the model
to reevaluate low-confidence constraints using the additional information provided.

• Standard Self-Correction prompt: This prompt provides only the beam search results and
the original database schema information, excluding any additional details retrieved from low-
confidence constraints and basic SQL. See the prompt in Figure 15.

• DIN-SQL’s Self-Correctio prompt: We have not modified the self-correction prompt for DIN-
SQL. The input consists of the schema, related row displays with corresponding column descrip-
tions, the question, a hint (evidence), and the SQL query requiring correction. DIN-SQL employs
a chain-of-thought (CoT) approach, prompting the model to first generate reasoning steps before
producing the revised SQL query. See the prompt in Figure 13.

A.3 DETAILS OF DATA AUGMENTATION

As shown in Table 7, on average, READER parses over 10 sub-SQLs and more than 90 reasoning
paths in the BIRD dataset, while in the Spider dataset, it parses over 8 sub-SQLs and more than 10
reasoning paths. Given the large quantities, we need a strategy for selecting them to optimize costs.
All data enhancements rely on the training set. Firstly, for sub-SQLs, we only select those with

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Decomposition results of three SQL decomposers under complex syntax

SQL query SELECT MAX(horsepower) - (SELECT MAX (horsepower) FROM cars_data A JOIN
car_names B ON A.id=B.makeid WHERE B.model=’fiat’) AS diff FROM cars_data A
JOIN car_names B ON A.id=B.makeid WHERE B.model=’bmw’

READER subquey 1: ’Select’: [’MAX(horsepower)’],
’Where’: ["car_names.model = ’fiat’"],
’Table’: [’FROM cars_data’, ’JOIN car_names AS B’]
subquey 2: ’Select’: [’MAX(horsepower)’, "(subquery 1)"],
’Where’: ["car_names.model = ’bmw’"],
’Table’: [’FROM cars_data’, ’JOIN car_names AS B’]

STEPS subquey 1: [SELECT MAX (horsepower), FROM cars_data A JOIN car_names B
ON A.id = B.makeid, WHERE B.model = "fiat"]
subquery2: [SELECT MAX (horsepower) - (subquery 1), FROM cars_data A JOIN
car_names B ON A.id = B.makeid WHERE B.model = fiat) AS diff, WHERE B.model
= "bmw",]

DeSQL Unable to disassemble, nested query syntax is not supported

Table 10: Results of three SQL parsers generating sub-SQLs

SQL query SELECT MAX (horsepower) FROM cars_data A JOIN car_names B ON
A.id=B.makeid WHERE B.model=’fiat’

READER sub-SQLs: 1: ’SELECT * FROM cars_data AS A’,
2: ’SELECT * FROM cars_data AS A JOIN car_names AS B ON A.id = B.makeid’,
3: ’SELECT MAX(horsepower) FROM cars_data AS A’,
4: "SELECT * FROM cars_data AS A JOIN car_names AS B ON A.id = B.makeid
WHERE B.model = ’fiat’",
5: ’SELECT MAX(horsepower) FROM cars_data AS A JOIN car_names AS B ON
A.id = B.makeid’,
6: "SELECT MAX(horsepower) FROM cars_data AS A JOIN car_names AS B ON
A.id = B.makeid WHERE B.model = ’fiat’"
inference path: [1, 2, 4, 6] or [1, 2, 5, 6] or [1, 3, 5, 6]

STEPS Unable to generate sub-SQL.

DeSQL sub-SQLs: 1: ’SELECT * FROM cars_data AS A’,
2: ’SELECT * FROM cars_data AS A JOIN car_names AS B ON A.id = B.makeid’,
3: "SELECT * FROM cars_data AS A JOIN car_names AS B ON A.id = B.makeid
WHERE B.model = ’fiat’",
4: "SELECT MAX(horsepower) FROM cars_data AS A JOIN car_names AS B ON
A.id = B.makeid WHERE B.model = ’fiat’"
inference path: [1,2,3,4]

constraints that differ from the original SQL by two or fewer in the BIRD dataset. In contrast, some
sub-SQLs in the Spider dataset may correspond to multiple original SQLs. This is because Spider
employs a similar approach of limiting condition deletion to construct its dataset. To gather more
training data, we collect sub-SQLs for Spider, selecting those with constraints that differ from the
original SQL by three or fewer.

Additionally, some sub-SQLs may contain extraneous constraints, such as unnecessary JOIN oper-
ations. Removing or retaining JOIN conditions does not impact the execution results of SQL, so
we do not enhance data in these cases. Finally, we manually review the quality of the generated
data, resulting in 2,110 sub-question/sub-SQL pairs for the BIRD dataset and 1,108 pairs for Spider.
For reasoning paths, we randomly select one reasoning path from the original question to gener-
ate descriptive information and manually eliminate low-quality data. Ultimately, we obtain 9,108
sub-question/sub-SQL pairs for the BIRD dataset and 8,505 pairs for Spider.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Fold 1Fold 2 Fold 3 Fold 4

Fold 1 Fold 2Fold 3 Fold 4

Fold 1 Fold 2 Fold 3Fold 4

Fold 1 Fold 2 Fold 3 Fold 4Generator 1

Generator 2

Generator 3

Generator 4

For traning For inference

READER

Fold 1

Fold 2

Fold 3

Fold 4

Temporary

training set

Temporary

validation set

Training set

for self-correction

The original training set

Figure 6: Constructing a training set for self-correction

A.4 DETAILS OF SELF-CORRECTION

To obtain training data for self-correction, we simulate reasoning using the training set. In this
process, we split the original training set by database into four folds, as shown in Figure 6. Each
fold is designed to be as consistent as possible, ensuring that all samples from a database belong to
only one fold. We use one fold as the reasoning dataset while the other three folds serve as training
data. After completing four training iterations, READER parses the reasoning results and organizes
the input. This approach ultimately yields a training set for self-correction.

A.5 DETAILS OF EXPERIMENTS

A.5.1 DETAILS OF DATASETS

In our work, we conduct experiments on the following datasets:

• BIRD (Li et al., 2023c) is the first cross-domain, large-scale benchmark specifically designed to
bridge the gap between academic research and real-world applications in text-to-SQL parsing. It
features a substantial dataset comprising 12,751 text-to-SQL pairs, 95 databases across 37 pro-
fessional domains, and a total size of 33.4 GB. In comparison to Spider (Yu et al., 2018b) and
WikiSQL (Zhong et al., 2017), BIRD-SQL emphasizes database content and aligns more closely
with real-world scenarios. However, due to hardware limitations of the BIRD submission plat-
form, we are unable to evaluate our model on its test set.

• Spider (Yu et al., 2018b) is a large-scale semantic parsing and text-to-SQL dataset annotated by
11 students from Yale University. It includes a training set with 8,659 samples, a development
set with 1,034 samples, and a test set with 2,147 samples, covering 200 distinct databases across
138 domains. Of these, 160 databases are allocated for training and development, while 40 are
designated for testing.

• Spider-DK (Gan et al., 2021b), Spider-Syn (Gan et al., 2021a), and Spider-Realistic (Deng et al.,
2021) are variants of the original Spider dataset, designed to resemble queries that users might ask
in real-world scenarios. These variants allow for a more comprehensive evaluation of the model’s
robustness in the text-to-SQL task.

Table 11 reports the statistics of Spider and BIRD, where the SQL queries in BIRD are typically
more complex than those in the Spider dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Statistics of BIRD and Spider

Examples Databases tables Domains Row/database

BIRD 12,751 92 7.3 37 549k
Spider 10,181 200 5.1 138 2k

Table 12: Statistics of three typical categories of text-to-SQL errors

Unwanted constraint Misinterpreted constraint Omitted constraint Error gold

percentage 13% 47% 43% 7%

A.5.2 DETAILS OF THREE TYPICAL ERRORS IN TEXT-TO-SQL

We randomly select 100 error samples from the 690 total errors in SFT CodeS-3B and manually cat-
egorized them, It is important to note that a single erroneous sample may contain multiple errors,the
results are in Table 12.

A.5.3 DETAILS OF TRAINING SETTINGS

The maximum input length is set to 4,096 tokens. The learning rate scheduling strategy employs
cosine decay, starting with a learning rate of 1 × 10−4 . The model is trained for 6 epochs, while
the epoch count is increased to 10 during multi-task fine-tuning due to the larger training dataset.
All LoRA parameters utilize the default settings from the Transformers library: the rank r of the
low-rank matrix is 16, the scaling factor is 32, and the dropout rate is 0.1. The LoRA module is
added to the projection layers of the model. During inference, the maximum output token length is
capped at 256 tokens. Greedy decoding is used with a default beam size of 4. The first executable
SQL query is selected as the prediction result for both the Generator and the Corrector.

Table 13: Effect of train parameter λ

λ 0.6 0.8 1.0

EX(%) 50.72 51.76 51.37

A.5.4 EFFECT OF TRAIN PARAMETER

Table 13 presents a comparison of the training performance based on the hyperparameter λ. The
data shown reflects the performance of Generator-1B on the BIRD Dev under different training
parameters. The results indicate that when λ is set to 0.8, the weighting between the question/SQL
pairs and the question/Reason pairs is optimized. If the weight of the Reason pairs is too low, the
model fails to capture reasoning information effectively. Conversely, if λ is set too high, the model
tends to overemphasize the reasoning pairs, neglecting the information from the question/SQL pairs.
Both scenarios can diminish the model’s effectiveness in generating SQL.

A.5.5 RUNTIME ANALYSIS OF READ-SQL

We conducted a comparative analysis of READ-SQL and SFT-CodeS with respect to model size,
training time, inference time, and memory usage on NVIDIA RTX 3090 GPUs with 24 GB of
memory. As READ-SQL-3B slightly outperforms SFT-CodeS-7B on the BID dataset, we use SFT-
CodeS-7B as a benchmark. The experiments were carried out using a two-card setup for training
and a single-card setup for inference, with results presented in the Table 14.
READ-SQL offers the advantage of achieving high performance with minimal memory usage.
Leveraging the LoRA fine-tuning method, it enables efficient training and inference in low-resource
environments compared to full fine-tuning. Furthermore, using only the Generator-3B improves
performance by 1.96% compared to a single 3B model, with almost no increase in inference time.
In addition, READ-SQL-3B surpasses SFT CodeS-7B by nearly 0.37% with smaller inference time
and less memory usage.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 14: Comparative analysis of runtime between READ-SQL and SFT CodeS. READ-SQL com-
prises two components: the Generator and the Corrector, with training and inference divided into
two stages. Data is presented in a sequence where the Generator precedes the Corrector. As the
Generator introduces additional data, the training time is slightly longer.

Model size Training time Estimated
memory usage

Inference time
(s/sample)

BIRD Dev(EX)

SFT CodeS-3B 3B out of memory 6G 2.81 55.02
SFT CodeS-7B 7B out of memory 14G 6.51 57.00
READ-SQL-3B 3B+0.02B 8h 23m + 3h 24m 6.1G 4.65(2.97+1.68) (56.98/57.37)

Table 15: Effect of data organization in fine-tuning

RSF-1B Generator-1B RSF-3B Generator-3B

EX(%) 40.94 51.76 48.63 56.98

A.5.6 THE IMPACT OF DATA ORGANIZATION IN FINE-TUNING

We use multi-task fine-tuning to provide question/SQL pairs and question/reason pairs to the model
simultaneously, guiding it to output different content through pre-specified tokens. Additionally, we
experimented with the Reason-SQL Formatting (RSF) method of data organization, where the model
first outputs the reason and then the SQL. The output format is: reason:(reason text);
SQL: (SQL query). We trained on the BIRD dataset, and the results on the BIRD Dev are in
the Table 15.

This approach is clearly unsuitable for small language models (SLMs) for the following reasons:

• The reason output during model inference contributes to error accumulation, interfering with
subsequent decoding and introducing unnecessary errors.

• Beam search is used for decoding, and including the reason output reduces the available space for
the SQL portion, limiting the model’s ability to generate diverse SQL queries.

A.5.7 ERROR ANALYSIS

To analyze our failures, we randomly select 50 error results from the READ-SQL-3B in the BIRD
Dev and conduct a thorough analysis. We identify the causes of these errors and summarize them
into two primary situations:

• The model’s reasoning ability in text-to-SQL tasks is insufficient. Given the rich table schema
information, the model struggles to accurately identify useful data and generate the corresponding
SQL clauses.

• The model’s capability for schema linking to retrieve information from a large database remains
inadequate, particularly in terms of value retrieval.

The specific error cases are as follows:

• Incorrect columns exist in the SQL query. Despite the relevant information being provided in
the context, the model fails to identify the correct columns. An example is shown in the Table 25.

• Syntax error. Even when the model’s semantics are correct, errors may arise due to variations in
SQL structure. An example is shown in the Table 26.

• The evidence information is ignored. This causes the model to generate incorrect SQL clauses.
An example is shown in the Table 27.

• Joining additional tables. The model generates some unnecessary tables in the SQL query. An
example is shown in the Table 28.

• Added additional operations. The model generates incorrect or extra aggregate functions or
arithmetic expressions. An example is shown in the Table 29.

• Incorrect format. The date format in the predicted SQL is incorrect. Even though the context
provides a correct date format example. An example is shown in the Table 30.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

52.9%

17.6%

11.8%

11.8%

5.9%

Creating New
Constraints

Modified
the original
constraints

Choosing the
wrong constraint

Does not conform to
basic SQL

The original
constraints

are lost

17.6 %

52.9 %

11.8 %
11.8 %

5.9 %

(a) Introduce the Error

52.2%

26.1%
17.4%

4.3%

Choosing the
right constraints

Creating new
constraints Deleted the incorrect

constraint

Modified
potential error
constraints in
basic sql

26.1 %

52.2 %

17.4 %

4.3 %

Creating new
constraints

Modified
potential error
constraints in
basic SQL

(b) Repair Success

Figure 7: Case study in Corrector

• Value Error. This type of error mainly occurs during the schema linking phase, when the corre-
sponding value information is not retrieved. An example is shown in the Table 31.

• Ignore the underlying information in the question. The schema linking phase does not retrieve
the schema related to the problem, resulting in the generation of incorrect SQL. An example is
shown in the Table 32.

A.5.8 CASE STUDY FOR CORRECTOR

To explore the internal mechanism of self-correction, we analyze the results of the Corrector-3B
on the BIRD Dev. Based on the results from Generator-3B, the Corrector-3B successfully fixes 23
errors, referred to as "Repair Success." Simultaneously, it alters 17 correct SQLs, which we term
"Introduce the Error."

Additionally, 856 correct SQLs remain correct after the repair, labeled as "Maintain Correctness,"
while 638 incorrect SQLs remain incorrect, referred to as "Repair Failure." We conduct a detailed
analysis of the two scenarios: Repair Success and Introduce the Error, with the data ratios illustrated
in Figure 7. We categorize the causes of these two phenomena and find that the model tends to invol-
untarily create new constraints, which is the primary reason for introducing errors. Additionally, the
model selects the correct constraints based on the provided beam search results and the additional
table schema information retrieved, which is the main factor contributing to successful repairs.

We categorize the situation of "Introduce the Error" into the following five categories:

• Creating New Constraints: New constraints that have not appeared in the beam search results
are added, leading to errors. An example is shown in Table 33.

• Loss of Original Constraints: After self-correction, the constraints that should have been in-
cluded are lost, resulting in incomplete SQL. An example is shown in the Table 34.

• Non-conformity to Basic SQL: The result after self-correction conflicts with basic SQL, as the
self-correction does not build upon the original beam search results. An example is shown in the
Table 35.

• Choosing the Wrong Constraint: During the self-correction process, an incorrect constraint is
selected. An example is shown in the Table 36.

• Adding Additional Error Constraints: Compared to the original prediction results, self-
correction introduces incorrect constraints in the beam search. An example is shown in the Ta-
ble 37.

We categorize the situation of "Repair Success" into four categories:

• Choosing the Right Constraints: After self-correction, the Corrector selects the correct con-
straints from the beam search results.An example is shown in the Table 38.

• Creating New Constraints: Additional constraints that have not appeared in the beam search
results are added, addressing previously unconsidered situations. An example is shown in the
Table 39.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 16: Execution Accuracy (EX) across queries of varying levels of difficulty on BIRD Dev

Model Simple Moderate Challenging Total

SFT CodeS-1B 57.95 37.42 34.72 49.54
Generator-1B 59.89(+1.94) 41.29(+3.87) 33.33(-1.39) 51.76(+2.22)

READ-SQL-1B 60.56(+2.61) 43.87(+6.45) 31.94(-2.78) 52.87(+3.33)

SFT CodeS-3B 63.35 44.30 36.11 55.02
Generator-3B 65.08(+1.73) 46.67(+2.37) 38.19(+2.08) 56.98(+1.96)

READ-SQL-3B 65.41(+2.06) 47.53(+3.23) 37.50(+1.39) 57.37(+2.35)

SFT CodeS-7B 64.60 46.90 40.30 57.00

Table 17: Execution Accuracy (EX) across queries of varying levels of difficulty on Spider Dev

Model Easy Medium Hard Extra All

SFT CodeS-1B 91.10 83.60 68.40 51.80 77.80
Generator-1B 91.90(+0.80) 83.60(+0.00) 73.60(+5.20) 53.00(+1.20) 80.20(+2.40)

READ-SQL-1B 91.90(+0.80) 86.80(+3.20) 74.70(+6.30) 53.60(+1.80) 80.70(+2.90)

SFT CodeS-3B 93.50 87.00 73.60 61.40 82.20
Generator-3B 94.80(+1.30) 88.60(+1.60) 79.90(+6.30) 58.40(-3.00) 83.80(+1.60)

READ-SQL-3B 94.80(+1.30) 89.20(+2.20) 81.00(+7.40) 58.40(-3.00) 84.20(+2.00)

• Deleting Incorrect Constraints: Compared to the original prediction results, the Corrector re-
moves incorrect constraints. An example is shown in the Table 40.

• Modifying Potential Error Constraints in Basic SQL: The Corrector modifies potential errors
within basic SQL. An example is shown in the Table 41.

A.5.9 CASE STUDY COMPARING READ-SQL AND SFT CODES

We conduct a statistical analysis of the BIRD Dev, SPIDER Dev and three Spider variants datasets
based on difficulty level.

Table 16 presents the specific results from the BIRD Dev, followed by a discussion of our conclu-
sions:

• The Generator generally outperforms SFT-CodeS, showing the greatest improvement at moderate
difficulty levels.

• With the introduction of the Corrector, there are improvements at both simple and moderate diffi-
culty levels, though its effectiveness may decrease at more challenging difficulty levels.

Table 17 presents the specific results from the Spider Dev, followed by a discussion of our conclu-
sions:

• The Generator exhibits the highest growth rate at hard difficulty.
• The addition of the Corrector does not lead to significant improvements.

Table 18 presents the specific results from the three Spider variants, followed by a discussion of our
conclusions:

• On easy and extra-hard levels, its performance is occasionally weaker than SFT CodeS.
• On easy and extra-hard levels, its performance is occasionally weaker than SFT CodeS.
• A significant performance gap between READ-SQL and SFT CodeS is observed in Spider-DK.
• These results indicate that adding extra training data significantly benefits the model on medium-

difficulty tasks but may slightly hinder performance on simpler or extremely complex tasks.
• This further suggests that READ-SQL leverages additional training data more effectively on chal-

lenging datasets, such as BIRD, compared to simpler ones like Spider.

In addition, we present examples where READ-SQL produces correct outputs while SFT CodeS
generates incorrect results under three types of errors, as shown in Tables 19 to Table 24.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 18: Execution Accuracy (EX) on queries of varying difficulty across three Spider variants

Dataset Model Easy Medium Hard Extra All

Spider-Syn SFT CodeS-1B 80.2 68.0 58.2 40.2 64.7
Spider-Syn Generator-1B 77.4(-2.8) 69.5(+1.5) 61.0(+2.8) 39.6(-0.6) 65.1(+0.4)

Spider-Syn SFT CodeS-3B 83.4 74.8 67.8 58.0 73.1
Spider-Syn Generator-3B 84.3(+0.9) 76.1(+1.3) 70.6(+2.8) 56.2(-1.8) 73.9(+0.8)

spider-Realistic SFT CodeS-1B 88.1 77.3 63.6 41.2 70.1
spider-Realistic Generator-1B 87.2(-0.9) 79.8(+2.5) 69.7(+6.1) 42.3(+1.1) 72.2(+2.1)

spider-Realistic SFT CodeS-3B 95.4 84.2 70.7 57.7 78.9
spider-Realistic Generator-3B 93.6(-1.8) 86.2(+2.0) 74.7(+4.0) 62.9(+5.2) 81.1(+2.2)

spider-DK SFT CodeS-1B 79.1 69.5 51.4 40.0 63.2
spider-DK Generator-1B 79.1(+0.0) 70.7(+1.2) 51.4(+0.0) 50.5(+10.5) 65.8(+2.6)

spider-DK SFT CodeS-3B 82.7 76.8 55.4 54.3 70.7
spider-DK Generator-3B 82.7(+0.0) 76.4(-0.4) 62.2(+6.8) 46.7(-7.6) 69.9(-0.8)

Table 19: Unwanted constraints: case 1

Question Please list top three unknown power cards that have promotional types
for arena league in alphabetical order .

Evidence unknown power cards refers to power is null or power = ’*’; promo-
tional types for arena league refers to promotypes = ’arenaleague’;

READ-SQL result SELECT name FROM cards WHERE (power IS NULL OR power =
’*’) AND promotypes = ’arenaleague’ ORDER BY name LIMIT 3

SFT CodeS result SELECT name FROM cards WHERE power IS NULL OR power = ’*’
AND promotypes = ’arenaleague’ ORDER BY name DESC LIMIT 3

Cause analysis Added additional sorting constraints

Table 20: Unwanted constraints: case 2

Question List the elements of all the triple bonds .

Evidence triple bond refers to bond_type = ’#’; element = ’cl’ means Chlorine;
element = ’c’ means Carbon; element = ’h’ means Hydrogen;

READ-SQL result SELECT atom.element FROM connected INNER JOIN bond ON
connected.bond_id = bond.bond_id INNER JOIN atom ON con-
nected.atom_id = atom.atom_id WHERE bond.bond_type = ’#’

SFT CodeS result SELECT DISTINCT atom.element FROM bond
INNER JOIN atom ON bond.molecule_id =
atom.molecule_id WHERE bond.bond_type = ’#’ AND
atom.element IN (’cl’, ’c’, ’h’, ’o’, ’s’, ’n’, ’p’, ’na’, ’br’, ’f’, ’i’, ’sn’)

Cause analysis element adds additional values, resulting in an expanded range

Table 21: Misinterpreted constraints: case 1

Question Please list the CodeS of the schools with a total enrollment of over 500.

Evidence Total enrollment can be represented by ‘enrollment (k-12)‘ + ‘enroll-
ment (ages 5-17)‘;

READ-SQL result SELECT DISTINCT cdscode FROM frpm WHERE cast(‘enrollment
(k-12)‘ + ‘enrollment (ages 5-17)‘ AS REAL) > 500

SFT CodeS result SELECT ‘school code‘ FROM frpm WHERE ‘enrollment (k-12)‘ +
‘enrollment (ages 5-17)‘ > 500

Cause analysis Confusing school code and cdscode

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 22: Misinterpreted constraints: case 2

Question Sort in descending order all patients by birthday for male patient with
albumin not within range.

Evidence albumin not within range refers to alb <= 3.5 or alb >= 5.5; male = sex
= ’M’;

READ-SQL result SELECT patient.id FROM patient INNER JOIN laboratory
ON patient.id = laboratory.id WHERE patient.sex = ’M’ AND
(laboratory.alb <= 3.5 OR laboratory.alb >= 5.5) ORDER BY pa-
tient.birthday DESC

SFT CodeS result SELECT patient.id FROM patient INNER JOIN laboratory
ON patient.id = laboratory.id WHERE patient.sex = ’M’ AND
(laboratory.alb < 3.5 OR laboratory.alb > 5.5) ORDER BY pa-
tient.birthday DESC

Cause analysis Symbols mixed up

Table 23: Omitted constraints: case 1

Question List the patient ID, sex and birthday who has abnormal white blood cell
count. Group them by sex and list the patient by age in ascending order .

Evidence abnormal white blood cell count refers to wbc <= 3.5 or wbc >= 9.0;

READ-SQL result SELECT patient.id, patient.sex, patient.birthday FROM patient INNER
JOIN laboratory ON patient.id = laboratory.id WHERE laboratory.wbc
<= 3.5 OR laboratory.wbc >= 9.0 GROUP BY patient.id, patient.sex,
patient.birthday ORDER BY patient.birthday ASC

SFT CodeS result SELECT patient.id, patient.sex, patient.birthday FROM patient INNER
JOIN laboratory ON patient.id = laboratory.id WHERE laboratory.wbc
BETWEEN 3.5 AND 9.0

Cause analysis Lost the ORDER by condition.

Table 24: Omitted constraints: case 2

Question Between San Diego and Santa Barbara, which county offers the most
number of schools that does not offer physical building? Indicate the
amount.

Evidence Does not offer physical building’ means virtual = F in the database.

READ-SQL result SELECT county, count(school) FROM schools WHERE county IN
(’San Diego’, ’Santa Barbara’) AND virtual = ’F’ GROUP BY county
ORDER BY count(school) DESC LIMIT 1

SFT CodeS result SELECT county, count(cdscode) FROM schools WHERE county IN
(’San Diego’, ’Santa Barbara’) AND virtual = ’F’ GROUP BY county

Cause analysis There is no guarantee of the required number of rows.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 25: Incorrect columns exist in the SQL query

Question: Please list the lowest three eligible free rates for students aged 5-17 in continuation
schools.
Evidence: Eligible free rates for students aged 5-17 = ‘free meal count (ages 5-17)‘ / ‘enrollment
(ages 5-17)‘;

Predicted SQL: SELECT cast(‘free meal count (ages 5-17)‘ AS REAL) / ‘enrollment (ages
5-17)‘ FROM frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode WHERE
schools.edopsname = ’Continuation School’ ORDER BY cast(‘free meal count (ages 5-17)‘ AS
REAL) / ‘enrollment (ages 5-17)‘ LIMIT 3

Gold SQL: SELECT ‘Free Meal Count (Ages 5-17)‘ / ‘Enrollment (Ages 5-17)‘ FROM frpm
WHERE ‘Educational Option Type‘ = ’Continuation School’ AND ‘Free Meal Count (Ages 5-17)‘
/ ‘Enrollment (Ages 5-17)‘ IS NOT NULL ORDER BY ‘Free Meal Count (Ages 5-17)‘ / ‘Enroll-
ment (Ages 5-17)‘ ASC LIMIT 3

Table 26: Syntax error

Question: For the school with the highest average score in Reading in the SAT test, what is its
FRPM count for students aged 5-17?
Evidence: None

Predicted SQL: SELECT frpm.‘frpm count (ages 5-17)‘ FROM
satscores INNER JOIN frpm ON satscores.cds = frpm.cdscode
WHERE satscores.avgscrread = (SELECT max(avgscrread) FROM satscores)

Gold SQL: SELECT T2.‘FRPM Count (Ages 5-17)‘ FROM satscores AS T1 INNER JOIN frpm
AS T2 ON T1.cds = T2.CDSCode ORDER BY T1.AvgScrRead DESC LIMIT 1

Table 27: The evidence information is ignored

Question: When did the first-through-twelfth-grade school with the largest enrollment open?
Evidence: K-12 means First-through-twelfth-grade;

Predicted SQL: SELECT schools.opendate FROM schools INNER JOIN frpm ON
schools.cdscode = frpm.cdscode WHERE frpm.‘school type‘ = ’First-through-twelfth-grade’
ORDER BY frpm.‘enrollment (ages 5-17)‘ DESC LIMIT 1

Gold SQL: SELECT T2.OpenDate FROM frpm AS T1 INNER JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY T1.‘Enrollment (K-12)‘ DESC LIMIT 1

Table 28: Joining additional tables

Question: In Los Angeles how many schools have more than 500 free meals but less than 700 free
or reduced price meals for K-12?
Evidence: None

Predicted SQL: SELECT count(schools.school) FROM schools
INNER JOIN frpm ON schools.cdscode = frpm.cdscode WHERE frpm.‘free meal count (ages
5-17)‘ > 500 AND frpm.‘free meal count (ages 5-17)‘ < 700 AND schools.city = ’Los Angeles’

Gold SQL: SELECT COUNT(CDSCode) FROM frpm WHERE ‘County Name‘ = ’Los Angeles’
AND ‘Free Meal Count (K-12)‘ > 500 AND ‘Free Meal Count (K-12)‘ < 700

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 29: Added additional operations

Question: List the names of schools with more than 30 difference in enrollements between K-12
and ages 5-17? Please also give the full street adress of the schools.
Evidence: Diffrence in enrollement = ‘enrollment (k-12)‘ - ‘enrollment (ages 5-17)‘;

Predicted SQL: SELECT schools.school, schools.StreetAbr FROM
schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode WHERE
abs(frpm.‘enrollment (ages 5-17)‘ - frpm.‘enrollment (k-12)‘) > 30

Gold SQL: SELECT T1.School, T1.StreetAbr FROM schools AS T1 IN-
NER JOIN frpm AS T2 ON T1.CDSCode = T2.CDSCode WHERE
T2.‘Enrollment (K-12)‘ - T2.‘Enrollment (Ages 5-17)‘ > 30

Table 30: Incorrect format

Question: What is the average score in writing for the schools that were opened after 1991 or closed
before 2000? List the school names along with the score. Also, list the communication number of
the schools if there is any.
Evidence: Communication number refers to phone number.;

Predicted SQL: SELECT avg(satscores.avgscrwrite), schools.school, schools.phone
FROM schools INNER JOIN satscores ON schools.cdscode = satscores.cds WHERE
schools.opendate > ’1991-12-31’ AND schools.closeddate < ’2000-12-31’

Gold SQL: SELECT T2.School, T1.AvgScrWrite, T2.Phone, strftime(’%Y’, T2.OpenDate),
strftime(’%Y’, T2.ClosedDate) FROM schools AS T2 LEFT JOIN satscores AS
T1 ON T2.CDSCode = T1.cds WHEREstrftime(’%Y’, T2.OpenDate) > ’1991’ AND
strftime(’%Y’, T2.ClosedDate) < ’2000’

Table 31: Value Error

Question: Please list the zip code of all the charter schools in Fresno County Office of Education.
Evidence: charter schools refers to ‘charter school (y/n)‘ = 1 in the table fprm;

Predicted SQL: SELECT schools.zip FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode WHERE schools.county = ’Fresno’ AND frpm.‘charter school (y/n)‘ = 1

Gold SQL: SELECT T2.Zip FROM frpm AS T1 INNER JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode WHERE T1.‘District Name‘ = ’Fresno County Office of Education’
AND T1.‘Charter School (Y/N)‘ = 1

Table 32: Ignore the underlying information in the question

Question: State the names and full communication address of high schools in Monterey which has
more than 800 free or reduced price meals for ages 15-17?
Evidence: Full communication address should include zip, street, city, state;

Predicted SQL: SELECT schools.school, schools.zip, schools.street, schools.city, schools.state
FROM schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode WHERE frpm.‘free meal
count (ages 15-17)‘ > 800 AND schools.city = ’Monterey’

Gold SQL: SELECT T1.‘School Name‘, T2.Zip, T2.Street, T2.City, T2.State FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.County = ’Monterey’
AND T1.‘Free Meal Count (Ages 5-17)‘ > 800 AND T1.‘School Type‘ = ’High Schools (Public)’

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 33: Creating new incorrect constraints. Corrector introduces a new WHERE constraint, but
this is wrong.

Question: What is the percentage of the customers who used EUR in 2012/8/25?
Evidence: ’2012/8/25’ can be represented by ’2012-08-25’;

Generator’s beam search:
SELECT cast(sum(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE 0 END) AS REAL)
* 100 / count(customers.customerid) FROM customers INNER JOIN transactions_1k ON cus-
tomers.customerid = transactions_1k.customerid WHERE transactions_1k.date = ’2012-08-25’
SELECT cast(sum(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE 0 END) AS REAL)
* 100 / count(customers.customerid) FROM customers INNER JOIN transactions_1k ON cus-
tomers.customerid = transactions_1k.customerid WHERE transactions_1k.‘date‘ = ’2012-08-25’
SELECT cast(count(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE NULL END) AS
REAL) * 100 / count(customers.customerid) FROM customers INNER JOIN transactions_1k ON
customers.customerid = transactions_1k.customerid WHERE transactions_1k.date = ’2012-08-25’
SELECT cast(count(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE NULL END) AS
REAL) * 100 / count(customers.customerid) FROM customers INNER JOIN transactions_1k ON
customers.customerid = transactions_1k.customerid WHERE transactions_1k.‘date‘ = ’2012-08-
25’

Low confidence constraints:
Where : (transactions_1k.date = ’2012-08-25’ | transactions_1k.’date’ = ’2012-08-25’);
Select : (CAST(SUM(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE 0 END) AS
FLOAT) * 100 | CAST(COUNT(CASE WHEN customers.currency = ’EUR’ THEN 1 ELSE NULL
END) AS FLOAT) * 100);

Basic SQL:
SELECT COUNT(customers.customerid) FROM customers INNER JOIN transactions_1k ON cus-
tomers.customerid = transactions_1k.customerid

Corrector result SQL:
SELECT cast(sum(iif(transactions_1k.‘date‘ = ’2012-08-25’, 1, 0)) AS REAL) * 100 /
count(transactions_1k.customerid) FROM transactions_1k INNER JOIN customers ON transac-
tions_1k.customerid = customers.customerid WHERE customers.currency = ’EUR’

Gold SQL:
SELECT CAST(SUM(IIF(T2.Currency = ’EUR’, 1, 0)) AS FLOAT) * 100 /
COUNT(T1.CustomerID) FROM transactions_1k AS T1 INNER JOIN customers AS T2
ON T1.CustomerID = T2.CustomerID WHERE T1.Date = ’2012-08-25’

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 34: Loss of Original Constraints. Corrector loses the "SELECT ’District Code’" constraint in
the correct SQL.

Question: What is the Percent (%) Eligible Free (K-12) in the school administered by an adminis-
trator whose first name is Alusine. List the district code of the school.
Evidence: percent (%) eligible free (k-12) = ‘free meal count (k-12)‘ / ‘enrollment (k-12)‘ * 100%;

Generator’s beam search:
SELECT cast(frpm.‘free meal count (k-12)‘ AS REAL) * 100 / frpm.‘enrollment (k-12)‘,
frpm.‘district code‘ FROM schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode
WHERE schools.admfname1 = ’Alusine’
SELECT cast(frpm.‘free meal count (k-12)‘ AS REAL) * 100 / frpm.‘enrollment (k-12)‘,
frpm.‘district code‘ FROM frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode
WHERE schools.admfname1 = ’Alusine’
SELECT cast(frpm.‘free meal count (k-12)‘ AS REAL) * 100 / frpm.‘enrollment (k-12)‘,
frpm.‘district code‘ FROM schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode
WHERE schools.admfname1 = ’Alusine’
SELECT cast(frpm.free meal count (k-12) AS REAL) * 100 / frpm.‘enrollment (k-12)‘,
frpm.‘district code‘ FROM frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode
WHERE schools.admfname1 = ’Alusine’

Low confidence constraints:
Select: (CAST(frpm.’free meal count (k-12)’ AS FLOAT) * 100 / frpm.’enrollment (k-
12)’ | CAST(frpm.’free meal count (k-12)’ AS FLOAT) * 100 / frpm.’enrollment (k-12)’ |
frpm.’District Code’);

Basic SQL:
SELECT * FROM schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode WHERE
schools.admfname1 = ’Alusine’

Corrector result SQL:
SELECT cast(frpm.‘free meal count (k-12)‘ AS REAL) * 100 / frpm.‘enrollment (k-12)‘ FROM
schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode WHERE schools.admfname1 =
’Alusine’

Gold SQL:
SELECT T1.‘Free Meal Count (K-12)‘ * 100 / T1.‘Enrollment (K-12)‘, T1.‘District Code‘
FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE
T2.AdmFName1 = ’Alusine’

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 35: Non-conformity to Basic SQL. Corrector does not conform to Basic SQL and loses the
LIMIT constraint.

Question: What is the administrator’s email address of the chartered school with the fewest students
enrolled in grades 1 through 12?"
Evidence: Charted school means ‘charter school (y/n)‘ = 1 in the table frpm; Students enrolled in
grades 1 through 12 refers to ‘enrollment (k-12)‘;

Generator’s beam search:
SELECT schools.admemail1 FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode WHERE frpm.‘charter school (y/n)‘ = 1 ORDER BY frpm.‘enrollment (k-12)‘
LIMIT 1
SELECT schools.admemail1 FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode WHERE frpm.‘charter school (y/n)‘ = 1 ORDER BY frpm.‘enrollment (k-12)‘ ASC
LIMIT 1
SELECT schools.admemail1 FROM frpm INNER JOIN schools ON frpm.cdscode =
schools.cdscode WHERE schools.‘charter school (y/n)‘ = 1 ORDER BY frpm.‘enrollment (k-12)‘
LIMIT 1
SELECT schools.admemail1 FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode WHERE frpm.‘charter school (y/n)‘ = 1 ORDER BY frpm.‘enrollment (ages 5-17)‘
LIMIT 1

Low confidence constraints:
Order: (ORDER BY frpm.’enrollment (k-12)’ | ORDER BY frpm.’enrollment (k-12)’ ASC | OR-
DER BY frpm.’enrollment (ages 5-17)’);
Where: (frpm.’charter school (y/n)’ = 1 | schools.’charter school (y/n)’ = 1);

Basic SQL:
SELECT schools.admemail1 FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode LIMIT 1

Corrector result SQL:
ELECT schools.admemail1 FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode WHERE frpm.‘enrollment (k-12)‘ = (SELECT min(‘enrollment (k-12)‘) FROM frpm)

Gold SQL:
SELECT T2.AdmEmail1 FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1.‘Charter School (Y/N)‘ = 1 ORDER BY T1.‘Enrollment (K-12)‘ ASC
LIMIT 1

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 36: Choosing the Wrong Constraint. Corrector selected the wrong SELECT constraint in low
confidence constraints.

Question: For the driver who set the fastest lap speed in race No.933, where does he come from?
Evidence: fastest lap speed refers to MAX(fastestlapspeed);

Generator’s beam search:
SELECT drivers.nationality FROM drivers INNER JOIN results ON drivers.driverid = re-
sults.driverid WHERE results.raceid = 933 ORDER BY results.fastestlapspeed DESC LIMIT 1
SELECT drivers.forename, drivers.surname FROM drivers INNER JOIN results ON
drivers.driverid = results.driverid WHERE results.raceid = 933 ORDER BY results.fastestlapspeed
DESC LIMIT 1
SELECT drivers.forename, drivers.surname FROM results INNER JOIN drivers ON re-
sults.driverid = drivers.driverid WHERE results.raceid = 933 ORDER BY results.fastestlapspeed
DESC LIMIT 1
SELECT drivers.nationality FROM results INNER JOIN drivers ON results.driverid =
drivers.driverid WHERE results.raceid = 933 ORDER BY results.fastestlapspeed DESC LIMIT1

Low confidence constraints:
Select: (drivers.nationality | (’drivers.forename’, ’drivers.surname’));

Basic SQL:
SELECT * FROM drivers INNER JOIN results ON drivers.driverid = results.driverid WHERE
results.raceid = 933 ORDER BY results.fastestlapspeed DESC LIMIT 1

Corrector result SQL:
SELECT drivers.forename, drivers.surname FROM drivers INNER JOIN results ON
drivers.driverid = results.driverid WHERE results.raceid = 933 ORDER BY results.fastestlapspeed
DESC LIMIT 1

Gold SQL:
SELECT T1.nationality FROM drivers AS T1 INNER JOIN results AS T2 ON T2.driverId
= T1.driverId WHERE T2.raceId = 933 AND T2.fastestLapTime IS NOT NULL ORDER BY
T2.fastestLapSpeed DESC LIMIT 1

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 37: Adding Additional Error Constraints. The original result of the Generator had no extra
constraints, but the Corrector added.

Question: How many members of the Student_Club have majored Environmental Engineering?
Evidence: ’Environmental Engineering’ is the major name;

Generator’s beam search:
SELECT count(member.member_id) FROM member INNER JOIN major ON mem-
ber.link_to_major = major.major_id WHERE major.major_name = ’Environmental Engineering’
SELECT count(DISTINCT member.member_id) FROM member INNER JOIN major ON mem-
ber.link_to_major = major.major_id WHERE major.major_name = ’Environmental Engineering’
SELECT count(member.member_id) FROM member INNER JOIN major ON mem-
ber.link_to_major = major.major_id WHERE major.major_name = ’Environmental Engineering’
AND member.position = ’Student_Club’
SELECT count(member.first_name) FROM member INNER JOIN major ON mem-
ber.link_to_major = major.major_id WHERE major.major_name = ’Environmental Engineering’

Low confidence constraints:
Select : (COUNT(member.member_id) | COUNT(DISTINCT member.member_id) |
COUNT(member.first_name)); Where : (member.position = ’Student_Club’);

Basic SQL:
SELECT * FROM member INNER JOIN major ON member.link_to_major = major.major_id
WHERE major.major_name = ’Environmental Engineering’

Corrector result SQL:
SELECT count(member.member_id) FROM member INNER JOIN major ON mem-
ber.link_to_major = major.major_id WHERE major.major_name = ’Environmental Engineering’
AND member.position = ’Student_Club’

Gold SQL:
SELECT COUNT(T1.member_id) FROM member AS T1 INNER JOIN major AS T2 ON
T1.link_to_major = T2.major_id WHERE T2.major_name = ’Environmental Engineering’

Table 38: Choosing the Right Constraints. Corrector selects the correct constraint among the low
confidence constraints

Question: What is the unabbreviated mailing address of the school with the highest FRPM count
for K-12 students?
Evidence: None;

Generator’s beam search:
SELECT schools.mailstrabr FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘free meal count (k-12)‘ DESC LIMIT 1
SELECT schools.mailstreet FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘free meal count (k-12)‘ DESC LIMIT 1
SELECT schools.mailstrabr FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘frpm count (k-12)‘ DESC LIMIT 1
SELECT schools.mailstrabr FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘free meal count (k-12)‘ DESC LIMIT 1

Low confidence constraints:
Select : (schools.mailstrabr | schools.mailstreet);
Order : (ORDER BY frpm.’free meal count (k-12)’ DESC |
ORDER BY frpm.’frpm count (k-12)’ DESC | ORDER BY frpm.’free meal count (k-12)’
DESC);

Basic SQL:
SELECT * FROM schools INNER JOIN frpm ON schools.cdscode = frpm.cdscode LIMIT 1

Corrector result SQL:
SELECT DISTINCT schools.mailstreet FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘frpm count (k-12)‘ DESC LIMIT 1

Generator’s wrong SQL:
SELECT schools.mailstrabr FROM schools INNER JOIN frpm ON schools.cdscode =
frpm.cdscode ORDER BY frpm.‘free meal count (k-12)‘ DESC LIMIT 1

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 39: Creating new correct constraints. Corrector adds a SELECT constraint that was not present
before.

Question: What is the average writing score of each of the schools managed by Ricci Ulrich? List
the schools and the corresponding average writing scores.
Evidence: Usually, administrators manage the school stuff.;

Generator’s beam search:
SELECT avg(satscores.avgscrwrite) FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’
SELECT avg(satscores.avgscrwrite) FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’
SELECT avg(satscores.avgscrwrite) FROM satscores INNER JOIN schools ON satscores.cds =
schools.cdscode WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’
SELECT cast(avg(satscores.avgscrwrite) AS REAL) FROM schools INNER JOIN satscores ON
schools.cdscode = satscores.cds WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1
= ’Ulrich’

Low confidence constraints:
Select : (AVG(satscores.avgscrwrite) | CAST(AVG(satscores.avgscrwrite) AS FLOAT));

Basic SQL:
SELECT * FROM schools INNER JOIN satscores ON schools.cdscode = satscores.cds WHERE
schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’

Corrector result SQL:
SELECT schools.school , avg(satscores.avgscrwrite) FROM schools INNER JOIN satscores ON
schools.cdscode = satscores.cds WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1
= ’Ulrich’ GROUP BY schools.school

Generator’s wrong SQL:
SELECT avg(satscores.avgscrwrite) FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 40: Deleting Incorrect Constraints. The Corrector removes the WHERE constraint from the
results in the Generator.

Question: Please list the phone numbers of the schools with the top 3 SAT excellence rate.
Evidence: Excellence rate = numge1500 / numtsttakr;

Generator’s beam search:
SELECT schools.phone FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE cast(satscores.numge1500 AS REAL) * 100 / satscores.numtsttakr = (SE-
LECT max(cast(numge1500 AS REAL) * 100 / numtsttakr) FROM satscores) LIMIT 3
SELECT schools.phone FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE cast(satscores.numge1500 AS REAL) / satscores.numtsttakr = (SELECT
max(cast(numge1500 AS REAL) / numtsttakr) FROM satscores) LIMIT 3
SELECT schools.phone FROM satscores INNER JOIN schools ON satscores.cds =
schools.cdscode ORDER BY cast(satscores.numge1500 AS REAL) / satscores.numtsttakr
DESC LIMIT 3
SELECT schools.phone FROM satscores INNER JOIN schools ON satscores.cds =
schools.cdscode ORDER BY satscores.numge1500 / satscores.numtsttakr DESC LIMIT 3

Low confidence constraints:
Where : (CAST(satscores.numge1500 AS FLOAT) * 100 / satscores.numtsttakr
| (SELECT MAX(CAST(numge1500 AS FLOAT) * 100 / numtsttakr) FROM
satscores) | CAST(satscores.numge1500 AS FLOAT) / satscores.numtsttakr | (SELECT
MAX(CAST(numge1500 AS FLOAT) / numtsttakr) FROM satscores));
Order : (ORDER BY CAST(satscores.numge1500 AS FLOAT) / satscores.numtsttakr DESC |
ORDER BY satscores.numge1500 / satscores.numtsttakr DESC);

Basic SQL:
SELECT schools.phone FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds LIMIT 3

Corrector result SQL:
SELECT schools.phone FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds ORDER BY cast(satscores.numge1500 AS REAL) / satscores.numtsttakr DESC
LIMIT 3

Generator’s wrong SQL:
SELECT schools.phone FROM schools INNER JOIN satscores ON schools.cdscode =
satscores.cds WHERE cast(satscores.numge1500 AS REAL) * 100 / satscores.numtsttakr
= (SELECT max(cast(numge1500 AS REAL) * 100 / numtsttakr) FROM satscores) LIMIT 3

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 41: Modifying Potential Error Constraints in Basic SQL. Additional tables were connected in
basic SQL, and Corrector corrected it.

Question: List all patients with their sex and date of birthday, whose AST glutamic oxaloacetic
transaminase (GOT) index is within normal range for loboratory examination in 1994.
Evidencd: AST glutamic oxaloacetic transaminase (got) index is within normal range refers to got
< 60; examination in 1994 refers to year(date) = 1994;

Generator’s beam search:
ELECT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON laboratory.id =
patient.id INNER JOIN examination ON patient.id = examination.id WHERE strftime(’%Y’, labo-
ratory.‘date‘) = ’1994’ AND laboratory.got < 60
SELECT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON laboratory.id =
patient.id INNER JOIN examination ON patient.id = examination.id WHERE strftime(’%Y’, labo-
ratory.date) = ’1994’ AND laboratory.got < 60
SELECT DISTINCT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON lab-
oratory.id = patient.id INNER JOIN examination ON patient.id = examination.id WHERE strf-
time(’%Y’, laboratory.‘date‘) = ’1994’ AND laboratory.got < 60
SELECT DISTINCT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON lab-
oratory.id = patient.id INNER JOIN examination ON patient.id = examination.id WHERE strf-
time(’%Y’, laboratory.date) = ’1994’ AND laboratory.got < 60

Where : (STRFTIME(’%Y’, laboratory.’date’) = ’1994’ | STRFTIME(’%Y’, laboratory.date) =
’1994’); Select : (DISTINCT);

Basic SQL:
SELECT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON laboratory.id =
patient.id INNER JOIN examination ON patient.id = examination.id WHERE laboratory.got < 60

Corrector result SQL:
SELECT patient.sex, patient.birthday FROM patient INNER JOIN laboratory ON patient.id = lab-
oratory.id WHERE strftime(’%Y’, laboratory.‘date‘) = ’1994’ AND laboratory.got < 60

Generator’s wrong SQL:
ELECT patient.sex, patient.birthday FROM laboratory INNER JOIN patient ON laboratory.id =
patient.id INNER JOIN examination ON patient.id = examination.id WHERE strftime(’%Y’, labo-
ratory.‘date‘) = ’1994’ AND laboratory.got < 60

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Input SQL

"SELECT DISTINCT T1.AdmFName1, T1.District FROM schools AS T1 INNER JOIN (SELECT
admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT(admfname1) DESC LIMIT
2) AS T2 ON T1.AdmFName1 = T2.admfname1"

Output

SQL Sub-queries
Sub-query 1: "SELECT admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT
(admfname1) DESC LIMIT 2",
Sub-query 2: "SELECT DISTINCT T1.AdmFName1, T1.District FROM schools AS T1 INNER
JOIN (SELECT admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT (admf-
name1) DESC LIMIT 2) AS T2 ON T1.AdmFName1 = T2.admfname1"

Decomposed sub-SQLs
Sub-query 1: {
"1": "SELECT * FROM schools",
"2": "SELECT * FROM schools GROUP BY admfname1",
"3": "SELECT * FROM schools LIMIT 2",
"4": "SELECT admfname1 FROM schools",
"5": "SELECT * FROM schools GROUP BY admfname1 ORDER BY COUNT (admfname1) DESC",
"6": "SELECT * FROM schools GROUP BY admfname1 LIMIT 2",
"7": "SELECT admfname1 FROM schools GROUP BY admfname1",
"8": "SELECT admfname1 FROM schools LIMIT 2",
"9": "SELECT * FROM schools GROUP BY admfname1 ORDER BY COUNT (admfname1) DESC
LIMIT 2",
"10": "SELECT admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT (admf-
name1) DESC",
"11": "SELECT admfname1 FROM schools GROUP BY admfname1 LIMIT 2",
"12": "SELECT admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT (admf-
name1) DESC LIMIT 2" },
Sub-query 2: {
"1": "SELECT * FROM schools AS T1",
"2": "SELECT * FROM schools AS T1 INNER JOIN (SELECT admfname1 FROM schools GROUP
BY admfname1 ORDER BY COUNT (admfname1) DESC LIMIT 2) AS T2 ON T1.AdmFName1 =
T2.admfname1",
"3": "SELECT DISTINCT * FROM schools AS T1",
"4": "SELECT DISTINCT * FROM schools AS T1 INNER JOIN (SELECT admfname1 FROM
schools GROUP BY admfname1 ORDER BY COUNT (admfname1) DESC LIMIT 2) AS T2 ON
T1.AdmFName1 = T2.admfname1",
"5": "SELECT DISTINCT T1.AdmFName1, T1.District FROM schools AS T1",
"6": "SELECT DISTINCT T1.AdmFName1, T1.District FROM schools AS T1 INNER JOIN
(SELECT admfname1 FROM schools GROUP BY admfname1 ORDER BY COUNT(admfname1)
DESC LIMIT 2) AS T2 ON T1.AdmFName1 = T2.admfname1" }

Reasoning Paths
Sub-query 1: {
"p1": [1, 2, 5, 9, 12], "p2": [1, 2, 5, 10, 12], "p3": [1, 2, 6, 9, 12],
"p4": [1, 2, 6, 11, 12], "p5": [1, 2, 7, 10, 12], "p6": [1, 2, 7, 11, 12],
"p7": [1, 3, 6, 9, 12], "p8": [1, 3, 6, 11, 12], "p9": [1, 3, 8, 11, 12],
"p10": [1, 4, 7, 10, 12], "p11": [1, 4, 7, 11, 12], "p12": [1, 4, 8, 11, 12] },

Sub-query 2: {
"p1": [1, 2, 4, 6], "p2": [1, 3, 4, 6], "p3": [1, 3, 5, 6] }

Figure 8: An example of input and output in READER

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Instructions
You are an expert at translating SQL queries into natural language questions. Your task is to
generate a clear, concise, and detailed question that accurately captures the intent of the SQL
query.

Example
SQL Query: SELECT avg(ratings.rating_score) FROM movies INNER JOIN ratings
ON movies.movie_id = ratings.movie_id WHERE movies.movie_title = ’When Will I Be
Loved’
Generated Question: What is the average rating for movie titled ’When Will I Be Loved’?

SQL Query: SELECT products.name FROM products INNER JOIN sales ON
products.productid = sales.productid WHERE sales.salespersonid = 20 ORDER BY
sales.quantity DESC LIMIT 1
Generated Question: What is the name of the product that is most sold by sale person id 20?

SQL Query: {Origin SQL}
Generated Question: {Origin question}

Now, create a detailed yet concise question that is semantically consistent with the following
SQL query. Ensure that the generated question closely follows the structure of the example,
while accounting for any differences in the SQL.

SQL Query: {Sub-SQL}
Generated Question:

Figure 9: Sub-question generation prompt for the augmented (sub-question, sub-SQL) pairs

Original (Question,SQL) pair
Question: What are the URL to the list page on Mubi of the lists with followers between 1-2
and whose last update timestamp was on 2012?
SQL: SELECT list_url FROM LISTS WHERE list_update_timestamp_utc LIKE ’2012%’
AND list_followers BETWEEN 1 AND 2 ORDER BY list_update_timestamp_utc DESC
LIMIT 1

(sub-question, sub-SQL) pairs

Pair #1:
sub-question: What are the URLs of the lists on Mubi with a last update timestamp in 2012
and a follower count between 1 and 2, sorted by the update timestamp in descending order?
sub-SQL: SELECT list_url FROM LISTS WHERE list_update_timestamp_utc LIKE
’2012%’ AND list_followers BETWEEN 1 AND 2 ORDER BY list_update_timestamp_utc
DES

Pair #2:
sub-question: What is the URL of the list page on Mubi with the fewest followers, where
the last update timestamp is the most recent?
sub-SQL: SELECT list_url FROM LISTS WHERE list_followers BETWEEN 1 AND 2
ORDER BY list_update_timestamp_utc DESC LIMIT 1

Figure 10: An example of a (sub-question, sub-SQL) pair

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Instructions
Generate a chain-of-thought (CoT) reasoning process that explains how each sub-SQL query
incrementally builds towards answering the original question. Ensure the reasoning is clear,
concise, and logically follows the progression of the sub-SQLs.

Examples
Question: What is the average writing score of each of the schools managed by Ricci
Ulrich? List the schools and the corresponding average writing scores.
Sub-SQLs list: /**
1.SELECT * FROM satscores
2.SELECT * FROM satscores INNER JOIN schools ON satscores.cds = schools.cdscode
3.SELECT * FROM satscores INNER JOIN schools ON satscores.cds = schools.cdscode
HWERE schools.admlname1 = ’Ulrich’
4.SELECT * FROM satscores INNER JOIN schools ON satscores.cds = schools.cdscode
WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 = ’Ulrich’
5.SELECT satscores.avgscrwrite FROM satscores INNER JOIN schools ON satscores.cds
= schools.cdscode WHERE schools.admfname1 = ’Ricci’ AND schools.admlname1 =
’Ulrich’ **/

Now, the requirements are as follows: the output must be short and consist of a sentence,
each sub-SQL generates half of a sentence, split by ’,’, only the reasoning process needs to
be output and output in English:

Generate reasoning path:
First, select information from satscores, then join the schools table, add school information,
and add a filter based on Ricci Ulrich; finally, choose to display the average writing score.

I will provide a new question and sub-SQLs list. Following the above example, generate the
corresponding reasoning path step-by-step.

Question: {Question}
Sub-SQLs list: /**
{Sub-SQLs list} **/

Now, The requirements are as follows: the output must be short and consist of a sentence,
each sub-SQL generates half of a sentence, split by ’,’, only the reasoning process needs to
be output and output in English:

Generate reasoning path:

Figure 11: Reason generation prompt

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Reasoning path
Sub-SQL 1 : SELECT * FROM LISTS,
Sub-SQL 2 : SELECT * FROM LISTS ORDER BY list_update_timestamp_utc DESC,
Sub-SQL 3 : SELECT * FROM LISTS WHERE list_followers BETWEEN 1 AND 2 OR-
DER BY list_update_timestamp_utc DESC,
Sub-SQL 4 : SELECT * FROM LISTS WHERE list_update_timestamp_utc LIKE ’2012%’
AND list_followers BETWEEN 1 AND 2 ORDER BY list_update_timestamp_utc DESC,
Sub-SQL 5 : SELECT * FROM LISTS WHERE list_update_timestamp_utc LIKE ’2012%’
AND list_followers BETWEEN 1 AND 2 ORDER BY list_update_timestamp_utc DESC
LIMIT 1,
Sub-SQL 6 : SELECT list_url FROM LISTS WHERE list_update_timestamp_utc LIKE
’2012%’ AND list_followers BETWEEN 1 AND 2 ORDER BY list_update_timestamp_utc
DESC LIMIT 1

(question, reason) pair

question: What are the URL to the list page on Mubi of the lists with followers between 1-2
and whose last update timestamp was on 2012?
reason: Select all lists, then sort by update timestamp in descending order; filter for lists
with followers between 1-2 and an update timestamp in 2012; Keep the order and limit it to
the first item; retrieve the URL for the specified list.

Figure 12: An example of a (question, reason) pair, where the reason is generated from the given
reasoning path for the question

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

SYSTEM_SELF_CORRECTION_PROMPT
For the given question, use the provided tables, columns, foreign keys, and primary keys to
fix the given SQLite SQL QUERY for any issues. If there are any problems, fix them. If
there are no issues, return the SQLite SQL QUERY as is. Hint helps you to write the correct
sqlite SQL query.
Use the following instructions for fixing the sqlite SQL query:
1) Avoid redundant columns in SELECT clause, all of the columns should be mentioned in
the question.
2) Pay attention to the columns that are used for the JOIN by checking the Foreign keys.
3) Pay attention to the columns that are used for the WHERE statement.
4) Pay attention to the columns that are used for the GROUP BY statement.
5) Pay attention to the columns that are used for the ORDER BY statement.
6) check that all of the columns exist in the table and there are no typos.
7) Use CAST when is needed.
8) USE CASE WHEN is needed.

Few examples of this task are:
Schema of the database with sample rows and column descriptions:
CREATE TABLE movies (movie_id INTEGER NOT NULL, movie_release_year INTE-
GER,)
3 rows from movies table:
movie_id movie_title movie_release_year movie_url
Table: movies
Column movie_id: column description -> ID related to the movie on Mubi
Column movie_title: column description -> Name of the movie
Column movie_release_year: column description -> Release year of the movie
Column movie_url: column description -> URL to the movie page on Mubi
Q: Name movie titles released in year 1945. Sort the listing by the descending order of
movie popularity.
Hint: released in the year 1945 refers to movie_release_year = 1945;
SQL: SELECT movie_title, movie_popularity FROM movies WHERE movie_release_year
= 1945/01/01 ORDER BY movie_popularity DESC LIMIT 1
A: Let’s think step by step to find the correct answer.
1) The column movie_popularity is not mentioned in the question so it’s redundant.
2) JOIN is not required as there is no need to join any tables.
3) The condition movie_release_year = 1945/01/01 is not correct. The correct condition is
movie_release_year = 1945.
4) GROUP BY is not required as there is no need to group any columns.
5) The ORDER BY clause is correct.
6) all columns are correct and there are no typo errors.
7) CAST is not required as there is no need to cast any columns. 8) CASE is not required as
there is no need to use CASE.
So, the final sqlite SQL query answer to the question the given ques-
tion is = Revised_SQL: SELECT movie_title FROM movies WHERE
movie_release_year = 1945 ORDER BY movie_popularity DESC LIMIT 1

Evaluate the correctness of this query for the given question. Hint helps you to write the
correct SQL query. Correct it if there are any issues. If there are no issues, return the SQLite
SQL QUERY as is. Schema of the database with sample rows and column descriptions:
{schema}
{columns_descriptions}
Q: {question}
Hint: {hint}
SQL: {sql_query}
A: Let’s think step by step to find the correct answer.

Figure 13: The DIN-SQL’s Self-Correction prompt by GPT-4o, use ‘...‘ to replace part of the content
to decompress space.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Instructions
You are an expert in generating SQL. Your task is to compare the predicted SQL results in
beam search and regenerate the correct SQL. I will provide you with the relevant database
schema, additional table schema, value matching, beam search results, error execute mes-
sages, the basic SQL composed of the same parts, and the evidence related to SQL. Regen-
erate the SQL corresponding to the question based on this information.
Field Explanation:
- Table schema: table_name columns = [talbe_name.column_name (column type | column
name | examples of value)];
- Additional table schema: table_name (table_name.column_name | column type | column
description | value description);
- Value matching: The values that need to be matched in the fuzzy constraints.
table_name.column_name (similar value);
- Beam search results: The results of the beam search.
- Error excute messages: The error message generated by the predicted SQL when executed.
- Basic SQL: In the beam search results, the SQL consists of the same clauses.
- Evidence: The evidence related to the SQL statement.
- Question: The question that needs to be answered by the SQL statement.

Here is a example
Table schema: table location , columns = [location.state (text | values : Elbasan , Tirane) ,
location.statecode (text | values : AL , DZ) , location.city (text | values : Elbasan , Tirana)
, location.country (text | values : Albania , Algeria) ,]
Additional table schema: table user : (user.gender | text | user’s gender | male / female /
unknown);
Value matching: user.gender (Male); location.city (Hale); location.city (Malm);
location.city (River Vale)
Beam search results:
Result 1 : SELECT cast(sum(CASE WHEN gender = ’Male’ THEN 1 ELSE 0 END) AS
REAL) * 100 / count(*) FROM twitter WHERE sentiment > 0
Result 2 : Result 3 : Result 4 :
Error execute messages: no such column: gender;
Basic SQL: SELECT * FROM twitter
Evidence: positive sentiment refers to sentiment > 0; male user refers to gender = ’Male’;
percentage = Divide (Count(tweetid where gender = ’Male’), Count (tweetid)) * 100;
Question: Among all the tweets with a positive sentiment, what is the percentage of those
posted by a male user?
Final SQL : SELECT sum(CASE WHEN USER.gender = ’Male’ THEN 1.0 ELSE 0 END)
/ count(twitter.tweetid) AS per FROM twitter INNER JOIN USER ON twitter.userid =
USER.userid WHERE twitter.sentiment > 0

Based on the above example, compare the results of the beam search provided below, You
only need to output the final SQL, and don’t output the others.
Table schema: {Table schema}
Additional table schema: {Additional table schema}
Value matching: {Value matching}
Beam search results: {Different constraints}
Error execute messages: {Error execute messages}
Basic SQL: {Basic SQL}
Evidence: {Evidence}
Question: {Question}
Final SQL :

Figure 14: The Self-Correction prompt by GPT-4o to replace Corrector in READ-SQL

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Instructions
You are an expert in generating SQL. Your task is to compare the predicted SQL results in
beam search and regenerate the correct SQL. I will provide you with the relevant database
schema, Beam search results, and the evidence related to SQL. Regenerate the SQL corre-
sponding to the question based on this information.
Field Explanation:
- Table schema: table_name columns = [talbe_name.column_name (column type | column
name | examples of value)];
- Beam search results: The results of the beam search.
- Error excute messages: The error message generated by the predicted SQL when executed.
- Evidence: The evidence related to the SQL statement.
- Question: The question that needs to be answered by the SQL statement.

Here is a example
Table schema: table location , columns = [location.state (text | values : Elbasan , Tirane) ,
location.statecode (text | values : AL , DZ) , location.city (text | values : Elbasan , Tirana)
, location.country (text | values : Albania , Algeria) ,]
Beam search results:
Result 1 : SELECT cast(sum(CASE WHEN gender = ’Male’ THEN 1 ELSE 0 END) AS
REAL) * 100 / count(*) FROM twitter WHERE sentiment > 0
Result 2 : SELECT cast(sum(CASE WHEN user.gender = ’Male’ THEN 1 ELSE 0 END)
AS REAL) * 100 / count(*) FROM twitter INNER JOIN USER ON twitter.userid =
USER.userid WHERE twitter.sentiment > 0
Result 3 : SELECT cast(sum(CASE WHEN user.gender = ’Male’ THEN 1 ELSE 0 END)
AS REAL) * 100 / count(*) FROM twitter INNER JOIN user ON twitter.userid = user.userid
WHERE twitter.sentiment > 0
Result 4 :
Error execute messages: no such column: gender;
Evidence: positive sentiment refers to sentiment > 0; male user refers to gender = ’Male’;
percentage = Divide (Count(tweetid where gender = ’Male’), Count (tweetid)) * 100;
Question: Among all the tweets with a positive sentiment, what is the percentage of those
posted by a male user?
Final SQL : SELECT sum(CASE WHEN USER.gender = ’Male’ THEN 1.0 ELSE 0 END)
/ count(twitter.tweetid) AS per FROM twitter INNER JOIN USER ON twitter.userid =
USER.userid WHERE twitter.sentiment > 0

Based on the above example, compare the results of the beam search provided below, You
only need to output the final SQL, and don’t output the others.
Table schema: {Table schema}
Beam search results: {Different constraints}
Error execute messages: {Error execute messages}
Evidence: {Evidence}
Question: {Question}
Final SQL :

Figure 15: The Standard Self-Correction prompt

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

S
EL

EC
T

 C
O

U
N

T
(m

o
vi

e
s.

m
o

vi
e

_t
it

le
),

 r
at

in
g

s.
c

ri
ti

c
 F

R
O

M
 r

at
in

g
s

IN
N

ER
 J

O
IN

 m
o

vi
e

s
O

N
 r

at
in

g
s.

m
o

vi
e

_i
d

 =
 m

o
vi

e
s.

m
o

vi
e

_i
d

 W
H

ER
E

m
o

vi
e

s.
d

ir
e

c
to

r_
n

am
e

 =
 'F

ra
n

c
is

 F
o

rd
 C

o
p

p
o

la
' A

N
D

 m
o

vi
e

s.
m

o
vi

e
_p

o
p

u
la

ri
ty

 >
 1

0
0

0

ty
p

e
: S

e
le

c
t

id
s:

 3
2

tr
an

sf
e

r_
id

s:
 F

al
se

C
O

U
N

T
(m

o
vi

e
s.

m
o

vi
e

_t
it

le
)

ty
p

e
: C

o
u

n
t

la
b

e
l:

Tr
u

e

id
s:

 3

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
m

o
vi

e
_t

it
le

ty
p

e
: C

o
lu

m
n

id
s:

 2

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

_t
it

le

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 0

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s.
c

ri
ti

c

ty
p

e
: C

o
lu

m
n

la
b

e
l:

Tr
u

e

id
s:

 6

tr
an

sf
e

r_
id

s:
 F

al
se

c
ri

ti
c

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 4

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 5

tr
an

sf
e

r_
id

s:
 F

al
se

FR
O

M
 r

at
in

g
s

ty
p

e
: F

ro
m

la
b

e
l:

Tr
u

e

id
s:

 9

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s

ty
p

e
: T

ab
le

id
s:

 8

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 7

tr
an

sf
e

r_
id

s:
 F

al
se

IN
N

ER
 J

O
IN

 m
o

vi
e

s
O

N

ra
ti

n
g

s.
m

o
vi

e
_i

d
 =

 m
o

vi
e

s.
m

o
vi

e
_i

d

ty
p

e
: J

o
in

la
b

e
l:

Tr
u

e

id
s:

 1
9

tr
an

sf
e

r_
id

s:
 1

8

m
o

vi
e

s

ty
p

e
: T

ab
le

id
s:

 1
1

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1
0

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s.
m

o
vi

e
_i

d
 =

 m
o

vi
e

s.
m

o
vi

e
_i

d

ty
p

e
: E

Q

id
s:

 1
8

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s.
m

o
vi

e
_i

d

ty
p

e
: C

o
lu

m
n

id
s:

 1
4

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

_i
d

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1
2

tr
an

sf
e

r_
id

s:
 F

al
se

ra
ti

n
g

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1
3

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
m

o
vi

e
_i

d

ty
p

e
: C

o
lu

m
n

id
s:

 1
7

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

_i
d

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1
5

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 1
6

tr
an

sf
e

r_
id

s:
 F

al
se

W
H

ER
E

m
o

vi
e

s.
d

ir
e

c
to

r_
n

am
e

 =
 'F

ra
n

c
is

 F
o

rd

C
o

p
p

o
la

' A
N

D
 m

o
vi

e
s.

m
o

vi
e

_p
o

p
u

la
ri

ty
 >

 1
0

0
0

ty
p

e
: W

h
e

re

id
s:

 3
1

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
d

ir
e

c
to

r_
n

am
e

 =
 'F

ra
n

c
is

 F
o

rd

C
o

p
p

o
la

' A
N

D
 m

o
vi

e
s.

m
o

vi
e

_p
o

p
u

la
ri

ty
 >

 1
0

0
0

ty
p

e
: A

n
d

id
s:

 3
0

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
d

ir
e

c
to

r_
n

am
e

 =

'F
ra

n
c

is
 F

o
rd

 C
o

p
p

o
la

'

ty
p

e
: E

Q

la
b

e
l:

Tr
u

e

id
s:

 2
4

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
m

o
vi

e
_p

o
p

u
la

ri
ty

 >
 1

0
0

0

ty
p

e
: G

T

la
b

e
l:

Tr
u

e

id
s:

 2
9

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
d

ir
e

c
to

r_
n

am
e

ty
p

e
: C

o
lu

m
n

id
s:

 2
2

tr
an

sf
e

r_
id

s:
 F

al
se

d
ir

e
c

to
r_

n
am

e

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 2
0

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 2
1

tr
an

sf
e

r_
id

s:
 F

al
se

'F
ra

n
c

is
 F

o
rd

 C
o

p
p

o
la

'

ty
p

e
: L

it
e

ra
l

id
s:

 2
3

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s.
m

o
vi

e
_p

o
p

u
la

ri
ty

ty
p

e
: C

o
lu

m
n

id
s:

 2
7

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

_p
o

p
u

la
ri

ty

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 2
5

tr
an

sf
e

r_
id

s:
 F

al
se

m
o

vi
e

s

ty
p

e
: I

d
e

n
ti

fi
e

r

id
s:

 2
6

tr
an

sf
e

r_
id

s:
 F

al
se

10
0

0

ty
p

e
: L

it
e

ra
l

id
s:

 2
8

tr
an

sf
e

r_
id

s:
 F

al
se

Fi
gu

re
16

:T
he

A
ST

di
ag

ra
m

fo
llo

w
in

g
th

e
R

E
A

D
E

R
co

ns
tr

ai
nt

id
en

tifi
ca

tio
n

ill
us

tr
at

es
th

e
at

tr
ib

ut
es

of
ea

ch
no

de
:(

1)
ty

pe
re

fe
rs

to
th

e
ty

pe
of

th
e

cu
rr

en
tn

od
e;

(2
)l

ab
el

in
di

ca
te

sw
he

th
er

th
e

no
de

is
a

co
ns

tr
ai

nt
no

de
.I

ft
ru

e,
bo

th
th

e
no

de
its

el
fa

nd
al

li
ts

ch
ild

no
de

sc
an

be
co

ns
id

er
ed

co
ns

tr
ai

nt
s,

w
hi

ch
fa

ci
lit

at
es

su
bs

eq
ue

nt
de

le
tio

n;
(3

)
id

s
re

pr
es

en
ts

th
e

in
de

x
of

ea
ch

no
de

;
an

d
(4

)
tr

an
sf

er
_i

ds
de

no
te

s
th

e
so

ur
ce

of
its

co
ns

tr
ai

nt
id

en
tifi

er
.

T
he

no
de

s
w

ith
co

lo
re

d
ba

ck
gr

ou
nd

ar
e

co
ns

tr
ai

nt
no

de
s.

45

	Introduction
	Related Work
	Text-to-SQL with Pre-trained Language Models
	Text-to-SQL with Abstract Syntax Trees

	Methodology
	READER: A REasoning pAth DecomposER
	Augmented Data Generation
	Generator for Initial SQLs Generation
	Corrector for Self-Correction

	Experiments
	Experimental Settings
	Main Results
	Evaluation on Robustness Benchmarks
	Ablation Studies

	Conclusion
	Appendix
	DETAILS of READER
	Explanation of Algo. 1
	Node Types
	READER results
	Comparison of READER and existing SQL decomposers

	Prompt Templates
	Details of Data Augmentation
	Details of Self-Correction
	Details of experiments
	Details of Datasets
	Details of three typical errors in text-to-SQL
	Details of Training Settings
	Effect of train parameter
	Runtime analysis of READ-SQL
	The impact of data organization in fine-tuning
	Error Analysis
	Case Study for Corrector
	Case Study Comparing READ-SQL and SFT CodeS

