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Abstract

Very little is known about the training dynamics of adaptive gradient methods
like Adam in deep learning. In this paper, we shed light on the behavior of these
algorithms in the full-batch and sufficiently large batch settings. Specifically, we
empirically demonstrate that during full-batch training, the maximum eigenvalue of
the preconditioned Hessian typically equilibrates at a certain numerical value — the
stability threshold of a gradient descent algorithm. For Adam with step size n and
B1 = 0.9, this stability threshold is 38/7. Similar effects occur during minibatch
training, especially as the batch size grows. Yet, even though adaptive methods train
at the “Adaptive Edge of Stability” (AEo0S), their behavior in this regime differs
in a significant way from that of non-adaptive methods at the EoS. Whereas non-
adaptive algorithms at the EoS are blocked from entering high-curvature regions
of the loss landscape, adaptive gradient methods at the AEoS keep advancing into
high-curvature regions, while adapting the preconditioner to compensate. Our
findings can serve as a foundation for the community’s future understanding of
adaptive gradient methods in deep learning.
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Figure 1: Full-batch Adam trains at the Adaptive Edge of Stability (AEoS). We train a fully-
connected network on CIFAR-10 using full-batch Adam with various hyperparameters 7, 51, B2.
Observe that the maximum eigenvalue of the preconditioned Hessian equilibrates at the numerical

Eff?}f )17)7, which is drawn as a dashed horizontal line. However, in contrast to the non-adaptive

EoS, the maximum eigenvalue of the raw Hessian usually keeps rising at the AEoS (see Figure|[6).
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1 Introduction

Neural networks are often trained using adaptive gradient methods such as Adam [23]], rmsprop
[38]], or Adafactor [37]. These algorithms are variants of preconditioned gradient descent where the
preconditioner is constantly adapting to gradients from recent steps. Despite the popularity of these
algorithms, their behavior when training neural networks remains poorly understood.

Meanwhile, a line of recent work [33, 42| 20l 21 [7,, [15] has shed light on the neural network
training dynamics of non-adaptive gradient descent (both with and without momentum) in, at least,
the full-batch and (sufficiently) large-batch regimes. These works have empirically demonstrated
that dynamical instability plays a key role in the training process. When training neural networks,
gradient descent is constantly attracted to regions of parameter space with increasingly high curvature
[20} 21, [7]; yet, up to a quadratic Taylor approximation, gradient descent is an unstable dynamical
system in regions where the curvature in any direction exceeds a certain threshold — the optimizer
cannot linger for long in any such region without being expelled [33} 42, [21]. How is this tension
resolved? In the full-batch special case, gradient descent spends the bulk of training in a regime
called the Edge of Stability (EoS) [7] in which the sharpness — the maximum eigenvalue of the
training Hessian — hovers right at, or just above, the stability threshold. At the EoS, gradient descent
would still be moving into regions of higher curvature were it not being constantly repelled from these
high-curvature regions by unstable dynamics. As we confirm below, these findings also generalize to
preconditioned gradient descent (with a static preconditioner).

However, it has not been clear whether these findings have relevance for adaptive gradient methods.
Because of adaptive preconditioning, adaptive gradient methods do not evolve as linear recurrences
on the local quadratic Taylor approximation, and thus it is not clear why their local stability would be
well-modeled by an eigenvalue condition.

In this paper, we demonstrate that the EoS phenomenon does, in fact, carry over to the adaptive setting.
Our key empirical finding is that throughout training, the short-term stability behavior of, say, Adam
is well-approximated by that of “frozen Adam” — a version of Adam in which the preconditioner is
frozen at its current value. On the local quadratic Taylor approximation, “frozen Adam” does evolve
as a linear recurrence, and is unstable whenever the maximum eigenvalue of the preconditioned
Hessian (the preconditioned sharpness) exceeds the stability threshold of EMA-style heavy ball

momentum, which is 7]2(1"_22)1) . Indeed, we observe that during full-batch training by real Adam, the
preconditioned sharpness equilibrates at this precise numerical value (Figure[I). During minibatch

training, similar phenomena occur, paralleling the situation with non-adaptive optimizers.

However, even though adaptive gradient methods train at the “Adaptive Edge of Stability” (AEoS),
their behavior in this regime differs in a significant way from that of non-adaptive methods in the
non-adaptive EoS regime: whereas non-adaptive optimizers in the non-adaptive EoS regime are
blocked from accessing high-curvature regions of the loss landscape, we find that adaptive gradient
methods at the AEoS can and do enter these high-curvature regions via their ability to adapt the
preconditioner. This is especially liable to occur if the step size is small or the preconditioner decay
factor (e.g. Adam’s f35) is small. Thus, adaptive gradient methods sometimes lack the implicit
inductive bias [34]] that blocks non-adaptive methods from converging to high-curvature solutions.

2 Notation and Background

Optimization algorithms aim to minimize an objective function f : R? — R by producing a sequence
of iterates {x;} C R?. We denote an algorithm “alg” with hyperparameters a, b as ALG(a, b). We
write H(x) for the Hessian at parameter x, and sometimes write H; as an abbreviation for H(x;),
the Hessian at step t. We denote the largest positive eigenvalue of a matrix H as A; (H). We call
the largest positive eigenvalue of a Hessian the sharpness, and the largest positive eigenvalue of a
preconditioned Hessian the preconditioned sharpness.

Gradient descent and momentum The most basic optimization algorithm is GD(7), defined by
the parameter update x; 11 = X; — 1 &¢+1, Where g; 1 is a full-batch or minibatch gradient of f
computed at x;. Vanilla gradient descent can be accelerated by the use of momentum, in which
case the parameter update becomes x;4; = X; — nm;;1, where m;; iS a momentum vector.
Momentum comes in two popular flavors: heavy ball (HB) and Nesterov. Both of these, in turn, can



be parameterized in the “standard” fashion or the “EMA” (exponential moving average) fashion.
The momentum update for STANDARDHB (7, 81) is m;11 = 81 m; + g1, whereas the update for

EMAHB (7, £1) is my 41 = Simy + (1 — 51)8¢41-

Each of these algorithms, when run on any quadratic function (and in particular, when run on the local
quadratic Taylor approximation to a neural training objective), evolves independently along each
Hessian eigenvector as a linear recurrence relation (Appendix [E)). If any Hessian eigenvalue exceeds
a certain algorithm-dependent threshold, then the linear recurrence relation for the corresponding
eigenvector is unstable and diverges exponentially; this implies that the iterate will oscillate with
exponentially increasing magnitude along this eigenvector. The stability thresholds are: 2/ for

GD(n), 22—251 for STANDARDHB (7, ), and nz(ffgi) for EMAHB (7, 51 ).

We illustrate this threshold behavior in Figure[2] where we optimize the one-dimensional quadratic
function f(z) = %112 using EMA-style heavy ball momentum with 5; = 0.9 and varying learning

rates. Observe that the iterates diverge whenever the learning rate n exceeds (21*;2;11) = 38.

Preconditioned gradient descent Gradient descent, or its momentum variants, can be pre-
conditioned using a (static) preconditioner P. In this case, the update rule becomes x;;; =
x; —nP~1m,, |, where my is updated according to one of the momentum rules described above.
Often, P is a diagonal matrix, in which case P~! can be interpreted as per-parameter learning
rates. A special case of particular interest in this paper is preconditioned gradient descent with
EMA-style heavy ball momentum, which we denote as PRECONDEMAHB (7, 51, P). On a quadratic
objective with Hessian H, preconditioned gradient descent will diverge if the maximum eigenvalue
of the preconditioned Hessian P~Y/?HP /2 (the preconditioned sharpness) exceeds the stability
threshold of the non-preconditioned algorithm. In that event, the component of the iterate that is
aligned with (P'/2)Tv;, where v is the top eigenvector of P~'/2HP~!/2, will oscillate with
exponentially increasing magnitude, and diverge. Note that P~'/2HP /2 shares eigenvalues with
the similar1 matrix P~'H, so the preconditioned sharpness can be written as both \; (P~1/2HP~1/2)
or \(P~'H).

Adaptive gradient methods Adaptive gradient methods are variants of preconditioned gradient
descent in which the preconditioner is changing rather than fixed, i.e. the parameter update is
Xip1 = Xt — NP, +11 m; 1, where P is the latest preconditioner. For example, RMSPROP(7), 32, €)
[38] updates its preconditioner according to:

veqr = Bove + (1= )iy Pray = diag(v;]3) + e L. (1)

A more popular algorithm is ADAM(7), 51, B2, €) [23]], which adds EMA-style heavy ball momentum
to rmsprop. Adam has an optional “bias correction” scheme. With no bias correction, Adam employs
the rmsprop preconditioner rule in Eq (I); with bias correction, the Adam preconditioner is:

1 . v
Pi1 = (1_t+1> [dlag (1/1_t+t1+1> + 61} . 2
1 2

In contrast to gradient descent (and preconditioned gradient descent), adaptive gradient methods do
not evolve as linear recurrence relations on quadratic functions. Thus, it is a priori unclear whether
their local stability can be modeled using an eigenvalue condition.

3 Related Work

Training dynamics of non-adaptive gradient descent Recent empirical studies [21 25} [7, [24]]
have shed substantial light on the training dynamics of non-adaptive gradient descent in deep learning.
When training neural networks, gradient descent tends to continually move in a direction that increases
the sharpness [20, 21} [7]. This phemonemon was dubbed progressive sharpening in [7]], and remains
poorly understood. In the special case of full-batch gradient descent, the sharpness usually rises
past the optimizer’s stability threshold, at which point (the “breakeven point” [21]) the optimizer
becomes destabilized by exponentially growing movement along the Hessian’s top eigenvector. On
quadratic objective functions, this behavior would lead to divergence. However, neural network
training objectives are not quadratic, and gradient descent typically does not diverge; instead, it



enters a regime called the Edge of Stability (EoS) [7]] in which the sharpness hovers just above, or
oscillates around, the stability threshold. At the EoS, gradient descent is constantly being repelled
from regions of the loss landscape with sharpness exceeding the stability threshold, behavior which
(author?) [10] have explained by appealing to a cubic Taylor expansion. Prior work has not discussed
preconditioned gradient descent, but in the next section we confirm that the results of [7] carry over
to the non-adaptive preconditioned setting. Note that these results only apply to full-batch gradient
descent. In the more general case of SGD, similar effects seem to occur [20, 211, as we review in §B]

The fact that non-adaptive gradient descent is blocked from entering sharp (as quantified by maximum
Hessian eigenvalue) regions of the loss landscape constitutes one implicit bias [34] of non-adaptive
gradient descent. It is plausible that this implicit bias could impact generalization (e.g. see [32} [19]]).

Understanding adaptive gradient methods There have been a number of convergence analyses
of adaptive gradient methods [6} 147, 26| 40, 43| [11]], none of which model the behavior that we
observe here. Beyond formal convergence analyses, [3} 9] proposed to model Adam as an system of
ordinary differential equations in continuous time; this approach also cannot explain the unstable
dynamics that we observe. [2]] argued that Adam should be viewed as a variant of sign gradient
descent. Most relevant to our paper, [31] conducted a qualitative study of full-batch Adam during
neural network training. They observed small bumps and large spikes in the training loss curve; our
paper explains this phenomenon as arising from dynamical instability.

Implicit bias of adaptive gradient methods Absent well-tuned regularization, adaptive gradient
methods have been reported to generalize worse than non-adaptive optimizers [41, 22} 28]]. However,
it has been far from clear why, in deep learning, adaptive optimizers should even find consistently
different solutions than non-adaptive optimizers (let alone why these different solutions should
generalize worse). [41] constructed a synthetic task where Adam provably generalizes worse than
gradient descent. However, synthetic tasks also exists where the reverse is true [[1l]. [39] proved that
rmsprop on homogenous neural networks is, like gradient descent [30], implicitly biased towards
maximum margin solutions. [[18] argued that adaptive methods take steps that are too large in
small-Hessian-eigenvalue directions, which are more likely to be noise than signal.

Our paper gives evidence for a different implicit bias: adaptive gradient methods are liable to find
higher-curvature solutions than non-adaptive algorithms, since whereas non-adaptive algorithms are
blocked from high-curvature regions, adaptive optimizers can evade this restriction. [42] briefly
speculated that this might be the case, but ran no experiments with adaptive optimizers (only L-BFGS).
Meanwhile, [17] empirically observed that a VGG trained using an adaptive optimizer had 40x the
sharpness than when trained using SGD, and [5] found that MLP-mixers and ViTs trained with Adam
converged to far sharper solutions than a ResNet trained with SGD.

[48] and [44] previously argued theoretically that SGD can more quickly escape certain “sharp
minima” than Adam, but using a different definition of sharpness, and a mechanism tied inextricably
to stochasticity. In contrast, we demonstrate that even full-batch Adam converges to higher-curvature
solutions than full-batch gradient descent, implying that stochasticity is not crucial.

4 Full-batch adaptive optimizers train at the Adaptive Edge of Stability

Warm-up: “frozen Adam” Before turning to adaptive preconditioning, we first confirm that prior
work [[7] generalizes to the setting of preconditioned gradient descent. We train a network using full-
batch Adam (no bias correction), and extract the second moment accumulator v; at some midpoint
step t during training. We then train the same architecture from scratch at a range of learning rates
using full-batch “frozen Adam,” i.e. Adam where the second-moment accumulator is held fixed at
that particular v, rather than updated via Eq (I)) or Eq (). Note that “frozen Adam” is equivalent

to PRECONDEMAHB (7, 81, P) where P = diag(uim) + €el. Thus frozen Adam is dynamically
unstable on the training objective’s quadratic Taylor approximation whenever the preconditioned
sharpness \; (P~! H;) exceeds the stability threshold for EMA-style heavy ball momentum. This

threshold is (fféf)ln = 317—8 for our choice of 51 = 0.9. Assuming that the findings of [[7]] generalize
from non-preconditioned to preconditioned gradient descent, one would expect that during full-batch
training by frozen Adam, the preconditioned sharpness would rise until plateauing at that threshold

value. In Figure [3(b), we confirm that this occurs. For each of several learning rates 7, we plot the




evolution of the preconditioned sharpness A\; (P~'H;) while visualizing the stability threshold of
38/n as a horizontal dashed line. Observe that the preconditioned sharpness rises until plateauing at
the dashed line. We also plot the evolution of the “raw” sharpness A1 (H,) in Figure3{c). For this
network, the raw sharpness largely ceases to increase once training enters the EoS.

Adaptive preconditioning: Adam Adam is a more complex dynamical system than “frozen
Adam,” because its preconditioner evolves in respose to recent gradients; consequently, its dynamics
on the local quadratic Taylor approximation does not reduce to a linear recurrence. Throughout
physics and engineering, a time-tested way to understand complex systems is to approximate them
by simpler ones that still capture some behavior of interest. Consider Adam at any particular step
to, and let P;, be Adam’s preconditioner at that step. Over short time horizons ¢ > ¢y, one can
approximate Adam by PRECONDEMAHB (7, 81, Py, ), i.e. “frozen Adam” where the preconditioner
is frozen at P,,. On the local quadratic Taylor approximation, this simpler algorithm is unstable

if the preconditioned sharpness )\1(P;)1Hto) exceeds the stability threshold of heavy-ball EMA
momentum, which is . Of course, whether this approximation is useful is an empirical

question. And empirically, we now show that Adam has similar stability properties as its frozen
counterpart.

In Figure[T] we train a fully-connected network on the full CIFAR-10 dataset using full-batch Adam
(no bias correction). In Figure[I|a), we vary the learning rate 1 while fixing 52 = 0.999 and 51 = 0.9.
Observe that for every learning rate 7, the preconditioned sharpness A1 (P; 'H;) equilibrates right
around the stability threshold of frozen Adam. In Figure [I(b), we vary /31 as we fix n = 0.0001
and B> = 0.999. Observe that the same phenomenon occurs. Finally, in Figure [I[c), we vary
B2 € {0.9,0.99,0.999} as we fix 81 = 0.9 and 7 € {5e-5, 4e-4}. The same phenomenon occurs,
even when 35 takes the relatively small value of 0.9, which is when one might expect Adam’s behavior
to differ the most from frozen Adam’s, because the preconditioner adapts faster. Thus, we see that
Adam becomes unstable whenever its frozen counterpart would become unstable. Nevertheless, in
Appendix [D| we will see that Adam’s behavior at the AEoS differs in other respects from that of
frozen Adam at the EoS.

Other architectures In Figure[5] we verify that the full-batch phenomenon generalizes to other
computer vision architectures. In particular, we consider (a) a CNN on CIFAR-10; (b) an un-
normalized Wide ResNet (WRN) [46] on CIFAR-10; and (c) a (batch-normalized) WRN on CIFAR-
100. Furthermore, Figure [I0] verifies that our minibatch findings (see below) apply to transformers on
WMT machine translation.

Other full-batch adaptive gradient methods In Figure [ we train the same fully-connected
network on CIFAR-10 using eight adaptive gradient algorithms in the full-batch regime: (a) Adam
with bias correction, which essentially decreases the preconditioner on a schedule in the early
stage of training; (b) AdamW [29]], which employs decoupled weight decay; (c) Adafactor [37],
which maintains a factored layer-wise preconditioner; (d) Amsgrad [36]], which ensures that the
preconditioner is entrywise non-decreasing over time; (e) Padam [4]], which employs an exponent
smaller than % (we use 0.25) in the definition of the preconditioner Eq (I); (f) Nadam [[12], which
uses Nesterov rather than heavy ball momentum; (g) rmsprop [38]], which lacks momentum; and
finally (h) Adagrad [[13l], which preconditions using the sum of past squared gradients, rather than an
exponential moving average. In all cases, we observe that the preconditioned sharpness A1 (P; *H,)
equilibrates around the appropriate stability threshold (written in parentheses).

A corner case When running full-batch Adam at extremely small learning rates, we sometimes
observe that the preconditioned sharpness equilibrates short of the stability threshold. We elaborate
on this corner case, and offer an explanation, in Appendix [H]

The minibatch setting So far we have discussed the idealized yet unrealistic setting of full-batch
training. In Appendix [B] we demonstrate that analogous effects in the more practical minibatch
setting, paralleling the situation with non-adaptive optimizers. We consider both ResNet-50 on
ImageNet as well as Transformers on WMT.

Adam vs. momentum In Appendix|C| show that as a consequence of the phenomena described in
this paper, Adam converges to sharper solutions than momentum SGD.



5 Conclusion

In a recent year, Adam [23]] was the most highly cited scientific paper across all fields of science
[8]. Yet, very little is known concretely about the training dynamics of Adam or other adaptive
gradient methods in deep learning. Since the training dynamics affect both the optimization and
generalization performance of neural networks in mysterious ways, any basic knowledge about the
training dynamics could pay dividends for future research. This paper has demonstrated that in
the special setting of full-batch training, there is an equilibrium rule that is typically maintained
throughout training. We have provided evidence that a similar equilibrium may exist in the more
practical minibatch setting, and we hope that an analogous equilibrium rule will eventually be found.
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A Figures

This appendix contains missing figures from the main paper.
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Figure 2: We optimize the quadratic objective f(z) = 322 using EMAHB(7,0.9) at various 7.
Observe that learning rates 77 above 38 diverge.
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Figure 3: “Frozen Adam” (preconditioned momentum) trains at the Edge of Stability. We train
a fully-connected network on CIFAR-10 using “frozen Adam,” i.e. preconditioned gradient descent
with EMA-style heavy ball momentum and a fixed preconditioner P. Consistent with [[7], the
preconditioned sharpness A1 (P ~! Hy;) rises until equilibrating at the stability threshold of 38 /7. The
raw sharpness A1 (H;) mostly ceases to increase at the EoS.
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Figure 4: Other adaptive gradient algorithms train at the AEoS. We train a FC network on
CIFAR-10 using eight adaptive optimizers in full-batch mode. We train each algorithm at five
learning rates (colors). In each case, the preconditioned sharpness equilibrates at, or just above, the
stability threshold (written in parentheses). Note that the qualitative behavior of the preconditioned
sharpness depends on the presence and type of momentum; see Appendix G|
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Figure 5: The phenomenon generalizes to other architectures. We train three vision architectures
using full-batch Adam with 81 = 0.9 and 2 = 0.999 at a range of learning rates (colors). In each
case, the preconditioned sharpness equilibrates at the threshold 38 /7. Each network was trained until
either reaching a milestone train loss value, or until reaching a step limit.
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Figure 6: The sharpness continues to rise even as Adam trains at the AEoS. We train a fully-
connected network on CIFAR-10 using full-batch Adam with 5, = 0.9, 85 = 0.99, and four learning
rates. Observe that while the preconditioned sharpness flatlines, the raw sharpness continues to rise.
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Figure 7: Adam finds sharper solutions when 7 or /- is small. We train a WRN on CIFAR-100
until reaching train loss 0.1, and we record the sharpness A1 (H(x*)) at the solution x*. In (a, b) we

sweep the learning rate 7, while in (c, d) we sweep (2. In (a, ¢) we train in full-batch mode, while in
(b, d) we use the large batch size 4096.
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Figure 8: Zoom in on 200 steps of training. For two learning rates from Figure|[6 (top row = 5e-5,
bottom row = 2e-4), we zoom in on 200 steps of training, plotting five important quantities. The red
vertical lines mark the moments at which the preconditioned sharpness crosses the stability threshold.
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B The minibatch setting

We now move beyond the full-batch setting to the more general setting of minibatch training. In
the case of gradient descent and minibatch SGD, it is clear from prior work [20, 21] that during
minibatch training, the sharpness is subject to similar effects as during full-batch training. For one,
provided that training is successful, the sharpness never ventures more than a bit above the stability
threshold of the corresponding full-batch algorithm [21]. This can be explained by the fact that SGD
is unstable in expectation whenever GD is unstable [[14]]. Yet additional factors seem to also be at
play in the case of SGD. Specifically, it has been observed that at small batch sizes (where there is
more gradient noise), the mid-training sharpness is smaller. One hypothesized explanation [42, [21] is
that in the presence of gradient noise, SGD becomes unstable at lower sharpnesses.
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Figure 9: During minibatch Adam, the preconditioned sharpness behaves analogous to the
sharpness during minibatch SGD. We train a Resnet-50 on ImageNet using minibatch Adam. The
preconditioned sharpness is (1) below the full-batch stability threshold (pictured as a horizontal line),
(2) smaller when the batch size is smaller, and (3) smaller when the learning rate is larger.

We now demonstrate that the behavior of the preconditioned sharpness during minibatch Adam
parallels that of the sharpness during minibatch SGD. Namely, we observe that during minibatch
Adam, the preconditioned sharpness (1) never rises more than a bit beyond the stability threshold of
the full-batch algorithm, provided that training succeeds; (2) tends to be smaller, mid-training, when
the learning rate is large; and (3) tends to be smaller, mid-training, when the batch size is small.

In Figure 0] we train a Resnet-50 on ImageNet at three batch sizes. Observe that for the largest
batch size considered, the preconditioned sharpness behaves similar to the full-batch setting (almost
rising to the full-batch stability threshold); yet, as the batch sizes decreases, the trajectory of the
preconditioned sharpness shifts downwards.

In Figure@[, we train both a pre-LayerNorm (Pre-LN) and a post-LayerNorm (Post-LN) Transformer
on the En->De WMT translation task. Following standard practice [35], we train using a linear
warmup schedule lasting 40k steps. We train at both a smaller batch size of 1024 and a larger batch
size of 10240. The dotted line depicts the stability threshold of 38/7; this threshold is constantly
decreasing as the learning rate is warmed up. Observe that the preconditioned sharpness initially rises
until reaching either the stability threshold (larger batch size), or a value just short of the stability
threshold (smaller batch size). Then, as learning rate warmup continues, the preconditioned sharpness
decreases to track the stability threshold. In effect, the preconditioned sharpness is being “pushed
down” by Adam’s learning rate warmup. Note that [15] previously showed that a warmup schedule for
momentum SGD likewise “pushed down” the (unpreconditioned) sharpness in Transformer training.
The Post-LN Transformer is known to be less stable than the Pre-LN variant [45] [27]; this instability
can be seen in the spike in A; (P~'H) (and training loss) towards the end of the warmup period.
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Figure 10: Learning rate warmup gradually reduces the preconditioned sharpness during opti-
mization. Left: The evolution of the preconditioned sharpness for a 6L-6L encoder-decoder Pre-LN
transformer trained on the WMT En=>De task at n = .001 with a linear warmup period of 40000
steps. Right: Same as left, but with a PostLN Transformer. In both cases the preconditioned curvature
closely tracks the 38/7 bound during warmup, however there is a noticeable gap at the smaller batch
size. The PostLN Transformer training fails late in the warmmup period.

C Adam finds sharper solutions than momentum

Adam and other adaptive gradient methods are able to train stably in arbitrarily sharp regions of
parameter space, whereas momentum gradient descent is repelled from regions of parameter space
where the sharpness exceeds the algorithm’s stability threshold. We now demonstrate that as a
consequence, Adam sometimes converges to far sharper solutions than momentum GD. In Figure
we train a WRN on CIFAR-100 (left two panes) and a fully-connected network on CIFAR-10
(right two panes) using both Adam and momentum GD. It is impossible to make a blanket claim
that Adam finds sharper solutions than momentum GD, since momentum at a small learning rate
finds sharper solutions than Adam at a large one; however, we observe that for a given training speed,
Adam converges to a sharper solution.

WRN on CIFAR-100 (full batch) WRN on CIFAR-100 (batch size 4096) FC on CIFAR-10 (full batch) FC on CIFAR-10 (batch size 4096)
$800{ ® Adam o | 600 e Adam ° 3000 @ Adam « ® ® Adam e °
2 momentum ° momentum ] momentum [] 3000 momentum @
3 600 . ° L °
% . 400 . 2000 ° 2000 0o ®
$ 400 . PO o ° .
2 °® 200 1000 y 1000 L
82001 _q® x) o° °
3 0 & % 4 -ty 0 L -,

0
200 300 400 200 300 400 500 600 700 800 500 750 1000 1250 1500 1750 2000 1000 2000 3000 4000 5000 6000
steps to reach solution steps to reach solution steps to reach solution steps to reach solution

Figure 11: At comparable training speeds, Adam finds sharper solutions than momentum
gradient descent. We train networks using both Adam (blue) and momentum (orange) at a range of
learning rates. For each algorithm and learning rate, we plot the maximum Hessian eigenvalue at
the solution as a function of the number of steps to reach the solution. For both algorithms, smaller
learning rates (= longer training speeds) find sharper solutions; but in general, Adam finds a much
sharper solution than momentum GD for the same training time.
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D A closer look at the AEoS

In this section, we take a closer look at Adam’s behavior at the AEoS. We will see that this behavior
sometimes differs substantially from that of non-adaptive optimizers. In particular, whereas non-
adaptive optimizers at the EoS are blocked from entering high-curvature regions of parameter space,
adaptive gradient methods at the AEoS can and do enter high-curvature regions via their ability to
adapt the preconditioner.

In Figure[6] we train a fully-connected network on CIFAR-10 using full-batch Adam at four learning
rates. Observe that even though the preconditioned sharpness A1 (P, 1Ht) flatlines, the raw sharpness
A1(H;) continues to rise while the network is training at the AEoS. This behavior stands in stark
contrast to the behavior of frozen Adam at the EoS in Figure[3} there, the raw sharpness ceased to
appreciably increase after training had entered the EoS.

Why might this be the case? A crucial distinction between adaptive and non-adaptive optimizers is
that the latter are necessarily repelled from high-curvature regions of parameter space. For example,

EMAHB (7, 1) is repelled from the set {x : A (H(x)) > 712(ng1) }, and PRECONEMAHB (7, 1, P)

is repelled from the set {x : A\ (P~'H(x)) > 22011 By contrast, while Adam’s trajectory

n(1—p1)
{(P,x;)}; must approximately respect the constraint A, (P; ' H(x;)) < 772(;'7221), Adam is allowed

to change the preconditioner, and hence can train stably in regions of arbitrarily high curvature.

To gain more insight into the behavior of Adam at the AEoS, in Figure [§] we “zoom in” on 200
steps of Adam training, for both a small learning rate (5e-5, the blue line in Figure[6) and a large
learning rate (4e-4, the red line in Figure[6). In the top row, which corresponds to the small learning
rate, we observe the following cycle. Whenever the preconditioned sharpness is below the stability
threshold, both the sharpness and preconditioned sharpness rise. Eventually, the preconditioned
sharpness crosses the stability threshold — an event which we mark with a vertical dotted red line.
This causes Adam to oscillate explosively along a certain direction, as discussed in §2](see Appendix
[l for more evidence). The large gradients associated with this explosive growth increase the second-
moment accumulator v; and hence Adam’s preconditioner P;. This increase in P in turn causes
the preconditioned sharpness A; (P} 'H,) to decrease until it drops below the stability threshold,
at which point the large gradients go away. The cycle then repeats itself. By this mechanism, the
preconditioned sharpness equilibrates at the stability threshold, but the raw sharpness continues to
grow. In other words, instability generates large gradients, which in turn increase the preconditioner,
allowing Adam to continue advancing into regions of higher sharpness.

The bottom row of Figure[8]depicts 200 steps of Adam at a larger learning rate. At this larger learning
rate, Adam behaves somewhat differently. As above, we see that whenever the preconditioned
sharpness is below the threshold, both the sharpness and preconditioned sharpness rise. And, as
above, we see that after the preconditioned sharpness crosses the threshold (red vertical lines), the
gradient norm begins to increase explosively. However at the larger learning rate, this instability is
“resolved” differently than at the small learning rate. In particular, for this large learning rate, we
observe that the instability is resolved when both the sharpness and the preconditioned sharpness
drop, indicating that the optimizer has escaped to a region where the curvature in many different
directions (not just the maximum eigenvector of the preconditioned Hessian) is lower. This behavior
is similar to the “catapult” effect studied in [25]] for non-adaptive optimizers.

E Mathematical background

E.1 Stability of gradient descent algorithms on quadratics

We now review the stability properties of gradient descent algorithms on quadratic objective functions.
We first refer the reader to Appendix A of [7]; that appendix derives the stability thresholds for
GD(n), STANDARDHB (7, 81), and STANDARDNESTEROV (7, 31). In this appendix, we derive the
stability thresholds for EMAHB (7, 51), and EMANESTEROV (7, 31). These derivations are minor
variants of the corresponding derivations in [7]], since the EMA-style momentum algorithms yield
the same recurrence relation as the standard-style momentum algorithms, except with a learning rate
scaled by (1 — 31).
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Algorithm Update rule Stability threshold | Reference for threshold
common knowledge,
GD(7) Xi+1 = Xt — N8t+1 2/n reproduced in [7]
for completeness
STANDARDHB(7, £1) n):ﬂ z ilfft + 841 z+n251 [16fJ, reprodilcted 1[‘1‘[7J
t+1 t — My or completeness
my = fimy + (1 — : R
EMAHB (7, 51) t+1xt+’1 = )t(t —(Tlmzﬁ)gtﬂ o this paper
mypg = Bimy; + gy oto
STANDARDNESTEROV(7, 31) My = fimy g +8er1 77(112%1) 17
Xt+1 = X¢ — 1My 41
myyy = fimy + (1—-B1)ge+1 pios .
EMANESTEROV (7, $1) Myt = fimyq + (1A— B1)gi+1 m this paper
Xi41 = X — 1My

Table 1: Gradient descent algorithms and their stability thresholds.

Lemma 1. Consider running EMANESTEROV (1), 31) on a quadratic objective f(x) = ixTAx +

bTx + c starting from any initialization. Let (q,a) be an eigenvector/eigenvalue pair of A. If

a> % (%), then the sequence {q x} will diverge.

Proof. First, we re-write EMANESTEROV (7, 31) as a recursion in x; alone:
Xep1 = (14 B1)xe — Bixe—1 — (1 = B1)(1+ B1)V f(xe) +n(1 = B1)V f(x4-1)
For the quadratic objective, we have V f(x:) = Ax; + b, so this update becomes:
xep1 = (14 81) T = nA)xe — f1(IT—n(l — B1)A)xi—1 — n(1 — 51)b.

This is exactly the recurrence in Theorem 1 of [7]], except with (1 — 31)n in place of 1. Thus, by the

2426, ) 0

. . T . . 1
same logic as in Theorem 1 of [7], q* x; diverges if a > 7 (m

Lemma 2. Consider running EMAHB (), 51) on a quadratic objective f(x) = %XTAX +bTx+c

starting from any initialization. Let (q, a) be an eigenvector/eigenvalue pair of A. If a > % (21+_2£ L )

then the sequence {q x} will diverge.

Proof. First, we re-write EMAHB (7, 31) as a recursion in x; alone:
Xpr1 = (14 Br)xe — fixe—1 — (1 = B1)Vf(x4).
For the quadratic objective, we have V f(x;) = Ax; + b, so this update becomes:
X1 = [(1+ BT —n(1 = B1)Alx; — fixi—1 — n(1 — B1)b.

This is exactly the recurrence in Theorem 2 of [[7]], except with (1 — 51)n in place of 7). Thus, by the

2428,
=5 ) O

same logic as in Theorem 2 of [7]], q’x, diverges if a > }]

E.2 Stability of preconditioned gradient descent

As discussed in gradient descent can be preconditioned using a preconditioner P. For example,
the preconditioned version of EMAHB (7, 31 ), which we denote PRECONEMAHB (), 51, P) is:

myq = fimy + (1 — 51)8i41,

-1
Xer1 =X — NPT myyg.

On quadratic objective functions, the stability behavior of preconditioned gradient descent algorithms
differs slightly from that of their non-preconditioned counterparts. Whereas non-preconditioned
gradient descent algorithms become unstable when the maximum eigenvalue of the Hessian H
exceeds a certain stability threshold, preconditioned gradient descent algorithms become unstable
when the maximum eigenvalue of the preconditioned Hessian P~'/?HP~1/2 exceeds the threshold
of their non-precondintioned counterpart.
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The simplest way to see this is to note that preconditioned gradient descent algorithms are isomorphic
to their non-preconditioned counterparts up to a certain reparameterization of the training objective.
In particular, preconditioned gradient descent on an objective f using preconditioner P is isomorphic

to non-preconditioned gradient descent on the reparameterized objective f(x) = f(P~1/2x), in
the sense that the iterates of the two algorithms are related by a linear map. Below, we make this
rigorous for EMAHB (7, 51) and PRECONEMAHB (7, 81, P), but note that one can carry out the
same argument for the other momentum algorithms and their preconditioned counterparts:

Let {(x;, m;)} denote the iterates of PRECONEMAHB (7, 51, P) on the objective function f(x),
and let { (X, m;)} denote the iterates of EMAHB (7, 1) on the reparameterized objective function

f(x) = f(P~'/2x) starting from the initialization (Xq, my) = (P'/?x0, P~'/?2my). Then we have
the equivalence X, = P/2x, and m, = P~1/2m, for all steps ¢.

Proof. The equivalence is true at initialization, by definition. Thus, it remains to show that if the
equivalence is true at step ¢, it is true at step ¢ + 1.
The updates for {(x¢41, m¢11)} are:
myy1 = fimy + (1= 1)V f(x),
Xpp1 =X — NP tmy .
Meanwhile, the updates for {(X;y1, Ms41)} are:
g = iy + (1 — 1)V F(%)
= iy + (1= )PPV (P25,
X1 = X¢ — NMy4q.
To verify the equivalence m;;; = P~'/2m,, observe that
P71/2 mt+1 = ,81 Pil/th + (1 — Bl)Pil/ZVf(Xt)

= By + (1 — B1)PV2V fF(P~1/%%,)
=My

where the two replacements in the middle step are due to the inductive hypothesis holding for step ¢.
To verify the equivalence %,; = P'/?x,, 1, observe that
P/ %% 41 = PY2% — P~ ?my
=Xy — 1y
- it-{-l .
where the two replacements in the middle step are due to the inductive hypothesis holding for step ¢.
O

Due to Proposition[E.2} we know that PRECONEMAHB (7, 31, P) on a quadratic function
fx)= %XTAX +blx+ec
has the same stability behavior as EMAHB (7, 51) on the reparameterized quadratic
f(x) = %XT(P71/2AP71/2)X +bTPV2x +c.

Thus, PRECONEMAHB(7, 51,P) diverges on f whenever the maximum eigenvalue of
(P~1/2AP~1/2) exceeds the stability threshold of EMAHB (7, ;). When this occurs, the com-

ponent of P1/2x, that is aligned with v1, the top eigenvector of the preconditioned Hessian, will
oscillate with exponentially increasing magnitude. Equivalently, we can say that the component of x;

that is aligned with (P1/ 2)Tvl will oscillate with exponentially increasing magnitude.
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F Adaptive preconditioning

In Figure , we optimize the objective function f(z) = %IEQ using rmsprop with learning rates that
would be divergent if the preconditioner v; were held fixed at its initial value of vy = 1.0. Yet since
the preconditioner is adaptive rather than fixed, rmsprop only oscillates explosively for a finite number
of steps before the large gradients associated with this explosive movement cause v; to increase,

which decreases rmsprop’s effective learning rate and halts divergence.

vary B> vary n
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Figure 12: Adaptive preconditioning often prevents rmsprop from diverging. We optimize the
objective function f(x) = %mQ using rmsprop. In the left column, we hold 7 fixed at n = 2.2 and
vary (s; in the right column, we hold S5 fixed at S = 0.999 and vary 7. Observe that rmsprop
only oscillates explosively for a finite number of steps before the large gradients associated with this
explosive movement cause v; to increase, which decreases rmsprop’s effective learning rate and halts

divergence.
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G Qualitative aspects of the AEoS

Looking closely at Figure[d] one can discern that the preconditioned sharpness behaves in qualitatively
different ways depending on the type of momentum. For rmsprop and Adagrad, which do not employ
any momentum, the preconditioned sharpness hovers above the stability threshold. For Nadam,
too, which employs Nesterov-style momentum, the preconditioned sharpness also hovers above the
stability threshold. In contrast, for the other algorithms, which employ heavy-ball style momentum,
the preconditioned sharpness does not hover above the stability threshold — instead, the optimizer is
rapidly thrown into flatter regions whenever the preconditioned sharpness crosses the threshold; as
a result, the preconditioned sharpness oscillates around the stability threshold instead of hovering
above it.

We now (1) confirm that these behaviors also occur in the simpler setting of non-adaptive gradient
descent, and (2) suggest a speculative explanation.

Non-adaptive gradient descent The pattern described above also holds for non-adaptive gradient
descent. For example, Figures 29, 95, and 96 in [7] depict the evolution of the sharpness as a
network is trained using vanilla gradient descent, heavy ball momentum, and Nesterov momentum,
respectively. In both Figure 29 (vanilla) and Figure 96 (Nesterov), the sharpness hovers above the
stability threshold, whereas in Figure 95 (heavy ball), the sharpness oscillates around the threshold.

We now reproduce this observation using the same network from Figure[d] In Figure[I3] we train the
fully-connected network on CIFAR-10 using vanilla gradient descent GD(7), heavy ball gradient
descent STANDARDHB (7, 0.9), and Nesterov gradient descent STANDARDNESTEROV (7, 0.9), each
at a range of learning rates. Observe that for vanilla and Nesterov gradient descent, the sharpness
hovers above the stability threshold (except at the smallest learning rate considered), whereas for
heavy ball gradient descent, the sharpness oscillates around the stability threshold.

GD(n) StandardHB(n, 0.9) StandardNesterov(n, 0.9)
[threshold = 2/n] [threshold = 3.8/n] [threshold = 1.357/n]
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preconditioned sharpnes

Figure 13: Similar to Figure[d] the behavior of the sharpness during (non-adaptive) gradient
descent depends on the type of momentum. We train a fully-connected network on CIFAR-10
using three non-adaptive algorithms: vanilla gradient descent (n in logspace between 0.02 and
0.2), heavy ball momentum (5; = 0.9, and 7 in logspace between 0.002 and 0.02), and Nesterov
momentum (8; = 0.9, and 7 in logspace between 0.002 and 0.02). Observe that for vanilla GD and
Nesterov, the sharpness hovers above the stability threshold, whereas for heavy ball, it oscillates
around the stability threshold. This pattern parallels that in Figure 4] for Adam.

A speculative explanation We now give a speculative explanation for the above observations. One
difference between heavy ball gradient descent, on the one hand, and Nesterov and vanilla gradient
descent, on the other, is that heavy ball momentum can be much less robust to increases in the
sharpness beyond the optimizer’s stability threshold. By way of background, recall from [7] that on
quadratic functions, all three of these algorithms act independently along each Hessian eigenvector;
in particular, the component of the iterate that is aligned with each Hessian eigenvector evolves
according to a linear recurrence relation whose coefficients are determined by the corresponding
Hessian eigenvalue A [7]]. For example, the recurrence relation for GD(0.2) is 2411 = (1 — 0.2 A)xy,
the recurrence relation for STANDARDHB(0.02,0.9) is 2441 = (1.9 — 0.02X)z; — 0.92;_1, and the
recurrence relation for STANDARDNESTEROV(0.02,0.9) is @:11 = 1.9(1 — 0.02)\)a; — 0.9(1 —
0.02\)z;_1. Asymptotically (i.e. over many optimizer steps), the growth rate of a linear recurrence
relation is determined by the magnitude of the largest root of the characteristic polynomial. (Note
that for a recurrence of the form x4; = axy + bxy_1, the characteristic polynomial is 22 —azx —b.)
The stability threshold A* of an optimizer is the value of A for which the magnitude of the largest-
magnitude root is exactly 1. The optimizer’s robustness to barely-unstable eigenvalues (\ just above
A*¥) can be quantified by the asymptotic growth rate at at those eigenvalues.
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For example, consider the three optimization algorithms GD(0.2), STANDARDHB(0.02,0.9), and
STANDARDNESTEROV(0.02,0.9). These algorithms all share the same effective learning rate of
0.2, and they correspond to the purple lines in Figure[T3] In Figure[I4] we visualize the asymptotic
growth factor of these algorithms as a function of the input eigenvalue A. The stability threshold \*
is marked with a vertical dotted black line (of course, the asymptotic growth factor at A* is always 1),
and we plot the asymptotic growth factor for eigenvalues up to 1.1 times the stability threshold.

Crucially, observe that the asymptotic growth rate for STANDARDHB (0.02, 0.9) at an eigenvalue 1.1
times its stability threshold is much higher than for GD(0.02) and STANDARDNESTEROV (0.02, 0.9).
This means that whenever STANDARDHB finds itself in a region of parameter space where
the sharpness is 1.1 times its stability threshold, it diverges much faster than GD(0.02) or
STANDARDNESTEROV(0.02,0.9) do in an analogous situation. One can easily imagine that this may
be related to our observation that the latter two algorithms can train at the AEoS with the sharpness
hovering a bit above the stability threshold, whereas heavy ball momentum is flung into a flatter
region whenever the sharpness crosses the stability threshold even by a small amount.

GD(0.2) StandardHB(0.02, 0.9) StandardNesterov(0.02, 0.9)
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Figure 14: Vanilla gradient descent and Nesterov momentum are both more robust than heavy
ball momentum to eigenvalues shortly above the stability threshold. We plot the asymptotic
growth factors of three algorithms: vanilla GD, heavy ball GD, and Nesterov GD. That is, for each
possible Hessian eigenvalue, we plot the multiplicative constant which the corresponding component
of the iterate will be asymptotically multiplied by, over many steps of gradient descent. The vertical
dotted line marks each algorithm’s stability threshold, and we plot the asymptotic growth factor
(AGF) for eigenvalues up to 1.1 times that stability threshold. Observe that for heavy ball momentum,
the AGF at 1.1 times the stability threshold is much higher than for Nesterov momentum or vanilla
gradient descent.
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H Corner case

While we generally observe that during full-batch Adam, the preconditioned sharpness equilibrates at
the stability threshold of frozen Adam, we have also consistently observed one notable corner case
where this does not occur. Namely, when running Adam at extremely small learning rates, we often
find that the preconditioned sharpness either flatlines short of the stability threshold, or increases at a
very slow rate while remaining below the threshold. These behaviors are evident in Figure[T3] in
which we train a CNN on CIFAR-10 using full-batch Adam at a range of very small learning rates.
(This task is the same one as in Figure 3] left panel, just at smaller learning rates.) Observe that at
these small learning rates, the preconditioned sharpness fails to rise to the stability threshold.

train loss preconditioned sharpness
2.5
D% 1 EE —— n=1.000e-06
n=1.495e-06
157 —— n=2236e-06
1.0 —— n=3.344e-06
—— n=5.000e-06
0.5
0.0 = T T 7 T 7 / T T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Figure 15: When running Adam at extremely small learning rates, the sharpness can fail to rise
all the way to the stability threshold. We train a CNN on CIFAR-10 using full-batch Adam at a
range of extremely small learning rates. Observe that the preconditioned sharpness fails to rise all the
way to the stability threshold.

Why does the preconditioned sharpness not rise to the stability threshold? One clue is that this
behavior seems to be related to adaptivity. In Figure[I6] we train using full-batch Adam at the green
learning rate from Figure[T5] and at step 6000 of training, we suddenly freeze the preconditioner (i.e.
we stop updating v;). The train loss and preconditioned sharpness of frozen Adam are plotted in
pink. Observe that upon freezing the preconditioner, the preconditioned sharpness rapidly rises all
the way to the stability threshold. Thus, we can infer that it was due to Adam’s adaptivity that the
preconditioned sharpness was located below the stability threshold in the first place.
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Figure 16: If we freeze the preconditioner, the preconditioned sharpness immediately rises to
the stability threshold. In green, we train a CNN on CIFAR-10 using full-batch Adam at step size
1 = 2.236e-6 (the green learning rate from Figure [[3)). In pink, we freeze the preconditioner at step
6,000. Observe that once the preconditioner is frozen, the preconditioned sharpness rises immediately
to the stability threshold, suggesting that adaptive preconditioning was preventing it from rising to
the stability threshold in the first place.

We hypothesize that this behavior is related to the following property of momentum algorithms:
momentum algorithms can generate large gradients even when they are stable. For example, in Figure
we optimize the quadratic objective f(x) = %xz using EMA heavy ball momentum at 5; = 0.9
and three different stable learning rates (columns). We set the initial iterate zq to 1, and the initial
momentum vector myg to 0.2. We run EMAHB (7, 0.9) for thirty steps, plotting the iterate (top row),
the momentum vector (middle row), and the gradient squared norm (bottom row). Observe that the

gradient squared norm increases dramatically from its initial value.

We therefore hypothesize that the preconditioned sharpness A1 (P, 1Ht) fails to rise all the way to
the stability threshold because the large gradients generated by the momentum algorithm (even while
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it is stable) are causing the preconditioner P, to constantly increase. This, in turn “cancels out” the

effect of progressive sharpening, and causes the preconditioned sharpness A1 (P, 1Ht) to remain
short of the stability threshold.
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Figure 17: Momentum can generate large gradients even when stable. We optimize the function
f(x) = 22 using 30 steps of EMAHB (7, 0.9) at various stable learning rates 7). The top row plots
the iterate, the second row the momentum vector (really a scalar), and the third row the squared

gradient norm. Observe that the gradient norm increases from its initial value, sometimes dramatically.
This does not happen with vanilla gradient descent.
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I Further plots of zoom in
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Figure 18: Explosive growth in the (preconditioned) gradient is limited to the top eigenvectors
of the preconditioned Hessian. We train a fully-connected network on CIFAR-10 using full-batch
Adam. In the top row, we plot the train loss. In the middle row, we plot the evolution of the top
four eigenvalues of the preconditioned Hessian P, 1Ht. In the bottom row, we plot (1) in blue, the
squared norm of the “semi-preconditioned gradient” P'/2g,, which is the quantity that is expected
to grow explosively when the algorithm is unstable; in orange, the squared norm of the portion of
P'/2g, that is aligned with the top four eigenvectors of P; 'Hj; and in green, the squared norm of

the remainder of P'/2g,. Observe that almost all of the spikes in the gradient norm can be attributed
to the top eigenvectors of the preconditioned Hessian.
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J Test accuracy of Wide ResNet

In §D| we saw that Adam tended to find solutions with higher sharpness (maximum Hessian eigen-
value) whenever the learning rate 7 was smaller or the decay factor 5> was smaller. We now
demonstrate that the test error tends to be higher in these same situations. In Figure[I9] we plot the
test error of the Wide ResNet from Figure[/|as a function of 77 and 3. (For each training run, we
select the test error at the moment the train loss first drops below the threshold of 0.05.) As in Figure
we experiment with both the full-batch and large batch (batch size 4096) settings. Observe that
across both these settings, the test error tends to be higher whenever 7 is small (subplots (a) or (b)) or
whenever (35 is small (subplots (c) or (d)). We emphasize that we do not intend to claim that there is
necessarily a causal connection between the test error and the sharpness — we only mean to point out
that the Adam’s implicit bias towards low-curvature regions when 7 is high or 35 is high coincides
with superior generalization performance.

(a) full batch, vary n (c) batch size 4096, vary n (b) full batch, vary B, (d) batch size 4096, vary B,
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Figure 19: Adam tends to generalize better when 7 or 3, is small. We train a Wide ResNet on
CIFAR-100 using full-batch (panels a, c) or large-batch (panels b, d) Adam at various 7 (panels a,
b) or 35 (panels b, d). We plot the test error, measured when the training loss first drops below the
threshold 0.05.
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K Experimental details

K.1 Architectures

Fully-connected network This network has 5 hidden layers of width 200 each. The activation
function is tanh, and the weights are initialized with variance 1 / fan_in. The fully-connected layers
have bias parameters, which are initialized to zero.

CNN This network repeats (Conv => ReLU => maxpool) three times, then flattens the activations
and does FC => ReLU => FC => ReLLU => FC. The first conv layer has 64 filters, a kernel size of 5,
“valid” padding, a 3x3 window size, and stride 2. The second conv layer has 96 filters, a kernel size
of 3, “valid” padding, a 3x3 window size, and stride 2. The third conv layer has 128 filters, a kernel
size of 3, “same” padding, a 3x3 window size, and stride 2. The first fully-connected layer has width
512, and the second has width 256. All biases are initialized to zero, and all weights are initialized
with variance 1 / fan_in.

Wide ResNet (normalized) This Wide ResNet has four blocks per group, and a channel multiplier
of 10.

Wide ResNet (un-normalized) When we remove batch normalization, we insert a learnable scalar
multiplier (initialized to 1) after the residual branch of each block.

L The role of Adam’s hyperparameters

The preceding discussion suggests that Adam’s behavior at the AEoS — and in particular, the extent to
which the stability-based constraint on A\ (P; 'H,) is maintained by adapting P vs. by constraining
H — may depend on Adam’s hyperparameters. To test this hypothesis, in Figure [7(a), we use
full-batch Adam at a range of learning rates to train a Wide Resnet on CIFAR-100 until reaching
a training loss value of 0.1. We plot the sharpness A\ (H(x*)) at the solution x*, as a function of
the learning rate. Observe that full-batch Adam at small learning rates finds sharper solutions. In
Figure[7(b), we confirm that this trend extends to minibatch Adam at the large batch size of 4096.
Meanwhile, in Figure[7[c), we sweep full-batch Adam at a range of values of 3. We observe that
when 35 is small, Adam tends to find sharper solutions. Figure [7{d) demonstrates that this trend
extends to minibatch Adam at batch size 4096. Incidentally, we show in Appendix [J] that the models
trained with higher n or higher 3, generalize better.

One speculative hypothesis is that Adam’s ability to resolve instabilities via preconditioner adaptation
is contingent on how fast the preconditioner adapts (smaller 85 = faster adaptation) relative to the
speed at which the optimizer is moving (larger n = faster movement).

L.1 Figures

Figure[3] We extracted the fixed preconditioner from step 1100 of a network trained using full-batch
Adam at learning rate 2e-5.

Figure[5| In the left pane, we trained for 2000 steps or until reaching a threshold loss value of 0.05.
In the middle pane, we trained for 5000 steps. In the right pane, we trained until reaching a threshold
loss value of 0.05.

FigureE] Adam with bias correction: 5; = 0.9, 52 = 0.999, ¢ =le-7, learning rates were:
np.logspace(np.logl0(3e-5), np.logl0(le-3), 5)

AdamW: 5, = 0.9, B3 = 0.999, € =1e-7, learning rates were:

np.logspace(np.logl0(3e-5), np.loglO(le-3), 5)

Adafactor: The decay rate was 0.8, the momentum was 0.9, epsilon was le-7, and the learning rates
were

np.logspace(-5, -3, 5)

23



Amsgrad: 5; = 0.9, 82 = 0.999, ¢ =le-7, bias correction was off, and learning rates were:
np.logspace(-5, -3, 5)

Padam: 3, = 0.9, 8> = 0.999, € =le-7, bias correction was off, the Padam exponent was 0.25, and
learning rates were:

np.logspace(-3, -1, 5)

Nadam: 5; = 0.9, 82 = 0.999, ¢ =le-7, bias correction was off, and learning rates were:
np.logspace(-5, -3, 5)

rmsprop: decay was 0.995, epsilon was le-7, and learning rates were:
np.logspace(-4, -3, 5)

Adagrad: Learning rates were np . logspace(-2, -1, 5).

Figure[7] For the learning rate sweeps we fixed 82 = 0.999, and for the 3, sweeps we fixed 1 =
le-4.

Figure[I1] For Adam we used 3; = 0.9 and 85 = 0.999; for momentum we used 3; = 0.9.
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