
UMFC: Unsupervised Multi-Domain Feature
Calibration for Vision-Language Models

Jiachen Liang1,2, Ruibing Hou1∗, Minyang Hu1,2, Hong Chang1,2, Shiguang Shan1,2, Xilin Chen1,2

1 Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

{jiachen.liang, minyang.hu}@vipl.ict.ac.cn, {houruibing, changhong, sgshan, xlchen}@ict.ac.cn

Abstract

Pre-trained vision-language models (e.g., CLIP) have shown powerful zero-shot
transfer capabilities. But they still struggle with domain shifts and typically require
labeled data to adapt to downstream tasks, which could be costly. In this work, we
aim to leverage unlabeled data that naturally spans multiple domains to enhance the
transferability of vision-language models. Under this unsupervised multi-domain
setting, we have identified inherent model bias within CLIP, notably in its visual
and text encoders. Specifically, we observe that CLIP’s visual encoder tends to
prioritize encoding domain over discriminative category information, meanwhile
its text encoder exhibits a preference for domain-relevant classes. To mitigate this
model bias, we propose a training-free and label-free feature calibration method,
Unsupervised Multi-domain Feature Calibration (UMFC). UMFC estimates image-
level biases from domain-specific features and text-level biases from the direction
of domain transition. These biases are subsequently subtracted from original
image and text features separately, to render them domain-invariant. We evaluate
our method on multiple settings including transductive learning and test-time
adaptation. Extensive experiments show that our method outperforms CLIP and
performs on par with the state-of-the-arts that need additional annotations or
optimization. Our code is available at https://github.com/GIT-LJc/UMFC.

1 Introduction

Recently, Vision-Language Foundation Models (VLFMs) such as CLIP [30], BLIP [24], Flamingo
[1] and ALIGN [20] have demonstrated remarkable performance across various downstream tasks.
These VLFMs formulate the training objective as contrastive learning, leveraging millions of image-
text pairs to establish a shared embedding space. Equipped with a wide range of visual and text
representations, VLFMs exhibit the capability to tackle downstream tasks in a zero-shot manner.

Despite VLFMs being exposed to abundant examples, they may still encounter examples with new
variations in downstream tasks. To address the problem of distribution shift between the pre-training
and downstream domains, a natural approach involves fine-tuning VLFMs on various target tasks,
such as prompt engineering [39, 38] and adapter learning [11, 37]. However, these methods generally
require labeled samples for fine-tuning, which is prohibitively expensive to be satisfied in reality.
Conversely, abundant unlabeled data are often available for downstream tasks. Notably, in practical
scenarios, the unlabeled data typically contains multiple domains, which exacerbates the adaptation
difficulty of VLFMs. Therefore, in this paper, we aim to improve the adaptation performance of
VLFMs directly on unlabeled data that naturally spans multiple domains.

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/GIT-LJc/UMFC

clipart infograph painting quickdraw real sketch0

10

20

30

40

50

60

70

80

ac
cu

ra
cy

(a)
80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

clipart
infograph
painting
quickdraw
real
sketch

(b)
squiggle line circle paintcan paintbrush picture

10 1

100

101

%

quickdraw
painting

(c)

Figure 1: On DomainNet dataset, we visualize (a) The accuracy of CLIP on the six domains. (b) The image
features extracted by CLIP’s image encoder across different domains. The visualization show that CLIP exhibits
inherent model bias. (c) The number of predictions for different classes on quickdraw and painting domains.

In this unsupervised multi-domain setting, we observe that CLIP cannot perform well when unlabeled
data are drawn from mixed distributions. As shown in Figure 1(a), even within the same class
space, the accuracy of CLIP varies significantly across different domains. While CLIP performs
exceptionally well for images from common distributions encountered during pre-training, e.g.,
achieving 83.0% accuracy on real domain, it struggles with rare distributions encountered during pre-
training, e.g., only achieving 14.2% accuracy on quickdraw domain. Above observations highlight
that CLIP exhibits model biases that lead to incorrect predictions in specific scenarios. This raises a
fundamental question: where do these biases originate?

We point out that these model biases stem from deficiencies in the visual encoder and textual encoder.
On the side of visual encoder, we observe that CLIP’ visual encoder prioritizes encoding domain
information over discriminative category information. As shown in Figure 1(b), features from
the same domain clearly cluster together, whereas a notable gap separates features from different
domains. This phenomenon indicates that CLIP’s visual encoder exhibits a higher sensitivity to
domain information over category information. When the domain of downstream tasks shifts from
pre-trained tasks, the mismatch in domain-specific information encoded in image features could
adversely affect classification accuracy. On the side of textual encoder, we observe that CLIP
demonstrates varying category preferences across different domains. Specifically, CLIP tends to
classify images into categories whose name are closely related to corresponding domain. As shown
in Figure 1(c), within “quickdraw” domain, a large portion of samples (∼ 30%) are classified as
“squiggle” or “line” categories. Conversely, within “painting” domain, CLIP favors categories like
“paintcan” and “paintbrush”. This observation shows that the class embeddings encoded by CLIP’s
textual encoder inherently carry domain-specific information, misleading the model to prioritize
categories highly associated with respective domains. Due to the combined effects of visual and
textual encoder biases, CLIP’s performances vary significantly across different domains.

In this paper, we aim to calibrate CLIP to mitigate the model biases. Initially, we analyze the model
biases from a probabilistic standpoint. The factors influencing p(y|x), affected by domain variable
z, can be decoupled into two parts: the sample distribution conditioned on classes p(x|y, z) and the
class distribution p(y|z). If the two probability distributions are independent of z, domain shifts
will not affect the predictions. To this end, we propose Unsupervised Multi-domain Feature
Calibration (UMFC), a simple yet efficient framework for calibrating CLIP to generalize to various
downstream tasks using multi-domain unlabeled data. UMFC jointly calibrates CLIP through two
training-free modules: Image Feature Calibration module (IFC) and Text Feature Calibration module
(TFC). Firstly, IFC focuses on calibrating CLIP’s image encoder to prioritize category-level over
domain-level information, thereby reducing prediction error caused by domain shifts. Specifically,
we calculate the average image features for each domain i, denoted as µi, and posit that the prediction
of µi reflects the inherent bias of CLIP’s image encoder within that domain. By subtracting this
domain-specific bias from original predictions, we can derive domain-agnostic predictions. Secondly,
TFC focuses on calibrating CLIP’s text encoder to remove its preference towards domain-related
class names. As observed by [7, 28, 8], a “global direction” exists in CLIP, representing the shift
from training distribution to unseen distribution, shared across image and text embedding spaces.
Motivated by this observation, we utilize the shift direction between different-domain images to
estimate the text shift direction. Then, we subtract this shift vector to counteract the text encoder’s
bias towards domain-related categories. By combing IFC and TFC, we can calibrate the features on
both CLIP’s image and text encoders, thereby alleviating the model bias in downstream tasks.

2

We validate the efficacy of UMFC on three downstream tasks: unsupervised calibration, transductive
learning, and test-time adaptation, demonstrating consistent gains over CLIP. UMFC presents a low-
cost solution for classification, unlocking the potential of CLIP-like models for practical scenarios
characterized by abundant images across multiple domains but scarce labels.

2 Related Work

Few-Shot Learning. Few-shot learning (FSL) [17, 16, 18, 10, 34] aims to learn a good model on
a novel task with few labeled samples. Traditional FSL methods [17, 16, 18, 10, 34] often rely on
abundant related training tasks for pre-training and design specialized algorithms to transfer cross-task
knowledge, facilitating task adaptation. Additionally, some semi-supervised learning (SSL) methods
[26, 14, 15] tackle the scarcity of labeled samples by assuming access to extensive unlabeled data.
While both FSL and SSL methods have achieved encouraging results, their generalization abilities
are limited. Recently, the CLIP model is proposed, which is a vision-language foundation model that
learns a shared vision-language embedding space. As pre-trained on large-scale data, CLIP exhibits
impressive zero-shot ability across various downstream tasks. Based on CLIP model, many works
focus on improving its performance further on downstream tasks with few labeled data. For example,
CoOp [39], CoCoOp [38], MaPLe [21] and PromptSRC [22] leverage few labeled samples to learn
the prompt in the continual input embedding space, offering a parameter-efficient way of fine-tuning
foundation models. Similarly, CLIP-Adapter [11] and Tip-Adapter-F [37] introduce a lightweight
adapter module to produce adaptive multi-modal features. However, these methods require extra
labeled data and the process of tuning pre-trained parameters for CLIP, which is cost-expensive.
Differently, in this work, we focus on utilizing unlabeled data to enhance CLIP’s performance in a
training-free manner.

Domain Adaptation / Domain Generalization. Recently, several methods [23, 3, 8, 31, 2, 33,
5, 19, 7] exploit a large-scale pre-trained model (e.g., CLIP) to address the domain adaptation and
generalization problems. For example, RISE [19] leverages CLIP as a teacher to regularize the
student’s learned representation through images. The work [3] utilizes domain-invariant and domain-
specific prompts for multi-source unsupervised domain adaptation. Other works [8, 7, 5] focus
on utilizing the transferability between visual and textual modalities to guide domain information
transfer. PromptStyler [5] attempts to simulate various distribution shifts to explore diverse styles in
a joint vision-language space. PODA [8] and LADS [7] generate samples in the style of the target
domain, and adapt to the target domain based on these samples. However, these language-guided
methods require the prior of target-domain names, which may not be satisfied in reality. In contrast,
our UMFC method does not require any extra information about the target domain.

Test-Time Adaptation. Test-time adaptation aims to adapt a pre-trained model to test tasks, where
distribution of test data differs from that of pre-training data. TPT [32] proposes a test-time prompt
tuning strategy, which extends traditional TTA methods to vision-language models. Building upon
TPT, DiffTPT [9] utilizes pre-trained diffusion models to augment the diversity of test data samples
used in prompt tuning. SwapPrompt [27] employs a dual prompts paradigm to enhance the swapped
prediction mechanism. However, these prompt learning methods are computationally expensive and
time-consuming. Different from above methods, our UMFC only needs to calibrate features in a
training-free way, making it more efficient for test-time adaptation.

3 CLIP and Model Biases

In this section, we first describe the backgrounds of CLIP and then analyze its bias issue in downstream
tasks. We attribute the cause of bias to the visual encoder bias and text encoder bias.

3.1 Contrastive Language-Image Pre-training (CLIP)

CLIP [30] consists of two parallel encoders: a visual encoder that maps image inputs into image
features, and a text encoder that maps text inputs into text features. The model is trained with
a contrastive loss that maximizes similarity between positive image-text pairs while minimizing
similarity between negative pairs. This process ensures alignment between the features of images
and their corresponding textual descriptions within the feature space. Trained on a vast collection

3

of image-text pairs, CLIP benefits from general visual representations, endowing it with powerful
zero-shot capabilities.

Formally, we denote a CLIP model as {F, T}, with F and T being the visual and text encoders.
Considering a K-class classification problem, we use Y = {y1, . . . , yK} to represent the class
space, where yk denotes the class name of kth class. In the zero-shot inference phase, CLIP uses
hand-crafted prompts p (such as “a photo of a {}”) to covert each class name yi to category-specific
text description {p; yi}. Then, we feed these class descriptions to the text encoder to get the text
features {t1, . . . , tK}, where ti = T (p; yi). Meanwhile, given a test image x, the visual encoder is
used to compute its visual feature, denoted as f = F (x). The prediction probability on x can be then
computed as:

p(yi|x) =
exp(sim(f, ti)/τ)∑K
j=1 exp(sim(f, tj)/τ)

, (1)

where sim denotes the cosine similarity and τ is the temperature of the softmax function.

3.2 Model Bias in CLIP

As shown in Figure 1(a), the accuracy of CLIP varies significantly across different domains within
the same class space, e.g., 83.0% in real domain and 14.2% in quickdraw domain. This phenomenon
indicates that CLIP favors domains commonly encountered during pre-training (such as natural
images). We attribute this model bias to visual encoder bias and text encoder bias.

• Visual Encoder Bias. We observe that CLIP’ visual encoder prioritizes encoding domain infor-
mation over discriminative category information, as shown in Figure 1(b). Due to the abundance
of natural images in pre-training, CLIP’s visual encoder and text encoder are well-aligned in the
natural image domain. Consequently, when the style of input images largely deviates from natural
domains (such as quickdraw and infograph style), the visual feature gap across different domain
(as depicted in Figure 1(b)) hinders the text encoder’s capacity to process these shifted images
effectively, leading a significant drop in classification accuracy.

• Text Encoder Bias. We observe that CLIP exhibits a preference for domain-related categories
in specific domains, as shown in Figure 1(c). In domains characterized by distinct styles, certain
category names may carry domain-specific information. For instance, in quickdraw domain, where
most images consist of lines and squiggle, CLIP demonstrates a severe bias towards the “line”
and “squiggle” categories. This leads to a large number of quickdraw samples being incorrectly
classified into the two categories. Conversely, in the painting domain, as all images inherently
possess painting features, CLIP shows a strong preference for categories related to the concept of
painting, such as “paintcan” and “paintbrush”.

4 Unsupervised Multi-domain Feature Calibration

In this section, we continue to analyze the model biases issue from a probabilistic view. Then we
give a detailed introduction of our method aimed at alleviating CLIP’s biases.

4.1 Analyze Model Biases in a Probabilistic View

We start from the posterior probability p (yi|x), as introduced in Equation 1. Recall that our goal
is to maximize the posterior probability p (yi|x) for each image-label pair (x, yi) of any domain.
A natural question arises: How different domains affect the posterior probability? We answer this
question from a probabilistic view. Based on the Bayes’ Theorem, we can drive that:

p (yi|x) =
p (yi, x)

p (x)
=

∑
z p (yi, x, z)

p (x)
, (2)

where z is a latent variable that denotes the domain labels. We can further decompose the joint
probability p (yi, x, z) in Equation 2 as p (yi, x, z) = p (x|yi, z) p (yi|z) p (z). Assume that the
probability distribution of domains p (z) is uniform, thus maximizing the posterior probability

4

p (yi|x) is equal to maximize the summation
∑

z p (x|yi, z) p (yi|z), as

max p (yi|x) = max

∑
z p (x|yi, z) p (yi|z) p (z)

p (x)

= max
∑
z

p (x|yi, z) p (yi|z) . (3)

Equation 3 shows that the domains affect posterior probability distribution p (y|x) by disturbing two
terms: the sample distribution conditioned on classes p (x|y, z) and the class distribution p (y|z).

4.2 UMFC: Unsupervised Multi-domain Feature Calibration

As analyzed in Section 3.2, CLIP exhibits both visual and text encoder bias, impacting its general-
ization ability to downstream tasks. As shown in Equation 3, these biases stem from the probability
distributions p (x|y, z) and p (y|z), which are disturbed by domain information. To mitigate the model
biases, an intuitive idea is to make the two probability distributions p (x|y) and p (y) independent
of domain variable z by calibrating image and text features. To this end, we propose training-free
UMFC approach, consisting of an Image Feature Calibration (IFC) module to alleviate visual encoder
bias and Text Feature Calibration (TFC) module to alleviate text encoder bias, facilitating the transfer
of CLIP to downstream tasks. Algorithms are provided in the Appendix C.

Image Feature Calibration Module. On the side of visual encoder, we focus on making the
conditional probability p (x|y) independent of domain variable z, which is equivalent to achieving
p (x|y, z) = p (x|y). A straightforward method is to align image feature distributions given a class y
across different domains. Unfortunately, as only mixed unlabeled data is provided, we cannot access
to class labels and domain labels of images. However, we empirically observe that CLIP’s visual
encoder prioritizes encoding domain information over discriminative category information. Thus,
we can distinguish image features from different domains through a simple clustering algorithm.
Formally, we assume that there are M clusters {c1, ..., cM} after applying a clustering algorithm.
Each cluster is assumed to follow a Gaussian distribution ci ∼ N (µi,Σi), where mean vector
µi = (1

|ci|
∑

f∈ci
f) represents the average of image features from cluster ci. Due to the model

biases, the pseudo labels produced by zero-shot CLIP are not reliable. Therefore, we directly align
the margin image feature distribution of each cluster by subtracting the corresponding mean vector2.
Specifically, for each visual feature f belonging to the cluster ci, we calibrate it as follows:

f ′ =
f − µi

∥f − µi∥2
. (4)

Text Feature Calibration Module. On the side of text encoder, we focus on making the class
probability p (y) independent of domain variable z, which is equivalent to achieving p (y|z) = p (y).
Previous works [35] have found that CLIP’s performance is sensitive to class name y. For example,
replacing category names with synonyms or near-synonymous terms can significantly impact CLIP’s
prediction results. Due to the influence of domain information in image features, text encoder bias
can cause CLIP to categorize domain-specific images into categories whose names are semantically
similar to that domain. We further observe that such sensitivity to class names varies across different
domains, as shown in Figure 1(c). This observation inspires us to calibrate text features by removing
domain-specific information. However, a challenge arises as domain labels are unavailable. To
address this issue, we attempt to extract domain information from unlabeled images, and then transfer
this domain information to the text embedding space to estimate the text bias.

Observation 4.1 Cross-Modality Transition Direction. The underlying assumption behind using
images to simulate the corresponding shifts in texts is that the transition direction from domain i to
domain j is consistent across both the image embedding and text embedding spaces [7, 28, 8], which
can be formulated as:

F
(
xi
)
− F

(
xj
)

∥F (xi)− F (xj)∥2
≈

T
(
pi; yi

)
− T

(
pj ; yj

)
∥T (pi; yi)− T (pj ; yj)∥2

, (5)

2This operation is based on the assumption of a uniform class distribution in each cluster. We experimentally
found that this operation remains effective, even if this assumption does not hold strictly.

5

where
(
xi, yi

)
and

(
xj , yj

)
represent training samples from domain i and domain j respectively, pi

and pj denote the domain-specific text prompts for domain i and j respectively. For example, the text
prompt of “quickdraw” domain can be “a quickdraw image of a [class]”.

Inspired by Observation 4.1, we estimate the text-level domain transition direction using different-
domain images. By clustering image features, we calculate the average feature µi of unlabeled
images from each domain i, representing the domain-specific feature for that domain. Also, we
calculate the average feature of all unlabeled images µavg, representing the domain-invariant feature
since it encompasses various domain distributions. Following Equation 5, the transition information
t̂i of domain i can be computed as t̂i = µi − µavg. By subtracting this domain transition vector,
we suppress the preference for specific class names in the original text features. To ensure that the
calibrated text features effectively eliminate biases towards a wide range of domains, we integrate the
text features calibrated on each domain. Specifically, for the text feature tj of class j, we calibrate it
as follows:

t′j =
1

M

M∑
i=1

tj − t̂i∥∥∥tj − t̂i
∥∥∥
2

, (6)

where M is the number of clusters.

Inference. After calibration with IFC and TFC modules, we obtain the final prediction results.
Specifically, this calibration modifies the prediction probability on test image x as follows:

p (yi|x) =
exp (sim (f ′, t′i) /τ)∑K

j=1 exp
(
sim

(
f ′, t′j

)
/τ

) . (7)

5 Experiments

5.1 Experimental Setting

Datasets. Our UMFC is training free, which only calibrates the image and text features using
Equation 4 and 6. To analyze model’s generalization capability, we use two large-scale datasets for
evaluation: 1) DomainNet [29] consists of 569,010 images with 345 categories from six domains:
Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R), Sketch (S). 2) ImageNet Variants
composed of several datasets shifted from ImageNet, including ImageNet-A (IN-A) [13], ImageNet-R
(IN-R) [12], and ImageNet-Sketch (IN-S) [36]. We form the class space for ImageNet Variants by
taking the union of the class sets in IN-A and IN-R. To ensure the reliability of the evaluation results,
we randomly sample the test data to construct a balanced test set where both domain and category
distributions are uniform.

Evaluation Paradigms. Our approach is a universal feature calibration technique that can be applied
across multiple scenarios. In this work, we explore three settings: 1) Unsupervised Calibration (UC)
where the unlabeled training set is provided for computing the calibration vectors; 2) Transductive
Learning (TL) where the entire unlabeled test set is provided at once, without providing any training
data; 3) Test-Time Adaptation (TTA) where the model can be adapted to test samples shifted from
training distribution. Different from TL, the test data usually arrives in batches in TTA setting. More
details on the experimental setup, please refer to Appendix D.

5.2 Main Results on Unsupervised Calibration.

Implementation Details. We select CLIP [30] as our pre-trained vision-language model. We use
CLIP with ViT-B/16 [6] as image encoder, and keep the original transformer as the text encoder. By
default, a fixed prompt, “a photo of a [class]”, is employed for all datasets. The images are resized to
224× 224. The hyper-parameter M (cluster number) is set to 6 for DomainNet. Remarkably, our
method is training-free where both image encoder and text encoder remain frozen throughout the
entire pipeline. All experiments are performed on a GeForce RTX 3090 Ti GPU.

Baselines. We compare our method with four groups of methods: (1) CLIP and its variants to show
zero-shot predictions: CLIP [30] that uses a fixed prompt "a photo of a [class]"; CLIP-E [30] that
uses an ensemble of prompt templates. (2) CLIP-D [30] that utilizes the domain information of
test samples and designs domain-specific prompts. (3) Few-shot learning methods: CoOp [39] that

6

Table 1: Results on DomainNet under multi-domain Unsupervised Calibration. CLIP denotes zero-shot CLIP
with a fixed text prompt template “a photo of a [class]”, CLIP-E uses the ensemble prompt templates designed
for Imagenet [39], CLIP-D uses the domain-specific templates, i.e., “a [domain] image of [class]”. CoOp and
CLIP-Adapter are trained on multi-domain labeled data, e.g., 6× 1× 345 denotes the number of labeled data.

Method C I P Q R S Avg

Unsupervised

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88
CLIP-E [30] 73.16 54.17 67.02 15.86 84.30 67.49 60.33

CLIP-D [30] 73.90 55.84 67.75 17.84 83.26 67.56 61.03

MUST [25] 74.83 56.48 61.80 19.06 82.88 70.31 60.89

UMFC (ours) 73.02 55.30 66.36 19.67 83.54 66.87 60.79
UMFC + CLIP-E (ours) 73.84 56.59 67.39 20.03 84.33 67.90 61.68

Few-Shot

CoOp (6 × 1 × 345) [39] 72.73 53.95 66.80 19.58 82.53 67.27 60.48
CoOp (6 × 4 × 345) [39] 74.7 54.96 68.29 22.14 82.94 69.48 62.09
CLIP-Adapter (6 × 1 × 345) [11] 72.67 51.69 67.84 17.82 84.26 65.75 60.00
CLIP-Adapter (6 × 4 × 345) [11] 74.35 53.79 69.94 19.71 85.26 66.90 61.66

performs prompt tuning using labeled data of downstream tasks; CLIP-Adapter [11] that trains an
adapter using task-specific labeled data. (4) Unsupervised Fine-tuning method: MUST [25] that
fine-tunes the model using unlabeled multi-domain data.

Analysis. As shown in Table 1, UMFC achieves superior performance over CLIP and competitive
performance with few-shot methods, CoOp [39] and CLIP-Adapter [11]. We can observe that: (1)
CLIP-D incorporates domain information into text prompts, such as “a clipart image of a [class]’
for test samples from “clipart” domain. However, creating domain-specific templates is challenging
due to unknown and potentially mixed domain sources of test samples. So, we only use CLIP-D
as an oracle result. As shown in Table 1, our method can achieve competitive performance with
CLIP-D without prior domain labels for test samples. (2) On domains where CLIP performs poorly,
e.g., “quickdraw”, our UMFC significantly outperforms others. Compared to CLIP, UMFC achieves
about 5% performance gain on quickdraw domain. In addition, combined with more diverse prompts
of CLIP-E, UMFC further improves performance. (3) MUST [25] uses abundant unlabeled data
from 6 domains for fine-tuning. Our UMFC achieves better performance than MUST even without
any additional training. (4) For CoOp [39] and CLIP-Adapter [11], we fine-tune them using labeled
samples from multiple domains. Specifically, we provide k labeled samples per class for each domain,
resulting in a total of (6×k×345) labeled samples available for training. When the number of labeled
samples is 6× 345, our method outperforms few-shot fine-tuning methods. While the performance is
higher for few-shot methods with a larger number of labeled samples (i.e., 24× 345), it is essential to
highlight the challenges in obtaining some labeled data for each class and each domain in real-world
scenarios. In contrast, our method does not require selecting class-balanced and domain-balanced
labeled samples and incurs no additional training overhead.

Table 2 provides 8× 345 labeled samples from a single domain for CoOp fine-tuning and an equal
number of unlabeled samples for UMFC calibration. While CoOp trained on a single domain can
improve performance within that domain, its performance declines on other domains. This decline
becomes particularly notable when a significant distribution gap between the training and test domains
exists, e.g., CoOp (Q), leading to a large decrease in average performance across multiple domains.
In contrast, our method achieves consistent performance improvements on both training and unseen
domains with the same amount of training data. Additionally, unlike CoOp, UMFC does not require
labeled data or any parameter fine-tuning.

5.3 Main Results on Transductive Learning

In this part, we compare our UMFC with three groups of methods: (1) Zero-Shot CLIP models.
(2) Domain Generalization (DG) method: MIRO [2] that trains CLIP on available data to learn
great generalization capability. (3) Data-Free DG method: PromptStyler [5] that learns to simulate
diverse distributions. The hyper-parameter M (cluster number) is set to 3 for ImageNet-Variants. The
compared results are shown in Table 3 and Table 4. As seen, our UMFC can achieve the best average
performance on DomainNet and ImageNet-Variants benchmarks, which validates the effectiveness of
our approach in transductive learning.

7

Table 2: Results on DomainNet under single-domain Unsupervised Calibration. 8× 345 samples (each class
has 8 samples) from a single domain are provided. CoOp (C/Q/I) and UMFC (C/Q/I) denote training samples
for CoOp and UMFC from the “Clipart”/“Quickdraw”/“Infograph” domains, respectively.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88

CoOp (C) [39] 74.55 42.66 55.94 13.82 75.00 58.73 53.45
UMFC (C) 73.27 52.96 65.27 16.94 83.60 67.04 59.85

CoOp (Q) [39] 43.97 25.5 32.63 29.07 48.44 38.74 36.39
UMFC (Q) 72.17 49.65 63.85 17.47 82.84 66.36 58.72

CoOp (I) [39] 60.19 54.28 50.81 11.19 70.73 54.27 50.24
UMFC (I) 72.54 55.21 64.48 16.30 83.31 66.51 59.73

Table 3: Comparison Results on DomainNet under Transductive Learning.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88
CLIP-E [30] 73.16 54.17 67.02 15.86 84.30 67.49 60.33
CLIP-D [30] 73.90 55.84 67.75 17.84 83.26 67.56 61.03
MIRO [2] - - - - - - 54.00
PromptStyler [5] 73.10 50.90 69.20 13.30 85.40 65.30 59.40

UMFC 73.01 55.44 66.89 20.14 83.66 67.51 61.11

Table 4: Comparison Results on ImageNet-Variants
under Transductive Learning.

Method IN-A IN-R IN-S Avg

CLIP [30] 42.13 66.95 74.58 61.22
CLIP-E [30] 45.42 71.10 77.08 64.53

UMFC 43.42 68.86 77.24 63.17
UMFC + CLIP-E 44.77 72.19 78.62 65.19

Table 5: Comparison Results on ImageNet-Variants
under Test-Time Adaptation.

Method IN-A IN-R IN-S Avg

CLIP 42.13 66.95 74.58 61.22
TPT [32] 47.16 59.95 67.49 58.20

UMFC-Memory 42.76 67.03 75.15 61.65
UMFC-EMA 42.21 67.82 76.26 62.10

5.4 Main Results on Test-Time Adaptation

Implementation Details. In TTA setting, where we cannot access all data simultaneously, we
adopt an incremental clustering approach. By default, the batch size is set to 100. Initially, we apply
K-Means clustering algorithm to the first batch of data. For subsequent batches, we use the prototype
classification, with cluster centers serving as prototypes, to assign samples in that batch to different
clusters. Then, the cluster centers and calibration statics {µi}Mi=1 are updated accordingly. We have
developed two strategies for updating the calibration statics: UMFC-Memory that stores the feature
information of each batch to calculate the statistical information; UMFC-EMA that uses Exponential
Moving Average (EMA) to update statistical information.

Table 6: Comparison Results on DomainNet under Test-Time Adaptation. UMFC-Memory and UMFC-EMA
represent different ways to update the statics vectors for calibration.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88
TPT [32] 73.23 52.63 68.00 12.79 84.39 66.68 59.62

UMFC-Memory 72.82 55.12 66.82 19.92 83.62 66.82 60.85
UMFC-EMA 72.99 54.94 66.64 18.58 83.54 66.75 60.57

Analysis. We mainly compare our UMFC with TPT [32] in test-time adaptation, where TPT fine-
tunes the prompts by minimizing the entropy of the predictions. The comparison results are shown in
Table 6 and Table 5. We can observe that: (1) As shown in Table 6, UMFC achieves performance
gains across all domains, with particularly noticeable gains in those where CLIP performs poorly. For
example, UMFC substantially improves upon CLIP on “quickdraw” and “infograph” domains, with

8

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

clipart
infograph
painting
quickdraw
real
sketch

(a)
real sketch clipart painting infograph quickdraw0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y

uniform
CLIP
Calibration

(b)

Figure 2: On DomainNet dataset, we visualize (a) The image features extracted by UMFC image encoder across
different domains. (b) The classification probabilities of CLIP’s text features on different domains.

Table 7: Ablation study on the effects of TFC and IFC under Transductive Learning.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88

IFC 72.98 55.07 66.65 19.87 83.54 66.97 60.85
TFC 71.44 49.99 65.59 13.9 83.25 64.68 58.14

UMFC 73.01 55.44 66.89 20.14 83.66 67.51 61.11

an accuracy gain of 5.6%. Table 5 shows that the improvement on ImageNet-A is less significant
than on ImageNet-R and ImageNet-S. The reason may be attributed to the absence of distinct domain
styles in ImageNet-A, limiting the effectiveness of our calibration method that relies on domain
information. (2) UMFC-Memory and UMFC-EMA with different statistical update strategies exhibit
similar performance. However, UMFC-EMA, which updates features based on the most recent data,
notably reduces storage requirements. Moreover, UMFC exhibits significantly higher computational
efficiency without training, whereas TPT requires executing optimization steps on 64 different
augmented views of each test image. Thus, our method is more suitable for rapid deployment.

5.5 Ablation Study

The effectiveness of IFC. We firstly evaluate the effectiveness of IFC. As shown in Table 7, IFC
individually contributes to performance gains of CLIP, about 3% average gains. Furthermore, Figure
1(b) and Figure 2(a) visualize the image features extracted by CLIP with/without IFC respectively.
As shown in Figure 1(b), the vanilla CLIP maps different-domain images to different clusters in the
feature space. Conversely, Figure 2(a) shows that IFC leads to the merge of image features from
different domains, validating its effectiveness of reducing domain-specific information.

The effectiveness of TFC. As shown in Table 7, TFC also individually contributes to performance
gains of CLIP. To assess the effectiveness of calibrated text features in eliminating domain bias,
we construct a domain classifier. Specifically, we utilize the text features generate by CLIP, with
domain prompts “[domain]”, as the domain classifer. Then, we use this domain classifier to perform
domain classification for the text features before and after calibration (i.e., computing the cosine
similarity between domain classifier and text features). As shown in Figure 2(b), the original text
features exhibit a long-tail phenomenon, with a higher probability of being classified into the “real”
domain. This suggests that the original text features are biased towards the “real” domain, overlooking
their generalization ability to other domains. However, after calibration with TFC, the text features
exhibit a near-uniform distribution across domains, indicating that the calibrated text features have
largely eliminated domain bias. Consequently, our method enhances performance in other domains
without compromising the model’s performance in its strongest domain. As shown in Table 7, the
combination of IFC and TFC (i.e., UMFC) can further bring performance gains, which validates the
complementary of image-level calibration and text-level calibration for CLIP.

The impact of cluster number M . Our method involves clustering the unlabeled data to determine
their respective clusters. We evaluate our method with respect to the number of clusters M . As shown

9

Table 8: The impact of cluster number M on DomainNet under Transductive Learning.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88

UMFC (M=3) 72.53 54.60 66.31 20.32 83.35 66.86 60.66
UMFC (M=4) 73.55 56.36 67.19 20.62 84.13 67.69 61.59
UMFC (M=6) 73.01 55.44 66.89 20.14 83.66 67.51 61.11
UMFC (M=8) 73.50 56.58 67.53 20.64 84.06 67.92 61.71
UMFC (M=10) 73.63 56.87 67.81 20.23 84.20 67.87 61.77

Table 9: The impact of batch size under Test-Time Adaptation.

Method C I P Q R S Avg

CLIP [30] 71.21 49.47 64.61 14.23 82.98 64.81 57.88

UMFC (bs=1) 72.64 53.74 66.39 18.25 83.34 66.90 60.21
UMFC (bs=10) 72.64 54.52 66.51 18.53 83.35 67.06 60.44
UMFC (bs=16) 72.70 54.80 66.91 19.11 83.78 66.69 60.66
UMFC (bs=32) 73.02 55.02 66.73 19.17 83.66 66.97 60.76
UMFC (bs=64) 73.23 55.04 66.72 19.15 83.78 66.84 60.79
UMFC (bs=100) 72.82 55.12 66.82 19.92 83.62 66.82 60.85

in Table 8, our UMFC consistently outperforms vanilla CLIP, even when the number of clusters M
does not match the number of domains (6 for DomainNet). More importantly, our method is not
sensitive to changes in M . Refer to the Appendix E for more analysis.

The impact of batch size in TTA setting. We present results across various batch sizes during
test-time adaptation to confirm that UMFC is robust to batch size variations. When the sample count
is initially lower than the number of clusters M , K-Means clustering cannot be directly applied. To
address this, we used the first M samples as the initial cluster centers and then proceeded with the
same test-time adaptation. As shown in Table 9, even in the extreme case of a batch size of 1, our
method still demonstrates consistent improvement.

6 Conclusion

In this work, we point out that the model biases hinder the transfer ability of pre-trained vision-
language models. We develop UMFC, a simple unsupervised calibration method that mitigates model
biases in both visual encoder and text encoder through a training-free manner. We demonstrate the
effectiveness of our method across multiple settings, including unsupervised calibration, transductive
learning, and test-time adaptation. Without the need for any annotations and training, UMFC improves
the zero-shot generalization ability of CLIP.

Limitations and Broader Impacts. Our method requires unlabeled samples from the target domain
to establish domain-level calibration vectors. Although our method is much cheaper and more
accessible than fine-tuning or few-shot methods [39, 38, 32], the requirement of unlabeled data can
still be a limitation for some specific scenarios.

Acknowledgments

This work is partially supported by National Key R&D Program of China no. 2021ZD0111901, Na-
tional Natural Science Foundation of China (NSFC): 62376259 and 62306301, National Postdoctoral
Program for Innovative Talents under Grant BX20220310.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,

Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In NeurIPS, 2022.

10

[2] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by
mutual-information regularization with pre-trained models. In ECCV, 2022.

[3] Haoran Chen, Zuxuan Wu, and Yu-Gang Jiang. Multi-prompt alignment for multi-source
unsupervised domain adaptation. ArXiv, abs/2209.15210, 2022.

[4] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning. In CVPR, 2023.

[5] Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. Promptstyler:
Prompt-driven style generation for source-free domain generalization. In ICCV, 2023.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

[7] Lisa Dunlap, Clara Mohri, Devin Guillory, Han Zhang, Trevor Darrell, Joseph E. Gonzalez,
Aditi Raghunanthan, and Anja Rohrbach. Using language to extend to unseen domains. In
ICLR, 2023.

[8] Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick Pérez, and Raoul de Charette. Pøda:
Prompt-driven zero-shot domain adaptation. In ICCV, 2023.

[9] Chun-Mei Feng, Kai Yu, Yong Liu, Salman A. Khan, and Wangmeng Zuo. Diverse data
augmentation with diffusions for effective test-time prompt tuning. 2023.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[11] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International
Journal of Computer Vision, 132:581–595, 2024.

[12] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Lixuan Zhu, Samyak Parajuli, Mike Guo, Dawn Xiaodong Song, Jacob
Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-
distribution generalization. In ICCV, 2021.

[13] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Xiaodong Song.
Natural adversarial examples. In CVPR, 2021.

[14] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Dual compensation
residual networks for class imbalanced learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45:11733–11752, 2023.

[15] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Triplet adaptation
framework for robust semi-supervised learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

[16] Minyang Hu, Hong Chang, Zong Guo, Bingpeng Ma, Shiguan Shan, and Xilin Chen. Task
attribute distance for few-shot learning: Theoretical analysis and applications. arXiv, 2024.

[17] Minyang Hu, Hong Chang, Zong Guo, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Under-
standing few-shot learning: Measuring task relatedness and adaptation difficulty via attributes.
In Advances in Neural Information Processing Systems, 2023.

[18] Minyang Hu, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Scalable modular
network: A framework for adaptive learning via agreement routing. In ICLR, 2024.

[19] Zeyi Huang, Andy Zhou, Zijian Lin, Mu Cai, Haohan Wang, and Yong Jae Lee. A sentence
speaks a thousand images: Domain generalization through distilling clip with language guidance.
In ICCV, 2023.

11

[20] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In ICML, 2021.

[21] Muhammad Uzair khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fa-
had Shahbaz Khan. Maple: Multi-modal prompt learning. In CVPR, 2023.

[22] Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation
without forgetting. In ICCV, 2023.

[23] Zhengfeng Lai, Noranart Vesdapunt, Ning Zhou, Jun Wu, Cong Phuoc Huynh, Xuelu Li, Kah
Kuen, Fu, and Chen-Nee Chuah. Padclip: Pseudo-labeling with adaptive debiasing in clip for
unsupervised domain adaptation. In ICCV, 2023.

[24] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML, 2022.

[25] Junnan Li, Silvio Savarese, and Steven C. H. Hoi. Masked unsupervised self-training for
label-free image classification. In ICLR, 2022.

[26] Jiachen Liang, Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen.
Generalized semi-supervised learning via self-supervised feature adaptation. In NeurIPS, 2023.

[27] Xiaosong Ma, Jie Zhang, Song Guo, and Wenchao Xu. Swapprompt: Test-time prompt
adaptation for vision-language models. In NeurIPS, 2023.

[28] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip:
Text-driven manipulation of stylegan imagery. In ICCV, 2021.

[29] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In ICCV, 2019.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[31] Yangjun Ruan, Yann Dubois, and Chris J. Maddison. Optimal representations for covariate shift.
In ICLR, 2022.

[32] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
In NeurIPS, 2022.

[33] Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long.
Clipood: Generalizing clip to out-of-distributions. In ICML, 2023.

[34] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, 2017.

[35] Feng Wang, Manling Li, Xudong Lin, Hairong Lv, Alexander G. Schwing, and Heng Ji.
Learning to decompose visual features with latent textual prompts. In ICLR, 2023.

[36] Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary Chase Lipton. Learning robust global
representations by penalizing local predictive power. In NeurIPS, 2019.

[37] Renrui Zhang, Zhang Wei, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Jiao Qiao,
and Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In
ECCV, 2022.

[38] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In CVPR, 2022.

[39] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. International Journal of Computer Vision, 130:2337–2348, 2022.

12

A The Prevalence of the Observed Model Bias

Our method is motivated by observed biases in CLIP. Therefore, it is valuable to investigate whether
these observations hold when the pre-training distribution and model architecture are altered.

We further verify this on OpenCLIP[4]. OpenCLIP investigates scaling laws for contrastive language-
image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository.
The large-scale experiments involve models trained on up to two billion image-text pairs (LAION-2B)
and identify power law scaling for multiple downstream tasks including zero-shot classification,
retrieval, linear probing, and end-to-end fine-tuning. We used OpenCLIP models trained on different
datasets to obtain the corresponding image features, and visualized them using t-SNE. As shown in
Figure 3, even when the training data changes, images from different domains still cluster together,
demonstrating that our observation is universally applicable.

Additionally, we validated the effectiveness of our method on the OpenCLIP series models in Table
10. It is evident that the zero-shot capabilities of larger-scale models have significantly improved
compared to CLIP, and our method still provides further performance gains. This demonstrates that
our method is universally applicable to Vision-Language models with different architectures and
training data.

ViT-B-16 (3B) ViT-B-16 (34B) ViT-B-32 (34B)

ViT-B-16 (80M) ViT-B-16 (400M) ViT-B-16 (2B)

(a) The OpenCLIP models are pre-trained with three different dataset (LAION-80M, LAION-400M and LAION-2B).

(b) The OpenCLIP models are pre-trained on LAION-2B with different number of seen samples (3B, 34B) and
architectures (ViT-B-16, ViT-B-32).

Figure 3: Visualization of Image Features based on OpenCLIP series.

Table 10: Comparision Results on DominaNet using OpenCLIP.

Arch C I P Q R S Avg

ViT-B-16 78.66 56.16 71.09 15.25 86.93 72.26 63.39
+ UMFC 78.93 58.29 71.78 21.56 86.36 73.29 65.04

ViT-B-32 76.98 52.00 68.77 15.63 85.63 70.54 61.59
+ UMFC 76.99 53.08 68.70 22.61 85.17 71.27 62.97

ViT-H-14 83.72 63.21 76.05 18.20 89.49 79.18 68.31
+ UMFC 83.74 63.89 76.41 23.73 89.33 79.49 69.43

B Details of Text Feature Calibration Module

Since the domain labels are unavailable, we attempt to extract domain information from images in
downstream tasks, and then transfer this domain information to the text embedding space to eliminate

13

the text bias. Inspired by Observation 4.1, we can estimate the domain transition direction in text
embedding space by using images from different domains, as shown in Figure 4.

a quickdraw image of a bird an infograph image
of a bird

a real image of a bird
a clipart image of a bird

∆𝑡!
∆𝑡"

∆𝑡#

∆𝑓!
∆𝑓"

∆𝑓#

Vision-Language Joint Space

Image Feature Text Feature Modality Boundary

Figure 4: The domain transition direction between texts is similar to that between images.

C Algorithm

Algorithm 1 summarizes the proposed UMFC method under Test-Time Adaptation (TTA) setting.

Algorithm 2 summarizes the proposed UMFC method under Unsupervised Calibration (UC) /
Transductive Learning (TL).

Algorithm 1 Algorithm UMFC under TTA

1: Input: test data {ub,i}Bb=1
N
i=1, batch size B, total number of batches N , total number of clusters

M , CLIP’s image encoder F (·) and text encoder T (p; ·), p is the text template, class names
{yi}Ci=1.

2: t← T (p; {yi}Ci=1) ▷ Get original text features
3: Initialize centroids of M cluster {cj}Mj=1 as empty set
4: for i← 1 to N do
5: {fb,i}Bb=1 ← F ({ub,i}Bb=1) ▷ Get original image features of i-th batch
6: if {cj}Mj=1 is ∅ then
7: {cj}Mj=1 ← K-Means({fb,i}Bb=1) ▷ Using K-Means to acquire M centroids
8: end if
9: for b← 1 to B do

10: lb,i ← argmin
m

∥fb,i − cm∥2 ▷ Assign sample to the nearest clusters

11: end for
12: c′k ← 1

B

∑B
b=1 I(lb,i = m) · fb,i ▷ Calculate centroids of current batch

13: ck ← ck + η · c′k, ▷ Update prototypes, where η is the update weight
14: µavg ← 1

M

∑M
m=1 c

′
m ▷ update the average image feature

15: t̂m ← I(l = m)(c′m − µavg), ▷ Update calibration statics
16: t′b ← 1

M

∑M
m=1

t−t̂m

∥t−t̂m∥ ,
17: for b← 1 to B do
18: f ′

b,i ←
fb,i−c′l

∥fb,i−c′l∥
, ▷ Calibrate f and t with IFC and TFC

19: end for
20: end for
21: return {f ′

b,i, t
′
b}Bb=1

N
i=1 ▷ Calibrated image and text features

14

Algorithm 2 Algorithm UMFC under UC / TL

1: Input: unlabeled data {ub}Ni=1, total number of samples N , total number of clusters M , total
number of batches B, CLIP’s image encoder F (·) and text encoder T (p; ·), p is the text template,
class names {yi}Ci=1.

2: t← T (p; {yi}Ci=1) ▷ Get original text features
3: {fb}Nb=1 ← F ({ub}Ni=1) ▷ Get original image features of unlabeled data
4: µavg ← 1

N

∑N
b=1 fb ▷ Get the average of {fb}Nb=1

5: {cj}Mj=1 ← K-Means({fb}Nb=1) ▷ Using K-Means to acquire M clusters and their centroids
6: for b← 1 to N do
7: l← argmin

m
∥fb − cm∥2 ▷ Assign sample to the nearest clusters

8: t̂k ← I(l = m)(cm − µavg), ▷ Update calibration statics
9: f ′

b ←
fb−cl

∥fb−cl∥ , t′b ← 1
M

∑M
m=1

t−t̂m

∥t−t̂m∥ , ▷ Calibrate f and t with IFC and TFC
10: end for
11: return {f ′

b}Nb=1, t′ ▷ Calibrated image and text features

D Experimental Settings

Our work can be deployed across various scenarios, including Unsupervised Calibration (UC),
Test-Time Adaptation (TTA), and Transductive Learning (TL).

Unsupervised Calibration. In the UC scenario, we provide an unsupervised training set and use
K-Means to assign cluster labels to the training samples, while also saving the corresponding cluster
prototypes. Then, we create an unlabeled training set from a mixed domain by sampling 16 instances
from each class across 6 domains in DomainNet. UMFC derives image bias and text bias for different
clusters based on the cluster labels. During the testing phase, we first predict the cluster labels of the
test samples using the cluster prototypes obtained during training, and then calibrate the predictions
using the bias information derived from UMFC.

Test-Time Adaptation. In the TTA scenario, no training data is provided. Test data from mixed
domains arrive in batches, with a batch size set to 100. For the first batch, we perform initial clustering
using K-Means. For subsequent batches, we assign cluster labels to the samples based on cluster
prototypes and continuously update these prototypes. Once the cluster labels are obtained, UMFC
calculates the bias information for the current batch, updates the bias information for each cluster
based on the new labels, and then calibrates the data for the current batch.

Transductive Learning. In the TL scenario, we provide the entire test set. Similar to UMFC, we
gather statistical information and calibrate the predictions for the test data. TL can be viewed as an
extreme case of TTA, where the entire test set is treated as a single batch.

E Experimental Analysis

The impact of cluster number M . We evaluate our method with respect to the number of clusters
M and demonstrate that our method is not sensitive to the choice of this hyperparameter. As shown
in Table 11, For instance, setting M from 2 to 6 all leads to improvements on ImageNet-Variants.

Table 11: The impact of cluster number M on ImageNet-Variants under Transductive Learning.

Method IN-A IN-R IN-S Avg

CLIP [30] 42.13 66.95 74.58 61.22
UMFC (M=2) 45.35 71.71 77.37 64.81
UMFC (M=3) 44.77 72.19 78.62 65.19
UMFC (M=6) 45.29 71.33 77.59 64.74

Computation Cost. For analyzing computational cost, we report the training time, inference time
and memory of UMFC and other comparison methods under different scenarios. In Unsupervised

15

Calibration scenario, the entire unlabeled training set is provided for training. Corresponding
computation cost comparisons are shown in Table 12. Firstly, UMFC incurs minimal training and
inference overhead compared to CLIP. This is because UMFC only requires a single forward pass
to extract features and then calculate statistics for feature calibration. Secondly, when compared to
few-shot fine-tuning methods (CoOp) and unsupervised fine-tuning methods (MUST), UMFC also
demonstrates lower consumption of computational resources and time. In Test-time Adaptation
scenario, no training data is provided and the test data arrives in batches. Corresponding computation
cost comparisons are shown in Table 13. UMFC requires less memory than TPT and shows greater
computational efficiency. Specifically, UMFC takes only 296 seconds, whereas TPT requires nearly
197 minutes. This is because TPT requires fine-tuning the text prompt for each test sample and
augmenting each test sample 64 times to ensure the reliability of the fine-tuning results, which
significantly slows down TPT’s inference speed.

Table 12: Computation Cost under Transductive Learning.

Method Training Time Inference Time Epoch Memory

CLIP [30] - 86 seconds - 1797MiB
MUST [25] 10 hours (2 GPUs) 92 seconds 30 25944MiB

CoOp (6*1 shot) [39] 32 minutes 83 seconds 50 7007MiB
CoOp (6*4 shots) [39] 160 minutes 83 seconds 100 7007MiB

UMFC 57.3 seconds 86 seconds - 1887MiB

Table 13: Computation Cost under Test-Time Adaptation.

Method Inference Time Memory

TPT 197 minutes 6872MiB
UMFC 296 seconds 1790MiB

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: A summary of the paper’s contributions is provided at conclusion.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5.2, 5.4 and supplemental material for implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]
Justification: See https://github.com/GIT-LJc/UMFC
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.2, 5.4 and supplemental material for implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

19

https://github.com/GIT-LJc/UMFC
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.2 and supplemental material for implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See References.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related Work
	CLIP and Model Biases
	Contrastive Language-Image Pre-training (CLIP)
	Model Bias in CLIP

	Unsupervised Multi-domain Feature Calibration
	Analyze Model Biases in a Probabilistic View
	UMFC: Unsupervised Multi-domain Feature Calibration

	Experiments
	Experimental Setting
	Main Results on Unsupervised Calibration.
	Main Results on Transductive Learning
	Main Results on Test-Time Adaptation
	Ablation Study

	Conclusion
	The Prevalence of the Observed Model Bias
	Details of Text Feature Calibration Module
	Algorithm
	Experimental Settings
	Experimental Analysis

