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ABSTRACT

Disentanglement and compositional generalization are essential abilities for hu-
mans, as they enable rapid knowledge acquisition and generalization to new tasks.
These abilities involve recognizing fundamental underlying concepts from ob-
servations and generating novel concept combinations. However, deep learning
models often struggle with these capabilities. Numerous studies have proposed
methods for disentangled representation learning, while recent research has also
begun to address compositional generalization. Despite these advancements, the
relationship between disentanglement and compositional generalization remains
under-explored, with inconsistent findings reported in existing literature. In this
paper, we analyze various prominent disentangled representation learning meth-
ods, examining their disentanglement and compositional generalization capabili-
ties. Our study reveals a crucial insight: adopting vector-valued representations
(using vectors rather than scalars to represent concepts) significantly enhances
both disentanglement and compositional generalization performance. This insight
resonates with findings from neuroscience research, which suggest that the brain
encodes information through the collective activity of neuron populations, rather
than relying on individual neurons. Motivated by this observation, we further pro-
pose a method to reform the scalar-valued disentanglement works (β-TCVAE and
FactorVAE) to be vector-valued to increase both capabilities. We investigate the
impact of the dimensions of vector-valued representation and one important ques-
tion: whether better disentanglement indicates higher compositional generaliza-
tion. In summary, our study establishes the feasibility of attaining both effective
concept recognition and novel concept composition.

1 INTRODUCTION

Humans possess the ability to proficiently comprehend an extensive variety of abstract concepts, and
to seamlessly generalize them to novel compositions of these concepts. This exceptional ability is
suggested to be a crucial mechanism that enables humans to acquire knowledge and apply it to new
contexts (Cole et al., 2013; Frankland & Greene, 2020; Ito et al., 2022). For example, humans can
easily depict an unseen object using learned concepts such as color, shape, and texture. Language is
generally considered a disentangled representation for visual observations, and can be recomposed
to represent novel observations. Serving as a disentangled and computationally generalizable repre-
sentation, language functions as a powerful tool that enables humans to comprehend the world, learn,
and create knowledge. In a similar vein, it has been suggested that disentanglement (Bengio et al.,
2013) and compositional generalization (Lake et al., 2017; Lake & Baroni, 2018) are fundamental
missing ingredients for deep learning models to achieve human-like intelligence.

Toward this ambitious goal, the disentangled representation learning task has been proposed (Ben-
gio et al., 2013) to uncover the underlying factors or concepts behind observations and to represent
each factor with explicit representations. Various works have been proposed for this task, and one
representative branch is VAE-based (Higgins et al., 2017a; Chen et al., 2018; Kim & Mnih, 2018).
Two recent works, SAE (Leeb et al., 2022) and VCT (Yang et al., 2022), employ either an AdaIn-like
structure or a Transformer to achieve disentanglement, respectively. VAE-based methods and SAE
represent each factor with a single scalar, while VCT utilizes a vector, specifically a token, to repre-
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sent each factor. While these methods achieve disentanglement, none evaluate their compositional
generalization capabilities.

Compositional generalization has recently garnered attention. Montero et al. (2021) assessed com-
positional generalization in terms of image reconstruction and generation. A recent work (Xu et al.,
2022) directly evaluates the compositional generalization ability of VAE-based methods, revealing
that they demonstrate poor compositional generalization ability, and better disentanglement ability
does not necessarily imply higher compositional generalization. Nonetheless, these studies focus
exclusively on evaluating VAE-based disentangled representation learning methods; hence, it is es-
sential to examine recent disentanglement approaches to elucidate the relationship between disen-
tanglement and compositional generalization.

In this paper, we conduct a study on disentanglement and compositional generalization, unveiling a
crucial insight: vector-valued representation is the key to facilitating both effective disentanglement
and robust compositional generalization. By vector-valued representation, we mean employing a
vector, rather than a scalar, to represent a factor. We investigate the latest vector-valued disentangled
method, VCT (Yang et al., 2022), and discover that it can achieve both proficient disentanglement
and potent compositional generalization. Inspired by this observation, we propose a method to
vectorize the representations of two popular VAE-based methods (β-TCVAE (Chen et al., 2018)
and FactorVAE (Kim & Mnih, 2018)) as well as SAE (Leeb et al., 2022). In addition to increas-
ing the dimension of the latent vectors, we also need to reformulate the loss function and modify
the architecture to meet the model’s disentanglement requirements. The three vectorized methods
exhibit enhanced compositional generalization, with an average increase of 51% and maintained
disentanglement quality (some methods even show improvement) on Shapes3D compared to their
scalar-valued counterparts. This observation is in conformity with the population coding in neuro-
science. The brain encodes information in the population activity of neurons: individual neurons
count for little; it is population activity that matters (Averbeck et al., 2006). Intuitively, scalar-valued
representation (i.e., single neurons) provides limited information, whereas vector-valued representa-
tion enables the incorporation of more information for each concept. Consequently, we experiment
with increasing the number of vector dimensions and observe that compositional generalization also
improves. Analogous observations are also explored in (Xu et al., 2022), which demonstrates that
increased bandwidth enhances compositional generalization in the Emergent Language Model. We
further investigate the relationship between disentanglement and compositional generalization for
vector-valued methods, observing a positive correlation between one of the compositional general-
ization metrics and disentanglement.

Our main contributions can be summarized as follows:

• We provide an important insight that vector-valued representation is one of the keys to both
good disentanglement as well as strong compositional generalization.

• We introduce a vectorization technique to transform scalar-valued methods into vector-
valued ones, thereby categorizing existing models into two groups: vector-valued and
scalar-valued disentanglement methods.

• We conduct experiments to reveal the relation between disentanglement and compositional
generalization for vector-valued methods: the compositional generalization classification
metric positively correlates to the disentanglement, while the regression metric does not.

2 RELATED WORKS

2.1 DISENTANGLED REPRESENTATION LEARNING

Disentangled representation learning was first introduced by Bengio et al. (2013). The conven-
tional disentangled representation implies that each scalar of the representation encodes a single
independent factor, referred to as scalar-valued representation in this study. Several inductive bi-
ases have been proposed to achieve such scalar-valued disentanglement. For instance, VAE-based
works impose constraints on the latent probabilistic distributions (Chen et al., 2018; Kim & Mnih,
2018; Higgins et al., 2017a; Burgess et al., 2018; Yang et al., 2021; Locatello et al., 2019). Schott
et al. (2021); Montero et al. (2021) go beyond the VAE-based disentanglement studies, though they
are still restricted to the scalar-valued representation. SAE (Leeb et al., 2022) proposes to adopt a
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Figure 1: The unified illustration of scalar-valued and vector-valued disentanglement methods. For
VAE-based and structure-based methods, we extend the scalar-valued output of the encoder into a
vector-valued one, where each vector represents a factor. We reformulate the loss function of the
VAE-based method in Section 3.3. A series of MLPs is employed to map each vector into a scalar
for the transformer-based method.

StyleGAN generator-like architecture as the structure inductive bias. However, these models are, in
general, only designed for disentangled representation learning, where compositional generalization
is not considered. Singh et al. (2022) also emphasize the importance of vector-valued represen-
tation to compositional generalization. Few studies have focused on vector-valued representation
in disentangled representation learning (Du et al., 2021). However, there is a considerable body
of work (Tzelepis et al., 2021; Song et al., 2023; Wei et al., 2021) exploring how to identify the
semantic directions in their latent space, and these directions are precisely represented by vectors.
These representations are vector-valued for semantics. Although Yang et al. (2022) proposed a
transformer-based model to learn vector-valued representation, to the best of our knowledge, no
previous works have explored its compositional generalization ability.

2.2 COMPOSITIONAL GENERALIZATION

Without considering disentanglement, Zhao et al. (2018) study compositional generalization in gen-
erative models. The compositional generalization problem in disentangled representation learning
was first studied in Esmaeili et al. (2019); Higgins et al. (2017b). However, only several specific
forms of combinatorial generalizations have been explored, and the role of disentanglement on gen-
eralization is still not fully explored. Different from Montero et al. (2021), Xu et al. (2022); Schott
et al. (2021) directly evaluates the compositional generalization and employs random train-test splits
rather than manually selected splits. However, these three works are conducted on scalar-valued rep-
resentation. Both studies find that the disentanglement of VAE-based methods is not correlated or
even inversely associated with the compositional generalization. This inspires us to ask the question:
is it possible that there exists a model possessing both abilities, and how can we train a model to
achieve such a goal? There is line of works (Goyal et al., 2019; Träuble et al., 2023) emphasize the
importance of vector-valued representations for generalization, inspiring us to explore that is it that
the vector-valued representation also the key.

3 BACKGROUND: DISENTANGLEMENT MODELS

In this section, we introduce the disentanglement models used in this paper. We have chosen two
widely-used VAE-based disentangling models: β-TCVAE (Chen et al., 2018) and FactorVAE (Kim
& Mnih, 2018). In addition, we also consider two recently proposed disentanglement models:
SAE (Leeb et al., 2022), a structure-based disentangling method, and VCT (Yang et al., 2022), a
transformer-based approach.
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3.1 VAE-BASED DISENTANGLEMENT

The disentangled representation learning assumes that the data x is generated from a set of ground
truth factors {fi}Ni=1. The goal of unsupervised disentangled representation learning is to a learn
representation z of data x such that each unit zi is a function of a single factor fk, where 1 ≤ k ≤ N .
VAE-based methods adopt total correlation as the regularization to encourage disentanglement.

Specifically, these two VAE-based methods decompose the total correlation from the KL regular-
ization term of the vanilla VAE (Kingma & Welling, 2013). They thus penalize the total correlation
with a hyper-parameter γ. The resulting loss function is:

L = Eq(z|x)p(x) [pθ(x|z)]−KL(qϕ(z|x)||p(z))− γKL(qϕ(z)||
∏
i

qϕ(zi)), (1)

where the last term represents the total correlation, and p(z) is the prior distribution N (0, I). An
encoder parameterized by ϕ models the conditional distribution qϕ(z|x). Conversely, a decoder
parameterized by θ models the posterior pθ(x|z). β-TCVAE and FactorVAE employ distinct meth-
ods to estimate the total correlation. Specifically, β-TCVAE utilizes the subsequent equation for
estimation:

KL(qϕ(z)||
∏
i

qϕ(zi)) = Eqϕ(z)[log(qϕ(z))− log(
∏
i

qϕ(zi))]. (2)

While the FactorVAE utilizes a discriminator D to approximate qϕ(z) and
∏

i qϕ(zi), which is
density-ratio trick. Consequently, the total correlation can be estimated as follows:

KL(qϕ(z)||
∏
i

qϕ(zi)) = Eqϕ(z)[log(D(z))− log(1−D(z))], (3)

where the discriminator D is learned by adversarial training simultaneously. The discriminator is
trained to classify between samples originating from qϕ(z) and qϕ(z̄), where z̄ is the representation
permuted along dimension i.

3.2 STRUCTURE-BASED DISENTANGLEMENT

The VAE-based methods leverage the estimated total correlation as the regularization of VAE to
achieve disentanglement. We also want to explore the relation between disentanglement and com-
positional generalization of the model without regularization. SAE introduces a structural decoder
designed to learn a hierarchy of latent variables, enabling the factorization of encoded information
without additional regularization. Therefore, we select this model in this paper. As depicted in
Fig. 1, SAE employs an AdaIN-like structure to modulate the spatial feature for image reconstruc-
tion, which shares a similar architecture with StyleGAN (Karras et al., 2019). However, unlike
StyleGAN, the injection layer maps an encoded scalar rather than a vector.

3.3 TRANSFORMER-BASED DISENTANGLEMENT

In conventional disentangled representation, a scalar encodes a single factor. This type of repre-
sentation is referred to as scalar-valued representation in this paper and includes methods such as
VAE-based approaches and SAE. Conversely, when a single factor is encoded in a vector, it is called
a vector-valued representation. Since we have introduced three kinds of scalar-based methods above,
we use vec-VCT as an example of a vector-valued method.

Vec-VCT employs stacked cross-attention layers to induce visual information from the image with-
out self-attention between distinct concepts, effectively preventing information leakage across units.
Moreover, a Concept Disentangling Loss is proposed to promote the mutual exclusivity among con-
cept tokens. As illustrated in Fig. 1, vec-VCT learns a vector-valued disentangled representation. In
the following sections, we introduce a vectorization method to transform scalar-valued representa-
tions into vector-valued ones, as illustrated in Fig. 1.

4 VECTORIZED REPRESENTATIONS

Given a sample x, the encoder of the VAE-based method produces scalar statistics, namely, mean µi

and variance σi, where i = 1, 2, . . . ,m. The number of units of the representation is denoted by m.
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To transform it into a vector-valued representation, for factor i, the encoder is modified to predict
vectors [µi1, ..., µiD] and [σi1, ..., σiD] instead, where D represents the dimension of each vector.
As one unit encodes an individual semantic, the variance within each unit i is set to be the same, i.e.,
σij = σik, j ̸= k.

The loss function (Eq. 1) must also be adapted when applied to the vector-valued representation. As
the first term represents the reconstruction loss and requires no modification, our focus lies on the
last two terms. The KL divergence can be expressed as follows:

KL(qϕ(z|x)||p(z)) = −0.5(− 1

D

∑
ij

µ2
ij −

∑
i

(σi − log σi) +m) ·D + C. (4)

Please refer to Appendix A for a detailed derivation. To ensure comparability with the vanilla
VAE, the multiplier D is ignored when calculating the loss. Additionally, the total correlation of
β-TCVAE is modified. Specifically, since the total correlation of the vector-valued β-TCVAE with a
shared variance within each unit is intractable, the total correlation is averaged along the dimension
of the representation vector to approximate the total correlation of the vector-valued β-TCVAE:

KL(qϕ(z)||
m∏
i=1

qϕ(zi)) ≈
1

D

D∑
j=1

KL(qϕ(z·j)||
m∏
i=1

qϕ(zij)), (5)

where the marginal q(z·j) refers to the joint probability distribution of the j-th dimension of all the
vector representations. Note that the average operation is used instead of the sum operation to make
the value comparable to the original β-TCVAE. Combining Eq. 5 and Eq. 4, the loss function of
β-TCVAE can be obtained. Unlike β-TCVAE, the discriminator D of FactorVAE must be modified
to estimate the total correlation of a set of joint distributions. The discriminator D is extended to
accept zij as input, and the permutation is only performed on dimension i during the training of the
discriminator. For more details, please refer to Appendix B. Together with Eq. 3 and Eq. 4, the loss
of vector-valued FactorVAE can be computed.

As mentioned earlier, to transform the structure-based method, SAE, into a vector-valued method,
the encoded scalar must be replaced with an encoded vector of D dimensions, as illustrated in
Fig.1. Consequently, the scale and shift coefficients are predicted by a vector, which shares the
same structure as the generator of StyleGAN (Karras et al., 2019). SAE utilizes a decoder structure
where each layer encodes a unique factor. Consequently, for scalar-valued methods, each layer of
the decoder is modulated by a single dimension. In contrast, in the vector-valued one, each layer
is modulated by several dimensions. Since SAE is a regularization-free method, no modification of
the loss function is required.

Since vec-VCT, a transformer-based method, is already a vector-valued method, it is modified into
a scalar-valued method to facilitate the categorization of these models into two groups. Specifically,
as illustrated in Fig. 1, different MLP layers are employed to map distinct vectors into scalars while
preserving the independence of the learned vectors. Given that this modification does not impact the
loss function, the loss function of vec-VCT is retained.

5 EXPERIMENT DESIGN

5.1 DATASET

In this study, the focus is on exploring disentanglement and compositional generalization abil-
ity. Two public datasets are commonly used in both disentangled representation learning (Yang
et al., 2022; Leeb et al., 2022) and compositional generalization literature (Xu et al., 2022):
Shapes3D (Kim & Mnih, 2018) and MPI3D-Real (MPI3D in short) (Gondal et al., 2019), are used
in accordance with Xu et al. (2022).

Data Splits The aim of compositional generalization is to identify new combinations of previously
encountered concepts in downstream tasks. To achieve this, the current study adheres to (Xu et al.,
2022) for dividing the dataset into two portions: training and testing sets at a 1:9 ratio. Notably,
the training set is smaller than those utilized in Montero et al. (2021) and Schott et al. (2021). The
hyper-parameters for the models implemented in this study are derived from prior research. For

5



Under review as a conference paper at ICLR 2024

Table 1: A comparative analysis of disentanglement and compositional generalization between
scalar-valued and vector-valued methods (mean ± std, higher is better) indicates that vector-valued
methods surpass scalar-valued methods with a notably wider margin in compositional generalization
performance. We use (640) to denote the scalar-valued methods with the same total dimension. For
vec-VCT*, the parameter D = 256 aligns with the value utilized in Yang et al. (2022). The results
for the β-VAE score and MIG can be found in Appendix E.

Method Shapes3D MPI3D

FactorVAE DCI R2 ACC FactorVAE DCI R2 ACC

scalar-valued:

FactorVAE 0.83± 0.06 0.44± 0.12 0.46± 0.18 0.39± 0.10 0.31± 0.04 0.21± 0.01 0.30± 0.02 0.39± 0.02
β-TCVAE 0.83± 0.10 0.65± 0.16 0.45± 0.15 0.47± 0.18 0.44± 0.05 0.27± 0.01 0.32± 0.03 0.45± 0.03

SAE 0.98± 0.04 0.87± 0.12 0.72± 0.05 0.90± 0.17 0.71± 0.04 0.47± 0.05 0.55± 0.07 0.77± 0.02
VCT 0.95± 0.05 0.86± 0.02 0.56± 0.24 0.58± 0.15 0.72± 0.04 0.47± 0.03 0.39± 0.13 0.69± 0.09

FactorVAE (640) 0.77± 0.05 0.56± 0.12 0.77± 0.10 0.65± 0.10 0.46± 0.03 0.43± 0.01 0.37± 0.03 0.49± 0.02
β-TCVAE (640) 0.81± 0.11 0.74± 0.10 0.59± 0.15 0.76± 0.18 0.43± 0.02 0.39± 0.01 0.35± 0.02 0.44± 0.02

vector-valued:

vec-FactorVAE 0.93± 0.06 0.55± 0.11 0.88± 0.05 0.96± 0.02 0.38± 0.06 0.16± 0.05 0.53± 0.02 0.71± 0.01
vec-β-TCVAE 0.82± 0.08 0.31± 0.08 0.87± 0.05 0.98± 0.01 0.42± 0.06 0.11± 0.03 0.67± 0.02 0.78± 0.01

vec-SAE 0.89± 0.08 0.63± 0.06 0.95± 0.01 0.98± 0.01 0.62± 0.08 0.33± 0.09 0.87± 0.03 0.88± 0.01
vec-VCT 0.98± 0.04 0.85± 0.06 0.91± 0.10 0.80± 0.09 0.70± 0.06 0.48± 0.04 0.70± 0.07 0.77± 0.02
vec-VCT* 0.97± 0.04 0.89± 0.02 0.99± 0.02 0.90± 0.03 0.66± 0.03 0.45± 0.06 0.85± 0.07 0.78± 0.02

β-TCVAE and FactorVAE, the disentanglement lib implementation is employed (Locatello
et al., 2019). Furthermore, the regularization strength γ is assigned a value of 10, consistent with
Kim & Mnih (2018) and Chen et al. (2018). In the case of SAE, the SAE-12 model architecture is
adopted as per Leeb et al. (2022). A training batch size of 32 is employed, and the Adam optimizer
is used with a learning rate of 10−4. For additional details, please consult Appendix D.

5.2 EVALUATION METRICS

Disentanglement Evaluation In this study, we adhere to Xu et al. (2022) by concentrating on the
testing set performance, which demonstrates the model’s capacity to disentangle unobserved factor
combinations. We adopt their methodology of employing 3 random seeds for dataset splitting. We
conform to (Locatello et al., 2019) by executing our experiments with 5 random seeds for each
splitting. This results in 15 = 5 × 3 runs for each method on each dataset. In line with Yang
et al. (2022), our experiments utilize four widely recognized metrics: the FactorVAE score(Kim &
Mnih, 2018), the DCI (Eastwood & Williams, 2018), the β-VAE score (Higgins et al., 2017a), and
MIG (Chen et al., 2018). We follow Du et al. (2021); Yang et al. (2022) to perform PCA as post-
processing on the representation and evaluate the performance of vector-valued representations.

Compositional Generalization Evaluation Xu et al. (2022) assesses compositional generalization
by investigating the ease with which a simple model can predict the ground truth of factors in novel
combinations. In line with Xu et al. (2022), we train a straightforward classifier and regressor on
the learned representation using Nlabel = 500 labeled data points. Specifically, we employ a ridge
regression model for regression tasks and logistic regression for classification tasks. Consequently,
the evaluation metrics include the R2 score (R2) and classification accuracy (ACC).

6 KEY STUDY AND RESULTS

6.1 VECTOR-VALUED REPRESENTATION CAN POSSES BOTH DISENTANGLING AND
COMPOSITIONAL GENERALIZATION

In this section, we conduct a comparative analysis of the disentanglement and compositional gener-
alization capabilities of various models employing scalar-valued and vector-valued representations.
Tab. 1 illustrates the experimental results. We emphasize the following key observations:

Vector-valued representation Upon comparing vector-valued and scalar-valued methods with iden-
tical inductive biases, the compositional generalization performance of vector-valued approaches
consistently outperforms their scalar-valued counterparts, irrespective of the method employed.
Given that the vector-valued method retains the inductive bias, only a minor reduction in disen-
tanglement performance is observed. In certain cases, such as FactorVAE on Shapes3D, the vector-
valued FactorVAE even demonstrates enhanced performance. However, due to the utilization of an
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Figure 2: An analysis of compositional generalization and disentanglement performance with re-
spect to vector size is conducted on the Shapes3D dataset., employing vec-VCT, vec-FactorVAE,
and vec-AE models with a regularization strength parameter of γ = 10. Our findings reveal a posi-
tive correlation between the generalization metrics, R2 and ACC, and vector size (vector dimension).

approximate total correlation, a notable decline in the performance of vec-β-TCVAE is evident. The
vec-VCT method achieves state-of-the-art performance in both disentanglement and compositional
generalization domains.

Implications Our findings contrast with those presented by Xu et al. (2022), who argue that supe-
rior disentangled representations yield inferior compositional generalization. Their research focuses
on scalar-valued disentangling methods. In contrast, our study demonstrates that, in the context
of vector-valued methods with some certain inductive bias, enhanced disentanglement does not
compromise compositional generalization performance. By increasing the bottleneck bandwidth,
vector-valued methods outperform their scalar-valued counterparts in terms of compositional gener-
alization.

6.2 LARGE VECTOR SIZE RESULTS IN BETTER PERFORMANCE FOR BOTH ABILITIES

In this section, we examine vector-valued representations across a range of vector sizes. Intuitively,
an increased vector size equates to a wider bottleneck bandwidth. We implement vec-FactorVAE and
vec-VCT, while also training a vanilla AE as a baseline for comparison. We assess the performance
of these models using distinct vector sizes, specifically 1, 2, 32, 64.

The findings are presented in Fig. 2. As vector size expands, generalization performance exhibits
consistent improvement across all models. However, a slight decrease in performance is observed
when the vector size surpasses 32. Conversely, disentanglement inductive bias exerts a detrimental
impact on classification, yet remains favorable for regression performance. In terms of disentangle-
ment performance, a larger vector size also results in superior disentangling efficacy.

Implications Elevating the bottleneck bandwidth results in improved generalization performance.
Nonetheless, an increased vector size introduces additional complexity to the latent space, lead-
ing to a reduction in performance when the vector size surpasses 32. Despite the models demon-
strating analogous behavior in disentanglement and generalization throughout this experiment, the
correlation between these two competencies remains ambiguous. For instance, vec-FactorVAE and
vec-VCT exhibit distinct patterns between R2 and ACC in comparison to AE.

6.3 RELATION BETWEEN DISENTANGLEMENT AND COMPOSITIONAL GENERALIZATION

In the following section, we delve deeper into the interrelationship between disentanglement and
compositional generalization performance in the context of vector-valued representations. We train
vec-FactorVAE and vec-β-TCVAE models with varying regularization strengths. We adhere to
the guidelines set forth by Kim & Mnih (2018) and Chen et al. (2018), and assign regulariza-
tion strengths of 5, 10, 20 to both models. Finally, we evaluate the trained vec-β-TCVAE, vec-
FactorVAE, and vec-VCT models, and determine the correlation between disentanglement and com-
positional generalization.

The findings from our experiments are presented in Fig. 3. Notably, an increase in regularization
strength leads to a decline in disentanglement performance for vec-FactorVAE, while it enhances
performance for vec-β-TCVAE. Although compositional generalization performance exhibits a sim-
ilar pattern, its impact on the regression metric remains marginal. Moreover, increasing the regular-
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Figure 3: An analysis of compositional generalization and disentanglement performance with re-
spect to regularization strength is conducted on the Shapes3D dataset. We evaluate vec-betaTCVAE
and vec-FactorVAE, both employing a vector size of D = 64. These models are assessed using a
range of regularization strengths, specifically γ values within the set 5, 10, 20.

Method Correlation

Regression:

vec-β-TCVAE −0.266
vec-FactorVAE −0.194
vec-VCT 0.063

Classification:

vec-β-TCVAE 0.824
vec-FactorVAE 0.638
vec-VCT 0.675

vec-β-TCVAE vec-FactorVAE vec-VCT Pearson Correlation

Figure 4: A correlation analysis is performed to investigate the interplay between compositional
generalization and disentanglement in the context of the Shapes3D dataset, utilizing a vector size
of D = 64 and a regularization strength parameter of γ = 10. The calculated Pearson correlation
coefficient is subsequently displayed in the tabulated results. Notably, orange data points signify
instances where the same vector-valued method has been trained using distinct random seeds.

ization strength for β-TCVAE results in a reduction of performance variance, aside from the changes
in performance. Fig. 4 displays the performance of models trained with consistent regularization
strengths, revealing a positive correlation between classification and disentanglement performance,
with no significant correlation observed for regression. To further corroborate this relationship, we
calculate the Pearson correlation coefficient. As shown in the table within Fig. 4, classification dis-
plays a positive Pearson correlation coefficient, while regression presents zero or slightly negative
correlations. This finding bolsters our conclusions. We postulate that the performance deterioration
in vec-FactorVAE arises due to an excessively large regularization strength in FactorVAE, causing a
marked performance drop. This observation is also supported by Fig. 5 from Kim & Mnih (2018).
Additional experiments with γ ≤ 5 are provided in Appendix F.

Implications In the context of vector-valued representation, we observe a strong positive correlation
between the metric of classification and disentanglement, while the metric of regression does not
show such a strong correlation. We speculate that the underlying reason might be that regression
primarily occurs in factors with multiple values, such as azimuth with 15 values on Shapes3D (for
classification, such as scale with 3 values). This leads to the representation of this factor will encode
more information. The size of the vector dimensions significantly impacts R2 in such cases.

6.4 DISCUSSION ON ESTIMATION OF THE VECTOR-VALUED TC

We have attempted the following different ways for estimation of the vector-valued TC. Note that
estimating the total correlation (TC) in vector-valued representations is inherently a difficult prob-
lem. The details of these methods are described in Appendix C, and the experimental results
demonstrate that our method performs better in practice than these alternatives: (i) The method
that directly derive the total correlation from multidimensional Gaussian distribution, referred to
as “vec-betaTCVAE Sum”. (ii) During each training step, we randomly select a variable for each
representation vector to calculate TC, referred to as “vec-betaTCVAE Rand”. (iii) We calculate TC
as the average of multiple runs of the method (ii), referred to as “vec-betaTCVAE Rand Sum”. The

8
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Table 2: The comparison with different total correlation estimation methods for vector-valued β-
TCVAE on Shapes3D.

Method Factor DCI R2 ACC

vec-β-TCVAE Sum 0.58± 0.14 0.22± 0.09 0.79± 0.09 0.73± 0.21
vec-β-TCVAE Rand 0.79± 0.08 0.31± 0.07 0.88± 0.05 0.96± 0.02
vec-β-TCVAE Rand Sum 0.52± 0.09 0.32± 0.10 0.70± 0.07 0.51± 0.04
vec-β-TCVAE (Ours) 0.82± 0.08 0.31± 0.08 0.87± 0.05 0.98± 0.01

performance of these methods is shown in Tab. 2. Based on the results, our current vectorization
method outperforms the other methods.

6.5 SANITY CHECK ON EXPERIMENTS

Given that vector-valued methods utilize D times more dimensions, it is essential to investigate
whether their performance benefits arise from the increased dimensionality within the latent space.
To examine this, we adjust the total dimensionality of scalar-valued methods to match that of vector-
valued counterparts for β-TCVAE and FactorVAE. However, for SAE and VCT, since more latent
units would result in a larger number of parameters for these models, leading to an unfair com-
parison, we do not conduct this experiment on SAE and VCT models.As demonstrated in Tab. 1,
vector-valued methods continue to exhibit a significant performance advantage over scalar-valued
approaches. Another important question to address is whether directly increasing feature dimen-
sions affects performance metrics. To investigate this, we design experiments that evaluate various
artificial representations, aiming to rule out the possibility that the vector-valued model’s gains are
solely attributable to the direct increase in feature dimensions. For this part of sanity checks, please
refer to Appendix I.

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we present a unified framework for vector-valued and scalar-valued disentanglement
methods. Specifically, we adapt scalar-valued disentanglement techniques (β-TCVAE, FactorVAE,
and SAE) to extend their vector-valued counterparts, while also converting the vector-valued method
(VCT) into a scalar-valued version. We evaluate these disentangled representation learning methods
concerning disentanglement and compositional generalization capabilities. Our investigation unveils
a notable finding: employing vector-valued representations (using a vector instead of a scalar to rep-
resent a concept) is pivotal for achieving both effective disentanglement and robust compositional
generalization. This insight underscores the significance of vector-valued disentangled represen-
tations. We observe that augmenting the dimensionality of vector-valued representations leads to
improved compositional generalization. By concentrating on vector-valued disentanglement, we
reassess the relationship between disentanglement and compositional generalization, discovering a
positive correlation between classification and disentanglement for vector-valued approaches. Our
study aims to stimulate further research on compositional generalization and vector-valued disen-
tanglement techniques. Promising future directions encompass the examination of more complex,
large-scale natural datasets with numerous factors and the exploration of the relationship between
disentanglement in real-world, large-scale natural datasets and compositional generalization. Due
to the page limitation, we discuss the limitation of our work in Appendix H. To vectorize a method
not covered in our paper, we suggest the following systematic set of principles: (i) Identify the
basic structure of the model that learns a single factor. Then, extend this basic structure from one
dimension to multiple dimensions. (ii) Confirm that the inductive bias for disentanglement remains
valid after the extension. (iii) If the inductive bias still holds after the extension, then we have suc-
cessfully vectorized the method. If it does not, we need to explore how to modify the inductive bias
so that it remains valid for vector representations.

9
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A MORE DETAILS OF LOSS FUNCTION

A.1 KL DIVERGENCE FOR VECTOR-VALUED VAE METHODS

Theorem 1 Let x be an n-dimensional random vector. Assume x is sampled from either one of the
two multivariate normal distributions p or q, which are specified by mean vectors µp, µq ∈ Rn, and
covariance matrices Σp,Σq ∈ Rn×n, respectively, as x ∼ p(µp,Σp) and x ∼ p(µq,Σq). Then, the
Kullback-Leibler (KL) divergence of p from q is given by

KL(p(x)||q(x)) = 1

2

[
(µq − µp)

TΣ−1
q (µq − µp) + tr(Σ−1

q Σp)− log
|Σp|
|Σq|

− n

]
. (6)

As introduced in Section 4.1 of the main paper, we use a spherical Gaussian for each latent rep-
resentation unit in the vectorized VAE-based model. For the i-th representation unit of VAE, we
use a mean vector µi and a scalar σi to characterize the spherical Gaussian q(zi|x) = N (µi, σiI).
Therefore, according to the theorem above, the KL divergence between the posterior and prior is as
follows:

KL(q(z|x)||p(z)) =
∑

i Eq(zi|x)(log q(zi|x)− log p(zi))

=
∑

i 0.5
(∑

j µ
2
ij +Dσi −D log σi −D

)
= 0.5

(
1/D

∑
i

∑
j µ

2
ij +

∑
i σi −

∑
i log σi −m

)
D

= 0.5
(
1/D

∑
ij µ

2
ij +

∑
i(σi − log σi)−m

)
D

(7)

where m is the number of latent representation units of the VAE-based model. We use a spherical
Gaussian to characterize each unit. And µij indicates the j-th entry of the mean vector µi.

A.2 THE TOTAL CORRELATION FOR VEC-β-TCVAE

Recall that β-TCVAE utilizes a sampling method to estimate the total correlation. Specifi-
cally, in order to estimate the expectation of log q(z), we first sample a mini-batch of images:
{x1, x2, . . . , xM}, and estimate Eq(z)[q(z)] as follows:

Eq(z)[q(z)] ≈
1

M

M∑
k=1

[
log

M∑
l=1

exp(E(z(xl)|xk))− logMK)

]
, (8)

where E(z(xl)|xk) = log q(z(xl)|xk) is the log density of the distribution q(z(xl)|xk), and K is
the number of samples of the dataset. We use z(xl) to indicate the representation derived by sample
xl. The total correlation can be estimated by the following equation:

KL (q(z)||Πiq(zi)) = Eq(z)

[
log q(z)−

∑
i

log q(zi)

]
. (9)

where zi denotes the i-th latent representation unit.

For the vector-valued case, we know that it is important to calculate the log density of the distribution
to estimate the total correlation. The log density of spherical Gaussian can be computed as follows:

E(zi|xk) =

D∑
j=1

E(zij |xk), (10)

which indicates that E(zi|xk) is a large negative scalar, since E(zij |xk) < 0, the value of the
probability q(zi|xk) = exp(E(zi|xk)) is expected to be very close to 0, which requires a high
degree of precision. However, the limited precision of GPUs produces relatively large truncation
errors when dealing with these small numerical values. Therefore, the original estimator is no longer
fit for vector-valued β-TCVAE, and the total correlation is intractable in this way. Therefore, we use
the following way to substitute the estimated total correlation instead.
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We constrain a necessary condition of the independence of the marginal distribution q(zi). Specif-
ically, the total correlation is computed by the same entry of different representation units, i.e., zij
and zkj are independent, for i ̸= k. We then can derive a new equation for the total correlation:

Lβ-TCVAE =
∑
j

(KL (q(zj)||Πiq(zij))), (11)

where Lβ-TCVAE is the regularization term of the vec-β-TCVAE loss function, which plays the role
of total correlation KL(q(z)||Πiq(zi)). Similarly, we also normalize it by dividing the vector di-
mension D, and then the value of the total correlation regularization is comparable to the original
one of β-TCVAE.

From Eq.11, we see that each term in the summation is the total correlation of one-dimensional
Gaussians and there is no need for compute Eq.10 for each unit. Therefore, the abovementioned
issue does not exist. Since the regularization constraint of vec-β-TCVAE is only a necessary condi-
tion for the original model, the disentanglement performance of vec-β-TCVAE is relatively poor. In
the following, we provide the theorem and proof of the necessity. For simplicity, we use two random
vectors as an example.

Theorem 2 If random vectors z1 = {z11, . . . , z1D} and z2 = {z21, . . . , z2D} are independent, the
corresponding random variables z1i and z2i are independent, where 1 ≤ i ≤ D.

Proof : Given that random vectors z1 and z2 are independent, their joint probability distribution can
be expressed as the product of their marginal probability distributions:

p(z1, z2) = p(z1)p(z2). (12)

Now let’s consider any two random variables: z1i from z1 and z2i from z2. We want to show that
p(z1i, z2i) = p(z1i)p(z2i). First, we can write the joint probability distribution of z1i and z2i using
the joint distribution of the vectors z1 and z2:

p(z1i, z2i) =

∫
∀z1k ̸=z1i,∀z2k ̸=z2i

p(z1, z2)dz1kdz2k. (13)

Since z1 and z2 are independent, we can substitute their product of marginals:

p(z1i, z2i) =

∫
∀z1k ̸=z1i

∫
∀z2k ̸=z2i

p(z1)p(z2)dz1kdz2k. (14)

Notice that the summation is not affected by the values of z1i and z2i. Therefore, we can separate
the summation into two parts, one for each vector:

p(z1i, z2i) =

(∫
∀z1k ̸=z1i

p(z1)dz1k

)(∫
∀z2k ̸=z2i

p(z2)dz2k

)
. (15)

By definition, the summation of all the marginal probabilities for each vector is equal to the marginal
probability of z1i and z2i:

p(z1i, z2i) = p(z1i)p(z2i). (16)

Thus, if random vectors z1 and z2 are independent, then the corresponding random variables z1i and
z2i are also independent.

B MORE DETAILS OF VEC-FACTOR VAE

For vec-FactorVAE, a factor is encoded by a vector {zi, i = 1, . . . ,m}. We estimate the
vector-valued total correlation of the representations using a method similar to FactorVAE, i.e.,
KL(qϕ(z)||

∏
i qϕ(zi)). Both qϕ(z) and qϕ(zi) are distributions of random vectors. If we can sam-

ple from these two distributions, we can estimate and optimize the total correlation by using the
density ratio trick.
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Figure 5: The illustration of the estimation of total correlation on the representation matrix. There
are m representation vectors, each with a dimension of D.

Following FactorVAE, we can sample a batch z from qϕ(z) by sampling from data distribution
and encoding. Alternatively, we can re-sample from qϕ(zi) by permutating a batch of each zi in a
different order for each i. we denote the permutated representation as z̄. As long as the batch is
large enough, the distribution of z̄ will closely approximate

∏
i qϕ(zi). According to density ratio

trick, if we have a network D that can predict the probability that input sample z is sampled from
qϕ(zi). We can then infer the probability that input z is sampled from

∏
i qϕ(zi) to be 1 − D. The

total correlation can be formulated as

KL(qϕ(z)||
∏
i

qϕ(zi)) = Eqϕ(z)

[
D(z)

1−D(z)

]
, (17)

The network D is trained to classify between samples from qϕ(z) and
∏

i qϕ(zi), thus learning to
approximate the density ratio needed for estimating TC.

C THE TOTAL CORRELATION FOR VEC-β-TCVAE

vec-betaTCVAE Sum. According to β-VAE the expectation of the log density for M samples can
be estimated by the following:

Eq(z)[log q(z)] ≈
1

M

M∑
l=1

[
log

M∑
k=1

q(zl|xk)− C

]
, (18)

where q(zl|xk) represents the distribution of the representation given the k-th data sample xk in
the batch as the condition. zl denotes the encoded representation of the l-th data sample. The log
density of the multivariate normal distributions for each representation vector zi can be formulated
as follows:

log q(zli|xk) = −0.5 · [(µi(x
k)− zli)

TΣ−1
i (µi(x

k)− zli) + 0.5 · log |Σi|+ C1]. (19)

The log density of the multivariate normal distributions for full representation vector z can be for-
mulated as follows:

log q(zl|xk) = −0.5 · [(µ(xk)− zl)TΣ−1(µ(xk)− zl) + 0.5 · log |Σ|+ C2]. (20)
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The total correlation can be estimated as follows:

TC(z) = Eq(z)[log q(z)]− Eq(z) [log
∏

i qϕ(zi)]

= 1
M

∑M
l=1

[
log

∑M
k=1 exp log q(z

l|xk)
]
− 1

M

∑M
l=1

[∑
i log

∑M
k=1 exp log q(z

l
i|xk)

]
.

(21)

The representation of the vector-valued methods can be rearranged into a matrix, with each row
corresponding to a representation vector. As depicted in Figure 5, vec-betaTCVAE computes the
total correlation on the column variables (indicated by the green dotted line). However, considering
that the variables in different columns should also be taken into account, we examine a design that
computes total correlation on randomly selected variables (one variable per row, indicated by the
blue dotted line), which is referred to as vec-betaTCVAE Rand. The sampling of variables per
training step may be insufficient. We can also have multiple runs of randomly selecting variables
and computing the average TC, which is referred to as vec-betaTCVAE Rand Sum.

D MORE IMPLEMENTATION DETAILS

Model architectures. In our experiments, we follow (Ren et al., 2021)1 and use the convolutional
auto-encoder architectures for VAE-based methods, which is presented in Table 3 and 4. For vec-
VCT2, we use m MLPs to reduce the dimension of m concept tokens from 256 to D, which pre-
sented in Table 5 (a). For vec-VCT*, we do not use these MLPs to maintain the dimension as
D = 256. We follow (Leeb et al., 2022) to use the same architecture of SAE3, and change the MLP
in the encoder and Str-Tfm layer to produce the vector-valued representation, as shown in Table 5
(b) and (c).

Table 3: Encoder E used in vec-VAE-based methods. We use m to denote the number of latent
representation units, and D to denote the vector dimension. We set D = 1 for scalar based methods.

Conv 7× 7× 3× 64, stride = 1
ReLu
Conv 4× 4× 64× 128, stride = 2
ReLu
Conv 4× 4× 128× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
FC 4096× 256
ReLu
FC 256× 256
ReLu
FC 256× 2mD

Evaluation metrics. For evaluating the compositional generalization, we follow Xu et al. (2022) to
use the implementations4 in scikit-learn (version 0.22) for the linear models of compositional gener-
alization metrics. Specifically, we use the function linear model.LogisticRegressionCV
with default settings for classification, and use function linear model.RidgeCV with
alphas={0, 0.01, 0.1, 1.0, 10} for regression. There are N = 500 samples for training models of
the metrics. We use the same metrics configurations as in (Locatello et al., 2019) to evaluate the
disentanglement performance. Since the representation used is vector-valued and can not be evalu-
ated directly, we thus follow (Yang et al., 2022; Du et al., 2021) to perform PCA as post-processing
on the representation and evaluate the performance with these metrics.

1https://github.com/xrenaa/DisCo
2https://github.com/ThomasMrY/VCT
3code is in https://openreview.net/forum?id=ue4CArRAsct
4https://github.com/wildphoton/Compositional-Generalization
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Table 4: Decoder D architecture used in vec-VAE-based methods.

FC mD × 256
ReLu
FC 256× 256
ReLu
FC 256× 4096

ConvTranspose 4× 4× 256× 256, stride = 2
ReLu
ConvTranspose 4× 4× 256× 256, stride = 2
ReLu
ConvTranspose 4× 4× 256× 128, stride = 2
ReLu
ConvTranspose 4× 4× 128× 64, stride = 2
ReLu
ConvTranspose 7× 7× 64× 3, stride = 2

Table 5: MLP in vector-valued models. (a) We use m MLPs in vec-VCT. (b) We change the output
of SAE’s MLP from m to mD. (c) We change the input of SAE’s Str-Tfm layer from 1 to D.

Encoder MLP Decoder MLP

FC 256× 128 FC D × 128
ReLu ReLu
FC 128×D FC 128× 256

FC 256× 256
ReLu
FC 256× 256
ReLu
FC 256×mD

FC D × 64
ReLu
FC 64× 128
ReLu
FC 128× (64× 2)

(a) MLP in vec-VCT (b) MLP in SAE encoder (c) MLP in Str-Tfm

Computational cost. No matter vector-valued or scalar-valued methods, we use an Nvidia V100
16G as the compute resource for conducting the experiments.

Reproducibility. Our code will be released upon acceptance.

E MORE RESULTS ON METRICS

The main paper only presents the important experiment results to support the key findings. We
provide more results with disentanglement metrics β-VAE score and MIG. In order to analyze the
influence of the training-testing splitting ratio, we provide more results with different ratios.

Results of more metrics. Table 6 presents the results of additional disentanglement metrics in this
section: β-VAE score, MIG. Consistently to our results in the main paper, we observe that the vec-
models have comparable or even better performance on some metrics. The results further support
that the vec-model can simultaneously process the compositional generalization and disentangle-
ment.

Results of different training-testing splitting ratio In the main paper, we follow (Xu et al., 2022)
to conduct the experiments mainly with a training-testing splitting ratio (split ratio) of 1 : 9. In this
section, we also provide the results of the experiments with three different ratios: 3 : 7, 1 : 9, and
5 : 95. As shown in Figure 6, the split ratio has limited influence on the compositional metrics and
disentanglement metrics, which is also observed in (Xu et al., 2022). However, their experiments
are conducted on scalar-valued methods.

F MORE RESULTS ON REGULARIZATION STRENGTH

In this section, we provide results that regularization strength is less than five as the supplement
results. We also provide the results on the MPI3D dataset to present more support for our findings.
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Table 6: Comparisons of more disentanglement metrics between the scalar-valued and vector-valued
methods (mean ± std, higher is better). For vec-VCT*, D = 256 is the same as Yang et al. (2022).

Method Shapes3D MPI3D

β-VAE MIG β-VAE MIG

Scalar-valued:

FactorVAE 0.89± 0.05 0.21± 0.12 0.51± 0.05 0.11± 0.05
β-TCVAE 0.88± 0.07 0.37± 0.19 0.46± 0.03 0.11± 0.05

SAE 0.99± 0.01 0.32± 0.10 0.79± 0.03 0.18± 0.06
VCT 0.97± 0.05 0.40± 0.11 0.78± 0.05 0.26± 0.05

Vector-valued:

vec-FactorVAE 0.98± 0.02 0.25± 0.07 0.46± 0.07 0.10± 0.05
vec-β-TCVAE 0.94± 0.04 0.12± 0.07 0.49± 0.04 0.04± 0.01

vec-SAE 0.96± 0.05 0.22± 0.09 0.70± 0.06 0.15± 0.09
vec-VCT 0.99± 0.02 0.42± 0.10 0.77± 0.05 0.35± 0.07

vec-VCT* 1.00± 0.00 0.44± 0.08 0.74± 0.05 0.33± 0.06

Figure 6: Generalization and disentanglement performance vs training-testing splitting ratio on
Shapes3D. Three vector-valued methods (with vector size D = 64, regualarization strength
γ = 10.0) are evaluated. vec-VCT, vec-betaTCVAE, and vec-FactorVAE use varying training-
testing splitting ratios {3 : 7, 1 : 9, 5 : 95}.

FactorVAE when γ ≤ 5. Figure 8 shows the results of vec-FactorVAE and vec-β-TCVAE when
the regularization strength γ ∈ {0.5, 1, 2, 4}. We can observe that the results support the expla-
nation in the main paper: if the regularization strength is small for vec-FactorVAE, there also is a
significant improvement in the compositional generalization and disentanglement performance as
the increase of γ. We also observe that the phenomenon is consistent between vec-FactorVAE and
vec-β-TCVAE.

Results on MPI3D. To further support our conclusion on the regularization strength γ of vector-
valued methods, we conduct the same experiment on MPI3D. As shown in Figure 11, the results
are consistent with our results in the main paper. We observe that as the regularization strength
increase, both the compositional generalization and the disentanglement drops for vec-FactorVAE
but improves for vec-β-TCVAE. The additional metrics (MIG and β-VAE score) are consistent with
other metrics.

Pearson correlation coefficient on MPI3D. In the main paper, the experiments reveal the relation
between compositional generalization and disentanglement based on the results of Shapes3D. We
also provide such evidence on MPI3D here. From the results in Figure 9, we observe consistent
patterns: the classification performance is positively correlated to the disentanglement, but there is
no significant correlation between the regression and disentanglement performance.
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Figure 7: Generalization and disentanglement performance vs regularization strength on MPI3D.
Two vector-valued methods (with vector size D = 64) are evaluated. vec-betaTCVAE and vec-
FactorVAE use varying regularization strength γ ∈ {5, 10, 20}.

Figure 8: Generalization and disentanglement performance vs regularization strength on Shapes3D.
Two vector-valued methods (with vector size D = 64) are evaluated. vec-betaTCVAE and vec-
FactorVAE use varying regularization strength γ ∈ {0.1, 1.0, 2.0, 4.0}.

G MORE RESULTS ON VECTOR SIZE

In this section, we provide results that vector size between 2 and 32 as the supplement results for the
main paper. We also provide the results on the MPI3D dataset.

More results on Shapes3D. In the main text, we only considered some specific and important
vector dimension values, which are {1, 2, 32, 64}. However, due to the large span between 2 and
32, one may be interested in other values within the interval. Therefore, we also experimented
with the values within the interval. Figure 10 shows the results when vector size is {4, 8, 16, 24}.
We also observe that as the increase vector dimension (size) increased, both the compositional and
the disentanglement consistently improved, which provides further evidence for the conclusion in
Section 6.2.

Results on MPI3D. In order to further support our conclusion on vector size of vector-valued meth-
ods, we conduct the same experiment on MPI3D. As shown in Figure 11, we see that as the vector
dimension (size) increases, the compositional generalization performance of the models improves

18



Under review as a conference paper at ICLR 2024

Method Correlation

Regression:

vec-β-TCVAE 0.049
vec-FactorVAE −0.196
vec-VCT 0.159

Classification:

vec-β-TCVAE 0.471
vec-FactorVAE 0.481
vec-VCT 0.768

vec-β-TCVAE vec-FactorVAE vec-VCT Pearson Correlation

Figure 9: Generalization performance vs disentanglement performance on the MPI3D with D = 64
and γ = 10. The Pearson correlation coefficient is calculated in the table. Orange data points
represent instances of the same vector-valued method trained using different random seeds.

Figure 10: Generalization and disentanglement performance vs regularization strength on
Shapes3D. Two vector-valued methods (with regularization strength γ = 10) are evaluated. vec-
betaTCVAE and vec-FactorVAE use varying vector size D ∈ {4, 8, 16, 24}.

consistently. The disentanglement performance of certain models (e.g., VCT) also shows improve-
ment. However, some models do not significantly exhibit such improvements in some of the metrics.
The reason may be that these methods have poor performance on these metrics on MPI3D. Conse-
quently, changing the vector dimension does not result in substantial performance changes for these
models.

H LIMITATION OF OUR STUDY

Our study builds upon prior work Xu et al. (2022), in which experiments were conducted on the two
proposed metrics. To the best of our knowledge, these metrics are the only ones directly evaluating
compositional generalization with random train-test splitting. Although our experiments were car-
ried out on synthetic (Shapes3D) and realistic (MPI3D) datasets, the factors within these datasets
are relatively simple. Furthermore, the number of factors is known and relatively small. While we
have demonstrated a set of models with strong disentanglement and generalization performance, the
potential applications of these models still need to be explored.
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Figure 11: Generalization and disentanglement performance vs regularization strength on MPI3D.
Two vector-valued methods (with regularization strength γ = 10) are evaluated. vec-betaTCVAE
and vec-FactorVAE use varying vector size D ∈ {1, 2, 32, 64}.

Table 7: Directly increase the representation evaluation experiment. We evaluate the following ideal
and learned representation in terms of compositional generalization and disentanglement.

Method R2 ACC DCI

scalar-valued:

Ideal 1.00 0.99 0.99
Shifted 0.46 0.75 0.99
Matrix 0.99 1.00 0.18
Matrix + shifted 0.00 0.45 0.20

vector-valued:

Ideal 1.00 0.99 0.99
Shifted 0.38 0.50 0.99
Matrix 0.99 1.00 0.17
Matrix + shifted 0.00 0.45 0.17

Method R2 ACC DCI

scalar-valued:

β-TCVAE 0.30 0.56 0.61
FactorVAE 0.49 0.48 0.50

vector-valued:

β-TCVAE embed 0.30 0.56 0.61
β-TCVAE repeat 0.30 0.56 0.61
FactorVAE embed 0.49 0.48 0.50
FactorVAE repeat 0.49 0.48 0.50

(a) Ideal representation (b) Learned representation

I MORE SANITY CHECKS

We first assess the representation derived from ground truth values, which is ideally a perfect repre-
sentation. This representation is referred to as the ideal representation.

We seek to determine if scalar-valued representations can achieve high performance on both types
of metrics. Given that ground truth values are scalar, the ideal representation can be constructed as
follows: (i) constructing the ideal scalar-valued representation by directly normalizing the ground
truth values of corresponding factors, and (ii) creating the ideal vector-valued representation by
normalizing the ground truth values of factors and multiplying the normalized values with a random
embedding, which increases the vector size of the corresponding factor. This embedding is shared
across the training and testing set. As shown in Tab. 7 (a), both vector-valued and scalar-valued
representations perform optimally on compositional generalization and disentanglement.

We employ two methods to corrupt the disentanglement and generalization abilities of ideal repre-
sentations: (i) applying different linear operations on the training and testing set (y = αx+β, where
α, β are scalars) to the ideal representation to corrupt generalization ability, and (ii) multiplying the
ideal representation with a random invertible matrix to entangle the representation of different fac-
tors, thus corrupting disentanglement ability. In Tab. 7 (a), no significant performance improvement
is observed for vector-valued representation.

Although the aforementioned corruption provides insights, there remains a gap between learned
representations and artificially corrupted representations. To examine this in a non-ideal setting, we
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propose two ways to directly map scalar-valued representations to vector-valued ones: (i) multiply-
ing the learned scalar-valued representation of VAE with a random embedding of the corresponding
factor, and (ii) directly repeating the scalar of the learned representation of VAE. Tab. 7 (b) uses
β-TCVAE and FactorVAE as examples, showing no significant improvement in vector-valued rep-
resentation metrics compared to the original scalar-valued one.

Implications The performance gain is not solely due to directly increasing the representation dimen-
sion. We also verified that perfect generalization and disentanglement performance can be obtained
with an ideal scalar representation.
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