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ABSTRACT

Physics-informed neural networks (PINN) have had a broad research impact in mod-
eling domains governed by partial differential equations (PDE). However, PINNs
have been shown to perform sub-optimally or even converge to trivial solutions,
in challenging scenarios, such as ‘stiff’ PDE domains, or when generalizing to
unseen but related experimental contexts. Previously proposed solutions to alleviate
catastrophic PINN failures, detail curriculum learning based training techniques or
training techniques involving dynamic re-sampling of hard collocation points. We
observe that these methods face certain pitfalls e.g., designing a training curriculum
is ambiguous in multi-parameter PDE settings and dynamic resampling of collo-
cation points still fails in complex PDE settings. Recent works have highlighted
that conflicting gradients during PINN training, may be one of the major influences
of such catastrophic PINN failures. Complementary to this line of thinking, we
believe the initialization of PINN weights also plays a crucial role in the emergence
of catastrophic failures during training. To this end, we propose a novel PINN train-
ing methodology based on Learned Initialization (LeIn) to address catastrophic
PINN failures. We call our variant LeIn-PINN. Through rigorous experiments on
1D and 2D PDE domains (including evaluation in challenging 2D fluid dynamics
contexts), we demonstrate that our proposed methodology outperforms state-of-
the-art methods, including ones specifically designed to alleviate PINN failures.
We show that LeIn-PINNs achieve an average performance improvement of 87%
over state-of-the-art baselines. Further, we also conduct a rigorous analysis to
identify and explain the improved training dynamics of LeIn-PINNs as well as the
convergence failure of traditional PINNs, by analyzing the characteristics of loss
landscape of the respective converged models. Finally, we also demonstrate that
our proposed LeIn-PINN method significantly reduces spectral bias compared to
traditional PINNs even in challenging PDE domains.

1 INTRODUCTION

Partial differential equations (PDEs) govern dynamics in heat transfer, fluid flow, electromagnetics,
and other physical systems. Efficient PDE solvers are central to scientific progress. Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2017b; 2018) embed PDE constraints into neural network
loss functions, enabling both forward and inverse problem solving. PINNs have been applied
widely (Cuomo et al., 2022b), but often fail in hard PDE settings, converging to trivial or inaccurate
solutions.

A key challenge is the imbalance between data-driven and physics-informed loss terms (Wang et al.,
2020), which causes optimization pathologies. Remedies include curriculum learning (Krishnapriyan
et al., 2021), adaptive sampling (Daw et al., 2023), and spectral/NTK analyses (Wang et al., 2021b;
2022b; Lau et al., 2024). Yet these approaches typically succeed only in narrow PDE regimes and
lack generality.

Meanwhile, the ML community has shown that initialization strongly influences trainability in
deep networks (Arpit et al., 2019; Schoenholz et al., 2017; Taki, 2017; Yang & Schoenholz, 2017).
Standard schemes such as Xavier or Kaiming can place networks in chaotic or overly ordered regimes,
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leading to poor convergence. Despite this, nearly all PINN studies still rely on off-the-shelf initializers
without task-specific adaptation.

To address this gap, we introduce LeIn-PINN, a learned initialization framework for PINNs that
alleviates catastrophic training dynamics. Our contributions are: (1) a systematic initialization strategy
that stabilizes training and reduces failures, (2) a gated layer-wise optimization (GLO) procedure that
mitigates spectral bias, and (3) extensive evaluations on convection, Helmholtz, and Navier–Stokes
PDEs showing consistent gains over state-of-the-art baselines, especially in extrapolation regimes.

2 RELATED WORK

A broad set of research has addressed PINN training failures (Cuomo et al., 2022a). Here we highlight
the most recent, representative works in each research direction.

Temporal Dynamics, Sampling, and Curriculum-Based Methods. Early work highlighted the
importance of respecting the causal order of PDE events during PINN training, leading to improved
convergence in time-dependent problems (Wang et al., 2022a). Building on this, residual-based R3
sampling techniques dynamically reweigh collocation points in regions with high PDE residuals (Daw
et al., 2023). In parallel, curriculum learning approaches schedule training tasks or progressively
increase collocation difficulty, guiding PINNs from simpler to more complex PDE regimes (Krish-
napriyan et al., 2021). While these strategies reduce domain errors, they require careful tuning when
PDE parameters vary widely and do not always generalize well across different systems or task
difficulties.

Gradient-Level Interventions Efforts to address the issue of loss imbalance in PINNs have also
explored gradient-level solutions. For instance, Kim et al. (2021) introduced a Dynamic Pulling
Method (DPM) which employs a pseudo-inverse operation to align losses in the same direction,
thereby improving stability, effectiveness of training. Wang et al. (2025) has explored the effect of
higher order optimization techniques.

Meta-Learning for PINNs. Several recent works have explored meta learning concepts in PDE
systems. Psaros et al. (Psaros et al., 2022) uses meta learning to discover optimal loss function for
different PINN system. In contrast LeIn-PINN uses meta learning to get a learned initialization.
Hyper-LR-PINNs (Cho et al., 2023) employ a hyper-network architecture to generate low-rank,
task-specific weights for each PDE domain. Although they have trained on similar PDE domains
to ours, their experiments have not explored extrapolation regimes as extreme as ours in this paper.
Qin et al. (2022) is the closest paper to ours and also employs a standard MAML approach for PINN
training. However, their paper focuses on comparison of speed only w.r.t finite-element solvers, and
is not focused on developing PINN solutions to overcome catastrophic failures. Further, they do
not propose novel solutions (like our gated layer-wise optimization) to reduce catastrophic training
dynamics.

In contrast to other approaches to alleviate catastrophic training failures in PINN, LeIn-PINN is the
only approach to systematically explore the effect of learned weight initialization on PINN training
dynamics. Further, our gated layer-wise optimization is the first approach of its kind applied in the
context of addressing convergence failures in PINNs across diverse PDE settings.

3 PROBLEM FORMULATION

We follow the standard PINN setting (Raissi et al., 2017a). We provide a brief primer here, the more
detailed formulation is in Appendix B. Let z∈Ω⊂Rd denote space, t∈ [0, T ] time, and u(z, t) the
state solving the PDE

F
(
u(z, t); γ

)
= f(z, t), z ∈ Ω, t ∈ [0, T ], B

(
u(z, t)

)
= ub(z, t), z ∈ ∂Ω, (1)

where γ are PDE parameters and f is a (possibly zero) source. A neural network ûΘ(z, t) is trained
to satisfy the PDE at interior (collocation) points and to match boundary/initial data on ∂Ω. With NΩ

interior samples {(zi, ti)} and N∂Ω boundary/initial samples {(zj , tj)}, the objective is

L(Θ) = λr
1

NΩ

NΩ∑
i=1

∣∣∣F(ûΘ(zi, ti); γ)− f(zi, ti)
∣∣∣2 + 1

N∂Ω

N∂Ω∑
j=1

∣∣∣ûΘ(zj , tj)− ub(zj , tj)
∣∣∣2. (2)
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Although the PINN formulation has been highly impactful in solving forward problems across
variegated PDE domains, it has recently been found that PINNs fail to learn faithful solutions (and
converge to trivial solutions) in challenging (e.g., stiff) PDE contexts. Previous work (Wang et al.,
2020) has characterized the conflicting and imbalanced gradients between the two loss terms in L(Θ)
as one of the reasons for such failures. Recent approaches have proposed solutions to address PINN
convergence failures by R3 re-sampling (Daw et al., 2023; Wu et al., 2023), curriculum based PINN
training (Krishnapriyan et al., 2021).

Complementary to these works, we hypothesize that PINN convergence failures in challenging (a.k.a.
hard) PDE domains, can be alleviated, if the weights Θ of the PINN, instead of being randomly
initialized, are systematically initialized prior to training on the hard domain. To this end, we propose
a Learned-Initialization (LeIn) mechanism to systematically learn better initial weights, such that
PINNs trained with LeIn weights overcome catastrophic failures in challenging PDE domains. Our
proposed LeIn approach has two facets (i) Invariance Encoding (ii) Gated Layer-wise Optimization.

Invariance Encoding (IE). If the goal of the PINN is to learn a challenging PDE domain governed by
PDE parameter γhard, IE seeks to first train a randomly initialized PINN model on a set of relatively
easier configurations of the PDE with parameters Γeasy = {γ1, . . . , γK}. This enables a distillation
of the invariant physics across Γeasy into the PINN weights Θ. Our approach for IE is grounded in
foundational works of meta-learning (Finn et al., 2017). IE begins with randomly initialized global
PINN weights Θ0 and pool of K tasks in Γeasy. The IE learning process is carried out for R iterations
{1, 2, . . . ,R} and at each training iteration r, tasks {T1, . . . , Tk} are randomly sampled from the
task distribution p(Γeasy) of easy tasks and k identical copies {Θ′

r,1, . . . ,Θ
′
r,k} of the current global

PINN weights Θr are created. Each Θ′
r,i is then optimized via. gradient descent, employing data from

task Ti at iteration r for ‘J’ inner iterations (for simplicity we assume ‘J’ = 1). Let Θ′′
r,i represent the

updated version of Θ′
r,i after ‘J’ inner gradient-descent update iterations. The common representations

across all k task models {Θ′′
r,1, . . . ,Θ

′′
r,k} are distilled into Θr via. a ‘meta-update’ as indicated in

Eq. 3 where LTi
(Θ′′

r,i) represents the loss in Eq. 2 calculated w.r.t parameters Θ′′
r,i with data from

task Ti and ηouter represents the learning rate.

∇Θr
Lmeta = ∇Θr

k∑
i=1

LTi
(Θ′′

r,i)

Θr+1 = Θr − ηouter∇Θr
Lmeta

(3)

Gated Layer-wise Optimization (GLO). Traditional meta-learning approaches (Finn et al., 2017;
Rajeswaran et al., 2019) are not physics-informed and treat all tasks in Γeasy as resulting in similar
training dynamics across all layers, which is why the meta-update in Eq. 3 is a simple summation of
all task gradients. However, based on previous work (Wang et al., 2020), we know that the non-trivial
dynamics between the physics-based residual loss and the data-driven loss affects different layers in
the neural network differently. To address these gaps that manifest uniquely in the physics-informed
PDE modeling context, we augment the IE procedure with the GLO mechanism by introducing a
gated update of layers during each meta-update, such that a gating mechanism g(r), unlocks deeper
layers, exposing their parameters to gradient-based optimization, gradually, over the training iterations
from 1 to R.

Let us consider that the global PINN is an ‘L’ layer neural network whose parameters at iteration r
are represented as Θr = {θ0r , . . . , θL−1

r } with θir representing the weights corresponding to layer i at
iteration r. Standard IE via. meta-learning (Finn et al., 2017) treats all layers identically during the
gradient descent meta-update. However, via. GLO, we are able to prioritize learning shallow layers
prior to deeper layers. Specifically, at each iteration r ∈ {1, 2, . . . ,R}, the (binary) gating value for
layer l is calculated via. a linear gating mechanism as highlighted in Eq. 4.

gl(r) =

{
1, l ≤

⌊
r L
R

⌋
,

0, otherwise,
l = 0, . . . , L− 1. (4)

The gating schedule begins with the first layer unmasked, followed by linear unmasking of deeper
layers as training progresses, ensuring localized (and thereby more manageable) effects of non-
trivial loss dynamics. Although the proposed g(r) ∈ {0, 1}L, mechanism results in a linear gating
mechanism, GLO can easily admit any general gating mechanism.

If g(r) = [g0(r), . . . , gL−1(r)] and each meta-update gradient vector is represented as ∇Θr
Lmeta =

[∇θ0
r
Lmeta, . . . , ∇θL−1

r
Lmeta], then the meta-update at iteration r+ 1 for layer l is detailed in Eq. 5.

3
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θlr+1 = θlr − ηouter g
l(r)∇θl

r
Lmeta, l = 0, . . . , L− 1, (5)

Here, each gl(r) controls the meta-update strength of layer l. Alg. 1 showcases the entire procedure
of our proposed LeIn-PINN framework for learning intelligent weight initialization. The LeIn weights
ΘR obtained from the IE + GLO based learned initialization process can be employed as the initial
weights for PINN training on γhard (i.e., the hard PDE context).

Algorithm 1: Physics Informed Neural Network with Learned Initializations
Input: Tasks p(Γeasy), initial weights Θ0, inner LR ηinner, outer LR ηouter,
total meta-iterationsR, Num. Sampled Tasks k
Output: LeIn Weights ΘR
for r ← 0 do // meta-iterations r = 1, . . . ,R

3 Sample batch {Ti}ki=1 ∼ p(Γeasy)

5 Copy Global Weights {Θ′
r,i}ki=1 := Θr

for i = 1 to k do
8 Θ′′

r,i ← Θ′
r,i − ηinner∇Θ′

r,i
LTi(Θ

′
r,i)

10 Compute Meta Gradients [∇θ0r
Lmeta, . . . ,∇θL−1

r
Lmeta]

for l = 0 to L− 1 do
13 gl(r) = 1{l ≤ ⌊ rLR ⌋})
15 θlr+1 ← θlr − ηouter g

l(r)∇θlr
Lmeta

4 RESULTS & DISCUSSION

In this section, we demonstrate with rigorous quantitative and qualitative experiments, the effects
of catastrophic failures on PINN performance and how these failures can be alleviated via. Learned
Initialization (LeIn). To validate our approach, we compare LeIn-PINN against a suite of established
PINN variants; the full descriptions of these baselines can be found in Appendix D.2. Specifically,
we undertake this investigation by answering three research questions (RQ):

RQ1. How does learned initialization alleviate catastrophic training dynamics in challenging PDE
domains?

RQ2. How do LeIn-PINNs compare with other state-of-the-art (SoTA) approaches proposed to
alleviate PINN catastrophic failures?

RQ3. What is the effect of invariance encoding and gated layer-wise optimization in LeIn-PINN?
(Ablation Analysis)

To answer each research question, we first evaluate our proposed method on two widely studied
PDE domains in the PINN literature: the 1D convection equation (transport phenomena) and the 2D
Helmholtz equation (wave propagation). To further demonstrate the generality of our approach, we
then extend our analysis to a more challenging multi-physics setting: the 2D incompressible, time-
dependent Navier-Stokes equations, modeling fluid flow with vortex shedding. For Navier–Stokes,
we consider both forward prediction and inverse inference tasks, where coefficients such as advection
and viscosity are learned from sparse data. Full details of PDE formulations, network architectures,
training protocols, and hyperparameters are provided in Appendix D.

4.1 (RQ1) HOW DOES LEARNED INITIALIZATION ALLEVIATE CATASTROPHIC TRAINING
DYNAMICS IN CHALLENGING PDE DOMAINS?

We answer this question in three stages. First, we demonstrate qualitatively the catastrophic failures
PINNs undergo in challenging PDE contexts. Second, we investigate how the training losses of the
PINNs evolve in challenging domains. Third, we characterize the effect of the catastrophic training
dynamics by analyzing the loss landscape neighborhood of the converged models. In each case, we
contrast the analysis with the behavior of LeIn-PINN in the same context.

Qualitative Failure Modes. In Fig. 1a, we demonstrate the solution predicted by a PINN (with
random weight initialization) when trained on a challenging 1D convection domain with β = 70. It
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Figure 1: Qualitative performance comparison of a randomly initialized PINN model and intelligently
initialized PINNs i.e., LeIn-PINN on two different and challenging PDE domains. We notice that
both in the 1D convection Fig. 1(a) and (b), LeIn-PINN faithfully recreates the analytical solution
while the randomly initialized PINN variant experiences catastrophic failure.

can be clearly seen that the PINN model (center plot in Fig. 1a) has failed to estimate a good solution
of the domain. The perfect solution of the domain can be seen in the left plot (labeled ‘Analytical
Solution’) of Fig. 1a. We conduct a similar qualitative investigation of a separate PDE domain
2D-Helmholtz comprising two PDE parameters a1, a2, with (a1 = 6, a2 = 6) in Fig. 1b. Once again,
we notice that the PINN model (center plot of Fig. 1b) is unable to provide a good estimate of the
challenging PDE domain solution (i.e., Analytical Solution represented on the left plot in Fig. 1b).
Turning our attention to the performance of LeIn-PINN in each of these two contexts (i.e., right plot
in each of Fig. 1a and Fig. 1b), we notice that the estimation of LeIn-PINN closely aligns with the
analytical solution of the corresponding PDE domain. We now highlight that the only difference
between the PINN and LeIn-PINN procedures is the weight initialization. Specifically, PINN weights
have been initialized randomly (i.e., Xavier initialization) while the weights of LeIn-PINN have been
initialized by our proposed learned initialization method. Once weights have been initialized, both
models have been subjected to identical training procedures on the target PDE domain. Thus, we
infer that the learned initialization strategy in LeIn-PINN alleviates catastrophic failures even in
challenging PDE domains.
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Figure 2: Training-loss curves highlighting training dynamics of randomly initialized PINNs and our
LeIn-PINN, across two separate PDE domains. We notice in both cases that LeIn-PINN converges to
a solution with (at least) an order of magnitude lower loss, compared to randomly initialized PINN.

Training Dynamics Analysis. We complement the qualitative analysis in Fig. 1 with an investigation
(Fig.2) of the training dynamics in the same PDE contexts. Specifically, we highlight in Fig.2, the
evolution of the total training loss (Eq. 12) of PINNs and LeIn-PINN on the same 1D convection
and 2D Helmholtz domains. We note that the training loss plots in Fig.2 has been averaged over five
independent training runs to capture the expected training dynamics. Loss plots of individual training
runs are in appendix E.2.

For the 1D convection problem (β = 70) the result depicted in Fig. 2a, shows that random initialization
of the PINN leads to an early plateau in the loss curve, whereas our learned initialization method
(LeIn-PINN) achieves a steady, monotonic decrease, signaling more effective exploration of the
solution manifold and ultimately, convergence to a loss value an order of magnitude lower than the
corresponding randomly initialized PINN solution. A similar pattern emerges on the 2D Helmholtz
problem (a1 = 6, a2 = 6) as shown in Fig. 2b. We see that the randomly initialized PINN exhibits
premature convergence to a sub-optimal solution while, once again LeIn-PINN achieves a loss several
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orders of magnitude lower. This demonstrates the ability of our learned initialization based solution
(LeIn-PINN) to achieve superior convergence dynamics by overcoming loss surface barriers Fort
et al. (2020) and hence avoiding catastrophic failures.
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Figure 3: Loss Landscape visualization by pertubating model along its top-2 eigenvectors (ν1,ν2)
plots for PINN Training (Total, Data, Residuals) in the two case of PINN 1D convection : (a)
Randomly Initialized PINN 1D Convection, (b) LeIn-PINN 1D Convection.

Hessian Eigenvector Landscape Analysis. Although the loss curves in Fig. 2 show a clear contrast
between random and learned initialization, they do not fully reveal how training dynamics affect
parameter optimization. To clarify this, we examine the loss landscape neighborhood of each
converged model using a Hessian-informed perturbation analysis (Krishnapriyan et al., 2021; Böttcher
& Wheeler, 2024).

Fig. 3 presents results for the 1D convection problem (2D Helmholtz in Appendix C). Under random
initialization (Fig. 3a), the converged PINN exhibits a highly rugged surface with deep valleys and
sharp ridges, driven mainly by the residual term (Fig. 3a.iii). In contrast, the data loss landscape is
smoother but still challenging to optimize.

With LeIn-PINN, the converged landscape is markedly smoother and lacks the sharp peaks of Fig. 3a.
Fig. 3b.i shows the total loss surface, while Figs. 3b.ii–b.iii show data and residual components, all
with reduced contrast and smoother geometry compared to their PINN counterparts.

Viewed together with Fig. 2a, these results illustrate that random initialization produces residual-
dominated peaks that trap the optimizer in narrow basins, whereas LeIn-PINN yields a smoother
landscape that supports convergence to better minima.

Extension to Navier-Stokes. As a qualitative stress test in a multi-physics regime, we extend our
analysis to the 2D incompressible, time-dependent Navier-Stokes cylinder wake at high Reynolds
number. We supervise only velocity components (u, v), while pressure is reconstructed in an
unsupervised manner. In the inverse setting, the advection and viscosity coefficients (λadv, λvis)
are treated as learnable parameters. Consistent with our findings on Convection and Helmholtz,
LeIn-PINN yields substantially lower errors and qualitatively faithful pressure fields compared to a
randomly initialized PINN. Domain visualizations and pressure prediction results are provided in
Appendix E.1.

We evaluate the 2D incompressible, time-dependent Navier–Stokes system at Re = 1000. As shown
in Fig. 4, vanilla PINNs fail to reproduce the pressure field (e), while LeIn-PINN reconstructs the
wake structures with much higher fidelity (f). This highlights the advantage of learned initialization
in complex fluid dynamics.
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(a) Flow past a cylinder with vor-
tex shedding (FEM solver).
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(b) Streamwise velocity ux at t.
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(c) Transverse velocity uy at t.
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(e) PINN pressure (failure).
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Figure 4: Navier-Stokes cylinder wake at Re = 1000. (a) Simulation setup with vortex shedding
(FEM solver). (b–c) Training data: Velocity components ux, uy at a representative time slice. (d)
Ground-truth pressure. (e) Standard PINN prediction (failure). (f) LeIn-PINN prediction, showing
faithful reconstruction.

4.2 (RQ2) HOW DO LEIN-PINNS COMPARE WITH OTHER STATE-OF-THE-ART (SOTA)
APPROACHES PROPOSED TO ALLEVIATE PINN CATASTROPHIC FAILURES?

Recent efforts have begun to investigate catastrophic failures in PINNs, and in this section we
compare the performance of our learned initialization based LeIn-PINN model relative to three recent
state-of-the-art approaches (Krishnapriyan et al., 2021; Wang et al., 2020; Daw et al., 2023) (detailed
in Sec. D.2), explicitly designed with the intention of alleviating such failures. We provide rigorous
quantitative comparisons across three benchmark PDE systems: the 1D Convection equation, the
2D Helmholtz equation, and the 2D incompressible, time-dependent Navier–Stokes system (Raissi
et al., 2017b). In all cases, we evaluate models under challenging extrapolation settings, where PDE
parameters or regimes lie outside those directly observed during initialization. For Navier–Stokes,
our formulation jointly addresses both the forward problem (reconstructing velocity and pressure
fields) and the inverse problem (learning unknown PDE coefficients such as advection and viscosity)
within a single PINN framework.

Table 1: Mean Absolute Error (MAE) on the 1D convection system for extrapolation tasks (β ∈
{30, 40, 50, 60, 70, 80}).

Method 30 40 50 60 70 80 Avg

PINN-Vanilla 0.8234 0.8461 0.7926 0.7972 0.6587 0.8732 0.7985
Curr-Reg Krishnapriyan et al. (2021) 0.1403 0.2719 0.3604 0.3929 0.4566 0.4695 0.3486
PINN-Dynamic Wang et al. (2021a) 0.0071 0.0126 0.0226 0.1607 0.3670 0.4634 0.1722
R3 Daw et al. (2023) 0.0067 0.0678 0.3224 0.4319 0.4726 0.4988 0.3000
LeIn-PINN 0.0092 0.0122 0.0150 0.0172 0.0272 0.2490 0.0550

1D Convection System LeIn-PINN outperforms all baselines and vanilla PINNs (Raissi et al., 2017b).
Table 1 shows that vanilla PINNs often collapse due to unstable training, while Curriculum-Reg and
Adaptive Sampling offer limited improvements but degrade under extrapolation. LeIn-PINN reduces
MAE by 84.2% over Curriculum-Reg, 81.6% over Adaptive, and 68.0% over PINN-Dynamic,
showing that initialization alone can surpass engineered training strategies.

2D Helmholtz System On Helmholtz, baselines fail to capture oscillatory solutions. As shown
in Table 2, LeIn-PINN consistently achieves the lowest errors, reducing MAE by 99.2% over
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Table 2: Mean Absolute Error (MAE) on the 2D Helmholtz PDE across varying domain parameters
axy . Baseline methods are shown as rows for clearer comparison.

Method a44 a45 a55 a46 a56 a66 Avg

PINN-Vanilla 0.3785 0.4956 0.5838 1.0264 0.9753 1.0783 0.7563
Curr-Reg Krishnapriyan et al. (2021) 0.4131 0.6172 0.4106 0.4050 0.4390 0.4346 0.4533
PINN-Dynamic Wang et al. (2021a) 0.0047 0.2154 0.1962 0.0850 0.0879 0.1687 0.1263
R3 Daw et al. (2023) 0.3864 1.5196 0.4173 0.4272 0.4139 0.4204 0.5975
LeIn-PINN 0.0013 0.0029 0.0058 0.0050 0.0081 0.0150 0.0064

Curriculum-Reg, 98.9% over Adaptive, and 95% over PINN-Dynamic. On average, it improves
performance by more than 90%, confirming robustness on high-frequency, multi-parameter PDEs.

Table 3: Performance across Reynolds numbers. Each group reports errors for Pressure, λadvection,
and λviscosity. Lowest values in each column are in bold.

Reynolds number Avg. (across Re)

Method 600 800 1000

p λadv λvisc p λadv λvisc p λadv λvisc p λadv λvisc

PINN-Vanilla 0.2456 0.2067 0.0729 0.0137 0.0206 0.0074 0.0426 0.0618 0.0258 0.1006 0.0964 0.0354
Curr-Reg 0.2133 0.3970 0.0845 0.2150 0.3971 0.0843 0.2147 0.3988 0.0841 0.2143 0.3976 0.0843
PINN-Dynamic 0.2516 0.2164 0.0112 0.0073 0.0113 0.0077 0.0059 0.0083 0.0069 0.0883 0.0787 0.0086
R3 0.2399 0.4731 0.0497 0.2507 0.3852 0.0860 0.1349 0.2741 0.0419 0.2086 0.3774 0.0592
LeIn-PINN 0.0057 0.0083 0.0068 0.0058 0.0085 0.0071 0.0057 0.0081 0.0068 0.0057 0.0083 0.0069

2D Incompressible Navier-Stokes Table 3 reports forward and inverse settings. For pressure
reconstruction in a turbulent cylinder wake, LeIn-PINN lowers error by up to 96% compared to
SoTA. In the inverse setting, it reduces advection error by 95% and viscosity error by 66%, with
consistent gains across Reynolds numbers. Overall, LeIn-PINN averages a 87% improvement over
SoTA, demonstrating benefits for both predictive accuracy and PDE coefficient recovery in fluid
dynamics.

4.3 (RQ3) WHAT IS THE EFFECT OF INVARIANCE ENCODING AND GATED LAYER-WISE
OPTIMIZATION IN LEIN-PINN? (ABLATION ANALYSIS)

The learned initialization aspect of LeIn-PINNs has two primary components, (i) Invariance Encoding
(IE) (ii) Gated Layer-wise Optimization (GLO). To test the effect of each of these components, we
investigate the performance of ablation variants,‘LeIn-PINN w/o (IE,GLO)’, which is a variant
of LeIn-PINN without IE or GLO; and ‘LeIn-PINN w/o GLO’, variant of LeIn-PINN without GLO.
LeIn-PINN w/o (IE,GLO), essentially boils down to a randomly initialized PINN trained on the PDE
domain of interest. The ablation analysis is carried out by inspecting (i) performance volatility, which
measures median, inter-quartile range and standard deviation of quantitative performance across
multiple runs of each model across multiple tasks of varied complexity; (ii) spectral bias, which
measures the extent to which each ablation variant and LeIn-PINN are biased towards capturing
low-frequency components of the domain while ignoring high-frequency components.

Analyzing Performance Volatility. In Fig. 5, we examine the impact of different initialization
strategies on model performance by training to convergence and plotting the distribution of mean
absolute errors for each method. Fig. 5a and Fig. 5b, showcase that the variant LeIn-PINN w/o
(IE, GLO) exhibits high volatility (i.e., large interquartile range) as well as high median error with
increasing task complexity while the variants with learned initialization ( LeIn-PINN w/o GLO and
LeIn-PINN) exhibit lower degradation in median performance as well as lower inter-quartile ranges.
Together, these box plots illustrate two stages of improvement: first, IE reduces performance volatility
compared to random initialization i.e., LeIn-PINN w/o (IE,GLO); furtuer, GLO further lowers both
median error as well as performance volatility, ensuring consistently reliable PINN training.

Spectral Bias Analysis. Neural networks often exhibit spectral bias, learning low-frequency com-
ponents faster than high-frequency ones. To quantify this, we compute the Fourier transform of
the absolute error over the spatial domain and plot amplitude spectra for each initialization strategy
(Fig. 6). Both LeIn-PINN variants without GLO and without (IE,GLO) show similar spectral density,
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Figure 5: Model-comparison boxplots for PINN convergence on the 1D Convection Equation (a) and
the 2D Helmholtz Equation (b). We plot Error on log scale for visiblity and only for a uniformly
sampled sub-set of tasks for ease of reading; results on unreported tasks are similar.
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Figure 6: Comparison of spectral distribution of LeIn-PINN and ablation variants. We notice
that LeIn-PINN alleviates spectral bias owing to GLO and IE across 1D convection and 2D Helmholtz.

while full LeIn-PINN (with IE and GLO) alleviates spectral bias significantly. Since Fig. 6 visual-
izes spectral density of absolute error fields, lower values are better. We observe that LeIn-PINN
achieves consistently lower density across low and high frequencies in both 1D convection (a) and
2D Helmholtz (b). Standard Xavier and LeIn-PINN (w/o GLO) exhibit pronounced high-frequency
error, whereas LeIn-PINN yields substantially lower error across the entire band, capturing fine-scale
features more effectively. Beyond this single case, Appendix E.3 reports mean energy density per task
across both PDEs, again showing that LeIn-PINN reduces spectral bias relative to ablation variants,
highlighting the positive role of invariance encoding and gated layer-wise optimization.

Additional Analyses. For completeness, we report further results in the appendix. Appendix E.8
details the compute cost of our initialization strategy, confirming that LeIn-PINN scales comparably
to standard PINNs aside from a one-time meta-training overhead. Appendix E.6 presents robustness
analyses, including sensitivity to the number and range of sampled tasks. Appendix E.7 contrasts
LeIn-PINN with baselines trained for an equal budget of gradient updates, confirming that our
improvements arise from learned initialization rather than increased compute. Together, these
analyses reinforce that our method improves stability and accuracy without prohibitive overheads.

5 CONCLUSION

In this work, we introduced LeIn-PINN, a novel variant of physics-informed neural networks with
learned initialization. Through rigorous qualitative and quantitative experiments, we demonstrated
that LeIn-PINN alleviates catastrophic failures commonly observed in PINNs when applied to
challenging PDE domains. Our comparisons with state-of-the-art methods highlight the superiority
of LeIn-PINN, achieving an average performance improvement of 87% across multiple PDE systems.
In addition, our ablation analysis shows that the invariance encoding and gated layer-wise optimization
procedures in LeIn-PINN reduce performance volatility and mitigate spectral bias in PINN models
across simple and complex PDE tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our results are reproducible. The main text provides a clear
description of our model. Additional implementation details, including architecture specifications,
hyperparameters, and training schedules, are provided in the Appendix D.3. As the full datasets are
too large to share directly, we instead provide dataset generation code. We also include experiment
scripts, along with the PINN implementation, to allow reproduction of all reported results and figures
using our methodology.
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A LIMITATIONS

Despite the strong empirical gains demonstrated across our benchmark PDEs, our study has the
following limitations:

• Analysis on broader system dynamics. While we evaluated both time-dependent and
time-independent PDEs, we have not yet extended our approach to truly chaotic regimes (e.g.
the chaotic phase of the Kuramoto–Sivashinsky equation) or PDEs with higher-order terms.
Such systems pose unique challenges for optimization and stability, and remain important
directions for future work.

• Lack of formal theoretical guarantees. Our conclusions are based on extensive empirical
evidence, including Hessian- and gradient-based analyses across layers. However, we do not
yet provide a formal mathematical proof for the effectiveness of our learned initialization.
Developing such a theoretical foundation is part of our ongoing research.

• Fixed training task schedule. The meta-training process uses a predetermined set of tasks
without exploring adaptive or rotational sampling strategies. How dynamically adjusting
task difficulty or sampling schedules might affect convergence and the quality of learned
initialization remains an open question.

B DETAILED FORMULATION OF PINN

In this section, we first present the general formulation of Physics-Informed Neural Networks (PINNs),
and then demonstrate its instantiation on two canonical PDEs: the 1D Convection Equation and the
2D Helmholtz Equation.

B.1 PHYSICS INFORMED NEURAL NETWORK

A general form of a PDE can be expressed as:

F(u(z); γ) = f(z), z ∈ Ω, (6)

B(u(z)) = g(z), z ∈ ∂Ω. (7)

Here:

• Ω ⊂ Rd represents the spatial domain, while ∂Ω denotes its boundary.
• z = [x1, x2, . . . , xd, t]

⊤ ∈ Rd+1 encapsulates space-time coordinates.
• u is the unknown solution we aim to approximate.
• γ denotes physical parameters of the system.
• f(z) encodes system-specific data or forcing terms.
• F is a (potentially nonlinear) differential operator characterizing the physical laws of the

system.
• B is a boundary operator that enforces initial and boundary conditions, which can be of

Dirichlet, Neumann, or periodic types.

The PINN framework leverages automatic differentiation to embed the residuals of F and B into a
composite loss function. This loss function penalizes deviations from the governing equations and
boundary conditions, ensuring that the solution adheres to the physical laws while simultaneously
fitting observed data.

Neural networks are powerful tools due to their universal approximation property, which allows them
to approximate any continuous function given sufficient capacity. In the context of PINNs, we aim
to approximate the solution u(z) of the governing equations using a neural network ûθ(z), where θ
denotes the learnable parameters of the neural network. The approximation can be written as:

ûθ(z) ≈ u(z), (8)

where z ∈ Rd+1 represents the space-time coordinates.

To achieve this, the PINN framework constructs a composite loss function consisting of:
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1. PDE Residual Loss: This enforces the governing physical laws as specified by the PDE.
2. Boundary/Data Loss: This ensures compliance with boundary or initial conditions, as well

as data consistency when available.

PDE Residual Loss Using automatic differentiation tools, the neural network computes derivatives
efficiently with respect to its inputs, enabling evaluation of the PDE residual. The residual is given
by:

R(z) = F(ûθ(z); γ)− f(z), (9)
where F represents the differential operator, f(z) is the system-specific forcing term, and γ are the
physical parameters. The residual loss over the domain Ω is formulated as:

Lr =
1

NΩ

NΩ∑
i=1

|R(zi)|2 , (10)

where NΩ represents the number of collocation points in the domain, and zi ∈ Ω are the sampled
points.

Boundary/Data Loss For enforcing boundary or initial conditions, we define a loss term that
penalizes deviations from the specified boundary values g(z). For Dirichlet conditions, this can be
written as:

Lb =
1

N∂Ω

N∂Ω∑
j=1

|B(ûθ(zj))− g(zj)|2 , (11)

where N∂Ω represents the number of points on the boundary ∂Ω, and zj ∈ ∂Ω are the boundary
points.

Total Loss The total loss for training the PINN combines the residual loss and the boundary/data
loss, weighted by respective coefficients λr and λd:

Ltotal = λrLr + λdLb. (12)

We calculate the total loss by adding the residual and data losses. Here, λr and λd are hyperparameters
that control the relative contribution of the residual and data losses during training. The residual loss
acts as a regularization term, ensuring that the learned solution adheres to physically consistent laws.

To train the neural network, we solve the optimization problem:

θ∗ = argmin
θ

Ltotal. (13)

We aim to formulate a Physics-Informed Neural Network (PINN) by studying two fundamental
classification of systems in physics that are crucial for understanding and modeling the physical
world. These systems are categorized based on whether their properties depend on time:

Time-Independent Systems These systems are used to study the steady-state behavior of a system,
where properties such as energy, momentum, or other conserved quantities remain constant over time.
Time-independent systems help us analyze static or equilibrium conditions, providing insights into
the inherent properties of the system without considering temporal evolution.

Time-Dependent Systems These systems are used to study how the state of a system evolves over time.
By understanding the temporal dynamics, we can gain insights into transient phenomena, system
responses, and changes in state variables due to external forces or intrinsic behaviors.

To explore these concepts, we explore the following two systems.

B.1.1 1D CONVECTION EQUATION

This system represents a classic example of a time-dependent system. We consider a one-dimensional
convection system to demonstrate the application of Physics-Informed Neural Networks (PINNs).
The system models the transport of heat or mass in a medium, where the primary variable u(x, t)
evolves over space and time. The spatial domain is x ∈ [0, 2π], and the time domain is t ∈ [0, 1]. This
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setup allows for studying convection behavior under periodic boundary conditions, often encountered
in cyclic systems. This formulation is adapted from Krishnapriyan et al. (2021)

The governing partial differential equation (PDE) is given by:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ Ω, t ∈ [0, T ], (14)

with the initial condition:
u(x, 0) = h(x), x ∈ Ω. (15)

Here:

• β is the convection coefficient (physical parameter of system γ in 6),
• h(x) specifies the initial condition for u(x, t),
• Ω denotes the spatial domain.

To evaluate the performance of PINNs, we generate ground truth data using an analytical solution.
For constant β and periodic boundary conditions, the analytical solution is:

uanalytical(x, t) = F−1
[
F(h(x))e−iβkt

]
, (16)

where:

• F and F−1 are the Fourier transform and its inverse, respectively,
• i =

√
−1 is the imaginary unit,

• k represents the frequency in the Fourier domain.

For this problem, we assume:

h(x) = sin(x), u(0, t) = u(2π, t), (17)

implying periodic boundary conditions.

Residual Loss The residual loss for this PDE is given by:

Lr =
1

Nf

Nf∑
i=1

(
∂û

∂t
+ β

∂û

∂x

)2

, (18)

where:

• Nf : Number of collocation points sampled from the interior of the domain Ω× [0, T ]

• û is the predicted solution,
• ∂û

∂t : Temporal derivative of the predicted solution,

• ∂û
∂x : Spatial derivative of the predicted solution,

• β:Convection coefficient which is the parameter describing the physical system

Data Loss The data loss consists of two components: the loss enforcing the initial condition and
the loss enforcing the boundary conditions. It is defined as:

Ld = Lic + Lbc, (19)

where:

Lic =
1

Nu

Nu∑
i=1

(û(xi, 0)− g(xi, 0))
2
, (20)

Lbc =
1

Nb

Nb∑
j=1

(û(0, tj)− û(2π, tj))
2
. (21)

Here:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Lic: Initial condition loss, ensuring the predicted solution û(x, 0) matches the data g(x, 0) =
h(x),

• Lbc: Boundary condition loss, ensuring periodic boundary conditions û(0, t) = û(2π, t),

• Nu: Number of points sampled from the initial condition,

• Nb: Number of points sampled from the boundary condition,

• g(xi, 0) = h(xi): Known solution at initial condition points,

• û(0, tj) and û(2π, tj): Predicted solutions at boundary points.

Total Loss The total loss combines the above components:

L(θ) = λrLr + λdLd, (22)

where:

• λr, λd are weighting coefficients balancing the contributions of the respective terms.

B.1.2 2D HELMHOLTZ EQUATION

We study the vibration states of a two-dimensional membrane using the 2D Helmholtz equation.
This equation is widely used to describe stationary wave fields, such as vibrations in membranes,
sound waves, and electromagnetic waves. Specifically, we consider a square membrane with spatial
coordinates x1, x2 ∈ [−1, 1] and analyze its steady-state behavior under fixed boundary conditions.
The Helmholtz equation helps identify resonance patterns and steady-state vibration modes in such
systems. The formulation is adapted from Wang et al. (2020).

The governing PDE for the 2D Helmholtz equation is:

∂2u

∂x2
1

+
∂2u

∂x2
2

+ k2u = q(x1, x2), (x1, x2) ∈ Ω, (23)

where Ω = [−1, 1]× [−1, 1] is the spatial domain.

The boundary of the domain, ∂Ω, represents the fixed edges of the membrane. Consequently, the
displacement u(x1, x2) at the boundaries is zero, giving rise to the Dirichlet boundary condition:

u(x1, x2) = 0, (x1, x2) ∈ ∂Ω. (24)

We specifically choose k2 ̸= a21+a22 to ensure that the selected k does not correspond to an eigenmode
of the domain, resulting in a non-zero source term q(x1, x2). Thus, the PDE system is inherently
inhomogeneous.

Here:

• k is the wavenumber and is kept fixed at k = 1.

• a1, a2 ∈ Z+ are integer mode numbers representing the spatial oscillation patterns. These
serve as the primary PDE parameters affecting solution complexity and difficulty.

• q(x1, x2) is the resulting source term that characterizes external excitation or forcing within
the membrane, driving the system response.

For this setup, we use an analytical solution of the form:

u(x1, x2) = sin(a1πx1) sin(a2πx2), (25)

which satisfies the zero-displacement boundary condition. The corresponding source term is derived
as:

q(x1, x2) =
[
k2 − (a1π)

2 − (a2π)
2
]
sin(a1πx1) sin(a2πx2). (26)
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Residual Loss The residual loss quantifies deviations from the Helmholtz equation at collocation
points in Ω:

Lresidual =
1

Nf

Nf∑
i=1

(
∂2û

∂x2
1

+
∂2û

∂x2
2

+ k2û− q(x1,i, x2,i)

)2

, (27)

where:

• Nf : Number of collocation points sampled from the interior of the domain Ω,
• û: Predicted solution obtained from the neural network,
• q(x1,i, x2,i): Source term evaluated at the collocation point (x1,i, x2,i).

Boundary Condition Loss The boundary loss enforces zero displacement at the edges of the
membrane, consistent with the fixed boundary condition:

Lboundary =
1

Nb

Nb∑
i=1

û(x1,i, x2,i)
2, (28)

where Nb is the number of points sampled from the boundary ∂Ω.

Total Loss The total loss combines the residual and boundary condition losses:
L(θ) = λrLresidual + λbLboundary, (29)

where λr and λb are weighting coefficients balancing the contributions of the residual and boundary
losses.

B.1.3 2D INCOMPRESSIBLE NAVIER-STOKES (WITH LEARNABLE COEFFICIENTS)

We consider the two-dimensional incompressible Navier-Stokes equations in non-dimensional form,
augmented with learnable coefficients for the advection and viscosity terms:

ut + λadv(uux + vuy) = − px + λvis(uxx + uyy), (30)
vt + λadv(uvx + vvy) = − py + λvis(vxx + vyy), (31)

ux + vy = 0. (32)
Here, u(t, x, y) and v(t, x, y) are the velocity components, p(t, x, y) is the pressure, and λadv, λvis
are trainable scalars. In a forward setting, p is predicted by the network but not supervised; in an
inverse setting, λadv and λvis are learned from data.

Network Outputs Let a neural network Nθ(t, x, y) predict
(û, v̂, p̂) = Nθ(t, x, y),

Residual Loss Define the PDE residuals at collocation points {(ti, xi, yi)}Nf

i=1 by
fu = ût + λadv(û ûx + v̂ ûy) + p̂x − λvis(ûxx + ûyy), (33)
fv = v̂t + λadv(û v̂x + v̂ v̂y) + p̂y − λvis(v̂xx + v̂yy), (34)
fc = ûx + v̂y, (35)

and the residual loss

Lr =
1

Nf

Nf∑
i=1

(
|fu(ti, xi, yi)|2 + |fv(ti, xi, yi)|2 + α |fc(ti, xi, yi)|2

)
, (36)

where α > 0 weights the continuity residual.

Data Loss (Vortex Shedding Velocities) Given velocity measurements from the vortex-shedding
flow, {(ti, xi, yi, ui, vi)}Nd

i=1, we use only velocity supervision:

Ld =
1

Nd

Nd∑
i=1

(
(û(ti, xi, yi)− ui)

2 + (v̂(ti, xi, yi)− vi)
2
)
. (37)

Pressure is not supervised and is recovered implicitly via the momentum equations.
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Total Loss The training objective combines residual and data terms:

L(θ, λadv, λvis) = λr Lr + λd Ld, (38)

with weights λr, λd > 0. For inverse problems, λadv and λvis are optimized jointly with θ; for forward
problems they are fixed (e.g., λadv = 1, λvis = 1/Re).

C HESSIAN-BASED LOSS-LANDSCAPE VISUALIZATION

To better understand the local geometry of the trained PINN, we analyze the curvature of each loss
component—total loss, data loss, and residual loss—around the converged weights θ∗. Concretely:

1. Get our losses. Let
Ltot(θ), Ldata(θ), Lres(θ)

denote the total, data, and residual losses, respectively, as in Eq. (2).

2. Compute Hessians. For each loss L ∈ {Ltot, Ldata, Lres}, form the Hessian

HL = ∇2
θ L(θ)

∣∣
θ=θ∗ .

3. Eigen-decomposition. Solve

HL vi = λi vi, λ1 ≥ λ2 ≥ . . . ,

and retain the top two eigenpairs (λ1, v1), (λ2, v2), which capture the directions of greatest
curvature.

4. Parameter perturbation. For offsets (α, β) ∈ [−δ, δ]2, define

θ(α, β) = θ∗ + α v1 + β v2 .

5. Landscape slice. The two-dimensional landscape

fL(α, β) = L
(
θ(α, β)

)
is evaluated on a uniform grid of (α, β) and visualized as a heatmap.

2D Helmholtz Loss-Landscape Visualization. In 7a we see that in case that model has converge
to a trivial solution that has trapped in steep 1 dimension wells and stops which does nto faciliates
learning. on the other hand 7b we that a converged model has smoother optimization bowls that
facilates good convergence

D EXPERIMENTAL SETUP

D.1 DATASET DESCRIPTION

1D Convection. We consider the periodic 1D Convection equation (Krishnapriyan et al., 2021)

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, T ], (39)

with
u(x, 0) = sin(x), u(0, t) = u(2π, t). (40)

Here β > 0 is the convection coefficient—larger β yields faster transport and sharper solution
gradients, increasing PDE difficulty. The mode-wise analytic solution is

ua(x, t) = F−1
[
F(sinx) e−iβk t

]
. (41)

2D Inhomogeneous Helmholtz. On the spatial domain Ω = [−1, 1]2, we consider the steady-state
Helmholtz equation with inhomogeneous Dirichlet boundary conditions (Wang et al., 2020):

∇2u+ k2 u = q(x1, x2), u
∣∣
∂Ω

= 0, (42)
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Figure 7: Loss Landscape visualization by pertubating model along its top-2 eigenvectors (ν1,ν2) plots
for PINN Training (Total, Data, Residuals) in the two case of PINN in 2D Helmholtz System(a55):
(a) Randomly Initialized PINN, (b) LeIn-PINN.

where k > 0 denotes the wavenumber, and integer mode numbers a1, a2 ∈ Z+ determine the spatial
oscillation patterns and the overall complexity of the PDE system. We select the analytical solution
and corresponding source term:

ua(x1, x2) = sin(a1πx1) sin(a2πx2), (43)

q(x1, x2) =
(
k2 − (a1π)

2 − (a2π)
2
)
sin(a1πx1) sin(a2πx2) (44)

with a fixed wavenumber k = 1. Note, we specifically choose k2 ̸= a21 + a22 so that the selected k
does not correspond to an eigenmode of the domain, resulting in a non-zero source term q(x1, x2).
Consequently, a1 and a2 serve as the primary PDE parameters affecting solution complexity and
difficulty.

D.2 BASELINE MODEL DESCRIPTION

We now provide brief descriptions of baseline models employed for comparative evaluation.

1. PINN-Vanilla Raissi Original Formulation

2. Curr-Reg Krishnapriyan et al. (2021): Curriculum regularization of PINN which progres-
sively trains models from easier to harder PDE tasks by incrementally introducing complexity
during training. If we want to Learn a 1D convection system with β = 30. We incremently
train on β = {5, 10, 15, 20, 25, 30}

3. PINN-Dynamic Wang et al. (2021a); Wu et al. (2023): The current optimized and stable
PINN training paradigm. In each iteration, collocation points are randomly resampled using
quasi-random low-discrepancy sequences, combined with adaptive learning rate scheduling
to improve convergence.

4. R3 Daw et al. (2023): Employs the adaptive sampling strategy Retain-Resample-Release
(R3), focusing training effort by retaining collocation points with high residual errors while
periodically resampling the remaining points.
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5. LeIn-PINN w/o (IE, GLO): Effectively standard PINN training from randomly initialized
weights.

6. LeIn-PINN w/o GLO: An adaptation of the Model-Agnostic Meta-Learning–based frame-
work.

D.3 EXPERIMENT SETTINGS - PDE SYSTEMS

We summarize the experimental configurations used in our study. Table 4 reports the settings for the
1D Convection system, Table 5 reports the settings for the 2D Helmholtz system, and Table 6 reports
the settings for the 2D Navier-Stokes system.

Table 4: 1D Convection Experimental Settings

Setting Value
Equation ∂tu+ β ∂xu = 0

Input/Domain (x, t) ∈ [0, 2π]× [0, 1]

Network Architecture 5 hidden layers, 50 neurons each, Tanh, Xavier init.

Optimizer Adam, lr = 0.005 (cosine annealing)

Epochs 50,000

Collocation Points Nf = 1000, Boundary Points: Nb = 1000

Training Tasks β ∈ {5, 10, 15, 20, 25}
Evaluation Tasks (Interp.) β ∈ {7.5, 12.5, 17.5, 22.5}
Evaluation Tasks (Extra.) β ∈ {30, 40, 50, 60, 70, 80}

Table 5: 2D Helmholtz Experimental Settings

Setting Value

Equation ∆u+ k2u = q(x1, x2), k = 1

Input/Domain (x1, x2) ∈ [−1, 1]2

Sampling Halton sequence in [−1, 1]2

Network Architecture 5 hidden layers, 50 neurons each, Tanh, Xavier init.

Optimizer Adam, lr = 0.005 (cosine annealing)

Epochs 50,000

Collocation Points Nf = 1000, Boundary Points: Nb = 1000

Training Tasks (a1, a2) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}
Evaluation Tasks (Interp.) (a1, a2) ∈ {(4, 4), (4, 5), (5, 5)}
Evaluation Tasks (Extra.) (a1, a2) ∈ {(4, 6), (5, 6), (6, 6)}

E ADDITIONAL RESULTS AND ABLATIONS

In this section, we present supplementary training results to further evaluate the behavior of our
methods.

E.1 NAVIER-STOKES

As a qualitative stress test in a multi-physics regime, we extend our analysis to the 2D incompressible,
time-dependent Navier-Stokes cylinder wake at Reynolds number Re = 1000. We consider both
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Table 6: 2D Navier-Stokes Experimental Settings (cylinder wake)

Setting Value
Equation Incompressible NS with learnable λadv, λvis

Input/Domain (x, y, t) ∈ Ω× [0, T ]; Ω is channel with unit-diameter cylinder

Network Architecture 7 hidden layers, 50 neurons each, Tanh, Xavier init.

Optimizer Adam, lr = 0.005 (cosine annealing)

Epochs 50,000

Collocation Points Nf = 5000

Training Tasks (Re) Re ∈ {100, 200, 300, 400, 500}
Evaluation Tasks Re ∈ {600, 800, 1000}

forward and inverse PINN formulations; in the inverse setting, the advection and viscosity coefficients
are treated as unknowns and learned jointly as trainable parameters.

In Fig. 4a, we show the simulation setup with vortex shedding behind a cylinder, highlighting the
subdomain used for training. Figs. 4b and 4c display representative velocity components (ux, uy)
at a chosen time slice, which form part of the forward prediction targets. Turning to pressure
reconstruction, the ground-truth field at Re = 1000 is shown in Fig. 4d. A randomly initialized
PINN (Fig. 4e) fails to capture the complex wake structures and exhibits a clear failure case, whereas
LeIn-PINN (Fig. 4f) produces a qualitatively faithful reconstruction of the pressure distribution.

In the inverse formulation, where the PDE coefficients are unknown and must be inferred from
sparse data, we again observe that vanilla PINNs face significant challenges, while LeIn-PINN
demonstrates improved stability and accuracy. Together, these results indicate that the benefits of
learned initialization extend beyond canonical PDEs to realistic, time-dependent fluid dynamics
governed by Navier-Stokes.

E.2 INDIVIDUAL TRAINING LOSS AND ERROR

In this subsection, we examine individual training trajectories for both the randomly initialized PINN
and our proposed LeIn-PINN. For each run, we plot the total, data, and residual losses alongside the
mean absolute error as functions of the training epoch. Results are shown for both the 1D Convection
equation and the 2D Helmholtz equation, highlighting run-to-run variability and the robustness of our
initialization strategy.
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Figure 8: Individual training runs and their Training Loss and Mean absolute errors for the Random-
initialized PINN on the 1D Heat Equation (β = 70).
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Figure 9: Individual training runs and their Training Loss and Mean absolute errors for the LeIn-PINN
on the 1D Heat Equation (β = 70).
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Figure 10: Individual training runs and their Training Loss and Mean absolute errors for the Random-
initialized PINN on the 2D Helmholtz Equation (a66).
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Figure 11: Individual training runs and their Training Loss and Mean absolute errors for the LeIn-
PINN on the 2D Helmholtz Equation (a66).
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E.3 (RQ3): WHAT IS THE EFFECT OF INVARIANCE ENCODING AND GATED LAYER-WISE
OPTIMIZATION IN LEIN-PINN? (ABLATION ANALYSIS)

Mean Log-Energy Analysis. We further examine error distribution by plotting the mean log-energy
spectrum of the absolute error fields corresponding to LeIn-PINN and its ablation variants. In
Fig. 12, we noticed that across both the 1D Convection and 2D Helmholtz cases, LeIn-PINN shows
a markedly lower overall energy distribution compared to Random (Xavier) and LeIn-PINN(Fø).
This confirms that our layer-wise optimization (i.e., GLO) not only reduces average error but also
suppresses energy in all frequency bands, including the challenging high-frequency components.
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Figure 12: Comparison of the mean energy density for the 1D Convection PINN (a) and the 2D
Helmholtz PINN (b).

E.4 BASELINES AND EXTENDED RESULTS

E.5 ADDITIONAL RESULTS: COMPATIBILITY WITH STATE-OF-THE-ART METHODS

We would like to highlight that our proposed method is model-agnostic and fully compatible with
other PINN variants such as the R3 sampling model (R3) Daw et al. (2023). To evaluate this, we
compare the performance of two variants of the R3 sampling model:

• R3 (Learned Init.): initialized with LeIn weights obtained from our invariance encoding
setup,

• R3 (Xavier Init.): initialized with standard Xavier initialization.

Each variant was trained and evaluated on four challenging 1D Convection PDE contexts with
β ∈ {50, 60, 70, 80}. Performance is reported using the mean absolute error (MAE). As shown
in Table 7, initialization with LeIn consistently reduces MAE across all tasks compared to Xavier
initialization, confirming that our approach improves state-of-the-art models.

Table 7: Comparison of R3 sampling (R3) model performance on 1D Convection system with Xavier
vs. Learned Initialization. Results reported as mean absolute error (MAE).

1D Convection (β) R3 (Xavier Init.) R3 (Learned Init.) MAE Reduction (%)

50 0.3224 0.10502 67.43%
60 0.4319 0.36702 15.02%
70 0.4726 0.33844 28.39%
80 0.4988 0.45532 8.72%

E.6 ADDITIONAL RESULTS: SENSITIVITY ANALYSIS OF LEIN-PINN

We further analyze the sensitivity of LeIn-PINN to two factors during the Invariance Encoding (IE)
phase: (i) the number of sampled tasks k, and (ii) the range of tasks used. For fairness, the baseline
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task ranges in the main paper were selected to align with prior work Krishnapriyan et al. (2021),
which we also compared against (i.e., Curr-Reg baseline).

Sensitivity to Number of Tasks k. We varied k ∈ {2, 3, 4} during meta-training (note that k = 3
was used in the main paper). Evaluation focused on the most challenging extrapolation regimes of
the 1D convection PDE (β = 50, 60, 70, 80), with results averaged over 5 random seeds. As shown
in Table 8, performance is relatively stable across different k. In practice, we recommend setting k to
60-80% of the available tasks. If further tuning is needed, k may be selected via a validation set by
sweeping values between 50-70%.

Table 8: Sensitivity of LeIn-PINN to the number of sampled tasks k during IE phase. Reported as
mean absolute error (MAE).

1D Convection (β) k = 2 k = 3 k = 4

50 0.0168 0.0150 0.01674
60 0.0210 0.0172 0.02978
70 0.0529 0.0272 0.02724
80 0.3878 0.2490 0.26194

Sensitivity to Task Range. We further tested the robustness of LeIn-PINN by varying the range
of easy tasks selected for IE. In addition to the main setup LeIn-PINN(5-25), we evaluated LeIn-
PINN(10-30) and LeIn-PINN(15-35). The evaluation tasks remained the challenging extrapolation
regimes (β = 50, 60, 70, 80). Results in Table 9 show that all LeIn-PINN variants achieve comparable
performance, with only minor differences on the hardest case (β = 80). Most importantly, all LeIn-
PINN variants consistently outperform state-of-the-art baselines, including R3 (R3) Krishnapriyan
et al. (2021) and PINN-Dynamic Wang et al. (2020).

Table 9: Sensitivity of LeIn-PINN to task range during IE phase. Mean absolute error (MAE) is
reported for β ∈ {50, 60, 70, 80} in 1D Convection.

1D Convection (β) PINN-Dynamic R3 (R3) LeIn (5-25) LeIn (10-30) LeIn (15-35)

50 0.0226 0.3224 0.0150 0.0102 0.0115
60 0.1607 0.4319 0.0172 0.0204 0.0215
70 0.3670 0.4726 0.0272 0.0362 0.0964
80 0.4634 0.4988 0.2490 0.0583 0.1397

Summary. These results suggest that LeIn-PINN is robust to both (i) the number of sampled
tasks k and (ii) the range of tasks selected during the IE phase. Domain knowledge about PDE
dynamics can be effectively leveraged to design task ranges for IE without sacrificing performance.
Further, regardless of the value of k or the easy-task range, LeIn-PINN consistently outperforms
state-of-the-art randomly initialized PINN variants on challenging PDE regimes.

E.7 ADDITIONAL RESULTS: IMPACT OF EXTENDED TRAINING DURATION

In our experience, convergence failures of PINNs on challenging PDE domains are more dependent
on effective training dynamics rather than simply extending training steps. To address this directly,
we conducted a controlled experiment on the 1D Convection PDE to contrast the effect of intelligent
initialization (LeIn-PINN) with that of longer training.

Specifically, we ensured that all methods underwent the same total number of gradient update steps
(56K). In our setup, LeIn-PINN was trained with 6K meta-training steps to learn the initialization,
followed by 50K fine-tuning steps on the target task. In contrast,Curr-Reg and R3 and baselines were
trained for 56K steps in total, matching the gradient update budget of LeIn-PINN.

Table 10 shows that there remains a significant performance gap between LeIn-PINNs and the
baseline models across all extrapolation regimes. This confirms that simply increasing training
duration is insufficient to address PINN failures; in contrast, intelligent initialization plays a crucial
role.
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Table 10: Effect of extended training duration on 1D Convection system. All models are trained for
56K total gradient steps. Reported as MAE.

1D Convection (β) Curr-Reg(56K) R3(56K) LeIn-PINN

50 0.3004 0.3291 0.0150
60 0.4015 0.4356 0.0172
70 0.4208 0.4565 0.0272
80 0.4738 0.4648 0.2490

E.8 COMPUTATIONAL RESOURCE

All experiments were performed on server with a RTX A6000 GPUs with 48GB vRAM.

To ensure reproducibility, we document the hardware and software environments used, as well as the
approximate runtimes for our main experiments.

Table 11: Hardware and Software Specifications

Component Specification
GPU NVIDIA RTX A6000 (48 GB VRAM)
CPU Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
System RAM 2 TB DDR4
Operating System Ubuntu 20.04 LTS
Python 3.10
PyTorch 2.4 (CUDA 12)
Experiment Tracking MLflow 2.14

Computation Cost. To provide a holistic context regarding the compute cost of the initialization strategy, we
report wall-clock training time (in minutes) and peak GPU memory usage (in MB) in Table 12. All measurements
were conducted on an NVIDIA RTX A6000 GPU (48 GB vRAM) to ensure consistency Peak memory usage
was measured using nvidia-smi.

Table 12: Computation cost for 1D Convection system. We report wall-clock training time (minutes)
and peak memory (MB).

Stage / Method Time (min) Peak Memory (MB)

LeIn-PINN (Invariance Encoding) 3.1 740
LeIn-PINN (Fine-Tuning) 10.4 540
Xavier Init. PINN Training 10.4 540

We emphasize that the meta-training stage (invariance encoding) is a one-time cost. Once the initialization is
learned, it can be reused across multiple PDE tasks in the same domain class, thereby amortizing this overhead.
Furthermore, the collocation points and grid resolution were kept constant between the invariance encoding and
task-specific fine-tuning stages. These results confirm that LeIn-PINN scales comparably to standard PINNs in
terms of grid resolution, with the only additional overhead being the upfront, one-time meta-training stage.
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