
The Training Agents with Foundation Models Workshop at RLC 2024

SENSEI: Semantic Exploration Guided by Founda-
tion Models to Learn Versatile World Models

Cansu Sancaktar∗,1,2 Christian Gumbsch∗,1,3,4 Andrii Zadaianchuk1,5

Pavel Kolev1 Georg Martius1,2

1 Autonomous Learning, University of Tübingen
2 Empirical Inference, Max Planck Institute for Intelligent Systems
3 Neuro-Cognitive Modeling, University of Tübingen
4 Cognitive and Clinical Neuroscience, TU Dresden
5 VISLab, University of Amsterdam

Abstract

Exploring useful behavior is a keystone of reinforcement learning (RL). Existing
approaches to intrinsic motivation, following general principles such as information
gain, mostly uncover low-level interactions. In contrast, children’s play suggests
that they engage in semantically meaningful high-level behavior by imitating or
interacting with their caregivers. Recent work has focused on using foundation
models to inject these semantic biases into exploration. However, these methods
often rely on unrealistic assumptions, such as environments already embedded in
language or access to high-level actions. To bridge this gap, we propose SEmaNtically
Sensible ExploratIon (Sensei), a framework to equip model-based RL agents with
intrinsic motivation for semantically meaningful behavior. To do so, we distill
an intrinsic reward signal of interestingness from Vision Language Model (VLM)
annotations. The agent learns to predict and maximize these intrinsic rewards using
a world model learned directly from intrinsic rewards, image observations, and low-
level actions. We show that in both robotic and video game-like simulations Sensei
manages to discover a variety of meaningful behaviors. We believe Sensei provides
a general tool for integrating feedback from foundation models into autonomous
agents, a crucial research direction as openly available VLMs become more powerful.

world modelagentenvironment

ot, rt

at

ôt, r̂t, r̂
sem
t

SENSEI

rsem
t

ot

distillation

You: Which of the following images is more
interesting for <environment description>?

VLM: Image 1 is more interesting.

You:

VLM: Image 2 is more interesting.

Figure 1: SENSEI overview: (a) During pre-training we prompt a VLM to compare observations
(e.g. images) from an environment with respect to their interestingness. We distill this ranking into a
reward function (Sensei), to guide the exploration of an embodied agent. (b) An exploring agent
not only receives observations (ot) and rewards (rt) from interactions with the environment but also
a semantic exploration reward (rsem

t ) from Sensei. (c) The agent learns a world model from its
experience to judge the interestingness (r̂sem

t ) of states without querying Sensei.

∗Equal contribution, corresponding authors: cansu.sancaktar@tuebingen.mpg.de, chris@gumbsch.de



The Training Agents with Foundation Models Workshop at RLC 2024

1 Introduction

Achieving intrinsically-motivated learning in artificial agents has been a long-standing dream, making
it possible to decouple agents’ learning from an experimenter manually crafting and setting up tasks.
Thus, the goal in intrinsically-motivated reinforcement learning (RL) is for agents to explore their
environment efficiently and autonomously, which would constitute a free play phase akin to children’s
curious play. Various intrinsic reward definitions have been proposed in the literature, such as aiming
for state space coverage (Bellemare et al., 2016; Tang et al., 2017; Burda et al., 2019), novelty or
retrospective surprise (Pathak et al., 2017; Schmidhuber, 1991), and information gain of a world model
(Pathak et al., 2019; Sekar et al., 2020; Sancaktar et al., 2022). However, when an agent starts to
learn from scratch, there is one fundamental problem: just because something is novel or unseen does
not necessarily mean that it contains useful or generalizable information (Dubey & Griffiths, 2017).

Imagine a robot in front of a desk with objects and drawers. The robot could move its arm through
the air to cover its entire manipulable space, or it could hit its end effector on the desk at various
speeds, leading to high uncertainty states. In contrast, human common sense would likely focus
on interacting with the objects or drawer of the desk since potential task distributions likely revolve
around those entities.

Agents exploring their environment from scratch with intrinsic motivations suffer from a chicken-
or-egg problem: how do you know something is useful before you have tried it and experienced its
usefulness to begin with? This is a bottleneck for the types of behavior that an agent can unlock
during free play. We argue that incorporating human priors into exploration could alleviate this
roadblock. Similar points have been raised for children’s play. During the first years of life, children
are surrounded by their caregivers who ideally encourage and reinforce them while they explore their
environment. Philosopher and psychologist Karl Groos has stipulated that there is “a strong drive
in children to observe the activities of their elders and incorporate those activities into their play"
(Gray, 2017; Groos & Baldwin, 1901).

A potential solution in the age of Large Language Models (LLMs), is to utilize language as a
cultural-transmitter to inject “human notions of interestingness" (Zhang et al., 2023a) into RL agents’
exploration. However, the most prominent works in this domain assume (1) a semantically-grounded
environment (Zhang et al., 2023b; Du et al., 2023), (2) in the case of Motif (Klissarov et al., 2023),
the availability of an offline dataset with exhaustive state-space coverage and messages labelling
the unfolding events or (3) access to high-level actions in the embodied environments considered in
Zhang et al. (2023a); Du et al. (2023). These assumptions are still detached from the current reality
of embodied agents, e.g. in robotics, which don’t come with perfect state or event captioners, with
pre-existing offline datasets nor with robust, abstracted away actions. Furthermore, none of these
approaches learn an internal model of “interestingness”. Thus, they rely on the LLM, or a distilled
module, to constantly guide their exploration and fail to transfer this knowledge to novel states when
LLM feedback is not available.

In this work we propose SEmaNtically Sensible ExploratIon (Sensei), a framework for Vision
Language Models (VLM) guided exploration for model-based RL agents, illustrated in Fig. 1. Sensei
starts with a short description of the environment and a dataset of observations (e.g. images) collected
through self-supervised exploration. A VLM is prompted to compare the observations pairwise
with respect to their interestingness and the resulting ranking is distilled into a reward function.
When the agent explores its environment, it receives semantically-grounded exploration rewards
from Sensei. The agent learns to predict this exploration signal through its learned world model,
corresponding to an internal model of “interestingness”, and improves its exploration strategy based
on these model-based predictions.

Our main contributions are as follows:
• We propose Sensei, a framework for foundation model-guided exploration with world models.
• We show that Sensei can explore rich, semantically meaningful behaviors with few prerequisites.



The Training Agents with Foundation Models Workshop at RLC 2024

. . .

self-supervised exploration data

> , . . . , <

pairwise comparison

. . .

uninteresting interestingranked data

Rγ rsemt

distilled reward function

Vlm

Motif

(a) reward function distillation

intrinsic motivations

h1

z1

rexpl1

h2

z2
a1

rexpl2

a2

. . .

ht zt at

r̂semt

. . .

ẑ1t+1
. . . ẑNt+1

rdist

(b) world model

Figure 2: Intrinsic rewards in SENSEI: (a) Prior to task-free exploration, we prompt GPT-4 to
compare images with respect to the interestingness for a certain environment. From the resulting
ranking we distill a reward function Rγ using Motif. (b) Later, an agent learns an Rssm world
model from task-free exploration. From each model state, the agent predicts different sources of
intrinsic rewards, i.e. epistemic uncertainty-based reward and our distilled semantic reward.

2 Method

We consider the setup of an agent interacting with a Partially Observable Markov Decision Process.
At each time t, the agent performs an action at ∈ A and receives an observation ot ∈ O, composed
of an image and potentially additional information. We assume that there exist one or more tasks
in the environment for which the agent may receive rewards rtask

t ∈ R after executing an action.
However, during task-free exploration, the agent should select its behavior agnostic to task rewards.

We assume that Sensei starts with a short description of the environment, a dataset Dinit ⊂ O
collected from self-supervised exploration (Sekar et al., 2020; Sancaktar et al., 2022), and access to a
pretrained VLM. Prior to task-free exploration, Sensei distills a semantic exploration reward function
from VLM annotations (Sec. 2.1). During exploration, Sensei learns a world model (Sec. 2.2) and
optimizes an exploration policy through model-based RL and intrinsic reward predictions (Sec. 2.3).

2.1 Reward function distillation: MOTIFate your SENSEI

Prior to task-free exploration, Sensei needs to distill a semantically grounded intrinsic reward
function Rγ with learnable parameters γ based on the preferences of a pretrained VLM. While the
overall framework of Sensei is agnostic to the exact distillation method, we chose to use an extension
of Motif (Klissarov et al., 2023) (illustrated in Fig. 2a).1

Motif consists of two phases. In the first phase of dataset annotation, the pretrained foundation
model is used to compare pairs of observations, creating a dataset of preferences. For this, we prompt
the VLM with an environment description and provide pairs of observations from Dinit, asking the
VLM which image it considers to be more interesting. The annotation function is given by the
VLM : O × O → Y, where O is the space of observations, and Y = {1, 2, ∅} is a space of choices
for the first, second or none of the observations. In reward training phase, a reward function is
derived from the VLM preferences using standard techniques from preference-based RL (Wirth
et al., 2017). A cross-entropy loss function is minimized on the dataset of preference pairs to learn
a semantically grounded reward model Rγ : O → R. We use the final semantic reward function Rγ

whenever the agent interacts with its environment: the agent not only receives an observation ot

and reward rt after executing an action at, but also receives a semantically-grounded exploration
reward rsem

t ← Rγ(ot) (see Fig. 1, center).
1Original Motif (Klissarov et al., 2023) assumes an environment where there exist captions that describe the events

at each time t. Thus, they can use LLMs to annotate the captions instead of using VLMs to annotate observations.



The Training Agents with Foundation Models Workshop at RLC 2024

2.2 World model: Let your SENSEI dream

We assume a model-based setting, i.e. the agent learns a world model from its interactions. Following
DreamerV3 (Hafner et al., 2023), we implement the world model as a Recurrent State Space Model
(Rssm) (Hafner et al., 2019b). The Rssm with learnable parameters ϕ is computed by

Posterior: zt ∼ qϕ(zt | ht, ot) (1)
Dynamics: ht+1 = fϕ(at, ht, zt) (2)

Prior: ẑt+1 ∼ pϕ(ẑt+1 | ht+1) (3)

In short, the Rssm encodes all interactions through two latent states, a stochastic state zt and
a deterministic memory ht. At each time t, the Rssm samples a new stochastic state zt from a
posterior distribution qϕ computed from the current deterministic state ht and new observation ot

(Eq. 1). The Rssm updates its deterministic memory ht+1 based on the action at and previous
latent states (Eq. 2). Next, the model predicts the next stochastic state ẑt+1 (Eq. 3). Once the new
observation ot+1 is received, the next posterior qϕ is computed and the process is repeated.

Besides encoding dynamics within its latent state, the Rssm is also trained to reconstruct external
quantities yt from its latent state via output heads oϕ:

Output heads: ŷt ∼ oϕ(ŷt | ht, zt) with yt ∈ {ot, ct, rt, rsem
t } (4)

The Rssm of DreamerV3 (Hafner et al., 2023) reconstructs observations ot, episode continuations ct,
and rewards rt. For Sensei, we additionally predict the semantic exploration reward rsem

t . The world
model is trained end-to-end to jointly optimize the evidence lower bound (Kingma & Welling, 2021).

Thus, our world model learns to predict semantic interestingness r̂sem
t of states (see Fig. 1, right).

We could base exploration exclusively on this signal. However, we expect to face many local optima
when optimizing for this signal and we don’t want to only explore a fixed set of behaviors, but ensure
that the agent goes for interesting and yet novel states. To overcome this limitation, Klissarov et al.
(2023) post-process rsem

t and normalize it by episodic event message counts. As we no longer assume
ground-truth countable event captions, we combine our new reward signal with epistemic uncertainty,
a quantity that was shown to be an effective objective for model-based exploration (Sekar et al., 2020;
Pathak et al., 2017; Sancaktar et al., 2022). Following Plan2Explore (Sekar et al., 2020), we train an
ensemble of N models with weights {θ1, . . . , θN} to predict the next stochastic latent states with

Ensemble predictor: ẑn
t ∼ gθn(ẑn

t | ht, zt, at). (5)

We quantify epistemic uncertainty as ensemble disagreement rdis
t , by computing the variance over

the ensemble predictions averaged over latent state dimensions J :

rdis
t = 1

J

J∑
j=1

Var(ẑn
j,t), (6)

Thus, the model learns to predict two intrinsic rewards (r̂sem
t , rdis

t ) for a state-action-pair (Fig. 2b).

2.3 Exploration policy: Unleash your SENSEI

We can use a weighted sum of the two intrinsic reward signals, e.g. rsem
t + βrdis

t , as the overall reward
rexpl

t for optimizing an exploration policy. However, ideally the weighting of the two signals should
dynamically depend on the situation. In uninteresting states we want the agent to mostly focus on
optimizing interestingness (via rsem

t ). However, once the agent has found an interesting state, we
would like the agent to branch out and discover new behavior (via rdis

t ). We implement this through
two trade-off factors β ∈ {βlow, βhigh} with βhigh > βlow between which we switch following

rexpl
t = r̂sem

t +
{

βhighrdis
t , if r̂sem

t ≥ Qk(r̂sem)
βlowrdis

t , else.
(7)



The Training Agents with Foundation Models Workshop at RLC 2024

Qk computes the k−th quantile of r̂sem, which we estimate through an exponential moving average.
Thus, until a certain level of r̂sem is reached, the exploration reward mainly aims at maximizing inter-
estingness. After exceeding this threshold, exploration more strongly favors uncertainty-maximizing
behavior. Both trade-off factors βlow and βhigh as well as the quantile k are hyperparameters. We
learn the exploration policy based on rexpl

t using the DreamerV3 algorithm (Hafner et al., 2023).

3 Related work

Intrinsic rewards are applied either to facilitate exploration in tasks where direct rewards are sparse
or in a task-agnostic setting where they help collect diverse data. There are many different reward sig-
nals that could be useful for efficient exploration of the environment, such as prediction error (Schmid-
huber, 1991; Pathak et al., 2017; Kim et al., 2020), novelty and Bayesian surprise (Storck et al., 1995;
Blaes et al., 2019; Paolo et al., 2021), learning progress (Schmidhuber, 1991; Colas et al., 2019; Blaes
et al., 2019), empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015), metrics for
state-space coverage (Bellemare et al., 2016; Tang et al., 2017; Burda et al., 2019) and regularity (San-
caktar et al., 2024). While effective for low-dimensional observations, such objectives could be more
challenging to apply in the case of high-dimensional image observations. An approach for exploration
in image-based environments is to employ low-dimensional goal spaces (Colas et al., 2019; OpenAI
et al., 2021; Nair et al., 2018; Pong et al., 2019; Zadaianchuk et al., 2021; Mendonca et al., 2021).
An alternative, more sample efficient, direction, is to learn latent world models (Hafner et al., 2019a;
2023; Gumbsch et al., 2024) from visual observations and use these world models for model-based
exploration (Pathak et al., 2019; Sekar et al., 2020). In particular, Plan2Explore (Sekar et al., 2020)
uses ensemble disagreement of latent space dynamics predictions as an intrinsic reward. While this is
a very general strategy for exploration, this could be limited in more challenging environments where
semantically meaningful or goal-directed behavior (Spelke, 1990) is needed for efficient exploration.

Exploration with foundation models: Recent improvements of in-context learning of LLMs
open additional ways to explore using human bias of interestingness during exploration (Klissarov
et al., 2023; Du et al., 2023; Zhang et al., 2023a) and skill learning (Colas et al., 2020; 2023; Zhang
et al., 2023b). Motif (Klissarov et al., 2023) leverages LLMs to generate intrinsic rewards by
evaluating pairs of event captions to derive rewards, demonstrating its efficacy in the complex game of
NetHack (Küttler et al., 2020). This approach has shown that intrinsic rewards can sometimes outper-
form direct reward maximization strategies. Similarly, ELLM (Du et al., 2023) uses LLMs to guide RL
agents towards goals that are meaningful and useful, based on the agent’s current state (represented
by text), showing improved task coverage in the Crafter environment (Hafner, 2021). Furthermore,
OMNI (Zhang et al., 2023a) introduces a novel method to prioritize tasks by modeling human notions
of interestingness using LLMs. Thereby, OMNI enhances the open-ended learning process by focusing
on tasks that are not only learnable but also generally interesting. LAMP (Adeniji et al., 2023) pro-
poses to use VLMs for reward modulation in an RL setup. First, a set of potential tasks are generated
with an LLM and then LAMP uses VLMs to generate rewards for these tasks to learn a language-
conditioned policy in the pretraining phase. This policy is later finetuned with actual task rewards.

Reward-shaping through VLMs: Most works that rely on VLMs as reward sources try to solve
the reward specification problem in RL. In these works, often a task is assumed to be described as a
language caption (Cui et al., 2022; Rocamonde et al., 2023; Baumli et al., 2023; Adeniji et al., 2023),
as a goal image (either in-distribution or out-of-distribution) (Cui et al., 2022), or as a demonstration
video of the task (Sontakke et al., 2023). In particular, RL-VLM-F (Wang et al., 2024) uses a
very similar setup to ours to generate reward functions. Images of initial rollouts are compared
pairwise using a VLM to distill a reward function via Motif (Klissarov et al., 2023). However,
unlike in our work, the VLM is explicitly prompted with the task, whereas we attempt to distill an
environment-specific but general exploration reward. Furthermore, Sensei assumes a model-based
setup to learn a world model instead of optimizing a policy based on the distilled reward function.



The Training Agents with Foundation Models Workshop at RLC 2024

4 Results

Our experiments set out to empirically evaluate the following questions:
1. Does the distilled reward function Rγ from VLM annotations encourage interesting behavior?
2. Can Sensei discover semantically meaningful behavior during task-free exploration?
3. Is the explored world model suitable for later learning to efficiently solve downstream tasks?
We answer these questions by (1) illustrating the semantic rewards, (2) quantifying the behavior
discovered by Sensei during task-free exploration and (3) employing the explored world models to
later train task-based policies. We use two very different types of environments:

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a simulated robotic arm
can interact with various objects on a desk, including buttons, two types of blocks, a ball, a sliding
cabinet, a drawer, and a bin. For different objects, there exist different tasks, e.g. open_drawer or
push_flat_block_in_bin, with individual sparse rewards. Robodesk uses pixel-based observations
and continuous actions controlling the end-effector (more details in Suppl. C.1).

MiniHack (Samvelyan et al., 2021) is a sandbox to design RL tasks based on NetHack (Küttler
et al., 2020). In MiniHack, an agent needs to navigate dungeons by interacting with its environment
in meaningful ways, e.g. apply a key to open a door. We tested two tasks: fetching a key in a huge
room to unlock a smaller room with an exit (KeyRoom-S15) or fetching a key to open a hidden chest
in a maze of rooms (KeyChest). MiniHack uses discrete actions. As observations we use pixel-based,
ego-centric views around the agent and a binary flag indicating key pick-ups (details in Suppl. C.2).

In both environments, we compare Sensei to Plan2Explore (Sekar et al., 2020), the current state-of-
the art in model-based exploration with pixel-based observations. In Robodesk, we compare different
versions of Sensei. In one ablation, we replace the VLM (GPT-4 Turbo) with a hand-crafted oracle
(see Suppl. C.4). Furthermore, we compare two initial datasets Dinit of self-supervised exploration
collected either by CEE-US (Sancaktar et al., 2022) or by Plan2Explore. CEE-US uses vector-based
position of entities for information-gain-based exploration, in comparison to Plan2Explore, which
works on the pixel-level. Due to the priviliged inputs, Dinit

CEE−US contains more complex interactions.
We compare 1M steps of exploration with the four versions of Sensei and Plan2Explore. In Minihack,
we analyze exploration of 500k steps and only use GPT-4 as annotator using Plan2Explore data.

4.1 Reward function of SENSEI

We illustrate how the distilled Motif reward function Rγ assigns semantic exploration rewards rsem
t

for exemplary sequences from Robodesk and MiniHack. We do this for oracle annotations and GPT-4
annotations in Robodesk and for GPT-4 annotations in MiniHack tasks, as shown in Fig. 3. For
Robodesk, we see that as the robot is interacting with objects, rsem

t also increases for the examples
of opening the drawer and interacting with the blocks. In the Minihack environments, we clearly see
jumps in reward rsem

t for significant events. Frames 2 & 3 in KeyRoom-S15 and KeyChest respectively,
are right before the key is picked up. Later, rsem

t increases further once the agent is at the door or
chest with a key (Frame 3 in KeyRoom-S15 and Frames 4&5 in KeyChest).

4.2 Task-free exploration

Next, we analyze the interactions uncovered by Sensei during task-free exploration. We compare
1M steps of exploration in Plan2Explore with the four versions of Sensei: GPT-4 and oracle as
annotators on Plan2Explore and CEE-US exploration datasets.

Fig. 4 plots the mean object interactions during exploration for the different methods. On average, all
versions of Sensei interact more with the objects than Plan2Explore. As a result, Sensei also solves
more tasks during exploration than Plan2Explore (shown in Suppl. D.1). Qualitatively, we observe



The Training Agents with Foundation Models Workshop at RLC 2024

(a) screenshots

0 50 100 150 200 250

0

0.5

1

t

rs
em t

(n
or
m
.)

Oracle & CEE-US

GPT-4 & P2X

1 2 3 4 5

0 50 100 150 200 250

0

0.5

1

1 2 3 4 5

t

rs
em t

(n
or
m
.)

Oracle & CEE-US

GPT-4 & P2X

1 2 3 4 5

0 50 100 150 200 250

0

10

1 2 3 4 5

t

rs
em t

GPT-4 & P2X

1 2 3 4 5

0 20 40 60 80 100 120 140

0

5

10

1 2 3 4 5

t

rs
em t

GPT-4 & P2X

12 3 4 5

(b) semantic exploration reward

Figure 3: Semantic exploration rewards for example trajectories: From top to bottom we
show example trajectories for two Robodesk episodes, Minihack KeyRoom-S15 and KeyChest. We
showcase rewards from Motif distilled from GPT-4 annotations using Plan2Explore (P2X) data
(purple). For Robodesk we also show Motif distilled from the oracle annotator using CEE-US
exploration data (red). The reward trajectories peak at the "interesting" moments of exploration,
such as opening a drawer in Robodesk or picking up the key in MiniHack.

Plan2Explore performing mostly arm stretches.2 Thus, our semantic exploration reward seems to
lead to more object interactions than pure epistemic uncertainty-based exploration. Sensei with
oracle shows the most object interactions. The initial exploration dataset Dinit influences with which
objects Sensei interacts. Oracle Sensei distilled from Plan2Explore data focuses mainly on the
sliding cabinet and the upright block, reinforcing the existing trends of Plan2Explore. For CEE-US
data, oracle Sensei interacts more with the other objects and the drawer. If a VLM annotates images
instead of the oracle, Sensei shows similar behavioral trends, but overall less object interactions. We
hypothesize that the VLM provides a much noisier signal of interestingness, making it harder to
optimize for.

Next, we compare task-free exploration (500k steps) of Sensei (GPT-4, Plan2Explore data Dinit) to
Plan2Explore in two tasks of MiniHack. For task-relevant events, the mean number of interactions
are plotted in Fig. 5. Sensei focuses more on semantically interesting interactions, e.g. picking up a
key, opening a locked door, or finding the chest with a key, than Plan2Explore. As a result, Sensei
completes both tasks more frequently than Plan2Explore during task-free exploration, as evident by

2Interestingly, this can still lead to solving tasks during exploration. For example, stretching the arm against the
sliding cabinet can close it, and by stretching the arm towards the upright block, it may be pushed off the table.



The Training Agents with Foundation Models Workshop at RLC 2024

Sliding cabinet Buttons Ball Upright block Flat block Drawer
0

50k

100k

In
te
ra
ct
io
n
co
u
n
ts Plan2Explore (P2X)

Sensei, GPT-4 & P2X
Sensei, GPT-4 & CEE-US
Sensei, Oracle & P2X
Sensei, Oracle & CEE-US

Figure 4: Interactions in Robodesk: We plot the mean over the number of interactions with an
object during exploration for different versions of Sensei (Oracle vs. VLM, CEE-US vs. Plan2Explore
data Dinit) and Plan2Explore. Error bars show the standard deviation (3 seeds).

the higher number of collected rewards. We believe that this indicates that Sensei is well-suited for
initial task-free exploration in these environments to discover the sparse rewards.

4.3 Downstream task solving

We hypothesize that world models learned through richer exploration would enable model-based RL
agents to learn to solve new downstream tasks in a more sample-efficient manner and with higher
success rates. We investigate this in MiniHack by running DreamerV3 (Hafner et al., 2023), where
we try to solve the extrinsic tasks using the learned world models from our initial 500K steps of
exploration with SENSEI or Plan2Explore (see Sec. 4.2). In this setup, we train a new task-based
policy from the imagined rollouts of the world models. We compare the world models learned from
Plan2Explore to the world models of SENSEI. Figure 6 shows the performance of the task-based
policies over training. Only agents with world models explored through SENSEI can reliably learn
to solve the task within 1M steps. As SENSEI allocates more resources to exploring the relevant
dynamics in the environment, e.g. opening the chest more frequently instead of just being near the
chest, a more versatile world model is learned that aids policy optimization.

5 Discussion

We have introduced Sensei, a framework for guiding the intrinsically motivated exploration of model-
based agents through foundation models without assuming access to expert data, high-level actions,
or perfect environment captions. Sensei bootstraps its model of interestingsness from previously
generated play data with e.g. information gain. On this dataset, Sensei prompts a VLM to compare
images with respect to their interestingness and distills a reward function for semantically grounded
exploration. Sensei learns an exploration policy via model-based RL using two sources of intrinsic
rewards: (1) trying to reach states with high semantic interestingness and (2) branching out from

P2X Sensei
0

100

200

300

400

key
picked up

P2X Sensei
0

100

200

300

agent
opened door

P2X Sensei
0

5k

10k

15k

agent next
to exit

P2X Sensei
0

20

40

60

reward

(a) interactions and rewards in KeyRoom-S15

P2X Sensei
0

200

400

key
picked up

P2X Sensei
0

20k

40k

60k

at chest
without key

P2X Sensei
0

20k

40k

at chest
with key

P2X Sensei
0

5

10

reward

(b) interactions and rewards in KeyChest

Figure 5: Interactions in MiniHack: We plot the mean number of interactions with task-relevant
objects and the number of rewards collected by Sensei and Plan2Explore (P2X) for KeyRoom-S15
(a) and KeyChest (b). Error bars show the standard deviation (3 seeds).



The Training Agents with Foundation Models Workshop at RLC 2024

0.5 1 1.5

0

0.5

1

1e6 steps

sc
or
e

P2X

SENSEI

(a) extrinsic phase in KeyRoom-S15

0.5 1 1.5

0

0.5

1

1e6 steps

sc
or
e

P2X

SENSEI

(b) extrinsic phase in KeyChest

Figure 6: Downstream task performance in MiniHack: We plot the mean of the episode score
obtained during evaluation for the MiniHack tasks KeyRoom-S15 (a) and KeyChest (b) with world
models learned from Sensei vs. Plan2Explore (P2X) exploration. Shaded areas depict the standard
deviation (3 seeds) and we apply smoothing over the score trajectories with window size 3.

these states to maximize epistemic uncertainty. We show that in a simulated robotic environment,
this strategy leads to more object manipulations than pure information gain-oriented exploration.
Similarly, we demonstrate that Sensei discovers more semantically meaningful interactions, such as
applying a key to open a chest, when exploring the video game-like environments of MiniHack. In
both environments, Sensei accumulates more rewards than the state-of-the-art exploration method
Plan2Explore (Sekar et al., 2020), by “accidentally” solving the tasks already during exploration.

Future work We hypothesize that Sensei learns a versatile world model from exploration, as
it is trained on more interaction-rich and interesting data. In line with past works from model-based
planning, we expect this to enable the agent to quickly learn to solve downstream tasks (Sancaktar
et al., 2022). We showcase this in the MiniHack tasks KeyRoom-S15 and KeyChest. In future work,
we plan to test whether we observe performance gains in a multi-task environment such as Robodesk.
Furthermore, by comparing two sources for the initial play data Dinit, we observe that Sensei
reinforces the trends existing in the initial exploration round, while still seeing improvements across
different types of interactions. To further reinforce more complex types of interactions, our reward
function could be refined in a new round of VLM annotations from a Sensei run. As a result,
Sensei could potentially unlock increasingly complex sequences of behavior with each generation.

Limitations Sensei benefits from fully-observable observations, e.g. images that capture all relevant
aspects of the environment. The VLM annotations, and as a result the distilled reward function,
degrade when dealing with occlusions and the lack of depth information from a single image. For
example, when the drawer in Robodesk is fully closed and not clearly visible, it is not interesting
to just be at the drawer handle (Fig. 3, top, screenshot 2). We believe this can be remedied in
future work by adding a second camera angle or using videos for VLM annotations to better convey
temporal or partially observable information.

Acknowledgements

The authors thank Sebastian Blaes and Onno Eberhard for helpful discussions. The authors thank the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Cansu
Sancaktar and Christian Gumbsch. Georg Martius is a member of the Machine Learning Cluster of
Excellence, EXC number 2064/1 – Project number 390727645. We acknowledge the financial support
from the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI
Center (FKZ: 01IS18039B). This work was supported by the Volkswagen Stiftung (No 98 571).

References
Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter Abbeel. Lan-

guage reward modulation for pretraining reinforcement learning. arXiv preprint arXiv:2308.12270,



The Training Agents with Foundation Models Workshop at RLC 2024

2023.

Kate Baumli, Satinder Baveja, Feryal Behbahani, Harris Chan, Gheorghe Comanici, Sebastian
Flennerhag, Maxime Gazeau, Kristian Holsheimer, Dan Horgan, Michael Laskin, et al. Vision-
language models as a source of rewards. arXiv preprint arXiv:2312.09187, 2023.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information
Processing Systems (NeurIPS), 2016.

Sebastian Blaes, Marin Vlastelica, Jia-Jie Zhu, and Georg Martius. Control What You Can:
Intrinsically motivated task-planning agent. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
b6f97e6f0fd175613910d613d574d0cb-Abstract.html.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular
& customizable reinforcement learning environments for goal-oriented tasks. Advances in Neural
Information Processing Systems, 36, 2024.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
CURIOUS: Intrinsically motivated modular multi-goal reinforcement learning. In International
Conference on Machine Learning (ICML), 2019. URL https://proceedings.mlr.press/v97/
colas19a.html.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter
Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool to imagine goals in curiosity
driven exploration. Advances in Neural Information Processing Systems, 33:3761–3774, 2020.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting autotelic agents with large language models. In Conference on Lifelong Learning
Agents, pp. 205–226. PMLR, 2023.

Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind Rajeswaran. Can foundation
models perform zero-shot task specification for robot manipulation? In Learning for Dynamics
and Control Conference, pp. 893–905. PMLR, 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Rachit Dubey and Thomas L. Griffiths. A rational analysis of curiosity. In Proceedings of the 39th
Annual Conference of the Cognitive Science Society, pp. 307–312, 2017. URL https://cogsci.
mindmodeling.org/2017/papers/0068/index.html.

Peter Gray. What exactly is play, and why is it such a powerful vehicle for learning? Topics in
Language Disorders, 37(3):217–228, 2017.

K. Groos and E.L. Baldwin. The Play of Man. Appleton, 1901. URL https://books.google.de/
books?id=sR8zAAAAMAAJ.

Christian Gumbsch, Noor Sajid, Georg Martius, and Martin V. Butz. Learning hierarchical world
models with adaptive temporal abstractions from discrete latent dynamics. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=TjCDNssXKU.

https://proceedings.neurips.cc/paper/2019/hash/b6f97e6f0fd175613910d613d574d0cb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b6f97e6f0fd175613910d613d574d0cb-Abstract.html
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.mlr.press/v97/colas19a.html
https://proceedings.mlr.press/v97/colas19a.html
https://cogsci.mindmodeling.org/2017/papers/0068/index.html
https://cogsci.mindmodeling.org/2017/papers/0068/index.html
https://books.google.de/books?id=sR8zAAAAMAAJ
https://books.google.de/books?id=sR8zAAAAMAAJ
https://openreview.net/forum?id=TjCDNssXKU
https://openreview.net/forum?id=TjCDNssXKU


The Training Agents with Foundation Models Workshop at RLC 2024

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, 2019b.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. In Advances in Neural Information Processing Systems, volume 35, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104v1, 2023.

Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Robodesk: A multi-task
reinforcement learning benchmark. https://github.com/google-research/robodesk, 2021.

Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active world model
learning with progress curiosity. In International Conference on Machine Learning (ICML), 2020.
URL https://arxiv.org/abs/2007.07853.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2021.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 9 2023.

A.S. Klyubin, D. Polani, and C.L. Nehaniv. Empowerment: a universal agent-centric measure of
control. In IEEE Congress on Evolutionary Computation, volume 1, pp. 128–135 Vol.1, 2005. URL
https://ieeexplore.ieee.org/document/1554676.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. In Advances in Neural
Information Processing Systems, volume 33, pp. 7671–7684, 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. Advances in Neural Information Processing Systems, 34:
24379–24391, 2021.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsi-
cally motivated reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2015. URL https://arxiv.org/abs/1509.08731.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,
31, 2018.

OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter Welinder,
Ruben D’Sa, Arthur Petron, Henrique Ponde de Oliveira Pinto, Alex Paino, Hyeonwoo Noh, Lilian
Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play for automatic goal
discovery in robotic manipulation. arXiv:2101.04882, 2021. URL https://arxiv.org/abs/2101.
04882.

Giuseppe Paolo, Alexandre Coninx, Stephane Doncieux, and Alban Laflaquière. Sparse reward
exploration via novelty search and emitters. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 154–162, 2021. URL https://doi.org/10.1145/3449639.3459314.

https://github.com/google-research/robodesk
https://arxiv.org/abs/2007.07853
https://ieeexplore.ieee.org/document/1554676
https://arxiv.org/abs/1509.08731
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://doi.org/10.1145/3449639.3459314


The Training Agents with Foundation Models Workshop at RLC 2024

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.
URL https://proceedings.mlr.press/v70/pathak17a.html.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International Conference on Machine Learning (ICML), 2019. URL https://proceedings.
mlr.press/v97/pathak19a.html.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Neural Information Processing
Systems Datasets and Benchmarks Track, 2021.

Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world
models yields zero-shot object manipulation. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Cansu Sancaktar, Justus Piater, and Georg Martius. Regularity as intrinsic reward for free play.
Advances in Neural Information Processing Systems, 36, 2024.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proceedings of the International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, 1991. URL https://dl.acm.org/doi/10.5555/116517.116542.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning (ICML), 2020. URL https://proceedings.mlr.press/v119/sekar20a.html.

Sumedh A Sontakke, Jesse Zhang, Sébastien MR Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: one demonstration is enough to learn robot policies.
arXiv preprint arXiv:2310.07899, 2023.

Elizabeth S Spelke. Principles of object perception. Cognitive science, 14(1):29–56, 1990.

J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven information acquisition in
non-deterministic environments. In Proceedings of the International Conference on Artificial Neural
Networks, pp. 159–164, Paris, 1995. EC2 & Cie. URL https://people.idsia.ch/~juergen/
icann95new.pdf.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS),
2017.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv preprint
arXiv:2402.03681, 2024.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 2017.

https://proceedings.mlr.press/v70/pathak17a.html
https://proceedings.mlr.press/v97/pathak19a.html
https://proceedings.mlr.press/v97/pathak19a.html
https://dl.acm.org/doi/10.5555/116517.116542
https://proceedings.mlr.press/v119/sekar20a.html
https://people.idsia.ch/~juergen/icann95new.pdf
https://people.idsia.ch/~juergen/icann95new.pdf


The Training Agents with Foundation Models Workshop at RLC 2024

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on Robot Learning, pp. 2226–2240. PMLR,
2023.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
learning with object-centric representations. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=xppLmXCbOw1.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023a.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. In 7th Annual Conference on Robot Learning, 2023b. URL https://openreview.net/
forum?id=a0mFRgadGO.

https://openreview.net/forum?id=xppLmXCbOw1
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO


The Training Agents with Foundation Models Workshop at RLC 2024

Supplementary Material for:
SENSEI: Semantic Exploration Guided by Foundation Models

to Learn Versatile World Models

A SENSEI: Implementation Details

A.1 World model

RSSM We base our Rssm implementation on DreamerV3 (Hafner et al., 2023). For MiniHack we
use the small model size setting with roughly 18M parameters (ht dimensions: 512, CNN multiplier:
32, dense hidden units: 512, MLP layers: 2). For the more complicated Robodesk environment, we
use the medium model size with around 37M parameters (ht dimensions: 1024, CNN multiplier:
48, dense hidden units: 640, MLP layers: 3). By default, when the input observation ot is only an
image, it is en- and decoded through CNNs. For MiniHack, we have an additional inventory flag that
is processed by a separate MLP, as is customary for the Dreamer line of work when dealing with
multimodal inputs (Wu et al., 2023). The MLP decoder outputs a Bernoulli distribution from which
we sample the decoded inventory flag.

Reward predictors To handle rewards of widely varying magnitudes, DreamerV3 uses twohot
codes predicted in symlog space when predicting rewards (Hafner et al., 2023). We use the same setup
for all reward prediction heads, i.e. for extrinsic rewards ri

t for task i or the semantic exploration
reward rsem

t . During task-free exploration, the gradients from reward predictions are stopped to not
further affect world model training. We do this to keep the world model somewhat task-agnostic to
later reuse it for multiple tasks. Similarly, to avoid overfitting to the exploration regime, we also stop
the gradients from the semantic reward prediction heads.

Plan2Explore Both our Plan2Explore baseline as well as our ensemble predictors (Eq. 5) are
based on the re-implementation on top of DreamerV3. The most notable difference is that in original
Plan2Explore the ensemble is trained to predict image encodings (Sekar et al., 2020), whereas the
new version is trained to predict stochastic states zt. Recent re-implementations (Hafner, 2021;
Hafner et al., 2022; Gumbsch et al., 2024) also used Plan2Explore with ensemble disagreement over
zt as a baseline and verified a strong exploration performance.

Quantile estimation We update our estimate of the quantile Qk(r̂sem) whenever we train the
exploration policy. For this, we compute the k-th quantile of r̂sem

t in each training batch (16× 16).
We keep an exponential moving average over these estimates with a smoothing factor of α = 0.99.

Reward weighting In practice, we compute exploration rewards (Eq. 8) using two reward factors
for each loss term

rexpl
t =

{
αhighr̂sem

t + βhighrdis
t , if r̂sem

t ≥ Qk(r̂sem)
αlowr̂sem

t + βlowrdis
t , else,

(8)

i.e. α to scale r̂sem
t and β to scale rdis

t . When training the value function with DreamerV3, the scale of
the reward sources are normalized. To compute this normalization for the exploration policy we use
αlow and βlow of the low percentile region of interestingness (≤ Qk). Thus, if αhigh+βhigh > αlow+βlow

then rewards of the high percentile region (≥ Qk) can exceed the normalization bound. We believe
this can act as an additional exploration bonus, since the exploration policy can gain more overall
rewards in regions with high semantic interestingness.

A.2 Semantic Reward Distillation: Motif

For the semantic reward function Rγ : O → R, we use a 2D-convolutional neural network to encode
the images. We use 3 convolutional layers, where we progressively increase the number of channels



The Training Agents with Foundation Models Workshop at RLC 2024

to num_channels_max = 64. The output then gets downsampled via max pooling before going
into a two-layer MLP with hidden dimensions 256 & 512 and outputting the scalar reward value.
Additionally, in MiniHack we include inventory information via a separate multi-layer perceptron
(MLP) head, consisting of 2 layers with 512 hidden units. The extracted features are concatenated
with the image features and get further processed by the output MLP. The training hyperparameters
for all Rγ can be found in Suppl. B.

B Hyperparameters

We provide the hyperparameters used for the world model, exploration policy, Motif annotations &
reward model training as well as the environment-specific settings.

Name Value
Robodesk KeyRoom KeyChest

World Model
Rssm size M S S
Ensemble size N 8 8 8
Exploration policy
Quantile 0.85 - 0.75 -0.75 - 0.80 0.90 0.90
αhigh 0.1 - 0.1 - 0.05 - 0.01 0.3 0.25
βhigh 1 - 1 - 1 - 1 1 1
αlow 1 - 1 - 1 - 1 1 1
βlow 0 - 0 - 0 - 0 0.1 0.05
Annotations for MOTIF
VLM GPT-4 turbo GPT-4 omni GPT-4 omni
Temperature 0.2 0.2 0.2
Dataset size 200K 100K 100K
Image res. 224×224 80×80 80×80
MOTIF Training
Batch size 64 - 64 - 32 - 32 32 32
Learning rate 10−5 - 10−5- 3×10−5 - 3×10−5 10−4 10−4

Weight decay 0 - 0 - 0 - 0 10−5 10−4

Environment
Action repeat 2 1 1
Episode length 250 600 800
Steps of exploration 1M 500K 500k

For the exploration policy in Robodesk we use different values for the four different variants tested.
The values listed here stand for, from left to right: GPT-4 with Plan2Explore data, GPT-4 with
CEE-US data, Oracle with Plan2Explore data, and Oracle with CEE-US data. The Motif training
hyperparameters are also listed in the same order.

Note that for the world model we use 64× 64 images for all environments. However, for the GPT
annotations we use higher resolution images, as shown in the table. Inside the environment step
function, the rendering is performed at these higher resolutions, and this image is input to the
semantic reward function Rγ . The image is then scaled down to 64× 64 as part of the observation
that the RSSM is trained on.

C Environment Details

C.1 Robodesk

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a robot can interact with
various objects on a desk. We use an episode length of 250 time steps.



The Training Agents with Foundation Models Workshop at RLC 2024

(a) Default observations (b) Our observations

Figure 7: Robodesk environment. We modify the default top-down camera view (a) to a side
view with less occlusion (b).

Observations Robodesk uses only an image observation, depicting the current scene, which we
scale down (64× 64 pixels). However, we found that the default top-down view often had occlusions
and was hard to interpret from a single image (Fig. 7a). Thus, we used a different camera angle
showing the robot from one side (Fig. 7b). With this view objects and the drawer were rarely
occluded; however, lights that turn on from button presses were not visible anymore.

Actions The continuous 5-dimensional actions control the movement of the end effector. We use
an action repeat of 2 to speed up the simulation. Thus, 1M steps of exploration correspond to 2M
actions in the environment.

Interaction metrics We track how often the robot interacted with different objects to quantify
the behavior during exploration by tracking the velocity of joints and object positions. For buttons,
sliding cabinet, or drawer, we check if the joint position changes more than a fixed value (0.02). For
all other objects, we check if any of their x-y-z velocities exceed a threshold (0.02).

Tasks We use the sparse reward versions of all the tasks available in the environment. For some
tasks, we add easier versions. All tasks describe interactions with one or multiple objects:
• Buttons: Pushing the red (push_red), blue (push_blue), or green (push_green) button.
• Sliding cabinet: Opening the sliding cabinet fully (open_slide) or partially (open_slide_easy).

The latter is a task variant added by us.
• Drawer: Opening the drawer fully (open_drawer), considerably (open_drawer_medium) or open-

ing it slightly (open_drawer_easy). The latter two tasks were added by us.
• Upright Block: Lifting the upright block (lift_upright_block), pushing it off the table

(upright_block_off_table) or putting it into the shelf (upright_block_in shelf).
• Flat Block: Lifting the flat block (lift_flat_block), pushing it off the ta-

ble (flat_block_off_table), into the bin (flat_block_in_bin), or into the shelf
(flat_block_in_shelf).

• Both blocks: Stacking both blocks (stack).
• Ball: Lifting the ball (lift_ball), dropping it into the bin (ball_in_bin) or putting it into the

shelf (ball_in_shelf).

C.2 MiniHack

Observations In MiniHack multiple observation and action spaces are possible. We use ego-centric,
pixel-based observations centered on the agent (±2 grids, example in Fig. 8c). In addition to that,



The Training Agents with Foundation Models Workshop at RLC 2024

(a) KeyRoom-S15 (b) KeyChest (c) egocentric view

Figure 8: MiniHack : We consider two tasks KeyRoom-S15 (a) and KeyChest (b). The agent
receives an egocentric view of the environment as its observation (c).

we provide the agent’s inventory. By default, in MiniHack the inventory is given as an array of
strings (UTF8 encoded), and different player characters have different starting equipment based on
the character classes of NetHack. We simplify this by providing only a binary flag that indicates
if the agent has picked up a new item. This is sufficient for the problems we consider, in which
maximally one new item can be collected and starting equipment cannot be used.

Environments Here we detail the environments we tackle:

In the benchmark KeyRoom-S15 problem (Fig. 8a), the agent needs to fetch a key in a large room
(15× 15 grids) to enter a smaller room and find a staircase to exit the dungeon. We use the default
action space but enable autopickup and therefore remove the PICKUP action. We use an episode
length of 600 time steps, which is 1.5 times longer than the default episode length.

KeyChest is a novel environment designed by us, based on KeyCorridorS4R3 from MiniGrid
(Chevalier-Boisvert et al., 2024) (see Fig. 8b). The agent starts in a corridor randomly connected
to different rooms. A key is hidden in one room and a chest in another room. The goal is to open
the chest with the key in the inventory. Object positions are randomized. The action space for this
task contains 5 discrete actions for moving the agent in 4 cardinal directions (UP, RIGHT, DOWN, LEFT)
and an OPEN-action to open a chest when standing next to it with a key in the inventory. We enable
auto-pickup, so no additional action is needed to pick up the key when stepping on it. We use an
episode length of 800 time steps.

Rewards All environments use a sparse reward of rt = 1, which the agent only receives upon
accomplishing the task. A small punishment (rt = −0.01) is given, when the agent performs an
action that does not alter the screen.

Image remapping Empirically, we found that GPT-4 may encounter problems if we provide
the image observations as is. For example, when using the default character in the KeyRoom-S15
environment (Rogue), GPT-4 sometimes throws content violation errors. We suspect that this is
due to the character wearing a helmet with horns, which could be mistaken for demonic or satanic
imagery. Thus, we pre-processed the images before returning them from the environment. While
render all characters as the Tourists, a friendly looking character with a Hawaiian shirt and straw hat.
Furthermore, GPT-4 sometimes mistakes entrance staircases for exit staircases. Since the entrance
staircases serve no particular purpose and are not different from the regular floor, we remap all
entrance staircases to floors.



The Training Agents with Foundation Models Workshop at RLC 2024

C.3 VLM prompting

We prompt the VLM with somewhat general descriptions of the environments that we consider.
Here we provide the full prompts for all environments.

C.3.1 Robodesk

For Robodesk we provide two observation images (resolution 224× 224) with the following prompt:

Here are two images in a simulated environment with a robot in front of a desk.
Your task is to pick between these images based on how interesting they are.
Which image is more interesting in terms of the showcased behavior? For context
following points would constitute interestingness: (1) The robot is currently
holding an object in its gripper. (2) The robot is pushing an object around
or pushing a button or opening the drawer or interacting with entities on the
desk. (3) Objects on the desk are in an interesting configuration: e.g. a stack.
Being far away from the desk with the robot arm retracted or just stretching your
arm without interactions, is a sign the image is not interesting. Answer in
maximum one word: 0 for image 1, 1 for image 2, 2 for both images and 3 if you
have no clue.

For Robodesk we use GPT-4 Turbo. To cap the dataset size of pairs at 200K and still make sure that
we got contrastive pairs of interesting vs. uninteresting behaviors, we pre-filtered the pairs using our
oracle of interestingness for the CEE-US and Plan2Explore datasets. We believe that in future work
this step can be omitted by simply generating more random pairs and expanding the dataset size.

C.3.2 MiniHack

For MiniHack we provide two observation images (resolution 80× 80) and the inventory. For the
inventory, we only consider items that were picked up and not items in the agent’s starting equipment3.
We provide the inventory as text descriptions. The different options are shown in purple.

Your task is to help play the video game MiniHack. MiniHack is a roguelike
game where an agent needs to navigate through rooms and escape a dungeon. For
succeeding in the game, finding items, collecting items and exploring new rooms is
crucial. Images are egocentric around the agent, who is standing on a dotted blue
floor. Your task is to pick between two game states, composed of images and an
inventory descriptions, based on how interesting and useful they are.

Is there any difference between the first and second game state in terms of how
interesting it is? The images depict the current view. {The first agent has a
key named The Master Key of Thievery in their inventory., The second agent has a
key named The Master Key of Thievery in their inventory., Both agents have a key
named The Master Key of Thievery in their inventory., Both agents have no items in
their inventory.}‚

Think it through and then answer in maximum one word: 0 if the first state is
more interesting, 1 if the second state is more interesting, 2 if both states are
interesting and 3 if nothing is interesting or you are very unsure.

For MiniHack we use GPT-4 omni.

C.4 Oracle for Interestingness

In Robodesk, we use an oracle of interestingness to annotate the pairs. Our goal here is to showcase
an upper-bound of performance on Sensei without the noisiness of VLMs. For the oracle, we deem

3The starting equipment is taken from the NetHack game and irrelevant and inaccesible in our tasks.



The Training Agents with Foundation Models Workshop at RLC 2024

a state interesting if: (1) any one of the entities are in motion (here only for the ball we make
an exception that the ball should be in motion with the end effector close to it as the ball in the
environment is unimpeded by friction), (2) if the drawer is opened, (3) if the drawer/sliding cabinet
is not yet in motion, but the end effector is very close to their handles, (4) if the upright and flat
blocks are not yet in motion but the end effector is very close to them (almost touching), (5) if the
stacking task is solved. With these statements, we essentially cover the range of tasks defined in the
Robodesk environment, as they are shown in Fig. 9.



The Training Agents with Foundation Models Workshop at RLC 2024

D Extended Results

D.1 Robodesk: Rewards

In addition to interaction metrics, we count the number of times task rewards are collected during
exploration. Especially with Motif distilled from the oracle annotator using CEE-US data, we
observe that the agent already solves many tasks in the environment during play. Note that for the
open_slide task you need to open the slide fully in one direction, which is achieved in abundance in
Plan2Explore runs by simply stretching the arm. The full interaction metrics of exploring how the
slide moves left-right is not necessarily reflected in the task rewards, as can be seen in comparison to
Fig. 4. Additionally as the bin is not really visible in our camera angle, solving in_bin tasks are
more due to the objects that go off the table landing by chance in the bin for all methods such that
higher statistics for off_table rewards also lead to higher in_bin rewards.

−0.5 0 0.5 1 1.5
0

20,000

40,000

60,000

open slide

Plan2Explore (P2X) SENSEI, GPT-4 & P2X Sensei, GPT-4 & CEE-US SENSEI, Oracle & P2X SENSEI, Oracle & CEE-US

−0.5 0 0.5 1 1.5
0

50,000

1 · 105

open slide easy

−0.5 0 0.5 1 1.5
0

500

1,000

1,500

open drawer

−0.5 0 0.5 1 1.5
0

5,000

10,000

15,000

20,000

open drawer easy

−0.5 0 0.5 1 1.5
0

2,000

4,000

6,000

open drawer medium

−0.5 0 0.5 1 1.5
0

1,000

2,000

3,000
push green

−0.5 0 0.5 1 1.5

0

50

100
stack

−0.5 0 0.5 1 1.5
0

10,000

20,000

upright block off table

−0.5 0 0.5 1 1.5

0

500

flat block in bin

−0.5 0 0.5 1 1.5

0

50

100

flat block in shelf

−0.5 0 0.5 1 1.5

0

50

100

150

lift upright block

−0.5 0 0.5 1 1.5
0

200

400

lift ball

−0.5 0 0.5 1 1.5
0

2,000

4,000

6,000

push blue

−0.5 0 0.5 1 1.5
0

500

1,000

1,500

2,000

push red

−0.5 0 0.5 1 1.5
0

500

1,000

flat block off table

−0.5 0 0.5 1 1.5
0

2,000

4,000

ball off table

−0.5 0 0.5 1 1.5

0

50

100
ball in bin

−0.5 0 0.5 1 1.5
0

2,000

4,000

upright block in shelf

−0.5 0 0.5 1 1.5
0

1,000

2,000

3,000

4,000
ball in shelf

−0.5 0 0.5 1 1.5
0

500

1,000

1,500

lift flat block

Figure 9: Robodesk rewards: We plot the mean number of sparse rewards (successful task
completions) discovered during 1M steps of task-free exploration for all tasks.


