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Abstract

Leveraging multimodal large models for image segmentation has become a promi-
nent research direction. However, existing approaches typically rely heavily on
manually annotated datasets that include explicit reasoning processes, which are
costly and time-consuming to produce. Recent advances suggest that reinforce-
ment learning (RL) can endow large models with reasoning capabilities without
requiring such reasoning-annotated data. In this paper, we propose SAM-R1, a
novel framework that enables multimodal large models to perform fine-grained
reasoning in image understanding tasks. Our approach is the first to incorporate
fine-grained segmentation settings during the training of multimodal reasoning
models. By integrating task-specific, fine-grained rewards with a tailored opti-
mization objective, we further enhance the model’s reasoning and segmentation
alignment. We also leverage the Segment Anything Model (SAM) as a strong
and flexible reward provider to guide the learning process. With only 3k train-
ing samples, SAM-R1 achieves strong performance across multiple benchmarks,
demonstrating the effectiveness of reinforcement learning in equipping multimodal
models with segmentation-oriented reasoning capabilities.

1 Introduction

Multimodal Large Language Models (MLLMs) [17, 20, 37, 22, 5, 44, 51] have achieved remarkable
progress in the field of visual understanding [36, 42, 27, 43, 12], with their capabilities extending
to more complex and fine-grained perception tasks like multimodal segmentation [38, 21, 40].
Compared to conventional segmentation methods that rely on simple categorical labels, the reasoning
segmentation task [2, 16, 31] has garnered significant attention for its flexibility and practical
applicability, but it also introduces substantially greater challenges. Specifically, it requires models
not only to comprehend the intent behind user-provided textual queries accurately but also to perform
strong logical reasoning to generate high-quality, pixel-level segmentation outputs.

LISA [16] was the first to introduce the integration of MLLMs with segmentation models via spe-
cialized tokens, demonstrating the feasibility of applying MLLMs to reasoning segmentation tasks.
Building on this foundation, subsequent studies [25, 2, 31, 41] have adopted similar strategies, lever-
aging task-specific tokens generated by MLLMs to improve pixel-level segmentation performance.
While these approaches are promising, they often rely heavily on large-scale annotated datasets to
jointly fine-tune the language model and the segmentation decoder. This not only increases training
costs but also raises the risk of catastrophic forgetting, where models perform well on in-domain data
but fail to generalize to out-of-domain scenarios [7]. Furthermore, the reasoning segmentation tasks
frequently involve ambiguous and complex text queries from users, which demand strong reasoning
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Question: When a photographer wants to 
adjust the focus of a camera lens, what part 
in the picture could they manipulate to 
achieve this?
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Answer: {“bbox_2d”: [249, 268, 572, 597], ...}
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<think>The image shows a close-up of a camera lens focusing 
ring. The focus ring is typically used to adjust the focus of a 
camera lens. The ring has numbers and a central knob, which is 
the part that a photographer would manipulate to adjust the 
focus. The central knob is the focal point of the image, and it is 
the part that would be turned to change the focus. The 
numbers around the ring indicate different focus settings, but 
the actual adjustment is made by turning the central knob. The 
presence of the knob and the numbers around it suggest that 
this is the part of the camera that is used for focus 
adjustment.</think><answer>{\"bbox\": [120,133,705,715], 
\"points\":[[392,406,1], [400,410,1]]}</answer>

'<image> Please find the bounding box (bbox) and points containing "{Question}".
Compare the differences between objects, locate, and identify the most closely matched target object. 
Output the thinking process within <think> </think> tags, and the final answer within <answer> </answer> tags. 
Output the bounding box that exactly contains the target object, and output some points to help better locate the object within the bounding box. 
For the points within the bounding box:Points of the target object are marked with 1. 
Points within the bounding box but not part of the target object are marked with 0.
The points are represented as [x1, y1, value],Please output in JSON format, for example, <think> here is the thinking process </think> 
To generate the mask of the target object, <answer>{Answer}</answer>'

User Prompt for SAM-R1

Figure 1: SAM-R1 generates a reasoning chain prior to producing the segmentation mask. It employs
a reinforcement learning (RL) strategy, learning the reasoning process from scratch. In comparison
to supervised fine-tuning (SFT), the RL-enhanced model, which incorporates fine-grained rewards
based on SAM, demonstrates superior performance on both in-domain and out-of-domain data.

capabilities from MLLMs to accurately interpret intent and precisely localize the target segmentation
regions.

Recent research has shown that reinforcement learning (RL) can significantly enhance the reasoning
capabilities of large language models (LLMs) through reward-based feedback mechanisms [13].
DeepSeek-R1 [9] leverages rule-based rewards to further improve the model’s capacity for complex
reasoning. This method requires the model to undergo an extensive reasoning process before
producing a final answer, with rewards assigned solely based on the correctness of the final response
and its adherence to a predefined output format. Such rule-based reward designs align naturally
with visual understanding tasks, which often come with accurate ground-truth (GT) annotations.
Inspired by this, numerous efforts [8, 46, 50, 39] have applied Group Relative Policy Optimization
(GRPO) [33] to vision-language models, incorporating task-specific reward signals. For example,
VLM-R1 [34] introduces both format and accuracy rewards for general vision-language tasks,
and further incorporates customized rewards tailored to specific applications to mitigate reward
hacking. Seg-Zero [23] expands this paradigm by designing a more comprehensive reward system,
including reasoning-format, segmentation-format, and accuracy rewards based on IoU and L1 distance,
to stimulate robust reasoning in segmentation contexts. Although Seg-Zero demonstrates strong
performance in emergent reasoning tasks, its complete decoupling of the reasoning model and
segmentation decoder prevents access to pixel-level feedback from the segmentation results, thereby
increasing the risk of reward hacking. To address this, involving the segmentation decoder directly in
the reward loop, as a reward provider, not only ensures alignment between optimization objectives
and task goals but also alleviates the need for extensive human-annotated reasoning data, enabling a
more efficient and scalable learning paradigm.

Building upon the insights presented above, we propose SAM-R1, an efficient end-to-end framework
tailored for reasoning segmentation. SAM-R1 utilizes reinforcement learning with reward-driven op-
timization to enhance the reasoning capabilities of MLLMs in complex scenarios. A key component
of our framework is the design of task-specific, fine-grained reward functions, particularly a seg-
mentation accuracy reward derived directly from the output of the Segment Anything Model (SAM).
This enables the model to develop fine-grained perceptual reasoning in an end-to-end manner—an
aspect that has been largely overlooked in previous multimodal reasoning models for segmentation.
Integrating powerful SAM [15] has become a prevalent strategy for achieving precise pixel-level
segmentation. SAM’s zero-shot segmentation capabilities, facilitated by flexible prompt-based in-
puts, render it a highly adaptable component. While existing approaches often employ SAM as a
downstream module to generate segmentation masks based on MLLM outputs [23], our framework
distinguishes itself by incorporating SAM directly into the reinforcement learning training loop as a
reward signal generator. This integration enables the MLLM to receive direct, task-relevant feedback
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based on segmentation accuracy, thereby aligning model optimization with the final task objective in
a principled and effective manner.

Moreover, we introduce a subtle modification to the clipped objective of PPO to fully utilize its
potential in the reasoning segmentation task. First, we increase the upper clipping threshold to
encourage updates from highly advantageous actions, thereby granting the model greater flexibility
in optimizing the task-specific reasoning model. Second, we observe that GRPO may occasionally
produce overly lengthy responses with limited informative content. During the GRPO optimization
process, overly long responses will confuse the model and prevent it from obtaining higher reward
signals, which can lead to reward hacking. Rather than constraining each token in a single response,
we treat all tokens within a response group, encouraging the policy model to focus on generating
responses with higher information density. By integrating task-specific, fine-grained rewards with a
tailored optimization objective, SAM-R1 precisely interprets complex instructions and accurately
localizes segmentation targets. Using only 3K training samples, our method surpasses the base
model by 34.1% on the challenging ReasonSeg benchmark in zero-shot setting. In conclusion, our
contributions can be summarized as below:

• We present a novel end-to-end framework for fine-grained, reasoning segmentation that employs
rule-based rewards to enhance comprehension of complex instructions.

• We devise task-specific, fine-grained reward functions that leverage SAM as an active reward
provider, driving continuous self-improvement of the reasoning model.

• We provide extensive empirical evidence demonstrating the effectiveness of SAM-R1 and offer
new insights into synergizing reinforcement learning with MLLMs.

2 Related Works

2.1 MLLMs for Vision and Reasoning Segmentation

Multimodal Large Language Models (MLLMs) have significantly advanced visual understanding,
extending from foundational tasks like image captioning and visual question answering [1, 26, 6] to
more intricate, fine-grained perception challenges such as image segmentation. A notable direction
is reasoning segmentation [45, 2, 31], which necessitates that models interpret implicit user queries
and perform logical deduction to generate pixel-level masks. A relevant line of research [10, 35, 11]
focuses on using a single generic prompt to perform segmentation, thereby reducing the reliance on
manually provided, image-specific inputs. Seminal works like LISA [16] demonstrated the viability
of MLLMs for such tasks by interfacing them with segmentation models via specialized tokens.
However, these initial approaches frequently depended on Supervised Fine-Tuning (SFT) using
datasets with simple categorical labels or rudimentary descriptions [23]. This reliance often curtailed
out-of-domain generalization and lacked explicit, interpretable reasoning processes [23, 34], thereby
motivating the exploration of methods to instill more robust reasoning capabilities within MLLMs
for segmentation.

2.2 RL for Enhanced Reasoning in Multimodal Tasks

Reinforcement Learning (RL) has emerged as a potent methodology for eliciting and augmenting
the reasoning capacities of large models, circumventing the need for datasets with explicit reasoning
annotations. Research indicates that reward-driven optimization can effectively activate emergent
test-time reasoning. Algorithms such as Group Relative Policy Optimization (GRPO) [33], employed
in models like DeepSeek-R1 for language tasks [9], Seg-Zero for reasoning segmentation [23], and
VLM-R1 [34] for general vision-language tasks, have achieved considerable success in training
models to generate reasoning chains and attain high performance with limited supervision. These
RL-based strategies often exhibit superior generalization compared to SFT methods [7], which are
prone to overfitting and catastrophic forgetting of general abilities. Our work leverages this paradigm
by adapting an RL training algorithm based on GRPO [33], specifically tailored to the multimodal
segmentation task, to cultivate fine-grained perceptual reasoning.
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2.3 Segmentation Feedback with Task-Specific Rewards

The incorporation of powerful, pre-trained segmentation models like the Segment Anything Model
(SAM) [15] has become a prevalent strategy for achieving precise pixel-level segmentations. SAM’s
zero-shot segmentation capabilities, prompted by diverse inputs, render it a versatile component.
While many frameworks employ SAM as a downstream module to produce segmentation masks
from MLLM outputs [23], our approach uniquely integrates SAM as an active element within the RL
training loop, functioning as a reward provider. This allows the MLLM to receive direct feedback on
the quality of its generated information, assessed by the final segmentation accuracy.

The design of effective reward functions is paramount in RL. Related works often employ rule-based
rewards, encompassing format rewards for structured outputs and accuracy rewards (e.g., Intersection
over Union (IoU) for bounding boxes or masks, L1 distance) to quantify the quality of spatial
predictions. For instance, Seg-Zero utilizes reasoning-format, segmentation format, and accuracy
rewards based on IoU and L1 distance [23]. VLM-R1 also employs accuracy and format rewards
for tasks such as referring expression comprehension and open-vocabulary object detection [34].
Other works like RM-R1 focus on correctness-based rewards for reward modeling itself [3], and
R1-Reward introduces consistency rewards alongside formatting and result rewards for training
multimodal reward models [50]. Our SAM-R1 framework is distinguished by its design of task-
specific, fine-grained reward functions, notably a segmentation-accuracy reward that directly utilizes
SAM’s output. This enables the model to learn fine-grained reasoning for segmentation tasks in an
end-to-end manner, an aspect largely overlooked in prior work on fine-grained segmentation settings
within multimodal reasoning models.

3 Method

In this section, we elaborate on the architecture of our framework. In section 3.1, we explain how our
framework enables multimodal large models to achieve fine-grained perceptual reasoning capacities.
The enhancements made to the reinforcement learning algorithm, which significantly enhance the
model’s multimodal reasoning performance, are detailed in section 3.2. Furthermore, in section 3.3,
we offer a detailed discussion of our approach to designing the reward function, with SAM integrated
as a strong and flexible reward provider.

3.1 SAM-R1

As depicted in Figure 2, our framework takes user-supplied questions and images as input. It performs
reasoning and analysis to pinpoint the target object by synthesizing information from both modalities.
Subsequently, the model generates intermediate reasoning outputs, which serve as inputs to the
segmentation model for mask generation. During this process, the model has the flexibility to produce
outputs that enhance the segmentation model’s performance. Our approach diverges from prior
work [23], which centered on training the multimodal large model alone. Instead, we incorporate
the segmentation model as a reward provider in the reinforcement learning phase. This integration
enables the segmentation model’s outputs to offer detailed feedback, thereby refining the training of
the reasoning model.

3.2 RL Training Algorithm

Using reinforcement learning [9] to train large models and enhance their performance in specific
domains, such as mathematics and programming, has proven effective. However, previous reinforce-
ment learning methods often relied on a pre-trained model, which led to a significant increase in cost
and complexity. At the same time, acquiring reasoning capabilities previously required carefully
curated datasets that included explicit reasoning processes. Models needed to be trained on these
reasoning-annotated datasets to achieve competitive performance.

Recent research [9] has shown that large models’ reasoning abilities can merge even when trained on
datasets without explicit reasoning rules, and the reward mechanism can be greatly simplified while
still maintaining the model’s strong performance.

4



3.2.1 DeepSeek R1-Zero and GRPO

The DeepSeek R1-Zero algorithm introduces a novel training approach using Group Relative Policy
Optimization (GRPO). This method trains the model to output both a reasoning process and a final
answer, while supervision is applied only to the answer. Despite this limited supervision, the model
still achieves robust reasoning performance. In this framework, rule-based and accuracy-based reward
functions are used to evaluate the model’s responses, effectively preventing reward hacking and
simplifying the overall reward mechanism.

Unlike previous reinforcement learning algorithms such as PPO [32], which require a separate critic
model to evaluate performance, GRPO eliminates the need for an additional model by directly
comparing all scores within a group as a baseline. Specifically, for each input question q, GRPO
samples a set of G responses {o1, o2, . . . , oG} from the old policy πθold . The reward advantage Ai

for the i-th response is then computed by normalizing the group of rewards {r1, r2, . . . , rG}:

Ai =
ri − µr

σr
, (1)

where µr and σr denote the mean and standard deviation of the rewards in the group, respectively.

Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)][
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ε, 1 + ε

)
Ai

)
− βDKL (πθ||πref )

)]
,

(2)
where the KL divergence is defined as:

DKL (πθ||πref ) =
πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1. (3)

3.2.2 Our Training Algorithm

Similar to recent studies [49, 24], we observe that the clipping term utilized in advantage estimation
is beneficial for maintaining stability in policy updates. At the same time, the KL-divergence penalty
already limits the distributional shift between successive policies and therefore also serves as a
stabilizing factor. In our multimodal image-segmentation task, we aim to allow the large multimodal
model greater freedom to explore finer-grained interpretations while preserving training stability.
Hence, we retain the KL constraint but decouple the clipping mechanism: we replace the single

Masks Reward functions

Multi-Modal
LLM

Reasoning
<think>The image shows a medical setting with a patient on an operating 
table and a medical professional in surgical attire. The presence of 
monitors displaying images of the spine suggests that the image is 
taken in a modern hospital setting. The monitors are commonly used to 
monitor patients' vital signs during surgery, and the image shows a 
Philips X-ray machine, which is used for imaging during surgery. The 
monitors are the object that is commonly used for monitoring patients' 
vital signs during surgery in this context.</think>

Segment
Anything

<think>
...
<\think>
<answer>
...
<\answer>

Think Format
Reward

Tiered Reward
Function

...bbox...<*,*,*,*>...

...points...<*,*,*>...

Output Format

KL penalty Ref
Policy Policy

In modern hospitals, advanced technology 
is often used to monitor patients' vital 
signs during surgery. What object in the 
picture is commonly used for this purpose?

Instructions

<answer>{"bbox": 
[280,24,440,310], 
"points": [[320,110,1]]}
</answer>

Answers

Trainable Frozen

Figure 2: Our framework integrates the Segment Anything Model (SAM) as a reward provider in
the reinforcement learning training of a multimodal large model (MLLM). The two models jointly
process user-input questions and images to identify target objects and generate masks. Specifically,
the MLLM generates the reasoning process and answer, then passes them to SAM. A fine-grained
reward based on Intersection over Union (IoU) is calculated to optimize the MLLM.
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threshold ε with asymmetric bounds εlow and εhigh. We keep εlow unchanged and slightly raise εhigh
to encourage broader exploration.

We also observe that GRPO can sometimes yield very long yet low-information answers. Such
responses waste tokens and increase the risk of hallucination, as long and short answers incur the
same total loss, thereby causing the per-token penalty for longer responses. To counter this, we
rescale the loss so that every token receives the same loss, discouraging redundant and repetitive
outputs. With these changes, our training objective becomes:

Jours(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)][
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai,

clip

(
πθ(oi|q)
πθold(oi|q)

, 1− εlow, 1 + εhigh

)
Ai

)
− βDKL (πθ∥πref)

)]
.

(4)

These modifications allow the model to explore aggressively, achieve a fine-grained understanding,
and train stably without incurring the extra cost and complexity of an additional critic model.

3.3 Reward Functions

A reward model is a crucial component of reinforcement learning (RL): combined with preference-
alignment algorithms, it steers the policy toward the desired objectives. Following earlier work [9],
we likewise employ reward functions and adapt them to the multimodal segmentation setting through
three task-specific, rule-based rewards.

Tiered Segmentation-accuracy Reward Function. Departing from earlier reward designs, we treat
SAM (Segment Anything Model) as an external reward provider. The target location predicted by the
multimodal model is passed to SAM, which returns a mask prediction. We compute the IoU between
this mask and the ground-truth mask and assign piecewise rewards:

reward =


4, IoU > 0.80,

3, 0.70 < IoU ≤ 0.80,

2, 0.50 < IoU ≤ 0.70,

0, otherwise,

(5)

which provides robust positive feedback only when the predicted region closely aligns with the
ground truth, guiding the model toward gradual improvement at lower IoU levels.

Reasoning-format reward. To encourage explicit reasoning, the model should enclose its chain-of-
thought between “<think>” and “</think>” tags and place the final answer between “<answer>” and
“</answer>” tags. Outputs that adhere to this structure receive a positive reward, while malformed
outputs incur a penalty.

Segmentation-format reward. To ensure the multimodal large model provides fine-grained cues to
the downstream segmentation module, it must emit the detected bounding box, a reference point, and
a descriptive textual flag in a prescribed JSON-like format. Compliance with the schema yields a
reward; deviations incur a penalty.

4 Experiment

4.1 Experimental Setup

We use Qwen2.5VL-7B [1] as our base model and SAM2-Large [29] as the segmentation model. All
experiments are conducted on 8×A100 GPUs. During training, we sample 8 responses per question,
set εhigh = 0.3, and use a learning rate of 1.0 × 10−6. To ensure the model’s robustness across
different domains, we resize all images to 840×840 before feeding them into the MLLM during
both training and evaluation. We follow previous works [16, 23] and use both cIoU and gIoU as
evaluation metrics. gIoU is defined by the average of all per-image intersection-over-unions, while
cIoU is defined by the cumulative intersection over the cumulative union.
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4.2 Datasets

For training, we randomly sample 3,000 instances from the training set of RefCOCOg [48], which
contains 104,560 referring expressions tied to 54,822 objects across 26,711 images. We use the official
RefCOCOg test set as our in-domain evaluation set. To assess generalization across datasets, we use
the testA subsets from RefCOCO and RefCOCO+ [14] as our out-of-distribution (OOD) evaluation
sets. RefCOCO consists of 142,210 expressions for 50,000 objects across 19,994 images, while
RefCOCO+ includes 141,564 expressions for 49,856 objects in 19,992 images, with both datasets
providing predefined splits. RefCOCO+ is considered more challenging due to the exclusion of
absolute location terms. In addition, we include ReasonSeg [16], a dataset that requires strong visual-
linguistic reasoning, to further evaluate our model’s ability to perform fine-grained segmentation
under complex reasoning conditions.

4.3 Main Results

ReasonSeg. Table 1 shows the zero-shot performance of SAM-R1 on the ReasonSeg benchmark.
Our method achieves 60.2% gIoU and 54.3% cIoU on the test set, outperforming the previous best,
Seg-Zero (58.3% gIoU and 53.4% cIoU). This improvement is mainly due to our fine-grained reward
design, which integrates SAM into the RL loop to provide IoU-based feedback during training,
aligning reasoning with segmentation. Unlike Seg-Zero’s decoupled design, our unified framework
introduces finer-grained segmentation rewards, enabling stable optimization and better generalization
with only 3k training samples. Additionally, our improved GRPO strategy—with asymmetric clipping
and token-level loss normalization—enhances informativeness and robustness under domain shifts,
supporting SAM-R1’s strong zero-shot performance in complex reasoning segmentation. Seg-Zero-
7B* denotes performance based on provided model weights, as their reported results used different
weights per metric and could not be reproduced.

Table 1: Comparison on ReasonSeg-zero-shot benchmark (val/test). The best results are in bold.

Method
ReasonSeg-zero-shot
val test

gIoU cIoU gIoU cIoU

OVSeg [18] 28.5 18.6 26.1 20.8
ReLA [19] 22.4 19.9 21.3 22.0
Grounded-SAM [30] 26.0 14.5 21.3 16.4
LISA-7B-LLaVA1.5 [16] 53.6 52.3 48.7 48.8
LISA-13B-LLaVA1.5 [16] 57.7 60.3 53.8 50.8
SAM4MLLM [4] 46.7 48.1 - -
Seg-Zero-7B* [23] 62.0 52.0 58.3 53.4

SAM-R1 (Ours) 64.0 55.8 60.2 54.3

Referring Expression Segmentation. Our evaluation results on the Referring Expression Segmen-
tation datasets are shown in Table 2. We use the testA subsets of RefCOCO and RefCOCO+ as
OOD test sets, and the test set of RefCOCOg as the in-domain test set. It can be seen that our model,
trained on only 3,000 samples, still achieves competitive performance compared to prior methods.
Specifically, on the in-domain dataset RefCOCOg, our algorithm SAM-R1 is only 0.2 points lower
than Seg-Zero, despite using fewer style-consistent training samples. On the OOD datasets, our
model performs comparably to Seg-Zero on RefCOCO, and improves the performance on RefCOCO+
from 73.9 to 74.7. This demonstrates the effectiveness of our approach SAM-R1. We attribute this
improvement to the fine-grained reward mechanisms and the flexible exploration strategy, which
allows our model to surpass previous out-of-domain performance with significantly less training data.

4.4 Visualization Analysis

As shown in Figure 3, we present some representative cases to analyze the reasoning and segmentation
performance of our model in diverse scenarios.

Multiple Subjects with Fine-Grained Segmentation. In certain situations, it is necessary to identify
a specific subject among multiple subjects. For example, identifying Santa Claus amidst a little girl,
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Table 2: Performance comparison on referring expression benchmarks using cIoU.
Method refCOCO refCOCO+ refCOCOg
LAVT [47] 75.8 68.4 62.1
ReLA [19] 76.5 71.0 66.0
LISA-7B [16] 76.5 67.4 68.5
PixelLM-7B [31] 76.5 71.7 70.5
PerceptionGPT-7B [28] 78.6 73.9 71.7
Seg-Zero-7B* [23] 79.2 73.9 73.3
SAM-R1 (Ours) 79.2 74.7 73.1

chairs, Christmas trees, and various decorations, each of which is complex and numerous. The model
utilizes cues, such as red clothing and the act of listening to wishes, to successfully identify and
segment Santa Claus.

Global To Local Reasoning. In scenes containing rich local details, identifying a specific part from
the overall structure is highly challenging. For example, in an image of an airplane composed of
various components, our model accurately locates the engine by reasoning over the spatial relationship
between the engine and the wings.

Challenging Environment With Distractors. In cluttered environments, such as an airport filled
with various signs, identifying a specific sign, such as “Watch Your Step”, poses significant challenges.
Our model effectively distinguishes the target sign from visually similar ones by leveraging contextual
reference objects and localizing the identification process step by step.

Complex Boundaries. For complex boundaries, such as those found in gymnastics competitions, the
model integrates textual and visual information to infer that gymnastics involves specific movements.
This understanding suggests the use of a vaulting table, which in turn facilitates the generation of
coherent segmentation masks.

4.5 Ablation Study

In this section, we validate the effectiveness of the proposed components. As shown in Table 3, the
tiered threshold strategy demonstrates superior performance compared to fixed thresholds across
both in-domain and OOD benchmarks. While fixed thresholds of 0.5, 0.7, and 0.8 achieve 56.5-58.6
gIoU on the ReasonSeg-zero-shot (test), the dynamic tiered approach significantly outperforms them
with 60.2 gIoU (+3.5% absolute improvement). This performance gap highlights the limitations of
static thresholds in handling complex reasoning scenarios, where overly conservative predictions at
high thresholds (e.g., 0.8) degrade cIoU performance despite improved localization precision. The
tiered mechanism’s phased threshold adjustment seems to more effectively balance precision-recall
trade-offs, particularly enhancing OOD generalization, as demonstrated by its 75.4 gIoU score on the
refCOCOg test set, which is 0.8% higher than the best fixed threshold.

Table 3: Ablation study on different threshold strategies under ReasonSeg-zero-shot (test) and
refCOCOg-test benchmarks.

Method ReasonSeg (gIoU) ReasonSeg (cIoU) refCOCOg (gIoU) refCOCOg (cIoU)
0.5 56.5 51.9 74.7 72.8
0.7 56.2 51.6 74.9 72.6
0.8 58.6 50.8 74.6 71.9
Tiered 60.2 54.3 75.4 73.1

We further analyze the algorithmic components presented in Table 4 to validate the effectiveness
of token-level constraints and the use of an asymmetric clipping strategy. The token-level reward
mechanism yields consistent improvements across various metrics, enhancing ReasonSeg cIoU by
0.5% (from 51.2% to 51.7%) and refCOCOg cIoU by 0.6% (from 71.8% to 72.4%) through fine-
grained output format regulation. Meanwhile, increasing the upper clipping threshold in our GRPO
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Thinking: The traditional figure associated with the holiday season, known 
for wearing a red suit and sitting on a throne-like chair to listen to 
children's wishes. In the image, there is a person dressed in a red suit with a 
white beard, sitting on a red chair, which aligns with the description of 
Santa Claus. The points are placed on the figure to ensure it is correctly 
identified as the target object.

User: During the holiday season, children 
often  have  the  opportun ity  to  s i t  on 
someone's lap and share their wishes. Who in 
the picture is traditionally known for wearing 
a red suit and sitting on a throne-like chair 
to listen to children's wishes?

Thinking:The person who is not likely to be a player. In this image, the person 
on the far left is wearing a jacket and jeans, which are not typical athletic 
attire, and is standing with a more formal posture, suggesting they are not a 
player. The other individuals are wearing athletic clothing and appear to be 
holding flowers, which is more typical for a player receiving an award. The 
bounding box is drawn around the person on the far left, and points are 
placed on the person's body to indicate they are the target object.

User: The person who is not likely to be a 
player

Thinking: The engines of the aircraft, which are typically located under the 
wings. The bounding box is drawn to encompass the area under the wings 
where engines are usually mounted, and points are placed on the bounding 
box to represent the engines. The points are marked with 1 if they are on 
the engines and 0 if they are not.

User:The engines for this plane.

Thinking: The object in the image that is used to hold a beverage securely 
while walking. The object in question is the cup held in the person's hand, 
which is designed to be held and carried comfortably. The bounding box is 
centered on the cup, and the points are placed on the cup to indicate it as 
the target object.

User: When we are in a coffee shop and 
want to enjoy our drink while walking around, 
what object in the picture can we use to 
hold our beverage securely?

Thinking: The sign that specifically says \"Watch Your Step\" among the 
various signs in the image. The sign in question is located on the right side of 
the image, near the center, and is distinct in its message and placement. The 
bounding box is drawn around this sign, and points are placed on the sign to 
indicate its presence.

User: The sign that reminds people to watch 
their step

Thinking: The apparatus used in gymnastics for performing flips and vaults. 
The image shows a gymnast mid-air, suggesting the use of a vaulting table, 
which is a common piece of equipment in gymnastics for such movements. 
The bounding box is centered on the apparatus, and the points are placed 
on the surface of the table, which is the area used for vaulting.

User: In gymnastics competitions, athletes 
perform a variety of acrobatic movements 
on different apparatus. What in the picture 
could be used for athletes to perform 
impressive and challenging movements such 
as flips and vaults?

Thinking: The two blue motorcycles that are tied together with a chain. The 
bounding box is drawn to encompass both motorcycles, ensuring that the 
chain connecting them is included. Points are placed on the motorcycles to 
indicate their presence, with a value of 1 for points on the motorcycles and 
0 for points on the surrounding area.

User: The motorcycles tied together.

Thinking: The black accessory typically worn around the neck for elegance, 
which is a tie. In the image, the dog is wearing a red bow tie, which is a type 
of tie. The red bow tie is the closest match to the black tie in terms of 
function and placement around the neck. The points are placed on the red 
bow tie to indicate that it is the target object.

User: In formal attire, people often wear a 
black accessory around their neck to add a 
touch of elegance. What object in the 
picture can be used as this accessory?

Figure 3: Qualitative results on ReasonSeg [16] demonstrate that SAM-R1 exhibits robust zero-shot
performance, further enhanced by the chain-of-thought approach with improved reasoning capacity.

variant provides more flexibility in updating highly advantageous actions, which proves especially
beneficial in OOD reasoning tasks. This adjustment improves ReasonSeg gIoU by 1.3%, compared
to a 0.8% gain on refCOCOg, suggesting that such flexibility is more impactful in addressing
complex reasoning challenges. Notably, combining both techniques yields a synergistic effect, raising
ReasonSeg cIoU to 54.3%, a 3.1% improvement over the GRPO baseline. The full method achieves
peak gIoU scores of 75.4 on the refCOCOg test set and 60.2 on ReasonSeg, demonstrating the
effectiveness of jointly enforcing fine-grained output structure and reward-sensitive policy adaptation.

Table 4: Ablation study of algorithmic components based on the GRPO baseline on ReasonSeg-zero-
shot and refCOCOg-test.

Method Token-level CLIP higher gIoU (RS) cIoU (RS) gIoU (Rcg) cIoU (Rcg)
GRPO 57.8 51.2 74.1 71.8
Token-level 58.0 51.7 74.5 72.4
Clip higher 59.1 52.8 74.9 72.5
Ours 60.2 54.3 75.4 73.1

4.6 Generalization to REC task

Although our model is not trained on any Referring Expression Comprehension (REC) datasets, we
observe strong performance on REC task, thanks to the model’s enhanced reasoning ability and
fine-grained perceptual capabilities. As shown in Table 5, our method, SAM-R1, achieves state-of-
the-art performance on the LISA-Grounding benchmark with 63.8, significantly surpassing previous
methods such as GroundedSAM (26.2), OV-Seg (28.4), X-Decoder (28.5), and Visual-RFT (43.9).
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Model LISA-Grounding
GroundedSAM 26.2
OV-Seg 28.4
X-Decoder 28.5
Visual-RFT 43.9
SAM-R1(Ours) 63.8

Table 5: Performance comparison on the LISA-Grounding benchmark. Our method significantly
outperforms prior open-vocabulary and vision-language segmentation approaches, demonstrating
strong generalization ability on reasoning-intensive REC tasks.

This substantial improvement demonstrates the effectiveness of our reinforcement learning-based
reasoning framework in complex visual grounding tasks. Unlike prior approaches, which often
rely on large-scale supervised training or handcrafted prompt engineering, our method leverages
task-aligned rewards and structured reasoning supervision to enable fine-grained object understanding
and robust generalization in reasoning-intensive scenarios. These results demonstrate the generality
and adaptability of our method beyond segmentation, highlighting its strong alignment capabilities
and transferability to challenging REC scenarios.

4.7 Broader Impact and Discussion

Our work shows that reinforcement learning, guided by a segmentation model, can effectively
cultivate reasoning in multimodal models. The strong performance of SAM-R1 with only 3,000
training samples highlights a promising path toward data efficiency. By using standard segmentation
masks as the supervisory signal, our approach bypasses the need for costly and potentially biased,
manually annotated reasoning chains, thus enhancing scalability. More broadly, this study supports
a paradigm where models learn complex reasoning from task-aligned rewards rather than explicit
instructions. This shift toward learning from weaker, accessible supervision is particularly impactful
for domains with scarce reasoning data, such as robotic perception and medical image analysis.

We recognize several limitations for future work. First, SAM’s parameters remain frozen, creating a
one-way information flow that prevents it from adapting to the reasoning model. Jointly optimizing
both models is a compelling next step. Though computationally demanding, this could foster a
synergistic alignment where the models co-adapt. Second, our model struggles to generate meaningful
negative reference points, a key capability for robust discriminative reasoning. Our RL framework
failed to encourage this, suggesting a foundational limitation that may require new architectural or
algorithmic solutions to improve robustness in complex visual scenes.

5 Conclusion

In this paper, we present SAM-R1, an innovative framework that leverages reinforcement learning
to enhance the reasoning capabilities of multimodal large models for image segmentation. Our
method introduces fine-grained segmentation settings into the training process, enabling more precise
and task-relevant reasoning. Furthermore, we propose a task-specific, fine-grained reward design
that incorporates the Segment Anything Model (SAM) as a flexible and reliable reward provider.
By integrating these components with a tailored optimization objective, SAM-R1 achieves strong
performance using only 3,000 training samples, demonstrating the practicality and effectiveness of
reinforcement learning in this domain. This work not only contributes to advancing multimodal
image segmentation but also highlights the potential of reward-guided learning for developing more
efficient and adaptable multimodal large models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Overall, the abstract and introduction provide a concise yet comprehensive sum-
mary of the paper’s objectives, methods, and findings, accurately reflecting its contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Yes, we discuss the limitations in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: By adhering to the principles mentioned in the Guidelines, we ensure that each
theoretical result is underpinned by a full set of assumptions and complete, correct proofs,
thus reinforcing the credibility and reliability of the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the experiments section in the main text, we report all the experiment
settings, implementation details, and metrics, which disclose all the information needed to
reproduce the main experimental results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be made available after being accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the experiments section in the main text, we report all the experiment
settings, implementation details, and metrics, which disclose all the information needed to
reproduce the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: N/A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources in the implementation details of the experi-
ment section.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we discuss both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

18

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the original owners of code, data and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper has no crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for formatting purposes and does not impact the core
methodology, scientific rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices

(a) Training collapse without KL
constraint.

(b) Negative points placed outside
bounding boxes.

(c) All points clustered on the object
when restricted to box.

Figure 4: Ablation study failures: (a) Removing the KL constraint leads to training instability and
collapse. (b) Encouraging both positive and negative point generation causes negatives to appear
outside target areas. (c) Forcing all points into the bounding box eliminates useful contrast, reducing
performance.

A.1 Ablation Failure: Removing the KL Constraint

During the development of our method, we explored various strategies to encourage broader explo-
ration by the model. One such attempt involved removing the KL divergence constraint, which is
commonly used to regularize policy updates and limit deviation from the reference distribution.

However, empirical results showed that eliminating the KL term led to significant instability during
training. As illustrated in Figure 4a, the model initially exhibited effective learning behavior with a
strong exploratory signal. Yet, after approximately 100 training steps, we observed sharp fluctuations
in performance, eventually leading to complete collapse of the training process.

This outcome indicates that the KL constraint plays a crucial role in maintaining training stability,
especially in our multimodal reasoning setting. Consequently, we decided to retain the KL divergence
term in our final framework, despite its potential to limit aggressive exploration.

A.2 Ablation Failure: Encouraging Negative Reference Points

In designing the reward function, we initially allowed the multimodal large model to freely determine
the value of the reference point—positive (1) or negative (0)—without explicit supervision. However,
we observed that the model strongly preferred generating only positive points, rarely including any
negatives. We hypothesized that incorporating both positive and negative points could provide richer
target information and improve segmentation performance.

To encourage this behavior, we introduced a format-based reward component, point value, which
awarded 1 point when both 0 and 1 values appeared in the output. As shown in Figure 4b, this led the
model to include both types of points. While the positive points remained well-aligned with the target
object, the negative points were typically placed at the image boundaries, far outside the bounding
box, offering no useful contrast for object discrimination.

We then modified the rule to grant the reward only when both positive and negative points were
located within the bounding box. As shown in Figure 4c, this adjustment led to all points—regardless
of label—being clustered directly on the target object, effectively eliminating the intended contrast
and introducing noise instead.

These results suggest that, despite reward incentives, the multimodal large model lacks the inherent
ability to identify meaningful negative examples in visual space. Therefore, we decided not to enforce
negative point generation in our final design.

A.3 Failure Analysis

As illustrated in Figure 5, we present several typical failure cases, which mainly highlight two issues:
incomplete segmentation and over-segmentation.
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Thinking: The image shows a grand building with a classical 
architectural style, featuring a prominent triangular pediment and 
a series of large columns. The entrance is clearly marked by a set 
of double doors, and there is a decorative hanging from the center 
of the entrance. The object that prevents people from getting 
into the building is the metal fence in front of the entrance. I 
identified the fence by its distinct shape and the fact that it is 
positioned directly in front of the entrance, which is a common 
placement for such barriers. I located the bounding box around 
the fence and marked some points within it to ensure the object is 
correctly identified

User: Something that prevents 
people from getting into the 
building

Thinking: The image shows two red fire extinguishers with black 
nozzles and a black industrial valve in the background. Fire 
extinguishers are specifically designed to store and release fire 
extinguishing substances. The presence of the fire extinguishers 
in the image, along with the text and symbols on them, confirms 
that they are the objects in question. The industrial valve in the 
background is not related to fire safety equipment and is not the 
target object. The fire extinguishers are the most closely 
matched target objects in the picture.

User: In case of a fire, it is 
important to have access to 
fire safety equipment. What 
o b j e c t  i n  t h e  p i c t u r e  i s 
specifically designed to store 
and release fire extinguishing 
substances?

Thinking: The image shows a black sports car with its hood open, 
revealing the engine compartment. This is a common practice at 
car shows to allow visitors to see the internal components of the 
vehicle. The car is parked in a lot with other cars in the 
background, and the open hood is clearly visible, indicating that 
the engine compartment is accessible for viewing. The points 
within the bounding box are marked to highlight the open hood 
area, which is the target object in this image.

User: At a car show, visitors 
can get close to the displayed 
vehicles to admire their design 
and features. What part of 
the car in this picture is open, 
allowing viewers to see the 
engine compartment?

Prompt Image Ground Truth Thinking Predict

Figure 5: Visualization of some failure cases for our SAM-R1 method on the ReasonSeg-val dataset,
which shows that our approach still has some limitations.

A notable observation is that our SAM-R1, through its Thinking process (fourth column), successfully
comprehends the prompt and correctly localizes the target object(s). However, this correct semantic
understanding does not always translate perfectly into the final segmentation mask. For example,
in cases of incomplete segmentation: In the first row, the model correctly identifies the fence, but
the Predict mask only covers a small portion of the target. In the second row, the model recognizes
The fire extinguishers but incorrectly segments only one of the two instances. Conversely, over-
segmentation is demonstrated in the third row: The prompt asks for a part of the car (the hood), and
the Thinking process also pinpoints the open hood. However, the model incorrectly segments the
entire vehicle instead of just the specified part.

These examples indicate that, while our model performs well in high-level semantic reasoning,
limitations still exist in its ability to precisely map this understanding to pixel-level masks, particularly
concerning fine-grained segmentation and instance completeness. This remains a key area for future
improvement.

A.4 Data Efficiency and Scalability Analysis

To investigate the scalability and data efficiency of SAM-R1, we conducted additional experiments
by increasing the size of the training data from 3k to 10k. The results clearly show that our method is
highly data-efficient, with performance saturating at just 3k samples.

We present the direct comparison in Table 6. As shown, increasing the data to 10k results in negligible
fluctuations in ReasonSeg: the cIoU shifts slightly from 55.8 to 55.5 on the val split and from 54.3
to 53.9 on the test split. Similarly, on the RefCOCO benchmarks, we observe only marginal gains,
which strongly indicates that performance has already plateaued.

Table 6: Data efficiency analysis with 3k vs. 10k training samples.

Method ReasonSeg RefCOCO Benchmarks
Val Test refCOCO refCOCO+ refCOCOg

SAM-R1 (Ours, 3k) 55.8 54.3 79.2 74.7 73.1
SAM-R1 (Ours, 10k) 55.5 53.9 79.9 75.3 73.5

Gain -0.3 -0.4 +0.7 +0.6 +0.4

From these results, it is evident that our method’s core performance saturates at 3k samples. Given
the substantial increase in training cost versus the minimal performance returns, we deliberately
chose 3k samples as the optimal trade-off point for demonstrating our method’s capabilities.
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